1
|
Fadoni J, Santos A, Amorim A, Cainé L. Sudden Cardiac Death: The Role of Molecular Autopsy with Next-Generation Sequencing. Diagnostics (Basel) 2025; 15:460. [PMID: 40002611 PMCID: PMC11854515 DOI: 10.3390/diagnostics15040460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Molecular autopsy is a term employed to describe the investigation of the cause of death through the analysis of genetic information using biological samples collected post-mortem. Its utility becomes evident in situations where conventional medico-legal autopsy methods are not able to identify the cause of death, i.e., in sudden cardiac death (SCD) cases in young individuals, where deaths are commonly due to genetic cardiac conditions, such as cardiomyopathies and channelopathies. The recent advancement in high-throughput sequencing techniques, such as next-generation sequencing (NGS), has allowed the investigation of a high number of genomic regions in a more cost-effective and faster approach. Unlike traditional sequencing methods, which can only sequence one DNA fragment at a time, NGS can sequence millions of short polynucleotide fragments simultaneously. This parallel approach reduces both the time and cost required to generate large-scale genomic data, making it a useful tool for applications ranging from basic research to molecular autopsy. In the forensic context, by enabling the examination of multiple genes or entire exomes and genomes, NGS enhances the accuracy and depth of genetic investigations, contributing to a better understanding of complex inherited diseases. However, challenges remain, such as the interpretation of variants of unknown significance (VUS), the need for standardized protocols, and the high demand for specialized bioinformatics expertise. Despite these challenges, NGS continues to offer significant promise for enhancing the precision of molecular autopsies. The goal of this review is to assess the effectiveness of contemporary advancements in molecular autopsy methodologies when applied to cases of SCD in young individuals and to present an overview of the steps involved in the analysis of NGS data and the interpretation of genetic variants.
Collapse
Affiliation(s)
- Jennifer Fadoni
- National Institute of Legal Medicine and Forensic Sciences, North Branch, 4050-167 Porto, Portugal; (J.F.)
- LAQV&REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Agostinho Santos
- National Institute of Legal Medicine and Forensic Sciences, North Branch, 4050-167 Porto, Portugal; (J.F.)
- LAQV&REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - António Amorim
- National Institute of Legal Medicine and Forensic Sciences, North Branch, 4050-167 Porto, Portugal; (J.F.)
- LAQV&REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Laura Cainé
- LAQV&REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- National Institute of Legal Medicine and Forensic Sciences, Centre Branch, 3000-548 Coimbra, Portugal
- Faculty of Medicine, Porto University, 4200-319 Porto, Portugal
| |
Collapse
|
2
|
Huang W, Jia C, Ren C. Artificial Ion Transporters as Potent Therapeutics for Channelopathies. ChemMedChem 2024:e202400811. [PMID: 39572385 DOI: 10.1002/cmdc.202400811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/21/2024] [Indexed: 12/10/2024]
Abstract
Ion channels are essential for the selective transport of ions, playing a fundamental role in critical physiological processes. Dysfunctions in these channels, often arising from genetic mutations or environmental factors, give rise to a class of disorders collectively known as channelopathies. In recent years, artificial ion transporters have been developed to mimic the essential function of natural channels, offering potential therapeutic approaches for these conditions. Although significant progress has been made in improving the activity and selectivity of these synthetic transporters, their application in treating diseases associated with ion transport dysregulation remains in its infancy. This concept provides an overview of recent advancements in artificial ion transporters for treating channelopathies, while highlighting the key challenges and prospects in translating these developments into practical therapies.
Collapse
Affiliation(s)
- Wei Huang
- Department of Respiratory Medicine, The People's Hospital of Gongan County, Gongan, Hubei, 434300, China
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chunyan Jia
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Changliang Ren
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| |
Collapse
|
3
|
Guo S, Zha L. Pathogenesis and Clinical Characteristics of Hereditary Arrhythmia Diseases. Genes (Basel) 2024; 15:1368. [PMID: 39596569 PMCID: PMC11593610 DOI: 10.3390/genes15111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Hereditary arrhythmias, as a class of cardiac electrophysiologic abnormalities caused mainly by genetic mutations, have gradually become one of the most important causes of sudden cardiac death in recent years. With the continuous development of genetics and molecular biology techniques, the study of inherited arrhythmias has made remarkable progress in the past few decades. More and more disease-causing genes are being identified, and there have been advances in the application of genetic testing for disease screening in individuals with disease and their family members. Determining more refined disease prevention strategies and therapeutic regimens that are tailored to the genetic characteristics and molecular pathogenesis of different groups or individuals forms the basis of individualized treatment. Understanding advances in the study of inherited arrhythmias provides important clues to better understand their pathogenesis and clinical features. This article provides a review of the pathophysiologic alterations caused by genetic variants and their relationship to disease phenotypes, including mainly cardiac ion channelopathies and cardiac conduction disorders.
