1
|
Hough ZJ, Nasehi F, Corum DG, Norris RA, Foley AC, Muise-Helmericks RC. Akt3 links mitochondrial function to the regulation of Aurora B and mitotic fidelity. PLoS One 2025; 20:e0315751. [PMID: 40048438 PMCID: PMC11884723 DOI: 10.1371/journal.pone.0315751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/29/2024] [Indexed: 03/09/2025] Open
Abstract
Akt3 is a key regulator of mitochondrial homeostasis in the endothelium. Akt3 depletion results in mitochondrial dysfunction, decreased mitochondrial biogenesis, and decreased angiogenesis. Here we link mitochondrial homeostasis with mitotic fidelity-depletion of Akt3 results in the missegregation of chromosomes as visualized by multinucleation and micronuclei formation. We have connected Akt3 to Aurora B, a significant player in chromosome segregation. Akt3 localizes to the nucleus, where it associates with and regulates WDR12. During mitosis, WDR12 is localized to the dividing chromosomes, and its depletion results in a similar mitotic phenotype to Akt3 depletion. WDR12 associates with Aurora B, both of which are downregulated under conditions of Akt3 depletion. We used the model oxidant paraquat to induce mitochondrial dysfunction to test whether the Akt3-dependent effect on mitochondrial homeostasis is linked to mitotic function. Paraquat treatment also causes chromosome missegregation by inhibiting the expression of Akt3, WDR12, and Aurora B. The inhibition of ROS rescued both the mitotic fidelity and the expression of Akt3 and Aurora B. Akt3 directly phosphorylates the major nuclear export protein CRM-1, causing an increase in its expression, resulting in the inhibition of PGC-1 nuclear localization, the master regulator of mitochondrial biogenesis. The Akt3/Aurora B pathway is also dependent on CRM-1. CRM-1 overexpression resulted in chromosome missegregation and downregulation of Aurora B similar to that of Akt3 depletion. Akt3 null hearts at midgestation (E14.5), a stage in which proliferation is occurring, have decreased Aurora B expression, increased CRM-1 expression, decreased proliferation, and increased apoptosis. Akt3 null hearts are smaller and have a thinner compact cell layer than age-matched wild-type mice. Akt3 null tissue has dysmorphic nuclear structures, suggesting mitotic catastrophe. Our findings show that mitochondrial dysfunction induced by paraquat or Akt3 depletion results in a CRM-1-dependent disruption of Aurora B and mitotic fidelity.
Collapse
Affiliation(s)
- Zachary J. Hough
- Department of Regenerative Medicine and Cell Biology, The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Fatemeh Nasehi
- Department of Bioengineering, Clemson University, Clemson, South Carolina, United States of America
| | - Daniel G. Corum
- Department of Regenerative Medicine and Cell Biology, The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Ann C. Foley
- Department of Bioengineering, Clemson University, Clemson, South Carolina, United States of America
| | - Robin C. Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, The Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
2
|
De Lepeleire J, Mishra RC, Verstraete J, Pedroza Garcia JA, Stove C, De Veylder L, Van Der Straeten D. Folate depletion impact on the cell cycle results in restricted primary root growth in Arabidopsis. PLANT MOLECULAR BIOLOGY 2025; 115:31. [PMID: 39946030 PMCID: PMC11825618 DOI: 10.1007/s11103-025-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 01/03/2025] [Indexed: 02/16/2025]
Abstract
Folates are vital one carbon donors and acceptors for a whole range of key biochemical reactions, including the biosynthesis of DNA building blocks. Plants use one carbon metabolism as a jack of all trades in their growth and development. Depletion of folates impedes root growth in Arabidopsis thaliana, but the mechanistic basis behind this function is still obscure. A global transcriptomic study hinted that folate depletion may cause misregulation of cell cycle progression. However, investigations on a direct connection thereof are scarce. We confirmed the effect of methotrexate (MTX), a folate biosynthesis inhibitor, on the expression of cell cycle genes. Subsequently, we determined the effect of MTX on root morphology and cell cycle progression through phase-specific cell cycle reporter analyses. Our study reveals that folate depletion affects the expression of cell cycle regulatory genes in roots, thereby suppressing cell cycle progression. We confirmed, through DNA labelling by EdU, that MTX treatment leads to arrest in the S phase of meristematic cells, likely due to the lack of DNA precursors. Further, we noted an accumulation of the A-type CYCA3;1 cyclin at the root tip, suggesting a possible link with the observed loss of apical dominance. Overall, our study shows that the restricted cell division and cell cycle progression is one of the reasons behind the loss of primary root growth upon folate depletion.
Collapse
Affiliation(s)
- Jolien De Lepeleire
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Ratnesh Chandra Mishra
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Jana Verstraete
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Jose Antonio Pedroza Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium.
| |
Collapse
|
3
|
Wen P, Sun Z, Gou F, Wang J, Fan Q, Zhao D, Yang L. Oxidative stress and mitochondrial impairment: Key drivers in neurodegenerative disorders. Ageing Res Rev 2025; 104:102667. [PMID: 39848408 DOI: 10.1016/j.arr.2025.102667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Mitochondrial dysfunction and oxidative stress are critical factors in the pathogenesis of neurodegenerative diseases. The complex interplay between these factors exacerbates neuronal damage and accelerates disease progression. In neurodegenerative diseases, mitochondrial dysfunction impairs ATP production and promotes the generation of reactive oxygen species (ROS). The accumulation of ROS further damages mitochondrial DNA, proteins, and lipids, creating a vicious cycle of oxidative stress and mitochondrial impairment. This review aims to elucidate the mechanisms by which mitochondrial dysfunction and oxidative stress lead to neurodegeneration, and to highlight potential therapeutic targets to mitigate their harmful effects.
Collapse
Affiliation(s)
- Pei Wen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhixin Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fengting Gou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qing Fan
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
4
|
Chun S, Bang SY, Kwon A, Kim CY, Cha S, Kwon YC, Joo YB, Cho SK, Choi CB, Sung YK, Han JY, Kim TH, Jun JB, Yoo DH, Lee HS, Kim K, Bae SC. Genetic burden of lupus increases the risk of transition from normal to preclinical autoimmune conditions via antinuclear antibody development. Ann Rheum Dis 2025:S0003-4967(25)00069-X. [PMID: 39893101 DOI: 10.1016/j.ard.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 02/04/2025]
Abstract
OBJECTIVES This study aimed to investigate the association between the genetic burden of systemic lupus erythematosus (SLE) and the loss of tolerance to self-nuclear antigens in the preclinical stage. METHODS We analysed genetic data from 349 Korean individuals who tested positive for autoantibodies in the preclinical stage, along with 33,596 healthy controls and 2057 patients with SLE. Genome-wide and pathway-specific polygenic risk scores (PRSs) of SLE were calculated based on 180 known non-human leukocyte antigen (non-HLA) SLE loci, HLA-DRB1 classical alleles, and predefined immune-related pathways to subsequently correlate with clinical phenotypes, particularly the presence of antinuclear antibodies (ANAs) at various titre thresholds. RESULTS Individuals with preclinical autoimmune conditions exhibited significantly higher SLE PRSs than healthy controls (P = 2.99 × 10-5), with a significantly upward trend between ANA titres and PRS (P = 1.12 × 10-3). Stratification analysis revealed that preclinical-stage individuals with PRSs exceeding the means of age- and sex-matched PRSs among patients with SLE were at a significantly higher risk of ANA development (odds ratio = 2.25; P = 8.12 × 10-3 at a dilution factor of 1:80). Pathway-specific PRS analysis identified the significant enrichment of SLE-risk effects in nine pathways, such as signalling related to reactive oxygen species production, T cell receptor, B cell receptor, and cytokines, in ANA-positive preclinical individuals (Padjusted < 0.05). CONCLUSIONS Our findings illustrate that the genetic burden of SLE may lead to a crucial transition from normal to preclinical autoimmune conditions prior to the pathogenic stage by increasing the susceptibility to and levels of ANAs.
Collapse
Affiliation(s)
- Sehwan Chun
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea; Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Seoul, Republic of Korea
| | - Ayeong Kwon
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Chan Young Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Soojin Cha
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Seoul, Republic of Korea
| | - Young-Chang Kwon
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Seoul, Republic of Korea
| | - Young Bin Joo
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea; Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Soo-Kyung Cho
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea; Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Chan-Bum Choi
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea; Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Yoon-Kyoung Sung
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea; Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Ji-Young Han
- Department of Periodontology, Division of Dentistry, Hanyang University, College of Medicine, Seoul, Republic of Korea
| | - Tae-Hwan Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea; Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Jae-Bum Jun
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea; Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Dae Hyun Yoo
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea; Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea; Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Seoul, Republic of Korea
| | - Kwangwoo Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea; Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea.
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea; Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Seoul, Republic of Korea
| |
Collapse
|
5
|
Sharma G, Badruddeen, Akhtar J, Khan MI, Ahmad M, Sharma PK. "Methyl jasmonate: bridging plant defense mechanisms and human therapeutics". NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03752-x. [PMID: 39847055 DOI: 10.1007/s00210-024-03752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
A volatile organic substance produced from jasmonic acid, methyl jasmonate (MJ/MeJA), is an important plant hormone involved in stress responses and plant defense. Apart from its role in plants, MJ has garnered significant attention because of its pharmacological effects and possible therapeutic use in human health. This thorough analysis looks into the many biological actions of MJ, such as its antioxidant, anti-inflammatory, and anti-cancer effects. The underlying mechanism of these actions is examined, emphasizing MJ's ability to modulate important signaling pathways, cause cancer cells to undergo apoptosis, and boost immunological responses. Furthermore, MJ's capacity to manage long-term illnesses like cancer and neurological conditions like Parkinson's and Alzheimer's is examined. Preclinical and clinical research are beginning to provide evidence that MJ may be a useful medicinal drug. Nevertheless, more research is needed to fully understand its mode of action, enhance its administration methods, and evaluate its efficacy and safety in humans. This review highlights MJ's therapeutic promise and supports earlier research into its pharmacological capabilities and possible medical applications. This abstract highlights methyl jasmonate's pharmacological effects and therapeutic potential by providing a concise overview of the main topics covered in a thorough review.
Collapse
Affiliation(s)
- Garima Sharma
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Badruddeen
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India.
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Mohammad Irfan Khan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Prakash Kumar Sharma
- Department of Anesthesiology, Hind Institute of Medical Sciences, Safedabad, Lucknow, U.P., 225001, India
| |
Collapse
|
6
|
Ran Q, Su Y, Zhang W, Zhang X, Zhao L, Chen M, Wan Y, Tan WS, Ye Q. Influence of Cell Physiological Status on the Intensified Fed-Batch Cultures at Ultra-High Seeding Density. Biotechnol Appl Biochem 2025. [PMID: 39834164 DOI: 10.1002/bab.2721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025]
Abstract
Recent years, intensified fed-batch culture with ultra-high seeding density (uHSD-IFB) is coming to the forefront of manufacturers' choice for its enhanced productivity. However, the effects of seed cell physiological state and aeration strategies on these processes remain underexplored due to the ultra-high seeding density. Currently, the pre-production seeding inoculum (N-1) crucial for the uHSD-IFB cultures relies heavily upon case-by-case empirical experiences. To develop a rational seeding approach as a guideline, we here explored the impact of perfusion rates and cell growth states on the subsequent uHSD-IFB processes. It was found that seed cells in the exponential growth phase with high perfusion rates in the N-1 perfusion stage allowed for higher viable cell density and titer in the production stage. In particular, lower levels of reactive oxygen species, higher proportions of G1 and S phase, and higher specific cell oxygen uptake rates (OURs) were exhibited in these cells, resulting in higher cell specific growth rates and integral of viable cell concentration (IVCC) throughout the production cultures. Further investigation into the effect of aeration strategies was carried out in the benchtop bioreactors. A final yield of 4.5 g/L, an increase of nearly 110%, was achieved by a sophisticated dual sparger system compared to the other two processes with either one l-shaped or micro-sparger. These results provide a direction for the design and establishment of high-titer processes in intensified fed-batch cultures at ultra-high seeding density. Synopsis: In this work, we first explored the impact of perfusion rates and cell growth states on the subsequent uHSD-IFB processes. Further investigation into the effect of aeration strategies of intensified fed-batch process was carried out in the benchtop bioreactors. These results provide a direction for the design and establishment of high-titer processes in intensified fed-batch cultures at ultra-high seeding density.