Collapse
Affiliation(s)
- Shuang Guo
- Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China;
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
4
|
Zhu W, Bian X, Lv J. From genes to clinical management: A comprehensive review of long QT syndrome pathogenesis and treatment. Heart Rhythm O2 2024; 5:573-586. [PMID: 39263612 PMCID: PMC11385408 DOI: 10.1016/j.hroo.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Background Long QT syndrome (LQTS) is a rare cardiac disorder characterized by prolonged ventricular repolarization and increased risk of ventricular arrhythmias. This review summarizes current knowledge of LQTS pathogenesis and treatment strategies. Objectives The purpose of this study was to provide an in-depth understanding of LQTS genetic and molecular mechanisms, discuss clinical presentation and diagnosis, evaluate treatment options, and highlight future research directions. Methods A systematic search of PubMed, Embase, and Cochrane Library databases was conducted to identify relevant studies published up to April 2024. Results LQTS involves mutations in ion channel-related genes encoding cardiac ion channels, regulatory proteins, and other associated factors, leading to altered cellular electrophysiology. Acquired causes can also contribute. Diagnosis relies on clinical history, electrocardiographic findings, and genetic testing. Treatment strategies include lifestyle modifications, β-blockers, potassium channel openers, device therapy, and surgical interventions. Conclusion Advances in understanding LQTS have improved diagnosis and personalized treatment approaches. Challenges remain in risk stratification and management of certain patient subgroups. Future research should focus on developing novel pharmacological agents, refining device technologies, and conducting large-scale clinical trials. Increased awareness and education are crucial for early detection and appropriate management of LQTS.
Collapse
Affiliation(s)
- Wenjing Zhu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xueyan Bian
- Department of Pediatrics, Lixia District People's Hospital, Jinan, Shandong, China
| | - Jianli Lv
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
5
|
Stevens TL, Coles S, Sturm AC, Hoover CA, Borzok MA, Mohler PJ, El Refaey M. Molecular Pathways and Animal Models of Arrhythmias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:1057-1090. [PMID: 38884769 DOI: 10.1007/978-3-031-44087-8_67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Arrhythmias account for over 300,000 annual deaths in the United States, and approximately half of all deaths are associated with heart disease. Mechanisms underlying arrhythmia risk are complex; however, work in humans and animal models over the past 25 years has identified a host of molecular pathways linked with both arrhythmia substrates and triggers. This chapter will focus on select arrhythmia pathways solved by linking human clinical and genetic data with animal models.
Collapse
Affiliation(s)
- Tyler L Stevens
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sara Coles
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Amy C Sturm
- Genomic Medicine Institute, 23andMe, Sunnyvale, CA, USA
| | - Catherine A Hoover
- Department of Biochemistry, Chemistry, Engineering and Physics, Commonwealth University of Pennsylvania, Mansfield, PA, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Maegen A Borzok
- Department of Biochemistry, Chemistry, Engineering and Physics, Commonwealth University of Pennsylvania, Mansfield, PA, USA
| | - Peter J Mohler
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mona El Refaey
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
6
|
Li P, Tian X, Wang G, Jiang E, Li Y, Hao G. Acute osimertinib exposure induces electrocardiac changes by synchronously inhibiting the currents of cardiac ion channels. Front Pharmacol 2023; 14:1177003. [PMID: 37324483 PMCID: PMC10267729 DOI: 10.3389/fphar.2023.1177003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: As the third generation of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), osimertinib has demonstrated more significant cardiotoxicity than previous generations of EGFR-TKIs. Investigating the mechanism of osimertinib cardiotoxicity can provide a reference for a comprehensive understanding of osimertinib-induced cardiotoxicity and the safety of the usage of this drug in clinical practice. Methods: Multichannel electrical mapping with synchronous ECG recording was used to investigate the effects of varying osimertinib concentrations on electrophysiological indicators in isolated Langendorff-perfused hearts of guinea pigs. Additionally, a whole-cell patch clamp was used to detect the impact of osimertinib on the currents of hERG channels transfected into HEK293 cells and the Nav1.5 channel transfected into Chinese hamster ovary cells and acute isolated ventricular myocytes from SD rats. Results: Acute exposure to varying osimertinib concentrations produced prolongation in the PR interval, QT interval, and QRS complex in isolated hearts of guinea pigs. Meanwhile, this exposure could concentration-dependently increase the conduction time in the left atrium, left ventricle, and atrioventricular without affecting the left ventricle conduction velocity. Osimertinib inhibited the hERG channel in a concentration-dependent manner, with an IC50 of 2.21 ± 1.29 μM. Osimertinib also inhibited the Nav1.5 channel in a concentration-dependent manner, with IC50 values in the absence of inactivation, 20% inactivation, and 50% inactivation of 15.58 ± 0.83 μM, 3.24 ± 0.09 μM, and 2.03 ± 0.57 μM, respectively. Osimertinib slightly inhibited the currents of L-type Ca2+ channels in a concentration-dependent manner in acutely isolated rat ventricular myocytes. Discussion: Osimertinib could prolong the QT interval; PR interval; QRS complex; left atrium, left ventricle, and atrioventricular conduction time in isolated guinea pig hearts. Furthermore, osimertinib could block the hERG, Nav1.5, and L-type Ca2+ channels in concentration-dependent manners. Therefore, these findings might be the leading cause of the cardiotoxicity effects, such as QT prolongation and decreased left ventricular ejection fraction.
Collapse
Affiliation(s)
- Peiwen Li
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Xiaohui Tian
- Department of Pharmacy, Huaihe Hospital of Henan University, Kaifeng, China
| | - Gongxin Wang
- Department of Research, Scope Research Institute of Electrophysiology, Kaifeng, China
| | - Enshe Jiang
- Institute of Nursing and Health, Henan University, Kaifeng, China
| | - Yanming Li
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Guoliang Hao
- Department of Research, Scope Research Institute of Electrophysiology, Kaifeng, China
| |
Collapse
|
7
|
Zhang WS, Liu XP, Yue S, Wang YN, Wang Y, Xu ZR. In-situ and amplification-free imaging of hERG ion channels at single-cell level using a unique core-molecule-shell-secondary antibody SERS nanoprobe. Talanta 2023; 253:123900. [PMID: 36095940 DOI: 10.1016/j.talanta.2022.123900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/13/2022]
Abstract
Research on ion channels and their monoclonal antibodies plays a critical role in drug development and disease diagnosis. The current ion channel researches are often not conducted in the microenvironment for cells survival, which restricts the mechanism study of the links between the cell structure and the ion channel function. In this work, we synthesized gold core-4-mercaptobenzonitrile-sliver shell-goat anti-rabbit immunoglobulin G (Au@4-MBN@Ag@IgG) nanoparticles as surface-enhanced Raman scattering (SERS) nanoprobes for investigating the human ether-a-go-go related gene (hERG) potassium ion channel in cell membranes. This is the first attempt to study ion channels using SERS. Due to the unique core-molecule-shell structure and the silver shell of nanoprobes, strong and stable SERS signal was obtained. With the help of antibodies, the Au@4-MBN@Ag@IgG nanoprobes were captured by hERG antibodies and then bonded with hERG ion channels based on the sandwich immune response. The reporter molecule, 4-MBN, displayed a strong and sharp characteristic peak at 2233 cm-1 in the Raman silent region. The intensity of this peak denoted the concentration of antibodies and the expression of ion channel proteins. We successfully applied this amplification-free method for in-situ imaging the distribution of the hERG ion channel on the transfected HEK293 cell surface at the single-cell level. This hERG ion channel profiling strategy promises a maneuverable tool for ion channel research.
Collapse
Affiliation(s)
- Wen-Shu Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Xiao-Peng Liu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Shuai Yue
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, PR China
| | - Ya-Ning Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Yue Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
8
|
Analysis of a Family with Brugada Syndrome and Sudden Cardiac Death Caused by a Novel Mutation of SCN5A. Cardiol Res Pract 2022; 2022:9716045. [PMID: 35529058 PMCID: PMC9072018 DOI: 10.1155/2022/9716045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/19/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Brugada syndrome is a hereditary cardiac disease associated with mutations in ion channel genes. The clinical features include ventricular fibrillation, syncope, and sudden cardiac death. A family with Brugada syndrome with sudden cardiac death was analyzed to locate the associated mutation in the SCN5A gene. Methods and Results. Three generations of a Han Chinese family with Brugada syndrome were recruited in the study; their clinical phenotype data were collected and DNA samples extracted from the peripheral blood. Next-generation sequencing was carried out in the proband, and candidate genes and mutations were screened using the full exon capture technique. The family members who participated in the survey were tested for possible mutations using Sanger sequencing. Six family members were diagnosed with Brugada syndrome, including four asymptomatic patients. A newly discovered heterozygous mutation in the proband was located in exon 25 of SCN5A (NM_000335.5) at c.4313dup(p.Trp1439ValfsTer32). Among the surviving family members, only those with a Brugada wave on their electrocardiogram carried the c.4313dup(p.Trp1439ValfsTer32) variant. Bioinformatics prediction revealed that the frameshift of the c.4313dup (p.Trp1439ValfsTer32) mutant led to a coding change of 32 amino acids, followed by a stop codon, resulting in a truncated protein product. Conclusion. The newly discovered mutation site c.4313dup(p.Trp1439ValfsTer32) in exon 25 of SCN5A may be the molecular genetic basis of the family with Brugada syndrome.
Collapse
|
9
|
Cornean A, Gierten J, Welz B, Mateo JL, Thumberger T, Wittbrodt J. Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction. eLife 2022; 11:e72124. [PMID: 35373735 PMCID: PMC9033269 DOI: 10.7554/elife.72124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/21/2022] [Indexed: 11/18/2022] Open
Abstract
Single nucleotide variants (SNVs) are prevalent genetic factors shaping individual trait profiles and disease susceptibility. The recent development and optimizations of base editors, rubber and pencil genome editing tools now promise to enable direct functional assessment of SNVs in model organisms. However, the lack of bioinformatic tools aiding target prediction limits the application of base editing in vivo. Here, we provide a framework for adenine and cytosine base editing in medaka (Oryzias latipes) and zebrafish (Danio rerio), ideal for scalable validation studies. We developed an online base editing tool ACEofBASEs (a careful evaluation of base-edits), to facilitate decision-making by streamlining sgRNA design and performing off-target evaluation. We used state-of-the-art adenine (ABE) and cytosine base editors (CBE) in medaka and zebrafish to edit eye pigmentation genes and transgenic GFP function with high efficiencies. Base editing in the genes encoding troponin T and the potassium channel ERG faithfully recreated known cardiac phenotypes. Deep-sequencing of alleles revealed the abundance of intended edits in comparison to low levels of insertion or deletion (indel) events for ABE8e and evoBE4max. We finally validated missense mutations in novel candidate genes of congenital heart disease (CHD) dapk3, ube2b, usp44, and ptpn11 in F0 and F1 for a subset of these target genes with genotype-phenotype correlation. This base editing framework applies to a wide range of SNV-susceptible traits accessible in fish, facilitating straight-forward candidate validation and prioritization for detailed mechanistic downstream studies.