Collapse
Affiliation(s)
- Qingyuan Ran
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ying Su
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Weijian Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xinran Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Liang Zhao
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Min Chen
- Shanghai Bioengine Sci-Tech Co. Ltd, Shanghai, China
| | - Yuxiang Wan
- Hisun Biopharmaceutical Co. Ltd., Hangzhou, China
| | - Wen-Song Tan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qian Ye
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
7
|
Guha S, Talukdar D, Mandal GK, Mukherjee R, Ghosh S, Naskar R, Saha P, Murmu N, Das G. Crude extract of Ruellia tuberosa L. flower induces intracellular ROS, promotes DNA damage and apoptosis in triple negative breast cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118389. [PMID: 38821138 DOI: 10.1016/j.jep.2024.118389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ruellia tuberosa L. (Acanthaceae) is a weed plant traditionally used in folklore medicine as a diuretic, anti-hypertensive, anti-pyretic, anti-cancerous, anti-diabetic, analgesic, and gastroprotective agent. It has been previously reported that R. tuberosa L. is enriched with various flavonoids, exhibiting significant cytotoxic potential in various cancer models but a detailed study concerning its molecular mechanism is yet to be explored. AIM OF THE STUDY Exploring and validating R. tuberosa L. flower methanolic extract (RTME) as an anti-cancerous agent as per traditional usage with special emphasis on multi-drug resistant human triple-negative breast cancer (TNBC) and investigating the possible signaling networks and regulatory pathways involved in it. MATERIALS AND METHODS In this study, RTME was prepared using methanol, and phytochemical analysis was performed through GC-MS. Then, the extract was tested for its anti-cancer potential through in-vitro cytotoxicity assay, clonogenic assay, wound healing assay, ROS generation assay, cell cycle arrest, apoptotic nuclear morphology study, cellular apoptosis study, mitochondrial membrane potential (MMP) alteration study, protein, and gene expressions alteration study. In addition, toxicological status was evaluated in female Balb/C mice, and to check the receptor-ligand interactions, in-silico molecular docking was also conducted. RESULTS Several phytochemicals were found within RTME through GC-MS, which have been already reported to act as ROS inductive, DNA damaging, cell cycle arresting, and apoptotic agents against cancer cells. Moreover, RTME was found to exhibit significant in-vitro cytotoxicity along with a reduction in colony formation, and inhibition of cell migratory potential. It also induced intracellular ROS, promoted G0/G1 cell cycle arrest, caused mitochondrial membrane potential (MMP) alteration, and promoted cell death. The Western blot and qRT-PCR data revealed that RTME promoted the intrinsic pathway of apoptosis. Furthermore, blood parameters and organ histology on female Balb/C mice disclosed the non-toxic nature of RTME. Finally, an in-silico molecular docking study displayed that the three identified lead phytochemicals in RTME show strong receptor-ligand interactions with the anti-apoptotic Bcl-2 and give a clue to the possible molecular mechanism of the RTME extract. CONCLUSIONS RTME is a potential source of several phytochemicals that have promising therapeutic potential against TNBC cells, and thus could further be utilized for anti-cancer drug development.
Collapse
Affiliation(s)
- Subhabrata Guha
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India; Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| | - Debojit Talukdar
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| | - Gautam Kumar Mandal
- IQ City Medical College Hospital, IQ City Road, Durgapur, 713206, West Bengal, India.
| | - Rimi Mukherjee
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| | - Srestha Ghosh
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| | - Rahul Naskar
- Department of Chemistry, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| | - Gaurav Das
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| |
Collapse
|
8
|
Li A, Qin Y, Gong G. The Changes of Mitochondria during Aging and Regeneration. Adv Biol (Weinh) 2024; 8:e2300445. [PMID: 38979843 DOI: 10.1002/adbi.202300445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/30/2024] [Indexed: 07/10/2024]
Abstract
Aging and regeneration are opposite cellular processes. Aging refers to progressive dysfunction in most cells and tissues, and regeneration refers to the replacement of damaged or dysfunctional cells or tissues with existing adult or somatic stem cells. Various studies have shown that aging is accompanied by decreased regenerative abilities, indicating a link between them. The performance of any cellular process needs to be supported by the energy that is majorly produced by mitochondria. Thus, mitochondria may be a link between aging and regeneration. It should be interesting to discuss how mitochondria behave during aging and regeneration. The changes of mitochondria in aging and regeneration discussed in this review can provide a timely and necessary study of the causal roles of mitochondrial homeostasis in longevity and health.
Collapse
Affiliation(s)
- Anqi Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yuan Qin
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guohua Gong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
9
|
Dogan MS, Celik H, Türedi S, Taskın A, Dogan ME, Yıldız Ş. An examination of the effect of exercise and creatine monohydrate on oral tissues. Microsc Res Tech 2024; 87:2504-2512. [PMID: 38860628 DOI: 10.1002/jemt.24626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
Although physical exercise is extremely important for health and a good lifestyle, it can trigger oxidative stress, inflammation, and muscle fatigue. The aim of this study was to determine changes in dental tissues and the mandible created by creatines monohydrate (CrM) supplementation together with low and high-intensity exercise (HIE). The study material comprised Balb/c male mices, which were separated into two groups for the application of low and HIE on a running band. CrM supplement was administered together with the exercise. At the end of the experiment period, dental tissue samples were surgically removed and examined histopathologically and immunohistochemically (TNF-α and lL-1β).As a result of the histopathological examinations, in the pulp, oedema, vascular congestion, and capillary dilatation were seen to be statistically significantly increased in the Group 3 mices that performed HIE compared to the control group (p = 0.001, p = 0.003, p = 0.001, respectively). A statistically significant increase was observed in periodontal ligament (PDL) degeneration, and disruption of the continuity and separation of collagen fibers in Group 3 compared to the control group (p = 0.001). In the immunohistochemical examination, TNF-α and IL-1β positivity was observed in Group 3, and this was significantly increased compared to the control group (p = 0.001, p = 0.000).Exposure of the mices to low and HIE caused histological and immunohistochemical changes in dental pulp and PDL, and it was determined that the use of CrM could have a protective effect against these changes. RESEARCH HIGHLIGHTS: The results of this study showed negative effects of HIE in the dental pulp and PDL, which play an important role in dental health. CrM was seen to be effective in preventing these negative effects.
Collapse
Affiliation(s)
- Mehmet Sinan Dogan
- Department of Pediatric Dentistry, Faculty of Dentistry, Harran University, Sanliurfa, Turkey
| | - Hakim Celik
- Department of Physiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Sibel Türedi
- Department of Histology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Abdullah Taskın
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Harran University, Sanliurfa, Turkey
| | - Mehmet Emin Dogan
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Harran University, Sanliurfa, Turkey
| | - Şemsettin Yıldız
- Department of Pediatric Dentistry, Faculty of Dentistry, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
10
|
Kourdova LT, Miranda AL, Ovejero M, Anastasía A, Genti-Raimondi S, Racca AC, Panzetta-Dutari GM. Krüppel-like factor 6 involvement in the endoplasmic reticulum homeostasis of extravillous trophoblasts. Placenta 2024; 155:42-51. [PMID: 39121586 DOI: 10.1016/j.placenta.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Trophoblast homeostasis and differentiation require a proper endoplasmic reticulum (ER) function. The Krüppel-like factor-6 (KLF6) transcription factor modulates trophoblast migration, differentiation, and reactive oxygen species (ROS) production. Since ROS may impact on ER homeostasis, we assessed whether downregulation of KLF6 altered the unfolded protein response (UPR) and cellular process associated with ER homeostasis. MATERIALS AND METHODS Protein and RNA expression were analyzed by Western blot and qRT-PCR, respectively, in extravillous trophoblast HTR-8/SVneo cells silenced for KLF6. Apoptosis was detected by flow cell cytometry using Annexin V Apoptosis Detection Kit. Protein trafficking was assessed by confocal microscopy of a reporter fluorescent protein whose release from the ER was synchronized. RESULTS KLF6 downregulation reduced the expression of BiP, the master regulator of the UPR, at protein, mRNA, and pre-mRNA levels. Ire1α protein, XBP1 splicing, and DNAJB9 mRNA levels were also reduced in KLF6-silenced cells. Instead, PDI, Ero1α, and the p-eIF2α/eIF2α ratio as well as autophagy and proteasome dependent protein degradation remained unchanged while intracellular trafficking was increased. Under thapsigargin-induced stress, KLF6 silencing impaired BiP protein and mRNA expression increase, as well as the activation of the Ire1α pathway, but it raised the p-eIF2α/eIF2α ratio and CHOP protein levels. Nevertheless, apoptosis was not increased. DISCUSSION Results provide the first evidence of KLF6 as a modulator of the UPR components. The increase in protein trafficking and protection from apoptosis, observed in KLF6-silenced cells, are consistent with its role in extravillous trophoblast migration and differentiation.
Collapse
Affiliation(s)
- Lucille T Kourdova
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Andrea L Miranda
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Milagros Ovejero
- Instituto de Investigación Médica Mercedes y Martin Ferreyra, (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Agustín Anastasía
- Instituto de Investigación Médica Mercedes y Martin Ferreyra, (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Susana Genti-Raimondi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Ana C Racca
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Graciela M Panzetta-Dutari
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
11
|
Chiappara G, Di Vincenzo S, Cascio C, Pace E. Stem cells, Notch-1 signaling, and oxidative stress: a hellish trio in cancer development and progression within the airways. Is there a role for natural compounds? Carcinogenesis 2024; 45:621-629. [PMID: 39046986 DOI: 10.1093/carcin/bgae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/22/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
Notch-1 signaling plays a crucial role in stem cell maintenance and in repair mechanisms in various mucosal surfaces, including airway mucosa. Persistent injury can induce an aberrant activation of Notch-1 signaling in stem cells leading to an increased risk of cancer initiation and progression. Chronic inflammatory respiratory disorders, including chronic obstructive pulmonary disease (COPD) is associated with both overactivation of Notch-1 signaling and increased lung cancer risk. Increased oxidative stress, also due to cigarette smoke, can further contribute to promote cancer initiation and progression by amplifying inflammatory responses, by activating the Notch-1 signaling, and by blocking regulatory mechanisms that inhibit the growth capacity of stem cells. This review offers a comprehensive overview of the effects of aberrant Notch-1 signaling activation in stem cells and of increased oxidative stress in lung cancer. The putative role of natural compounds with antioxidant properties is also described.
Collapse
Affiliation(s)
- Giuseppina Chiappara
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Palermo, via Ugo La Malfa 153, 90146, Italy
| | - Serena Di Vincenzo
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Palermo, via Ugo La Malfa 153, 90146, Italy
| | - Caterina Cascio
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Palermo, via Ugo La Malfa 153, 90146, Italy
| | - Elisabetta Pace
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Palermo, via Ugo La Malfa 153, 90146, Italy
| |
Collapse
|
12
|
Foret MK, Orciani C, Welikovitch LA, Huang C, Cuello AC, Do Carmo S. Early oxidative stress and DNA damage in Aβ-burdened hippocampal neurons in an Alzheimer's-like transgenic rat model. Commun Biol 2024; 7:861. [PMID: 39004677 PMCID: PMC11247100 DOI: 10.1038/s42003-024-06552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Oxidative stress is a key contributor to AD pathology. However, the earliest role of pre-plaque neuronal oxidative stress, remains elusive. Using laser microdissected hippocampal neurons extracted from McGill-R-Thy1-APP transgenic rats we found that intraneuronal amyloid beta (iAβ)-burdened neurons had increased expression of genes related to oxidative stress and DNA damage responses including Ercc2, Fancc, Sod2, Gsr, and Idh1. DNA damage was further evidenced by increased neuronal levels of XPD (Ercc2) and γH2AX foci, indicative of DNA double stranded breaks (DSBs), and by increased expression of Ercc6, Rad51, and Fen1, and decreased Sirt6 in hippocampal homogenates. We also found increased expression of synaptic plasticity genes (Grin2b (NR2B), CamkIIα, Bdnf, c-fos, and Homer1A) and increased protein levels of TOP2β. Our findings indicate that early accumulation of iAβ, prior to Aβ plaques, is accompanied by incipient oxidative stress and DSBs that may arise directly from oxidative stress or from maladaptive synaptic plasticity.
Collapse
Affiliation(s)
- Morgan K Foret
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Chiara Orciani
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | - Chunwei Huang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Department of Pharmacology, Oxford University, Oxford, UK.
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
13
|
Spisak N, de Manuel M, Milligan W, Sella G, Przeworski M. The clock-like accumulation of germline and somatic mutations can arise from the interplay of DNA damage and repair. PLoS Biol 2024; 22:e3002678. [PMID: 38885262 PMCID: PMC11213356 DOI: 10.1371/journal.pbio.3002678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/28/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
The rates at which mutations accumulate across human cell types vary. To identify causes of this variation, mutations are often decomposed into a combination of the single-base substitution (SBS) "signatures" observed in germline, soma, and tumors, with the idea that each signature corresponds to one or a small number of underlying mutagenic processes. Two such signatures turn out to be ubiquitous across cell types: SBS signature 1, which consists primarily of transitions at methylated CpG sites thought to be caused by spontaneous deamination, and the more diffuse SBS signature 5, which is of unknown etiology. In cancers, the number of mutations attributed to these 2 signatures accumulates linearly with age of diagnosis, and thus the signatures have been termed "clock-like." To better understand this clock-like behavior, we develop a mathematical model that includes DNA replication errors, unrepaired damage, and damage repaired incorrectly. We show that mutational signatures can exhibit clock-like behavior because cell divisions occur at a constant rate and/or because damage rates remain constant over time, and that these distinct sources can be teased apart by comparing cell lineages that divide at different rates. With this goal in mind, we analyze the rate of accumulation of mutations in multiple cell types, including soma as well as male and female germline. We find no detectable increase in SBS signature 1 mutations in neurons and only a very weak increase in mutations assigned to the female germline, but a significant increase with time in rapidly dividing cells, suggesting that SBS signature 1 is driven by rounds of DNA replication occurring at a relatively fixed rate. In contrast, SBS signature 5 increases with time in all cell types, including postmitotic ones, indicating that it accumulates independently of cell divisions; this observation points to errors in DNA repair as the key underlying mechanism. Thus, the two "clock-like" signatures observed across cell types likely have distinct origins, one set by rates of cell division, the other by damage rates.
Collapse
Affiliation(s)
- Natanael Spisak
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Marc de Manuel
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - William Milligan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Guy Sella
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Program for Mathematical Genomics, Columbia University, New York, New York, United States of America
| | - Molly Przeworski
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| |
Collapse
|
14
|
Choi YR, Na HJ, Lee J, Kim YS, Kim MJ. Isoeugenol Inhibits Adipogenesis in 3T3-L1 Preadipocytes with Impaired Mitotic Clonal Expansion. Nutrients 2024; 16:1262. [PMID: 38732509 PMCID: PMC11085592 DOI: 10.3390/nu16091262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Isoeugenol (IEG), a natural component of clove oil, possesses antioxidant, anti-inflammatory, and antibacterial properties. However, the effects of IEG on adipogenesis have not yet been elucidated. Here, we showed that IEG blocks adipogenesis in 3T3-L1 cells at an early stage. IEG inhibits lipid accumulation in adipocytes in a concentration-dependent manner and reduces the expression of mature adipocyte-related factors including PPARγ, C/EBPα, and FABP4. IEG treatment at different stages of adipogenesis showed that IEG inhibited adipocyte differentiation by suppressing the early stage, as confirmed by lipid accumulation and adipocyte-related biomarkers. The early stage stimulates growth-arrested preadipocytes to enter mitotic clonal expansion (MCE) and initiates their differentiation into adipocytes by regulating cell cycle-related factors. IEG arrested 3T3-L1 preadipocytes in the G0/G1 phase of the cell cycle and attenuated cell cycle-related factors including cyclinD1, CDK6, CDK2, and cyclinB1 during the MCE stage. Furthermore, IEG suppresses reactive oxygen species (ROS) production during MCE and inhibits ROS-related antioxidant enzymes, including superoxide dismutase1 (SOD1) and catalase. The expression of cell proliferation-related biomarkers, including pAKT and pERK1/2, was attenuated by the IEG treatment of 3T3-L1 preadipocytes. These findings suggest that it is a potential therapeutic agent for the treatment of obesity.
Collapse
Affiliation(s)
- Yae Rim Choi
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.C.); (H.-J.N.); (J.L.)
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Hyun-Jin Na
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.C.); (H.-J.N.); (J.L.)
| | - Jaekwang Lee
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.C.); (H.-J.N.); (J.L.)
| | - Young-Suk Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Min Jung Kim
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.C.); (H.-J.N.); (J.L.)
| |
Collapse
|
15
|
Liang T, Dong H, Wang Z, Lu L, Song X, Qi J, Zhang Y, Wang J, Du G. Discovery of novel urea derivatives as ferroptosis and autophagy inducer for human colon cancer treatment. Eur J Med Chem 2024; 268:116277. [PMID: 38422700 DOI: 10.1016/j.ejmech.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
A series of novel urea derivatives were designed, synthesized and evaluated for their inhibitory activities against HT-29 cells, and structure-activity relationships (SAR) were summarized. Compound 10p stood out from these derivatives, exhibiting the most potent antiproliferative activity. Further biological studies demonstrated that 10p arrested cell cycle at G2/M phase via regulating cell cycle-related proteins CDK1 and Cyclin B1. The underlying molecular mechanisms demonstrated that 10p induced cell death through ferroptosis and autophagy, but not apoptosis. Moreover, 10p-induced ferroptosis and autophagy were both related with accumulation of ROS, but they were independent of each other. Our findings substantiated that 10p combines ferroptosis induction and autophagy trigger in single molecule, making it a potential candidate for colon cancer treatment and is worth further development.
Collapse
Affiliation(s)
- Tingting Liang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China
| | - Haiyang Dong
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China
| | - Zhuangzhuang Wang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China
| | - Lu Lu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China
| | - Xueting Song
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China
| | - Jianguo Qi
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China
| | - Yahong Zhang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China.
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China; Huaihe Hospital of Henan University, Kaifeng, 475004, Henan, China.
| | - Guanhua Du
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China; School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
16
|
Zhang Z, Zhao Q, Wang Z, Xu F, Liu Y, Guo Y, Li C, Liu T, Zhao Y, Tang X, Zhang J. Hepatocellular carcinoma cells downregulate NADH:Ubiquinone Oxidoreductase Subunit B3 to maintain reactive oxygen species homeostasis. Hepatol Commun 2024; 8:e0395. [PMID: 38437062 PMCID: PMC10914236 DOI: 10.1097/hc9.0000000000000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND HCC is a leading cause of cancer-related death. The role of reactive oxygen species (ROS) in HCC remains elusive. Since a primary ROS source is the mitochondrial electron transport chain complex Ι and the NADH:ubiquinone Oxidoreductase Subunit B3 (NDUFB3), a complex I subunit, is critical for complex I assembly and regulates the associated ROS production, we hypothesize that some HCCs progress by hijacking NDUFB3 to maintain ROS homeostasis. METHODS NDUFB3 in human HCC lines was either knocked down or overexpressed. The cells were then analyzed in vitro for proliferation, migration, invasiveness, colony formation, complex I activity, ROS production, oxygen consumption, apoptosis, and cell cycle. In addition, the in vivo growth of the cells was evaluated in nude mice. Moreover, the role of ROS in the NDUFB3-mediated changes in the HCC lines was determined using cellular and mitochondrion-targeted ROS scavengers. RESULTS HCC tissues showed reduced NDUFB3 protein expression compared to adjacent healthy tissues. In addition, NDUFB3 knockdown promoted, while its overexpression suppressed, HCC cells' growth, migration, and invasiveness. Moreover, NDUFB3 knockdown significantly decreased, whereas its overexpression increased complex I activity. Further studies revealed that NDUFB3 overexpression elevated mitochondrial ROS production, causing cell apoptosis, as manifested by the enhanced expressions of proapoptotic molecules and the suppressed expression of the antiapoptotic molecule B cell lymphoma 2. Finally, our data demonstrated that the apoptosis was due to the activation of the c-Jun N-terminal kinase (JNK) signaling pathway and cell cycle arrest at G0/G1 phase. CONCLUSIONS Because ROS plays essential roles in many biological processes, such as aging and cancers, our findings suggest that NDFUB3 can be targeted for treating HCC and other human diseases.
Collapse
Affiliation(s)
- Zhendong Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Qianwei Zhao
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Zexuan Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Fang Xu
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Yixian Liu
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Yaoyu Guo
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Chenglong Li
- School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ting Liu
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Ying Zhao
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaolei Tang
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, USA
- Department of Medicine, Division of Regenerative Medicine, School of Medicine, Loma Linda University, Loma Linda, California, USA
- Department of Basic Science, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Jintao Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Shih LJ, Hsu PC, Chuu CP, Shui HA, Yeh CC, Chen YC, Kao YH. Epigallocatechin-3-gallate Synergistically Enhanced Arecoline-Induced Cytotoxicity by Redirecting Cycle Arrest to Apoptosis. Curr Issues Mol Biol 2024; 46:1516-1529. [PMID: 38392216 PMCID: PMC10887523 DOI: 10.3390/cimb46020098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
Carcinogens, such as arecoline, play a crucial role in cancer progression and continuous gene mutations by generating reactive oxygen species (ROS). Antioxidants can reduce ROS levels and potentially prevent cancer progression but may paradoxically enhance the survival of cancer cells. This study investigated whether epigallocatechin-3-gallate (EGCG), an antioxidant from green tea, could resolve this paradox. Prostate cancer cells (PC-3 cell line) were cultured and treated with arecoline combined with NAC (N-acetylcysteine) or EGCG; the combined effects on intracellular ROS levels and cell viability were examined using the MTT and DCFDA assays, respectively. In addition, apoptosis, cell cycle, and protein expression were investigated using flow cytometry and western blot analysis. Our results showed that EGCG, similar to NAC (N-acetylcysteine), reduced the intracellular ROS levels, which were elevated by arecoline. Moreover, EGCG not only caused cell cycle arrest but also facilitated cell apoptosis in arecoline-treated cells in a synergistic manner. These were evidenced by elevated levels of cyclin B1 and p27, and increased fragmentation of procaspase-3, PARP, and DNA. Our findings highlight the potential use of EGCG for cancer prevention and therapy.
Collapse
Affiliation(s)
- Li-Jane Shih
- Department of Medical Laboratory, Taoyuan Armed Forces General Hospital, Longtan, Taoyuan 325208, Taiwan
| | - Po-Chi Hsu
- Department of Life Sciences, National Central University, Jhongli, Taoyuan 320317, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli 350401, Taiwan
| | - Hao-Ai Shui
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114201, Taiwan
| | - Chien-Chih Yeh
- Department of Medical Laboratory, Taoyuan Armed Forces General Hospital, Longtan, Taoyuan 325208, Taiwan
| | - Yueh-Chung Chen
- Division of Cardiology, Department of Internal Medicine, Taipei City Hospital, Renai Branch, Taipei 106243, Taiwan
| | - Yung-Hsi Kao
- Department of Life Sciences, National Central University, Jhongli, Taoyuan 320317, Taiwan
| |
Collapse
|
18
|
Kang C, Ren X, Lee D, Ramesh R, Nimmo S, Yang-Hartwich Y, Kim D. Harnessing small extracellular vesicles for pro-oxidant delivery: novel approach for drug-sensitive and resistant cancer therapy. J Control Release 2024; 365:286-300. [PMID: 37992875 PMCID: PMC10872719 DOI: 10.1016/j.jconrel.2023.11.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Multidrug resistance (MDR) is an inevitable clinical problem in chemotherapy due to the activation of abundant P-glycoprotein (P-gp) that can efflux drugs. Limitations of current cancer therapy highlight the need for the development of a comprehensive cancer treatment strategy, including drug-resistant cancers. Small extracellular vesicles (sEVs) possess significant potential in surmounting drug resistance as they can effectively evade the efflux mechanism and transport small molecules directly to MDR cancer cells. One mechanism mediating MDR in cancer cells is sustaining increased levels of reactive oxygen species (ROS) and maintenance of the redox balance with antioxidants, including glutathione (GSH). Herein, we developed GSH-depleting benzoyloxy dibenzyl carbonate (B2C)-encapsulated sEVs (BsEVs), which overcome the efflux system to exert highly potent anticancer activity against human MDR ovarian cancer cells (OVCAR-8/MDR) by depleting GSH to induce oxidative stress and, in turn, apoptotic cell death in both OVCAR-8/MDR and OVCAR-8 cancer cells. BsEVs restore drug responsiveness by inhibiting ATP production through the oxidation of nicotinamide adenine dinucleotide with hydrogen (NADH) and inducing mitochondrial dysfunction, leading to the dysfunction of efflux pumps responsible for drug resistance. In vivo studies showed that BsEV treatment significantly inhibited the growth of OVCAR-8/MDR and OVCAR-8 tumors. Additionally, OVCAR-8/MDR tumors showed a trend towards a greater sensitivity to BsEVs compared to OVCAR tumors. In summary, this study demonstrates that BsEVs hold tremendous potential for cancer treatment, especially against MDR cancer cells.
Collapse
Affiliation(s)
- Changsun Kang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Xiaoyu Ren
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju 54896, South Korea
| | - Rajagopal Ramesh
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Susan Nimmo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
19
|
Wang H, Lin M, Chen G, Xiao Z, Shuai X. Nanodrug regulates ROS homeostasis via enhancing fatty acid oxidation and inhibiting autophagy to overcome tumor drug resistance. Biomater Sci 2023; 11:7179-7187. [PMID: 37740286 DOI: 10.1039/d3bm01139a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The treatment of drug-resistant tumors poses a significant challenge in the field of tumor therapy. Disrupting the homeostasis of reactive oxygen species (ROS) within tumor cells may represent a pivotal strategy for overcoming the prevalent issue of drug resistance. However, the restricted sustainability of ROS generation and the increased autophagy capacity exhibited by tumor cells hinder the application of ROS-based therapies. In this study, we developed liposome nanoparticles (Ato/CQ@L) for co-encapsulation of atorvastatin (Ato), an activator of AMP-activated protein kinase (AMPK), and chloroquine (CQ), an autophagy inhibitor. Upon internalization by tumor cells, Ato upregulated carnitine palmitoyltransferase 1(CPT1) concentration and promoted fatty acid oxidation (FAO) within the tumor cells. The process of FAO coupled with an abundance of fatty acid substrates, facilitates a sustained generation of ROS production. Concurrently, a positive feedback loop is established between escalated concentration of ROS and AMPK protein levels, resulting in a persistent elevation in ROS levels. In addition, CQ disrupted lysosomes, leading to an increased lysosomal pH and reducing autophagy in tumor cells. In both in vivo and in vitro experiments, the Ato/CQ@L treatment group exhibited a considerable enhancement in tumor cell apoptosis, validating the efficacy of this combined therapy. In summary, the combined therapy involving Ato and CQ addresses the inherent limitations of conventional ROS therapy, which include insufficient ROS production and increased autophagy. This approach holds significant potential as a treatment strategy for drug-resistant triple-negative breast cancer.