Collapse
Affiliation(s)
- Alex Cornean
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- Heidelberg Biosciences International Graduate School (HBIGS)HeidelbergGermany
| | - Jakob Gierten
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- Department of Pediatric Cardiology, University Hospital HeidelbergHeidelbergGermany
- DZHK (German Centre for Cardiovascular Research)HeidelbergGermany
| | - Bettina Welz
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- Heidelberg Biosciences International Graduate School (HBIGS)HeidelbergGermany
- DZHK (German Centre for Cardiovascular Research)HeidelbergGermany
| | - Juan Luis Mateo
- Deparment of Computer Science, University of OviedoOviedoSpain
| | - Thomas Thumberger
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- DZHK (German Centre for Cardiovascular Research)HeidelbergGermany
| |
Collapse
|
10
|
Neubauer J, Kissel CK, Bolliger SA, Barbon D, Thali MJ, Kloiber D, Bode PK, Kovacs B, Graf U, Maspoli A, Berger W, Saguner AM, Haas C. Benefits and outcomes of a new multidisciplinary approach for the management and financing of sudden unexplained death cases in a forensic setting in Switzerland. Forensic Sci Int 2022; 334:111240. [DOI: 10.1016/j.forsciint.2022.111240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 12/29/2022]
|
11
|
Ahn KJ, Song MK, Lee SY, Yoon JK, Kim GB, Oh S, Bae EJ. The Outcome of Long QT Syndrome, a Korean Single Center Study. Korean Circ J 2022; 52:771-781. [PMID: 36217598 PMCID: PMC9551231 DOI: 10.4070/kcj.2022.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 01/08/2023] Open
Abstract
Congenital long QT syndrome is an inherited cardiac channelopathy, causing fatal arrhythmia. In this study, we conducted a retrospective cohort study on 105 congenital LQTS patients and its outcome in a tertiary center. The 10-year event free survival rate was 73.2%, and the outcome was different according to the genotypes. With treatment, all survived except one. The genetic analysis and risk stratification may be essential for better outcome and further nationwide and large scaled studies are required. Background and Objectives Although long QT syndrome (LQTS) is a potentially life-threatening inherited cardiac channelopathy, studies documenting the long-term clinical data of Korean patients with LQTS are scarce. Methods This retrospective cohort study included 105 patients with LQTS (48 women; 45.7%) from a single tertiary center. The clinical outcomes were analyzed for the rate of freedom from breakthrough cardiac events (BCEs), additional treatment needed, and death. Results LQTS was diagnosed at a median age of 11 (range, 0.003–80) years. Genetic testing was performed on 90 patients (yield, 71.1%). The proportions of genetically confirmed patients with LQTS types 1, 2, 3, and others were 34.4%, 12.2%, 12.2%, and 12.2%, respectively. In the symptomatic group (n=70), aborted cardiac arrest was observed in 30% of the patients. Treatments included medications in 60 patients (85.7%), implantable cardioverter-defibrillators in 27 (38.6%; median age, 17 years; range, 2–79 years), and left cardiac sympathetic denervation surgery in 7 (10%; median age, 13 years; range, 2–34). The 10-year BCE-free survival rate was 73.2%. By genotype, significant differences were observed in BCEs despite medication (p<0.001). The 10-year BCE-free survival rate was the highest in patients with LQTS type 1 (81.8%) and the lowest in those with multiple LQTS-associated mutations (LQTM). All patients with LQTS survived, except for one patient who had LQTM. Conclusions Good long-term outcomes can be achieved by using recently developed genetically tailored management strategies for patients with LQTS.
Collapse
Affiliation(s)
- Kyung Jin Ahn
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Gachon University Gil Medical Center, Incheon, Korea
| | - Mi Kyoung Song
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Yun Lee
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ja Kyoung Yoon
- Department of Pediatrics, Sejong General Hospital, Bucheon, Korea
| | - Gi Beom Kim
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seil Oh
- Department of Internal Medicine, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Jung Bae
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Sampson B, Hammers J, Stram M. Forensic aspects of cardiovascular pathology. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
13
|
A comparative review on heart ion channels, action potentials and electrocardiogram in rodents and human: extrapolation of experimental insights to clinic. Lab Anim Res 2021; 37:25. [PMID: 34496976 PMCID: PMC8424989 DOI: 10.1186/s42826-021-00102-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022] Open
Abstract
Electrocardiogram (ECG) is a non-invasive valuable diagnostic tool that is used in clinics for investigation and monitoring of heart electrical rhythm/conduction, ischemia/injury of heart, electrolyte disturbances and agents/drugs induced cardiac toxicity. Nowadays using animal models to study heart diseases such as electrical and mechanical disturbance is common. In addition, given to ethical consideration and availability, the use of small rodents has been a top priority for cardiovascular researchers. However, extrapolation of experimental findings from the lab to the clinic needs sufficient basic knowledge of similarities and differences between heart action potential and ECG of rodents and humans in normal and disease conditions. This review compares types of human action potentials, the dominant ion currents during action potential phases, alteration in ion channels activities in channelopathies-induced arrhythmias and the ECG appearance of mouse, rat, guinea pig, rabbit and human. Also, it briefly discusses the responsiveness and alterations in ECG following some interventions such as cardiac injury and arrhythmia induction. Overall, it provides a roadmap for researchers in selecting the best animal model/species whose studies results can be translated into clinical practice. In addition, this study will also be useful to biologists, physiologists, pharmacologists, veterinarians and physicians working in the fields of comparative physiology, pharmacology, toxicology and diseases.