Collapse
Affiliation(s)
- HaiYang Wang
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Minzhao Lin
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gengjia Chen
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zecong Xiao
- Nanomedicine Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
20
|
Li G, Ji Y, Wu Y, Liu Y, Li H, Wang Y, Chi M, Sun H, Zhu H. Multistage microfluidic cell sorting method and chip based on size and stiffness. Biosens Bioelectron 2023; 237:115451. [PMID: 37327603 DOI: 10.1016/j.bios.2023.115451] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/13/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
High performance sorting of circulating tumor cells (CTCs) from peripheral blood is key to liquid biopsies. Size-based deterministic lateral displacement (DLD) technique is widely used in cell sorting. But conventional microcolumns have poor fluid regulation ability, which limits the sorting performance of DLD. When the size difference between CTCs and leukocytes is small (e.g., less than 3 μm), not only DLD, many size-based separation techniques fail due to low specificity. CTCs have been confirmed to be softer than leukocytes, which could serve as a basis for sorting. In this study, we presented a multistage microfluidic CTCs sorting method, first sorting CTCs using a size-based two-array DLD chip, then purifying CTCs mixed by leukocytes using a stiffness-based cone channel chip, and finally identifying cell types using Raman techniques. The entire CTCs sorting and analysis process was label free, highly pure, high-throughput and efficient. The two-array DLD chip employed a droplet-shaped microcolumn (DMC) developed by optimization design rather than empirical design. Attributed to the excellent fluid regulation capability of DMC, the CTCs sorter system developed by parallelizing four DMC two-array DLD chips was able to process a sample of 2.5 mL per minute with a recovery efficiency of 96.30 ± 2.10% and a purity of 98.25 ± 2.48%. To isolate CTCs mixed dimensionally by leukocytes, a cone channel sorting method and chip were developed based on solid and hydrodynamic coupled analysis. The cone channel chip allowed CTCs to pass through the channel and entrap leukocytes, improving the purity of CTCs mixed by leukocytes by 1.8-fold.
Collapse
Affiliation(s)
- Gaolin Li
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Ji
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China
| | - Yihui Wu
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China.
| | - Yongshun Liu
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China
| | - Huan Li
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China.
| | - Yimeng Wang
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mingbo Chi
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China
| | - Hongyan Sun
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Hongquan Zhu
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Barhoumi T, Mansour FA, Jalouli M, Alamri HS, Ali R, Harrath AH, Aljumaa M, Boudjelal M. Angiotensin II modulates THP-1-like macrophage phenotype and inflammatory signatures via angiotensin II type 1 receptor. Front Cardiovasc Med 2023; 10:1129704. [PMID: 37692050 PMCID: PMC10485254 DOI: 10.3389/fcvm.2023.1129704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/30/2023] [Indexed: 09/12/2023] Open
Abstract
Angiotensin II (Ang II) is a major component of the renin-angiotensin or renin-angiotensin-aldosterone system, which is the main element found to be involved in cardiopathology. Recently, long-term metabolomics studies have linked high levels of angiotensin plasma to inflammatory conditions such as coronary heart disease, obesity, and type 2 diabetes. Monocyte/macrophage cellular function and phenotype orchestrate the inflammatory response in various pathological conditions, most notably cardiometabolic disease. An activation of the Ang II system is usually associated with inflammation and cardiovascular disease; however, the direct effect on monocyte/macrophages has still not been well elucidated. Herein, we have evaluated the cellular effects of Ang II on THP-1-derived macrophages. Ang II stimulated the expression of markers involved in monocyte/macrophage cell differentiation (e.g., CD116), as well as adhesion, cell-cell interaction, chemotaxis, and phagocytosis (CD15, CD44, CD33, and CD49F). Yet, Ang II increased the expression of proinflammatory markers (HLA-DR, TNF-α, CD64, CD11c, and CD38) and decreased CD206 (mannose receptor), an M2 marker. Moreover, Ang II induced cytosolic calcium overload, increased reactive oxygen species, and arrested cells in the G1 phase. Most of these effects were induced via the angiotensin II type 1 receptor (AT1R). Collectively, our results provide new evidence in support of the effect of Ang II in inflammation associated with cardiometabolic diseases.
Collapse
Affiliation(s)
- Tlili Barhoumi
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, Saudi Arabia
| | - Fatmah A. Mansour
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, Saudi Arabia
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Hassan S. Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences/King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Rizwan Ali
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, Saudi Arabia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha Aljumaa
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed Boudjelal
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Wang W, Ma F, Cheung YT, Zeng G, Zhou Y, Chen Z, Liang L, Luo T, Tong R. Marine Alkaloid Lepadins E and H Induce Ferroptosis for Cancer Chemotherapy. J Med Chem 2023; 66:11201-11215. [PMID: 37578947 DOI: 10.1021/acs.jmedchem.3c00659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Induction of ferroptosis emerges as an effective method for cancer treatment. With massive efforts to elucidate the ferroptosis mechanism, the development of new ferroptosis inducers proceeds rather slowly, with only a few small molecules identified. Herein, we report our discovery of marine alkaloid lepadins E and H as a new class of ferroptosis inducers. Our in vitro studies show that lepadins E and H exhibit significant cytotoxicity, promote p53 expression, increase ROS production and lipid peroxides, reduce SLC7A11 and GPX4 levels, and upregulate ACSL4 expression, all of which consistently support induction of ferroptosis through the classical p53-SLC7A11-GPX4 pathway. Our animal model study of lepadin H confirms its in vivo antitumor efficacy with negligible toxicity to normal organs. This work elucidates the mode of action of lepadins (E and H) and verifies their in vivo efficacy as a new class of ferroptosis inducers for anticancer therapy with translational potential.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Foqing Ma
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Yuen Tsz Cheung
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Guihua Zeng
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Yiqin Zhou
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Zijing Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lixin Liang
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Tuoping Luo
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
23
|
Liu M, Gong C, Shen X, Jiang Y, Xu Y, Zhong W, Chen Y, Dong N, Liao J, Yin N. Mitochondrial dynamics-related genes DRP1 and OPA1 contributes to early diagnosis of cognitive impairment in diabetes. BMC Geriatr 2023; 23:484. [PMID: 37563583 PMCID: PMC10416428 DOI: 10.1186/s12877-023-04156-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND AND AIM DRP1 and OPA1 play important roles in mitochondrial fusion and fission. However, the role of DRP1 and OPA1 amplification in mitochondrial cognitive impairment has not been reported. This study aimed to investigate the relationship between DRP1 and OPA1 and the risk of cognitive impairment. METHODS In this study, 45 elderly patients with diabetes admitted to the Lianyungang Second People's Hospital from September 2020 to January 2021 were included. The patients were divided into normal group, mild cognitive impairment group and dementia group by using MMSE score, and the clinical characteristics of the three groups were compared. The amplification multiples of the two genes' DNA were calculated by ΔΔCT and defined as 2- K. Spearman rank correlation was used to analyze the correlation between the DNA amplification multiples of patients' DRP1 and OPA1 and AD8 and MoCA scores. The sensitivity and specificity of DNA amplification multiples of DRP1 and OPA1 to predict clinical outcomes of diabetic cognitive impairment were evaluated using Receiver operator characteristic (ROC) curves. Multiple logistic regression was used to evaluate the relationship between DNA amplification factor of DRP1 and OPA1 and cognitive function. RESULTS DRP1(2- K) and OPA1(2- K) significantly increased and decreased in dementia and MCI groups compared with the normal group (P ≤ 0.001). The DNA amplification factor of DRP1 was positively correlated with AD8 score and negatively correlated with MoCA score (P < 0.001). The DNA amplification factor of OPA1 was positively correlated with the MoCA score (P = 0.0002). Analysis of ROCs showed that the DNA amplification factor of OPA1 had a higher predictive value for dementia (P < 0.0001), and that it had a higher predictive value when used in combination with DRP1. Multiple logistic regression results showed that increased DNA amplification in DRP1 was associated with increased risk of dementia (OR 1.149;95%CI,1.035-1.275), and increased DNA amplification in OPA1 was associated with decreased risk of MCI (OR 0.004;95%CI,0.000-0.251) and dementia (OR 0.000;95%CI,0.000-0.134). CONCLUSION DNA amplification multiples of DRP1 and OPA1 are associated with the risk of dementia in elderly patients and may serve as potential biomarkers.
Collapse
Affiliation(s)
- Mengqian Liu
- Department of Geriatrics, Lianyungang Hospital Affifiliated to Jiangsu University (Lianyungang Second People's Hospital), Lianyungang, China
| | - Chen Gong
- Department of Geriatrics, Lianyungang Hospital Affifiliated to Jiangsu University (Lianyungang Second People's Hospital), Lianyungang, China
| | - Xiaozhu Shen
- Department of Geriatrics, Lianyungang Hospital Affifiliated to Jiangsu University (Lianyungang Second People's Hospital), Lianyungang, China.
| | - Yi Jiang
- Department of Geriatrics, Lianyungang Hospital Affifiliated to Jiangsu University (Lianyungang Second People's Hospital), Lianyungang, China
- Department of Geriatrics, Bengbu Medical College Clinical College of Lianyungang Second People's Hospital, Lianyungang, China
| | - Yiwen Xu
- Department of Geriatrics, Lianyungang Hospital Affifiliated to Jiangsu University (Lianyungang Second People's Hospital), Lianyungang, China
| | - Wen Zhong
- Department of Geriatrics, Lianyungang Hospital Affifiliated to Jiangsu University (Lianyungang Second People's Hospital), Lianyungang, China
| | - Yujiao Chen
- Department of Laboratory Medicine, Lianyungang Second People's Hospital, Lianyungang, China
| | - Nan Dong
- Department of Neurology, Suzhou Industrial Park Xinghai Hospital, Suzhou, China
| | - Jingxian Liao
- Department of Geriatrics, Lianyungang Hospital Affifiliated to Jiangsu University (Lianyungang Second People's Hospital), Lianyungang, China
| | - Ning Yin
- Department of Geriatrics, Lianyungang Hospital Affifiliated to Jiangsu University (Lianyungang Second People's Hospital), Lianyungang, China.
| |
Collapse
|
24
|
Chernonosova V, Khlebnikova M, Popova V, Starostina E, Kiseleva E, Chelobanov B, Kvon R, Dmitrienko E, Laktionov P. Electrospun Scaffolds Enriched with Nanoparticle-Associated DNA: General Properties, DNA Release and Cell Transfection. Polymers (Basel) 2023; 15:3202. [PMID: 37571096 PMCID: PMC10421399 DOI: 10.3390/polym15153202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Biomaterial-mediated, spatially localized gene delivery is important for the development of cell-populated scaffolds used in tissue engineering. Cells adhering to or penetrating into such a scaffold are to be transfected with a preloaded gene that induces the production of secreted proteins or cell reprogramming. In the present study, we produced silica nanoparticles-associated pDNA and electrospun scaffolds loaded with such nanoparticles, and studied the release of pDNA from scaffolds and cell-to-scaffold interactions in terms of cell viability and pDNA transfection efficacy. The pDNA-coated nanoparticles were characterized with dynamic light scattering and transmission electron microscopy. Particle sizes ranging from 56 to 78 nm were indicative of their potential for cell transfection. The scaffolds were characterized using scanning electron microscopy, X-ray photoelectron spectroscopy, stress-loading tests and interaction with HEK293T cells. It was found that the properties of materials and the pDNA released vary, depending on the scaffold's composition. The scaffolds loaded with pDNA-nanoparticles do not have a pronounced cytotoxic effect, and can be recommended for cell transfection. It was found that (pDNA-NPs) + PEI9-loaded scaffold demonstrates good potential for cell transfection. Thus, electrospun scaffolds suitable for the transfection of inhabiting cells are eligible for use in tissue engineering.
Collapse
Affiliation(s)
- Vera Chernonosova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (V.P.); (B.C.); (E.D.)
| | - Marianna Khlebnikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (V.P.); (B.C.); (E.D.)
| | - Victoriya Popova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (V.P.); (B.C.); (E.D.)
| | - Ekaterina Starostina
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia;
| | - Elena Kiseleva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Boris Chelobanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (V.P.); (B.C.); (E.D.)
| | - Ren Kvon
- Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Elena Dmitrienko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (V.P.); (B.C.); (E.D.)