Collapse
|
14
|
Jæger KH, Edwards AG, Giles WR, Tveito A. A computational method for identifying an optimal combination of existing drugs to repair the action potentials of SQT1 ventricular myocytes. PLoS Comput Biol 2021; 17:e1009233. [PMID: 34383746 PMCID: PMC8360568 DOI: 10.1371/journal.pcbi.1009233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/01/2021] [Indexed: 01/26/2023] Open
Abstract
Mutations are known to cause perturbations in essential functional features of integral membrane proteins, including ion channels. Even restricted or point mutations can result in substantially changed properties of ion currents. The additive effect of these alterations for a specific ion channel can result in significantly changed properties of the action potential (AP). Both AP shortening and AP prolongation can result from known mutations, and the consequences can be life-threatening. Here, we present a computational method for identifying new drugs utilizing combinations of existing drugs. Based on the knowledge of theoretical effects of existing drugs on individual ion currents, our aim is to compute optimal combinations that can ‘repair’ the mutant AP waveforms so that the baseline AP-properties are restored. More specifically, we compute optimal, combined, drug concentrations such that the waveforms of the transmembrane potential and the cytosolic calcium concentration of the mutant cardiomyocytes (CMs) becomes as similar as possible to their wild type counterparts after the drug has been applied. In order to demonstrate the utility of this method, we address the question of computing an optimal drug for the short QT syndrome type 1 (SQT1). For the SQT1 mutation N588K, there are available data sets that describe the effect of various drugs on the mutated K+ channel. These published findings are the basis for our computational analysis which can identify optimal compounds in the sense that the AP of the mutant CMs resembles essential biomarkers of the wild type CMs. Using recently developed insights regarding electrophysiological properties among myocytes from different species, we compute optimal drug combinations for hiPSC-CMs, rabbit ventricular CMs and adult human ventricular CMs with the SQT1 mutation. Since the ‘composition’ of ion channels that form the AP is different for the three types of myocytes under consideration, so is the composition of the optimal drug. Poly-pharmacology (using multiple drugs to treat disease) has been proposed for improving cardiac anti-arrhythmic therapy for at least two decades. However, the specific arrhythmia contexts in which polytherapy is likely to be both safe and effective have remained elusive. Type 1 short QT syndrome (SQT1) is a rare form of cardiac arrhythmia that results from mutations to the human Ether-á-go-go Related Gene (hERG) potassium channel. Functionally, these mutations are remarkably consistent in that they permit the channel to open earlier during each heart beat. While hundreds of compounds are known to inhibit hERG channels, the specific effect of SQT1 mutations that allows for early channel opening also limits the ability of most of those compounds to correct SQT1 dysfunction. Here, we have applied a suite of ventricular cardiomyocyte computational models to ask whether polytherapy may offer a more effective therapeutic strategy in SQT1, and if so, what the likely characteristics of that strategy are. Our analyses suggest that simultaneous induction of late sodium current and partial hERG blockade offers a promising strategy. While no activators of late sodium current have been clinically approved, several experimental compounds are available and may provide a basis for interrogating this strategy. The method presented here can be used to compute optimal drug combinations provided that the effect of each drug on every relevant ion channel is known.
Collapse
MESH Headings
- Action Potentials/drug effects
- Amino Acid Substitution
- Animals
- Anti-Arrhythmia Agents/administration & dosage
- Arrhythmias, Cardiac/drug therapy
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/physiopathology
- Computational Biology
- Drug Combinations
- Drug Design
- Drug Therapy, Combination/methods
- ERG1 Potassium Channel/drug effects
- ERG1 Potassium Channel/genetics
- ERG1 Potassium Channel/physiology
- Heart Conduction System/abnormalities
- Heart Conduction System/physiopathology
- Heart Defects, Congenital/drug therapy
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/physiopathology
- Humans
- Induced Pluripotent Stem Cells/drug effects
- Induced Pluripotent Stem Cells/physiology
- Models, Cardiovascular
- Mutation, Missense
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/physiology
- Rabbits
Collapse
Affiliation(s)
| | - Andrew G. Edwards
- Simula Research Laboratory, Oslo, Norway
- Department of Pharmacology, University of California, Davis, California United States of America
| | - Wayne R. Giles
- Simula Research Laboratory, Oslo, Norway
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Canada
| | | |
Collapse
|
15
|
Mathie A, Veale EL, Golluscio A, Holden RG, Walsh Y. Pharmacological Approaches to Studying Potassium Channels. Handb Exp Pharmacol 2021; 267:83-111. [PMID: 34195873 DOI: 10.1007/164_2021_502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this review, we consider the pharmacology of potassium channels from the perspective of these channels as therapeutic targets. Firstly, we describe the three main families of potassium channels in humans and disease states where they are implicated. Secondly, we describe the existing therapeutic agents which act on potassium channels and outline why these channels represent an under-exploited therapeutic target with potential for future drug development. Thirdly, we consider the evidence desired in order to embark on a drug discovery programme targeting a particular potassium channel. We have chosen two "case studies": activators of the two-pore domain potassium (K2P) channel TREK-2 (K2P10.1), for the treatment of pain and inhibitors of the voltage-gated potassium channel KV1.3, for use in autoimmune diseases such as multiple sclerosis. We describe the evidence base to suggest why these are viable therapeutic targets. Finally, we detail the main technical approaches available to characterise the pharmacology of potassium channels and identify novel regulatory compounds. We draw particular attention to the Comprehensive in vitro Proarrhythmia Assay initiative (CiPA, https://cipaproject.org ) project for cardiac safety, as an example of what might be both desirable and possible in the future, for ion channel regulator discovery projects.