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (V.P.); (B.C.); (E.D.)
| |
Collapse
|
25
|
Chen HY, Wu YH, Wei CY, Liao ZY, Wu HT, Chen YC, Pang JHS. Incomplete Recovery from the Radiocontrast-Induced Dysregulated Cell Cycle, Adhesion, and Fibrogenesis in Renal Tubular Cells after Radiocontrast (Iohexol) Removal. Int J Mol Sci 2023; 24:10945. [PMID: 37446141 DOI: 10.3390/ijms241310945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Contrast-induced nephropathy (CIN) is one of the most common causes of acute kidney injury (AKI). However, management is still limited, and the cellular response to radiocontrast removal for CIN remains unclear. This study aimed to explore the latent effects of iohexol in cultured renal tubular cells with or without the removal of iohexol by medium replacement. HK2 renal tubular cells were subcultured 24 h before use in CIN experiments. Three treatment groups were established: the control, a radiocontrast (iohexol)-only group at 75 mg I/mL (I-75), and iohexol exposure for 24 h with culture medium replacement (I-75/M). Cell cycle arrest, fibrogenic mediator assays, cell viability, cell function, and cell-cycle-related protein expression were compared between groups. Iohexol induced numerous changes in HK2 renal tubular cells, such as enlarged cell shape, cell cycle arrest, increased apoptosis, and polyploidy. Iohexol inhibited the expression of cyclins, CDKs, ZO-1, and E-cadherin but conversely enhanced the expression of p21 and fibrosis-related genes, including TGF-β1, CTGF, collagen I, collagen III, and HIF-1α within 60 hr after the exposure. Except for the recovery from cell cycle arrest and cell cycle gene expression, notably, the removal of iohexol by medium replacement could not fully recover the renal tubular cells from the formation of polyploid cells, the adhesion or spreading, or the expression of fibrosis-related genes. The present study demonstrates, for the first time, that iohexol exerts latent cytotoxic effects on cultured renal tubular cells after its removal, suggesting that these irreversible cell changes may cause the insufficiency of radiocontrast reduction in CIN, which is worth investigating further.
Collapse
Affiliation(s)
- Hsing-Yu Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Hong Wu
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Cheng-Yu Wei
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Zhi-Yao Liao
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsiao-Ting Wu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yung-Chang Chen
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 33342, Taiwan
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan 33342, Taiwan
| |
Collapse
|
26
|
Agena R, Cortés-Sánchez ADJ, Hernández-Sánchez H, Álvarez-Salas LM, Martínez-Rodríguez OP, García VHR, Jaramillo Flores ME. Pro-Apoptotic Activity and Cell Cycle Arrest of Caulerpa sertularioides against SKLU-1 Cancer Cell in 2D and 3D Cultures. Molecules 2023; 28:molecules28114361. [PMID: 37298837 DOI: 10.3390/molecules28114361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is a disease with the highest mortality and morbidity rate worldwide. First-line drugs induce several side effects that drastically reduce the quality of life of people with this disease. Finding molecules to prevent it or generate less aggressiveness or no side effects is significant to counteract this problem. Therefore, this work searched for bioactive compounds of marine macroalgae as an alternative treatment. An 80% ethanol extract of dried Caulerpa sertularioides (CSE) was analyzed by HPLS-MS to identify the chemical components. CSE was utilized through a comparative 2D versus 3D culture model. Cisplatin (Cis) was used as a standard drug. The effects on cell viability, apoptosis, cell cycle, and tumor invasion were evaluated. The IC50 of CSE for the 2D model was 80.28 μg/mL versus 530 μg/mL for the 3D model after 24 h of treatment exposure. These results confirmed that the 3D model is more resistant to treatments and complex than the 2D model. CSE generated a loss of mitochondrial membrane potential, induced apoptosis by extrinsic and intrinsic pathways, upregulated caspases-3 and -7, and significantly decreased tumor invasion of a 3D SKLU-1 lung adenocarcinoma cell line. CSE generates biochemical and morphological changes in the plasma membrane and causes cell cycle arrest at the S and G2/M phases. These findings conclude that C. sertularioides is a potential candidate for alternative treatment against lung cancer. This work reinforced the use of complex models for drug screening and suggested using CSE's primary component, caulerpin, to determine its effect and mechanism of action on SKLU-1 in the future. A multi-approach with molecular and histological analysis and combination with first-line drugs must be included.
Collapse
Affiliation(s)
- Rosette Agena
- Ingeniería Bioquímica-Escuela Nacional de Ciencias Biológicas (ENCB)-Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | | | - Humberto Hernández-Sánchez
- Ingeniería Bioquímica-Escuela Nacional de Ciencias Biológicas (ENCB)-Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Luis Marat Álvarez-Salas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico
| | - Oswaldo Pablo Martínez-Rodríguez
- Ingeniería Bioquímica-Escuela Nacional de Ciencias Biológicas (ENCB)-Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Víctor Hugo Rosales García
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico
| | - María Eugenia Jaramillo Flores
- Ingeniería Bioquímica-Escuela Nacional de Ciencias Biológicas (ENCB)-Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| |
Collapse
|
27
|
Yu TJ, Shiau JP, Tang JY, Farooqi AA, Cheng YB, Hou MF, Yen CH, Chang HW. Physapruin A Exerts Endoplasmic Reticulum Stress to Trigger Breast Cancer Cell Apoptosis via Oxidative Stress. Int J Mol Sci 2023; 24:ijms24108853. [PMID: 37240198 DOI: 10.3390/ijms24108853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/04/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Physalis plants are commonly used traditional medicinal herbs, and most of their extracts containing withanolides show anticancer effects. Physapruin A (PHA), a withanolide isolated from P. peruviana, shows antiproliferative effects on breast cancer cells involving oxidative stress, apoptosis, and autophagy. However, the other oxidative stress-associated response, such as endoplasmic reticulum (ER) stress, and its participation in regulating apoptosis in PHA-treated breast cancer cells remain unclear. This study aims to explore the function of oxidative stress and ER stress in modulating the proliferation and apoptosis of breast cancer cells treated with PHA. PHA induced a more significant ER expansion and aggresome formation of breast cancer cells (MCF7 and MDA-MB-231). The mRNA and protein levels of ER stress-responsive genes (IRE1α and BIP) were upregulated by PHA in breast cancer cells. The co-treatment of PHA with the ER stress-inducer (thapsigargin, TG), i.e., TG/PHA, demonstrated synergistic antiproliferation, reactive oxygen species generation, subG1 accumulation, and apoptosis (annexin V and caspases 3/8 activation) as examined by ATP assay, flow cytometry, and western blotting. These ER stress responses, their associated antiproliferation, and apoptosis changes were partly alleviated by the N-acetylcysteine, an oxidative stress inhibitor. Taken together, PHA exhibits ER stress-inducing function to promote antiproliferation and apoptosis of breast cancer cells involving oxidative stress.
Collapse
Affiliation(s)
- Tzu-Jung Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- National Natural Product Libraries and High-Throughput Screening Core Facility, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
28
|
Vo TTT, Wee Y, Cheng HC, Wu CZ, Chen YL, Tuan VP, Liu JF, Lin WN, Lee IT. Surfactin induces autophagy, apoptosis, and cell cycle arrest in human oral squamous cell carcinoma. Oral Dis 2023; 29:528-541. [PMID: 34181793 DOI: 10.1111/odi.13950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/06/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To investigate the anticancer effects and underlying mechanisms of surfactin on human oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS The capacity of surfactin to induce apoptosis, autophagy, and cell cycle arrest of two different human OSCC cell lines was investigated by cell viability, acridine orange staining, and cell cycle regulatory protein expression, respectively. The signaling network underlying these processes were determined by the analysis of reactive oxygen species (ROS) generation, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, endoplasmic reticulum (ER) stress-related protein levels, calcium release, mitogen-activated protein kinases activation, and cell cycle regulatory protein expression through corresponding reagents and experiments under various experimental conditions using specific pharmaceutical inhibitors or small interfering RNAs. RESULTS Surfactin was able to induce apoptosis through NADPH oxidase/ROS/ER stress/calcium-downregulated extracellular signal-regulated kinases 1/2 pathway. Surfactin could also lead to autophagy that shared the common regulatory signals with apoptosis pathway until calcium node. Cell cycle arrest at G2 /M phase caused by surfactin was demonstrated through p53 and p21 accumulation combined p34cdc2 , phosphorylated p34cdc2 , and cyclin B1 inhibition, which was regulated by NADPH oxidase-derived ROS. CONCLUSION Surfactin could induce apoptosis, autophagy, and cell cycle arrest in ROS-dependent manner, suggesting a multifaced anticancer agent for OSCC.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yinshen Wee
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ching-Zong Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Dentistry, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Vo Phuoc Tuan
- Endoscopy Department, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
29
|
Liu M, Lin C, Huang Q, Jia J, Guo J, Jia R. SRSF3-Mediated Ki67 Exon 7-Inclusion Promotes Head and Neck Squamous Cell Carcinoma Progression via Repressing AKR1C2. Int J Mol Sci 2023; 24:ijms24043872. [PMID: 36835286 PMCID: PMC9959251 DOI: 10.3390/ijms24043872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Ki67 is a well-known proliferation marker with a large size of around 350 kDa, but its biological function remains largely unknown. The roles of Ki67 in tumor prognosis are still controversial. Ki67 has two isoforms generated by alternative splicing of exon 7. The roles and regulatory mechanisms of Ki67 isoforms in tumor progression are not clear. In the present study, we surprisingly find that the increased inclusion of Ki67 exon 7, not total Ki67 expression level, was significantly associated with poor prognosis in multiple cancer types, including head and neck squamous cell carcinoma (HNSCC). Importantly, the Ki67 exon 7-included isoform is required for HNSCC cell proliferation, cell cycle progression, cell migration, and tumorigenesis. Unexpectedly, Ki67 exon 7-included isoform is positively associated with intracellular reactive oxygen species (ROS) level. Mechanically, splicing factor SRSF3 could promote exon 7 inclusion via its two exonic splicing enhancers. RNA-seq revealed that aldo-keto reductase AKR1C2 is a novel tumor-suppressive gene targeted by Ki67 exon 7-included isoform in HNSCC cells. Our study illuminates that the inclusion of Ki67 exon 7 has important prognostic value in cancers and is essential for tumorigenesis. Our study also suggested a new SRSF3/Ki67/AKR1C2 regulatory axis during HNSCC tumor progression.
Collapse
Affiliation(s)
- Miaomiao Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Can Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qiwei Huang
- RNA Institute, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Virology and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Jun Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Correspondence: (J.J.); (R.J.); Tel.: +86-27-87686215 (J.J.); +86-27-87686268 (R.J.)
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- RNA Institute, Wuhan University, Wuhan 430072, China
- Correspondence: (J.J.); (R.J.); Tel.: +86-27-87686215 (J.J.); +86-27-87686268 (R.J.)
| |
Collapse
|
30
|
Huang Z, Ding C, Huang X, Sun C, Zhong L. Exposure to 10 Hz Pulsed Magnetic Field Induced Slight Apoptosis and Reactive Oxygen Species in Primary Human Gingival Fibroblasts. Bioelectromagnetics 2022; 43:476-490. [PMID: 36490205 DOI: 10.1002/bem.22428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/04/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022]
Abstract
Extremely low frequency pulsed magnetic fields (MFs) have been increasingly used as an effective method in oral therapy, but its potential impact on health has not been clarified. In this study, we investigated the impact of 10 Hz pulsed MF exposure on primary human gingival fibroblasts (HGFs) derived from eight healthy persons (four males and four females). Cells were exposed to 10 Hz pulsed MFs at 1.0 mT for 24 h. Cell apoptosis, cell cycle progression, intracellular reactive oxygen species levels, DNA damage, and cell proliferation were determined after exposure. The results showed that 10 Hz pulsed MFs exposure have slight effects on cellular apoptosis, cell cycle progression, and DNA damage in primary HGFs from some but not all samples. In addition, no significant effect was found on cell proliferation. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Zheng Huang
- Stomatology Center, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Cheng Ding
- Stomatology Center, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xinzhao Huang
- Stomatology Center, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Chuan Sun
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Liangjun Zhong
- Stomatology Center, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,School of Stomatology, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
31
|
Li C, Xue Y, Ba X, Wang R. The Role of 8-oxoG Repair Systems in Tumorigenesis and Cancer Therapy. Cells 2022; 11:cells11233798. [PMID: 36497058 PMCID: PMC9735852 DOI: 10.3390/cells11233798] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Tumorigenesis is highly correlated with the accumulation of mutations. The abundant and extensive DNA oxidation product, 8-Oxoguanine (8-oxoG), can cause mutations if it is not repaired by 8-oxoG repair systems. Therefore, the accumulation of 8-oxoG plays an essential role in tumorigenesis. To avoid the accumulation of 8-oxoG in the genome, base excision repair (BER), initiated by 8-oxoguanine DNA glycosylase1 (OGG1), is responsible for the removal of genomic 8-oxoG. It has been proven that 8-oxoG levels are significantly elevated in cancer cells compared with cells of normal tissues, and the induction of DNA damage by some antitumor drugs involves direct or indirect interference with BER, especially through inducing the production and accumulation of reactive oxygen species (ROS), which can lead to tumor cell death. In addition, the absence of the core components of BER can result in embryonic or early post-natal lethality in mice. Therefore, targeting 8-oxoG repair systems with inhibitors is a promising avenue for tumor therapy. In this study, we summarize the impact of 8-oxoG accumulation on tumorigenesis and the current status of cancer therapy approaches exploiting 8-oxoG repair enzyme targeting, as well as possible synergistic lethality strategies involving exogenous ROS-inducing agents.
Collapse
Affiliation(s)
- Chunshuang Li
- Center for Cell Structure and Function, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Yaoyao Xue
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
- Correspondence: (X.B.); (R.W.)
| | - Ruoxi Wang
- Center for Cell Structure and Function, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence: (X.B.); (R.W.)
| |
Collapse
|
32
|
ROS: Basic Concepts, Sources, Cellular Signaling, and its Implications in Aging Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1225578. [PMID: 36312897 PMCID: PMC9605829 DOI: 10.1155/2022/1225578] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Reactive oxygen species (ROS) are bioproducts of cellular metabolism. There is a range of molecules with oxidizing properties known as ROS. Despite those molecules being implied negatively in aging and numerous diseases, their key role in cellular signaling is evident. ROS control several biological processes such as inflammation, proliferation, and cell death. The redox signaling underlying these cellular events is one characteristic of the new generation of scientists aimed at defining the role of ROS in the cellular environment. The control of redox potential, which includes the balance of the sources of ROS and the antioxidant system, implies an important target for understanding the cells' fate derived from redox signaling. In this review, we summarized the chemical, the redox balance, the signaling, and the implications of ROS in biological aging.
Collapse
|
33
|
Lu W, Yin C, Zhang T, Wu Y, Huang S. An oxidative stress-related prognostic signature for indicating the immune status of oral squamous cell carcinoma and guiding clinical treatment. Front Genet 2022; 13:977902. [PMID: 36212161 PMCID: PMC9538189 DOI: 10.3389/fgene.2022.977902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/02/2022] [Indexed: 01/18/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the eighth most common cancer worldwide and presents high mortality. Oxidative stress, caused by reactive oxygen species accumulation, plays a crucial role in tumorigenesis, cancer progression, and drug resistance. Nevertheless, the specific prognostic and clinical values of oxidative stress-related genes (OSGs) in OSCC remain unclear. Here, we developed an oxidative stress-related prognostic signature according to mRNA expression data from The Cancer Genome Atlas (TCGA) database and evaluated its connections with the prognosis, clinical features, immune status, immunotherapy, and drug sensitivity of OSCC through a series of bioinformatics analyses. Finally, we filtered out six prognostic OSGs to construct a prognostic signature. On the basis of both TCGA-OSCC and GSE41613 cohorts, the signature was proven to be an independent prognostic factor with high accuracy and was confirmed to be an impactful indicator for predicting the prognosis and immune status of patients with OSCC. Additionally, we found that patients with high-risk scores may obtain greater benefit from immune checkpoint therapy compared to those with low-risk scores, and the risk score presented a close interaction with the tumor microenvironment and chemotherapy sensitivity. The prognostic signature may provide a valid and robust predictive tool that could predict the prognosis and immune status and guide clinicians to develop personalized therapeutic strategies for patients with OSCC.
Collapse
Affiliation(s)
- Wei Lu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Changwei Yin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Tianqi Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yihua Wu
- Department of Oral Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- *Correspondence: Shengyun Huang,
| |
Collapse
|
34
|
Liu W, Hsu YY, Tang JY, Cheng YB, Chuang YT, Jeng JH, Yen CH, Chang HW. Methanol Extract of Commelina Plant Inhibits Oral Cancer Cell Proliferation. Antioxidants (Basel) 2022; 11:1813. [PMID: 36139887 PMCID: PMC9495315 DOI: 10.3390/antiox11091813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Data regarding the effects of crude extract of Commelina plants in oral cancer treatment are scarce. This present study aimed to assess the proliferation-modulating effects of the Commelina sp. (MECO) methanol extract on oral cancer cells in culture, Ca9-22, and CAL 27. MECO suppressed viability to a greater extent in oral cancer cells than in normal cells. MECO also induced more annexin V, apoptosis, and caspase signaling for caspases 3/8/9 in oral cancer cells. The preferential antiproliferation and apoptosis were associated with cellular and mitochondrial oxidative stress in oral cancer cells. Moreover, MECO also preferentially induced DNA damage in oral cancer cells by elevating γH2AX and 8-hydroxyl-2'-deoxyguanosine. The oxidative stress scavengers N-acetylcysteine or MitoTEMPO reverted these preferential antiproliferation mechanisms. It can be concluded that MECO is a natural product with preferential antiproliferation effects and exhibits an oxidative stress-associated mechanism in oral cancer cells.
Collapse
Affiliation(s)
- Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yin-Yin Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- National Natural Product Libraries and High-Throughput Screening Core Facility, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
35
|
Lefferts WK, Davis MM, Valentine RJ. Exercise as an Aging Mimetic: A New Perspective on the Mechanisms Behind Exercise as Preventive Medicine Against Age-Related Chronic Disease. Front Physiol 2022; 13:866792. [PMID: 36045751 PMCID: PMC9420936 DOI: 10.3389/fphys.2022.866792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
Age-related chronic diseases are among the most common causes of mortality and account for a majority of global disease burden. Preventative lifestyle behaviors, such as regular exercise, play a critical role in attenuating chronic disease burden. However, the exact mechanism behind exercise as a form of preventative medicine remains poorly defined. Interestingly, many of the physiological responses to exercise are comparable to aging. This paper explores an overarching hypothesis that exercise protects against aging/age-related chronic disease because the physiological stress of exercise mimics aging. Acute exercise transiently disrupts cardiovascular, musculoskeletal, and brain function and triggers a substantial inflammatory response in a manner that mimics aging/age-related chronic disease. Data indicate that select acute exercise responses may be similar in magnitude to changes seen with +10-50 years of aging. The initial insult of the age-mimicking effects of exercise induces beneficial adaptations that serve to attenuate disruption to successive "aging" stimuli (i.e., exercise). Ultimately, these exercise-induced adaptations reduce the subsequent physiological stress incurred from aging and protect against age-related chronic disease. To further examine this hypothesis, future work should more intricately describe the physiological signature of different types/intensities of acute exercise in order to better predict the subsequent adaptation and chronic disease prevention with exercise training in healthy and at-risk populations.
Collapse
Affiliation(s)
- Wesley K. Lefferts
- Department of Kinesiology, Iowa State University, Ames, IA, United States
| | | | | |
Collapse
|
36
|
Guo Y, Li Q, Xia R, Cai C. Farrerol exhibits inhibitory effects on lung adenocarcinoma cells by activating the mitochondrial apoptotic pathway. J Biochem Mol Toxicol 2022; 36:e23157. [PMID: 35833306 DOI: 10.1002/jbt.23157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/11/2022] [Accepted: 07/01/2022] [Indexed: 11/11/2022]
Abstract
Farrerol is an herbal compound extracted from rhododendron. Here, our study is to investigate biological effects of farrerol on lung adenocarcinoma (LAC) cells. Human LAC cell lines and xenograft mouse model were utilized to define the effects of farrerol on tumor growth. Our findings indicated that farrerol significantly reduced LAC cell viability as well as the colony-forming capacity. Flow cytometry analysis demonstrated that farrerol contributed to cell apoptosis and G0/G1 phase cell cycle arrest. Mechanistically, farrerol treatment upregulated proapoptotic molecules (Bak, Bid, cleaved caspase-3 and cleaved caspase-9) and senescence markers (p16 and p2), but downregulated antiapoptosis genes (Bcl-2 and Bcl-XL) and cell cycle-associated genes (CyclinD1 and CDK4); meanwhile, the phosphorylation of retinoblastoma (Rb) protein was attenuated upon pretreatment of LAC cells with farrerol in comparison to untreated control. Further studies indicated that farrerol elevated reactive oxygen species levels, activating mitochondrial apoptotic pathway and causing cell apoptosis. However, exposure to farrerol did not result in significant apoptosis in normal lung epithelial cells, suggesting a tumor-specific effect of farrerol on LAC cells. In animal model, farrerol showed a significant inhibitory effect on LAC xenograft tumor growth. And gene expressions in tumor tissues, as mentioned above, were in line with the in vitro results. Taken together, these results suggested that farrerol caused LAC cell apoptosis by activating mitochondrial apoptotic pathway, whereas farrerol treatment had no notable effect on normal lung epithelial cells. Farrerol might be an effective therapeutic drug for LAC.
Collapse
Affiliation(s)
- Yi Guo
- Department of Pneumology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi, China
| | - Quan Li
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Rongmu Xia
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Chuanshu Cai
- Department of Radiotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
37
|
Liu L, Zhang X, Kayastha S, Tan L, Zhang H, Tan J, Li L, Mao J, Sun Y. A Preliminary in vitro and in vivo Evaluation of the Effect and Action Mechanism of 17-AAG Combined With Azoles Against Azole-Resistant Candida spp. Front Microbiol 2022; 13:825745. [PMID: 35875545 PMCID: PMC9300965 DOI: 10.3389/fmicb.2022.825745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/20/2022] [Indexed: 01/09/2023] Open
Abstract
Invasive candidiasis is the primary reason for the increased cases of mortality in a medical environment. The resistance spectra of Candida species to antifungal drugs have gradually expanded. Particularly, the resistance spectra of Candida auris are the most prominent. Hsp90 plays a protective role in the stress response of fungi and facilitates their virulence. In contrast, Hsp90 inhibitors can improve the resistance of fungi to antifungal drugs by regulating the heat resistance of Hsp90, which destroys the integrity of the fungal cell walls. Hsp90 inhibitors thus offer a great potential to reduce or address fungal drug resistance. The drugs tested for the resistance include itraconazole, voriconazole, posaconazole, fluconazole, and 17-AAG. A total of 20 clinical strains of Candida were investigated. The broth microdilution checkerboard technique, as adapted from the CLSI M27-A4 method, was applied in this study. We found that 17-AAG alone exerted limited antifungal activity against all tested strains. The MIC range of 17-AAG was 8 to >32 μg/ml. A synergy was observed among 17-AAG and itraconazole, voriconazole, and posaconazole against 10 (50%), 7 (35%), and 13 (65%) of all isolates, respectively. Moreover, the synergy between 17-AAG and fluconazole was observed against 5 (50%) strains of azole-resistant Candida. However, no antagonism was recorded overall. Our result adequately verifies the influence of 17-AAG on the formation of Candida spp. biofilm. Moreover, we determined that with the use of rhodamine 6G to detect drug efflux and that of dihydrorhodamine-123 to detect intracellular reactive oxygen species (ROS), treatment with 17-AAG combined with azole drugs could inhibit the efflux pump of fungi and promote the accumulation of ROS in the fungal cells, thereby inducing fungal cell apoptosis. Thus, the mechanism of 17-AAG combined with azoles can kill fungi. Our results thus provide a new idea to further explore drugs against drug-resistant Candida spp.
Collapse
Affiliation(s)
| | | | | | | | | | - Jingwen Tan
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Linyun Li
- Clinical Lab, Jingzhou Hospital, Yangtze University, Jingzhou, China
| | - Jinghua Mao
- Department of Cardiology, Jingzhou Hospital, Yangtze University, Jingzhou, China
- *Correspondence: Jinghua Mao,
| | - Yi Sun
- Department of Dermatology, Jingzhou Hospital, Yangtze University, Candidate Branch of National Clinical Research Center for Skin and Immune Diseases, Jingzhou, China
- Yi Sun,
| |
Collapse
|
38
|
Blagov AV, Grechko AV, Nikiforov NG, Borisov EE, Sadykhov NK, Orekhov AN. Role of Impaired Mitochondrial Dynamics Processes in the Pathogenesis of Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23136954. [PMID: 35805958 PMCID: PMC9266759 DOI: 10.3390/ijms23136954] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction is now recognized as a contributing factor to neurodegenerative diseases, including Alzheimer’s disease (AD). Mitochondria are signaling organelles with a variety of functions ranging from energy production to the regulation of cellular metabolism, energy homeostasis, and response to stress. The successful functioning of these complex processes is critically dependent on the accuracy of mitochondrial dynamics, which includes the ability of mitochondria to change shape and position in the cell, which is necessary to maintain proper function and quality control, especially in polarized cells such as neurons. There has been much evidence to suggest that the disruption of mitochondrial dynamics may play a critical role in the pathogenesis of AD. This review highlights aspects of altered mitochondrial dynamics in AD that may contribute to the etiology of this debilitating condition. We also discuss therapeutic strategies to improve mitochondrial dynamics and function that may provide an alternative treatment approach.
Collapse
Affiliation(s)
- Alexander V. Blagov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 8 Baltiiskaya Street, 125315 Moscow, Russia; (N.G.N.); (N.K.S.)