Collapse
Affiliation(s)
- Alistair Mathie
- Medway School of Pharmacy, University of Kent, Kent, UK. .,Medway School of Pharmacy, University of Greenwich, London, UK. .,School of Engineering, Arts, Science and Technology, University of Suffolk, Ipswich, UK.
| | - Emma L Veale
- Medway School of Pharmacy, University of Kent, Kent, UK.,Medway School of Pharmacy, University of Greenwich, London, UK
| | - Alessia Golluscio
- Medway School of Pharmacy, University of Kent, Kent, UK.,Medway School of Pharmacy, University of Greenwich, London, UK
| | - Robyn G Holden
- Medway School of Pharmacy, University of Kent, Kent, UK.,Medway School of Pharmacy, University of Greenwich, London, UK
| | - Yvonne Walsh
- Medway School of Pharmacy, University of Kent, Kent, UK.,Medway School of Pharmacy, University of Greenwich, London, UK
| |
Collapse
|
16
|
Saadeh K, Fazmin IT. Mitochondrial Dysfunction Increases Arrhythmic Triggers and Substrates; Potential Anti-arrhythmic Pharmacological Targets. Front Cardiovasc Med 2021; 8:646932. [PMID: 33659284 PMCID: PMC7917191 DOI: 10.3389/fcvm.2021.646932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Incidence of cardiac arrhythmias increases significantly with age. In order to effectively stratify arrhythmic risk in the aging population it is crucial to elucidate the relevant underlying molecular mechanisms. The changes underlying age-related electrophysiological disruption appear to be closely associated with mitochondrial dysfunction. Thus, the present review examines the mechanisms by which age-related mitochondrial dysfunction promotes arrhythmic triggers and substrate. Namely, via alterations in plasmalemmal ionic currents (both sodium and potassium), gap junctions, cellular Ca2+ homeostasis, and cardiac fibrosis. Stratification of patients' mitochondrial function status permits application of appropriate anti-arrhythmic therapies. Here, we discuss novel potential anti-arrhythmic pharmacological interventions that specifically target upstream mitochondrial function and hence ameliorates the need for therapies targeting downstream changes which have constituted traditional antiarrhythmic therapy.
Collapse
Affiliation(s)
- Khalil Saadeh
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Ibrahim Talal Fazmin
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
17
|
Ovics P, Regev D, Baskin P, Davidor M, Shemer Y, Neeman S, Ben-Haim Y, Binah O. Drug Development and the Use of Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Disease Modeling and Drug Toxicity Screening. Int J Mol Sci 2020; 21:E7320. [PMID: 33023024 PMCID: PMC7582587 DOI: 10.3390/ijms21197320] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
: Over the years, numerous groups have employed human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) as a superb human-compatible model for investigating the function and dysfunction of cardiomyocytes, drug screening and toxicity, disease modeling and for the development of novel drugs for heart diseases. In this review, we discuss the broad use of iPSC-CMs for drug development and disease modeling, in two related themes. In the first theme-drug development, adverse drug reactions, mechanisms of cardiotoxicity and the need for efficient drug screening protocols-we discuss the critical need to screen old and new drugs, the process of drug development, marketing and Adverse Drug reactions (ADRs), drug-induced cardiotoxicity, safety screening during drug development, drug development and patient-specific effect and different mechanisms of ADRs. In the second theme-using iPSC-CMs for disease modeling and developing novel drugs for heart diseases-we discuss the rationale for using iPSC-CMs and modeling acquired and inherited heart diseases with iPSC-CMs.
Collapse
Affiliation(s)
- Paz Ovics
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Danielle Regev
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Polina Baskin
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Mor Davidor
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Yuval Shemer
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Shunit Neeman
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Yael Ben-Haim
- Institute of Molecular and Clinical Sciences, St. George’s University of London, London SW17 0RE, UK;
- Cardiology Clinical Academic Group, St. George’s University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| |
Collapse
|
18
|
Saadeh K, Achercouk Z, Fazmin IT, Nantha Kumar N, Salvage SC, Edling CE, Huang CLH, Jeevaratnam K. Protein expression profiles in murine ventricles modeling catecholaminergic polymorphic ventricular tachycardia: effects of genotype and sex. Ann N Y Acad Sci 2020; 1478:63-74. [PMID: 32713021 DOI: 10.1111/nyas.14426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/27/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is associated with mutations in the cardiac ryanodine receptor (RyR2). These result in stress-induced ventricular arrhythmic episodes, with clinical symptoms and prognosis reported more severe in male than female patients. Murine homozygotic RyR2-P2328S (RyR2S/S ) hearts replicate the proarrhythmic CPVT phenotype of abnormal sarcoplasmic reticular Ca2+ leak and disrupted Ca2+ homeostasis. In addition, RyR2S/S hearts show decreased myocardial action potential conduction velocities (CV), all features implicated in arrhythmic trigger and substrate. The present studies explored for independent and interacting effects of RyR2S/S genotype and sex on expression levels of molecular determinants of Ca2+ homeostasis (CASQ2, FKBP12, SERCA2a, NCX1, and CaV 1.2) and CV (NaV 1.5, Connexin (Cx)-43, phosphorylated-Cx43, and TGF-β1) in mice. Expression levels of Ca2+ homeostasis proteins were not altered, hence implicating abnormal RyR2 function alone in disrupted cytosolic Ca2+ homeostasis. Furthermore, altered NaV 1.5, phosphorylated Cx43, and TGF-β1 expression were not implicated in the development of slowed CV. By contrast, decreased Cx43 expression correlated with slowed CV, in female, but not male, RyR2S/S mice. The CV changes may reflect acute actions of the increased cytosolic Ca2+ on NaV 1.5 and Cx43 function.