- Correspondence: (A.V.B.); (A.N.O.)
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 14-3 Solyanka Street, 109240 Moscow, Russia;
| | - Nikita G. Nikiforov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 8 Baltiiskaya Street, 125315 Moscow, Russia; (N.G.N.); (N.K.S.)
| | - Evgeny E. Borisov
- Petrovsky National Research Centre of Surgery, AP Avtsyn Institute of Human Morphology, 117418 Moscow, Russia;
| | - Nikolay K. Sadykhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 8 Baltiiskaya Street, 125315 Moscow, Russia; (N.G.N.); (N.K.S.)
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 8 Baltiiskaya Street, 125315 Moscow, Russia; (N.G.N.); (N.K.S.)
- Correspondence: (A.V.B.); (A.N.O.)
| |
Collapse
|
39
|
Whitmore CA, Haynes JR, Behof WJ, Rosenberg AJ, Tantawy MN, Hachey BC, Wadzinski BE, Spiller BW, Peterson TE, Paffenroth KC, Harrison FE, Beelman RB, Wijesinghe P, Matsubara JA, Pham W. Longitudinal Consumption of Ergothioneine Reduces Oxidative Stress and Amyloid Plaques and Restores Glucose Metabolism in the 5XFAD Mouse Model of Alzheimer's Disease. Pharmaceuticals (Basel) 2022; 15:742. [PMID: 35745661 PMCID: PMC9228400 DOI: 10.3390/ph15060742] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Ergothioneine (ERGO) is a unique antioxidant and a rare amino acid available in fungi and various bacteria but not in higher plants or animals. Substantial research data indicate that ERGO is a physiological antioxidant cytoprotectant. Different from other antioxidants that need to breach the blood-brain barrier to enter the brain parenchyma, a specialized transporter called OCTN1 has been identified for transporting ERGO to the brain. Purpose: To assess whether consumption of ERGO can prevent the progress of Alzheimer's disease (AD) on young (4-month-old) 5XFAD mice. Methods and materials: Three cohorts of mice were tested in this study, including ERGO-treated 5XFAD, non-treated 5XFAD, and WT mice. After the therapy, the animals went through various behavioral experiments to assess cognition. Then, mice were scanned with PET imaging to evaluate the biomarkers associated with AD using [11C]PIB, [11C]ERGO, and [18F]FDG radioligands. At the end of imaging, the animals went through cardiac perfusion, and the brains were isolated for immunohistology. Results: Young (4-month-old) 5XFAD mice did not show a cognitive deficit, and thus, we observed modest improvement in the treated counterparts. In contrast, the response to therapy was clearly detected at the molecular level. Treating 5XFAD mice with ERGO resulted in reduced amyloid plaques, oxidative stress, and rescued glucose metabolism. Conclusions: Consumption of high amounts of ERGO benefits the brain. ERGO has the potential to prevent AD. This work also demonstrates the power of imaging technology to assess response during therapy.
Collapse
Affiliation(s)
- Clayton A. Whitmore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.A.W.); (J.R.H.); (W.J.B.); (A.J.R.); (M.N.T.); (T.E.P.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin R. Haynes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.A.W.); (J.R.H.); (W.J.B.); (A.J.R.); (M.N.T.); (T.E.P.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - William J. Behof
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.A.W.); (J.R.H.); (W.J.B.); (A.J.R.); (M.N.T.); (T.E.P.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Adam J. Rosenberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.A.W.); (J.R.H.); (W.J.B.); (A.J.R.); (M.N.T.); (T.E.P.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mohammed N. Tantawy
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.A.W.); (J.R.H.); (W.J.B.); (A.J.R.); (M.N.T.); (T.E.P.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brian C. Hachey
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA;
| | - Brian E. Wadzinski
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37233, USA; (B.E.W.); (B.W.S.); (K.C.P.)
| | - Benjamin W. Spiller
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37233, USA; (B.E.W.); (B.W.S.); (K.C.P.)
| | - Todd E. Peterson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.A.W.); (J.R.H.); (W.J.B.); (A.J.R.); (M.N.T.); (T.E.P.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Krista C. Paffenroth
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37233, USA; (B.E.W.); (B.W.S.); (K.C.P.)
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA;
| | - Fiona E. Harrison
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA;
- Department of Medicine, Diabetes, Endocrinology & Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Robert B. Beelman
- Department of Food Science, Center for Plant and Mushroom Foods for Health, Penn State University, University Park, PA 16802, USA;
| | - Printha Wijesinghe
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada; (P.W.); (J.A.M.)
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada; (P.W.); (J.A.M.)
| | - Wellington Pham
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.A.W.); (J.R.H.); (W.J.B.); (A.J.R.); (M.N.T.); (T.E.P.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA;
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Ingram Cancer Center, Nashville, TN 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
40
|
Methionine Deprivation Reveals the Pivotal Roles of Cell Cycle Progression in Ferroptosis That Is Induced by Cysteine Starvation. Cells 2022; 11:cells11101603. [PMID: 35626640 PMCID: PMC9139961 DOI: 10.3390/cells11101603] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 01/31/2023] Open
Abstract
Ferroptosis, a type of iron-dependent necrotic cell death, is triggered by the accumulation of excessive lipid peroxides in cells. Glutathione (GSH), a tripeptide redox molecule that contains a cysteine (Cys) unit in the center, plays a pivotal role in protection against ferroptosis. When the transsulfuration pathway is activated, the sulfur atom of methionine (Met) is utilized to generate Cys, which can then suppress Cys-starvation-induced ferroptosis. In the current study, we cultured HeLa cells in Met- and/or cystine (an oxidized Cys dimer)- deprived medium and investigated the roles of Met in ferroptosis execution. The results indicate that, in the absence of cystine or Met, ferroptosis or cell cycle arrest, respectively, occurred. Contrary to our expectations, however, the simultaneous deprivation of both Met and cystine failed to induce ferroptosis, although the intracellular levels of Cys and GSH were maintained at low levels. Supplementation with S-adenosylmethionine (SAM), a methyl group donor that is produced during the metabolism of Met, caused the cell cycle progression to resume and lipid peroxidation and the subsequent induction of ferroptosis was also restored under conditions of Met/cystine double deprivation. DNA methylation appeared to be involved in the resumption in the SAM-mediated cell cycle because its downstream metabolite S-adenosylhomocysteine failed to cause either cell cycle progression or ferroptosis to be induced. Taken together, our results suggest that elevated lipid peroxidation products that are produced during cell cycle progression are involved in the execution of ferroptosis under conditions of Cys starvation.
Collapse
|
41
|
Szarka A, Lőrincz T, Hajdinák P. Friend or Foe: The Relativity of (Anti)oxidative Agents and Pathways. Int J Mol Sci 2022; 23:ijms23095188. [PMID: 35563576 PMCID: PMC9099968 DOI: 10.3390/ijms23095188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/17/2022] Open
Abstract
An element, iron, a process, the generation of reactive oxygen species (ROS), and a molecule, ascorbate, were chosen in our study to show their dual functions and their role in cell fate decision. Iron is a critical component of numerous proteins involved in metabolism and detoxification. On the other hand, excessive amounts of free iron in the presence of oxygen can promote the production of potentially toxic ROS. They can result in persistent oxidative stress, which in turn can lead to damage and cell death. At the same time, ROS—at strictly regulated levels—are essential to maintaining the redox homeostasis, and they are engaged in many cellular signaling pathways, so their total elimination is not expedient. Ascorbate establishes a special link between ROS generation/elimination and cell death. At low concentrations, it behaves as an excellent antioxidant and has an important role in ROS elimination. However, at high concentrations, in the presence of transition metals such as iron, it drives the generation of ROS. In the term of the dual function of these molecules and oxidative stress, ascorbate/ROS-driven cell deaths are not necessarily harmful processes—they can be live-savers too.
Collapse
Affiliation(s)
- András Szarka
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary; (T.L.); (P.H.)
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
- Correspondence:
| | - Tamás Lőrincz
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary; (T.L.); (P.H.)
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Péter Hajdinák
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary; (T.L.); (P.H.)
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| |
Collapse
|
42
|
Ding T, Zou J, Qi J, Dan H, Tang F, Zhao H, Chen Q. Mucoadhesive Nucleoside-Based Hydrogel Delays Oral Leukoplakia Canceration. J Dent Res 2022; 101:921-930. [PMID: 35360978 DOI: 10.1177/00220345221085192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Some oral squamous cell carcinomas (OSCCs) originate from preexisting oral potentially malignant disorders (OPMDs). Oral leukoplakia (OLK) is the most common and typical OPMD in the clinic, so treatment for it is essential to reduce OSCC incidence. Local chemotherapy is an option other than surgery considering the superficial site of OLK. However, there are no standardized drugs applied to OLK, and traditionally used chemotherapeutic drugs revealed limited efficacy for lack of adhesion. Hence, there is a growing demand to prepare new agents that combine mucoadhesion with an anti-OLK effect. Here, an isoguanosine-tannic acid (isoG-TA) supramolecular hydrogel via dynamic borate esters was successfully fabricated based on isoG and TA. Previously reported guanosine-TA (G-TA) hydrogel was also explored for an anti-OLK effect. Both gels not only exhibited ideal adhesive properties but also integrated anti-OLK activities in one system. In vitro cell viability indicated that isoG and TA inhibited the proliferation of dysplastic oral keratinocytes (DOKs). The in vivo OLK model evidence revealed that both gels showed potential to prevent OLK canceration. In addition, the probable anti-DOK mechanisms of isoG and TA were investigated. The results indicated that isoG could bind to adenosine kinase (ADK) and then affected the mammalian target of rapamycin (mTOR) pathway to inhibit DOK proliferation. TA could significantly and continuously reduce reactive oxygen species (ROS) in DOKs through its antioxidant effect. ROS plays an important role in the progression of cell cycle. We proved that the low level of ROS may inhibit DOK proliferation by inducing G0/G1 arrest in the cell cycle. Altogether, this study innovatively fabricated an isoG-TA hydrogel with ideal adhesion, and both isoG and TA showed in vitro inhibition of DOKs. Moreover, both isoG-TA and G-TA hydrogels possessed potential in delaying the malignant transformation of OLK, and the G-TA hydrogel showed a better statistical effect, providing an effective strategy for controlling OLK.
Collapse
Affiliation(s)
- T Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - J Zou
- West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - J Qi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - H Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - F Tang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, P. R. China
| | - H Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Q Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
43
|
Zhang JJ, Li YQ, Shi M, Deng CC, Wang YS, Tang Y, Wang XZ. 17β-estradiol rescues the damage of thiazolidinedione on chicken Sertoli cell proliferation via adiponectin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113308. [PMID: 35176672 DOI: 10.1016/j.ecoenv.2022.113308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Thiazolidinedione (TZD) is an oral anti-diabetic drug that exhibits some side effects on the male reproductive system by interfering with the steroidogenesis and androgenic activity and also shows anti-proliferative effect on several cell types. This study investigated the effect of TZD on immature chicken Sertoli cell (SC) proliferation and the potential mechanism by which 17β-estradiol regulated this process. Chicken SC viability was investigated under different treatment concentration and time of TZD. 17β-estradiol (0.001 μM, 24 h) was added to analyze its effects on TZD-mediated cell viability, cell metabolic activity, cell growth, cell cycle progression, reactive oxygen species (ROS) level, antioxidant enzyme activity, mitochondria activity, oxygen consumption rate, adenosine triphosphate (ATP) level, and mitochondrial respiratory chain enzyme activity, adiponectin expression and several cell proliferation-related genes mRNA and protein levels. We performed the microRNA (miRNA) array to find TZD-induced differentially expressed miRNAs and validated whether miR-1577 can target on adiponectin via the dual luciferase reporter assay, as well as verified the effect of adiponectin addition with different concentrations on the SC viability. Further, SCs were transfected with miR-1577 agomir (a double-stranded synthetic miRNA mimic) in the presence or absence of TZD and antagomir (a single-stranded synthetic miRNA inhibitor) in the presence or absence of 17β-estradiol to analyze whether miR-1577 was involved in TZD-mediated SC proliferation and whether 17β-estradiol regulated this process. Results showed that TZD significantly inhibited SC viability, cell metabolic activity, cell growth, and cell cycle progression, while increased adiponectin level and ROS generation. TZD-treated SCs presented decreases of antioxidant enzyme activity, mitochondria activity, basal and maximal respiration, ATP production and level, mitochondrial respiratory chain enzyme activity, and mRNA and protein expressions of several cell proliferation-related genes, as well as the significant alteration of miRNA expressions (a total number of 55 miRNAs were up-regulated whereas 53 miRNAs down-regulated). Whereas, 17β-estradiol played a positive role in chicken SC proliferation and rescued the damage of TZD on SC proliferation by up-regulating miR-1577 expression whose target gene was validated to be the adiponectin. In addition, exogenous adiponectin (more than 1 μg/ml) treatment exhibited a significant inhibition on the SC viability. Transfection of miR-1577 agomir promoted the SC proliferation via down-expressed adiponectin, and increased the mitochondrial function and cell proliferation-related gene expression, while TZD weakened the positive effect of miR-1577 agomir on SCs. On the other hand, transfection of miR-1577 antagomir inhibited SC proliferation by producing the opposite effects on above parameters, while 17β-estradiol attenuated the negative effect of miR-1577 antagomir on SCs. These findings suggest down-expressed miR-1577 is involved in the regulation of TZD-inhibited SC proliferation through increasing adiponectin level, and this damage of TZD on the immature chicken SC proliferation can be ameliorated by appropriate dose of exogenous 17β-estradiol treatment. This study provides an insight into the cytoprotective effect of 17β-estradiol on TZD-damaged SC proliferation and may suggest a potential strategy for reducing the risk of SC dysfunction caused by the abuse of TZD.
Collapse
Affiliation(s)
- Jiao Jiao Zhang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Ya Qi Li
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Mei Shi
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Cheng Chen Deng
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Yu Sha Wang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Yao Tang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Xian Zhong Wang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
44
|
Periodic Exposure of Plasma-Activated Medium Alters Fibroblast Cellular Homoeostasis. Int J Mol Sci 2022; 23:ijms23063120. [PMID: 35328541 PMCID: PMC8949019 DOI: 10.3390/ijms23063120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/19/2022] Open
Abstract
Excess amounts of redox stress and failure to regulate homeostatic levels of reactive species are associated with several skin pathophysiologic conditions. Nonmalignant cells are assumed to cope better with higher reactive oxygen and nitrogen species (RONS) levels. However, the effect of periodic stress on this balance has not been investigated in fibroblasts in the field of plasma medicine. In this study, we aimed to investigate intrinsic changes with respect to cellular proliferation, cell cycle, and ability to neutralize the redox stress inside fibroblast cells following periodic redox stress in vitro. Soft jet plasma with air as feeding gas was used to generate plasma-activated medium (PAM) for inducing redox stress conditions. We assessed cellular viability, energetics, and cell cycle machinery under oxidative stress conditions at weeks 3, 6, 9, and 12. Fibroblasts retained their usual physiological properties until 6 weeks. Fibroblasts failed to overcome the redox stress induced by periodic PAM exposure after 6 weeks, indicating its threshold potential. Periodic stress above the threshold level led to alterations in fibroblast cellular processes. These include consistent increases in apoptosis, while RONS accumulation and cell cycle arrest were observed at the final stages. Currently, the use of NTP in clinical settings is limited due to a lack of knowledge about fibroblasts’ behavior in wound healing, scar formation, and other fibrotic disorders. Understanding fibroblasts’ physiology could help to utilize nonthermal plasma in redox-related skin diseases. Furthermore, these results provide new information about the threshold capacity of fibroblasts and an insight into the adaptation mechanism against periodic oxidative stress conditions in fibroblasts.
Collapse
|
45
|
Superoxide Radicals in the Execution of Cell Death. Antioxidants (Basel) 2022; 11:antiox11030501. [PMID: 35326151 PMCID: PMC8944419 DOI: 10.3390/antiox11030501] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
Superoxide is a primary oxygen radical that is produced when an oxygen molecule receives one electron. Superoxide dismutase (SOD) plays a primary role in the cellular defense against an oxidative insult by ROS. However, the resulting hydrogen peroxide is still reactive and, in the presence of free ferrous iron, may produce hydroxyl radicals and exacerbate diseases. Polyunsaturated fatty acids are the preferred target of hydroxyl radicals. Ferroptosis, a type of necrotic cell death induced by lipid peroxides in the presence of free iron, has attracted considerable interest because of its role in the pathogenesis of many diseases. Radical electrons, namely those released from mitochondrial electron transfer complexes, and those produced by enzymatic reactions, such as lipoxygenases, appear to cause lipid peroxidation. While GPX4 is the most potent anti-ferroptotic enzyme that is known to reduce lipid peroxides to alcohols, other antioxidative enzymes are also indirectly involved in protection against ferroptosis. Moreover, several low molecular weight compounds that include α-tocopherol, ascorbate, and nitric oxide also efficiently neutralize radical electrons, thereby suppressing ferroptosis. The removal of radical electrons in the early stages is of primary importance in protecting against ferroptosis and other diseases that are related to oxidative stress.
Collapse
|
46
|
Tai SH, Lin YW, Huang TY, Chang CC, Chao LC, Wu TS, Lee EJ. Cinnamophilin enhances temozolomide-induced cytotoxicity against malignant glioma: the roles of ROS and cell cycle arrest. Transl Cancer Res 2022; 10:3906-3920. [PMID: 35116690 PMCID: PMC8798401 DOI: 10.21037/tcr-20-3426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 07/14/2021] [Indexed: 11/15/2022]
Abstract
Background Temozolomide (TMZ) has been widely used to treat glioblastoma multiforme (GBM). However, many mechanisms are known to quickly adapt GBM cells to chemotherapy with TMZ, leading to drug resistance and expansion of tumor cell populations. Methods We subjected human glioblastoma cell lines and an animal model of glioblastoma xenografts with TMZ-based adjuvant treatments to evaluate the synergistic effect of cinnamophilin (CINN), a free radical scavenger. Results Our results showed that the combined treatment of CINN and TMZ potentiated the anticancer effect and apoptotic cell death in glioma cell lines and enhanced antitumor action in glioma xenografts. TMZ induced reactive oxygen species (ROS) burst and elevated G2 arrest in glioma cells. The CINN-suppressed ROS burst in TMZ-treated glioma cells might be associated with increased apoptosis, as indicated by the upregulation of TUNEL-positive glioma cells. CINN-pretreated glioma cells exhibited increased cyclin B expression and reduced phosphorylation of Cdk1, suggesting reduced G2 arrest in the combined treatment group. Moreover, CINN lowered the protein level of LC3, a hallmark of autophagy, in TMZ-treated cells. Conclusions These findings suggest that CINN may restore TMZ toxicity in glioma cancer by suppressing the ROS/G2 arrest pathway.
Collapse
Affiliation(s)
- Shih-Hang Tai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan.,Neurophysiology Laboratory and Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Yu-Wen Lin
- Neurophysiology Laboratory and Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Tung-Yi Huang
- Neurophysiology Laboratory and Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Che-Chao Chang
- Neurophysiology Laboratory and Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Liang-Chun Chao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan.,Neurophysiology Laboratory and Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Tian-Shung Wu
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - E-Jian Lee
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan.,Neurophysiology Laboratory and Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| |
Collapse
|
47
|
A Narrative Review on Oral and Periodontal Bacteria Microbiota Photobiomodulation, through Visible and Near-Infrared Light: From the Origins to Modern Therapies. Int J Mol Sci 2022; 23:ijms23031372. [PMID: 35163296 PMCID: PMC8836253 DOI: 10.3390/ijms23031372] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Photobiomodulation (PBM) consists of a photon energy transfer to the cell, employing non-ionizing light sources belonging to the visible and infrared spectrum. PBM acts on some intrinsic properties of molecules, energizing them through specific light wavelengths. During the evolution of life, semiconducting minerals were energized by sun radiation. The molecules that followed became photoacceptors and were expressed into the first proto-cells and prokaryote membranes. Afterward, the components of the mitochondria electron transport chain influenced the eukaryotic cell physiology. Therefore, although many organisms have not utilized light as an energy source, many of the molecules involved in their physiology have retained their primordial photoacceptive properties. Thus, in this review, we discuss how PBM can affect the oral microbiota through photo-energization and the non-thermal effect of light on photoacceptors (i.e., cytochromes, flavins, and iron-proteins). Sometimes, the interaction of photons with pigments of an endogenous nature is followed by thermal or photodynamic-like effects. However, the preliminary data do not allow determining reliable therapies but stress the need for further knowledge on light-bacteria interactions and microbiota management in the health and illness of patients through PBM.
Collapse
|
48
|
Visioli F, Ingram A, Beckman JS, Magnusson KR, Hagen TM. Strategies to protect against age-related mitochondrial decay: Do natural products and their derivatives help? Free Radic Biol Med 2022; 178:330-346. [PMID: 34890770 DOI: 10.1016/j.freeradbiomed.2021.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria serve vital roles critical for overall cellular function outside of energy transduction. Thus, mitochondrial decay is postulated to be a key factor in aging and in age-related diseases. Mitochondria may be targets of their own decay through oxidative damage. However, treating animals with antioxidants has been met with only limited success in rejuvenating mitochondrial function or in increasing lifespan. A host of nutritional strategies outside of using traditional antioxidants have been devised to promote mitochondrial function. Dietary compounds are under study that induce gene expression, enhance mitochondrial biogenesis, mitophagy, or replenish key metabolites that decline with age. Moreover, redox-active compounds may now be targeted to mitochondria which improve their effectiveness. Herein we review the evidence that representative dietary effectors modulate mitochondrial function by stimulating their renewal or reversing the age-related loss of key metabolites. While in vitro evidence continues to accumulate that many of these compounds benefit mitochondrial function and/or prevent their decay, the results using animal models and, in some instances human clinical trials, are more mixed and sometimes even contraindicated. Thus, further research on optimal dosage and age of intervention are warranted before recommending potential mitochondrial rejuvenating compounds for human use.
Collapse
Affiliation(s)
- Francesco Visioli
- Department of Molecular Medicine, University of Padova, Italy; IMDEA-Food, Madrid, Spain
| | - Avery Ingram
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Joseph S Beckman
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Kathy R Magnusson
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| | - Tory M Hagen
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
49
|
Musiol R, Malecki P, Pacholczyk M, Mularski J. Terpyridines as promising antitumor agents: an overview of their discovery and development. Expert Opin Drug Discov 2021; 17:259-271. [PMID: 34928186 DOI: 10.1080/17460441.2022.2017877] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The fused aromatic system of terpyridines makes them good, innocent ligands for various metals. The resulting complexes have been extensively studied for both their biological activity and physico-chemical properties. However, although free ligands also have an interesting biological activity, their share in recent research is considerably limited. AREAS COVERED This review covers the literature on the anticancer activity of terpyridines with special attention being paid to their use as free ligands. Whenever possible, the mechanism of action has been discussed, thereby providing evidence of the substantial differences between sole ligands or less stable complexes and those that have heavier elements. EXPERT OPINION The existing literature indicates that there is a specific attitude for investigating terpyridines and their transition metal complexes. While the latter have been well explored and recognized in the scientific community, the free terpyridines are considered to be useful solely due to their complexing ability. At the same time, terpyridines could have similar or even higher anticancer potency than their complexes. Moreover, a mechanistic analysis of the stability and intracellular activity would provide information that would be useful for designing new drugs.
Collapse
Affiliation(s)
- Robert Musiol
- Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 7, Katowice, Poland
| | | | - Marcin Pacholczyk
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, Gliwice, Poland
| | - Jacek Mularski
- Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 7, Katowice, Poland
| |
Collapse
|
50
|
Nisa FY, Rahman MA, Hossen MA, Khan MF, Khan MAN, Majid M, Sultana F, Haque MA. Role of neurotoxicants in the pathogenesis of Alzheimer's disease: a mechanistic insight. Ann Med 2021; 53:1476-1501. [PMID: 34433343 PMCID: PMC8405119 DOI: 10.1080/07853890.2021.1966088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most conspicuous chronic neurodegenerative syndrome, which has become a significant challenge for the global healthcare system. Multiple studies have corroborated a clear association of neurotoxicants with AD pathogenicity, such as Amyloid beta (Aβ) proteins and neurofibrillary tangles (NFTs), signalling pathway modifications, cellular stress, cognitive dysfunctions, neuronal apoptosis, neuroinflammation, epigenetic modification, and so on. This review, therefore, aimed to address several essential mechanisms and signalling cascades, including Wnt (wingless and int.) signalling pathway, autophagy, mammalian target of rapamycin (mTOR), protein kinase C (PKC) signalling cascades, cellular redox status, energy metabolism, glutamatergic neurotransmissions, immune cell stimulations (e.g. microglia, astrocytes) as well as an amyloid precursor protein (APP), presenilin-1 (PSEN1), presenilin-2 (PSEN2) and other AD-related gene expressions that have been pretentious and modulated by the various neurotoxicants. This review concluded that neurotoxicants play a momentous role in developing AD through modulating various signalling cascades. Nevertheless, comprehension of this risk agent-induced neurotoxicity is far too little. More in-depth epidemiological and systematic investigations are needed to understand the potential mechanisms better to address these neurotoxicants and improve approaches to their risk exposure that aid in AD pathogenesis.Key messagesInevitable cascade mechanisms of how Alzheimer's Disease-related (AD-related) gene expressions are modulated by neurotoxicants have been discussed.Involvement of the neurotoxicants-induced pathways caused an extended risk of AD is explicited.Integration of cell culture, animals and population-based analysis on the clinical severity of AD is addressed.
Collapse
Affiliation(s)
- Fatema Yasmin Nisa
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Atiar Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Amjad Hossen
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Mohammad Forhad Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Md. Asif Nadim Khan
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Mumtahina Majid
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Farjana Sultana
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|