Collapse
Affiliation(s)
- Khalil Saadeh
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Zakaria Achercouk
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Ibrahim T Fazmin
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Nakulan Nantha Kumar
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Samantha C Salvage
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom.,Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Charlotte E Edling
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Christopher L-H Huang
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom.,Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Jiang C, Ding N, Li J, Jin X, Li L, Pan T, Huo C, Li Y, Xu J, Li X. Landscape of the long non-coding RNA transcriptome in human heart. Brief Bioinform 2020; 20:1812-1825. [PMID: 29939204 DOI: 10.1093/bib/bby052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been revealed to play essential roles in the human cardiovascular system. However, information about their mechanisms is limited, and a comprehensive view of cardiac lncRNAs is lacking from a multiple tissues perspective to date. Here, the landscape of the lncRNA transcriptome in human heart was summarized. We summarized all lncRNA transcripts from publicly available human transcriptome resources (156 heart samples and 210 samples from 29 other tissues) and systematically analysed all annotated and novel lncRNAs expressed in heart. A total of 7485 lncRNAs whose expression was elevated in heart (HE lncRNAs) and 453 lncRNAs expressed in all 30 analysed tissues (EIA lncRNAs) were extracted. Using various bioinformatics resources, methods and tools, the features of these lncRNAs were discussed from various perspectives, including genomic structure, conservation, dynamic variation during heart development, cis-regulation, differential expression in cardiovascular diseases and cancers as well as regulation at transcriptional and post-transcriptional levels. Afterwards, all the features discussed above were integrated into a user-friendly resource named CARDIO-LNCRNAS (http://bio-bigdata.hrbmu.edu.cn/CARDIO-LNCRNAS/ or http://www.bio-bigdata.net/CARDIO-LNCRNAS/). This study represents the first global view of lncRNAs in the human cardiovascular system based on multiple tissues and sheds light on the role of lncRNAs in developments and heart disorders.
Collapse
Affiliation(s)
- Chunjie Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, China
| | - Na Ding
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, China
| | - Junyi Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, China
| | - Xiyun Jin
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, China
| | - Lili Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, China
| | - Tao Pan
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, China
| | - Caiqin Huo
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, China
| | - Yongsheng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, China
| |
Collapse
|
20
|
Summer A, Di Frangia F, Ajmone Marsan P, De Noni I, Malacarne M. Occurrence, biological properties and potential effects on human health of β-casomorphin 7: Current knowledge and concerns. Crit Rev Food Sci Nutr 2020; 60:3705-3723. [PMID: 32033519 DOI: 10.1080/10408398.2019.1707157] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genetic variant A1 of bovine β-casein (β-Cn) presents a His residue at a position 67 of the mature protein. This feature makes the Ile66-His67 bond more vulnerable to enzymatic cleavage, determining the release of the peptide β-Cn f(60-66), named β-casomorphin 7 (BCM7). BCM7 is an opioid-agonist for μ receptors, and it has been hypothesized to be involved in the development of different non-transmissible diseases in humans. In the last decade, studies have provided additional results on the potential health impact of β-Cn A1 and BCM7. These studies, here reviewed, highlighted a relation between the consumption of β-Cn A1 (and its derivative BCM7) and the increase of inflammatory response as well as discomfort at the gastrointestinal level. Conversely, the role of BCM7 and the effects of ingestion of β-Cn A1 on the onset or worsening of other non-transmissible diseases as caused or favored by still need proof of evidence. Overall, the reviewed literature demonstrates that the "β-Cn A1/BCM7 issue" remains an intriguing but not exhaustively explained topic in human nutrition. On this basis, policies in favor of breeding for β-Cn variants not releasing BCM7 and consumption of "A1-like" milk appear not yet sound for a healthier and safer nutrition.
Collapse
Affiliation(s)
- Andrea Summer
- Department of Veterinary Sciences, Università di Parma, Parma, Italy
| | | | - Paolo Ajmone Marsan
- Department of Animal Science, Food and Nutrition (DIANA) and Nutrigenomics and Proteomics Research Center (PRONUTRIGEN), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Ivano De Noni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Massimo Malacarne
- Department of Veterinary Sciences, Università di Parma, Parma, Italy
| |
Collapse
|
21
|
Abstract
Testosterone is the main male sex hormone and is essential for the maintenance of male secondary sexual characteristics and fertility. Androgen deficiency in young men owing to organic disease of the hypothalamus, pituitary gland or testes has been treated with testosterone replacement for decades without reports of increased cardiovascular events. In the past decade, the number of testosterone prescriptions issued for middle-aged or older men with either age-related or obesity-related decline in serum testosterone levels has increased exponentially even though these conditions are not approved indications for testosterone therapy. Some retrospective studies and randomized trials have suggested that testosterone replacement therapy increases the risk of cardiovascular disease, which has led the FDA to release a warning statement about the potential cardiovascular risks of testosterone replacement therapy. However, no trials of testosterone replacement therapy published to date were designed or adequately powered to assess cardiovascular events; therefore, the cardiovascular safety of this therapy remains unclear. In this Review, we provide an overview of epidemiological data on the association between serum levels of endogenous testosterone and cardiovascular disease, prescription database studies on the risk of cardiovascular disease in men receiving testosterone therapy, randomized trials and meta-analyses evaluating testosterone replacement therapy and its association with cardiovascular events and mechanistic studies on the effects of testosterone on the cardiovascular system. Our aim is to help clinicians to make informed decisions when considering testosterone replacement therapy in their patients.
Collapse
|
22
|
Predictors of cardiac arrhythmic events in non coronary artery disease patients. BMC Cardiovasc Disord 2019; 19:104. [PMID: 31046686 PMCID: PMC6498690 DOI: 10.1186/s12872-019-1083-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/16/2019] [Indexed: 11/29/2022] Open
Abstract
Arrhythmic sudden cardiac death (SCD) represents a major worldwide public health problem accounting for 15–20% of deaths. Risk stratification to identify patients at risk of SCD is crucial in order to implement preventive measures in the general population. Several biomarkers have been tested exploring different pathophysiological mechanisms of cardiac conditions. Conflicting results have been described limiting so far their use in clinical practice. The use of new biomarkers such as microRNAs and sex hormones and the emerging role of genetic on risk prediction of SCD is a current research topic showing promising results. This review outlines the role of plasma biomarkers to predict ventricular arrhythmias and SCD in non coronary artery disease with a special focus on their relationship with the genetic biomarkers.
Collapse
|
23
|
Mlynarova J, Trentin-Sonoda M, Gaisler da Silva F, Major JL, Salih M, Carneiro-Ramos MS, Tuana BS. SLMAP3 isoform modulates cardiac gene expression and function. PLoS One 2019; 14:e0214669. [PMID: 30934005 PMCID: PMC6443179 DOI: 10.1371/journal.pone.0214669] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/18/2019] [Indexed: 12/23/2022] Open
Abstract
The sarcolemmal membrane associated proteins (SLMAPs) belong to the super family of tail anchored membrane proteins which serve diverse roles in biology including cell growth, protein trafficking and ion channel regulation. Mutations in human SLMAP have been linked to Brugada syndrome with putative deficits in trafficking of the sodium channel (Nav1.5) to the cell membrane resulting in aberrant electrical activity and heart function. Three main SLMAP isoforms (SLMAP1 (35 kDa), SLMAP2 (45 kDa), and SLMAP3 (91 kDa)) are expressed in myocardium but their precise role remains to be defined. Here we generated transgenic (Tg) mice with cardiac-specific expression of the SLMAP3 isoform during postnatal development which present with a significant decrease (20%) in fractional shortening and (11%) in cardiac output at 5 weeks of age. There was a lack of any notable cardiac remodeling (hypertrophy, fibrosis or fetal gene activation) in Tg hearts but the electrocardiogram indicated a significant increase (14%) in the PR interval and a decrease (43%) in the R amplitude. Western blot analysis indicated a selective and significant decrease (55%) in protein levels of Nav1.5 while 45% drop in its transcript levels were detectable by qRT-PCR. Significant decreases in the protein and transcript levels of the calcium transport system of the sarcoplasmic reticulum (SERCA2a/PLN) were also evident in Tg hearts. These data reveal a novel role for SLMAP3 in the selective regulation of important ion transport proteins at the level of gene expression and suggest that it may be a unique target in cardiovascular function and disease.
Collapse
Affiliation(s)
- Jana Mlynarova
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mayra Trentin-Sonoda
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Fernanda Gaisler da Silva
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Jennifer L. Major
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | | | - Balwant S. Tuana
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- * E-mail:
| |
Collapse
|
24
|
Yuan SM. Fetal Arrhythmias: Genetic Background and Clinical Implications. Pediatr Cardiol 2019; 40:247-256. [PMID: 30478614 DOI: 10.1007/s00246-018-2008-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
Abstract
Fetal arrhythmias are a common phenomenon of pregnancies. However, debates remain with regard to the etiologies and early treatment of choices for severe fetal arrhythmias. The gene regulatory networks govern cardiac conduction system development to produce distinct nodal and fast conduction phenotypes. The slow conduction properties of nodes that display automaticity are determined by the cardiac ion channel genes, whereas the fast conduction properties are regulated by the transcription factors. Mutations of genes specific for the developmental processes and/or functional status of cardiac conduction system including ion channel promoter (minK-lacZ), GATA family of zinc finger proteins (GATA4), the homeodomain transcription factor (Nkx2.5), the homeodomain-only protein (Hop) and the T-box transcription factors (Tbx2, Tbx3 and Tbx5), hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) and connexins, may cause fetal arrhythmias. It is expected that development of investigational antiarrhythmic agents based on genetic researches on cardiac conduction system, and clinical application of percutaneously implantable fetal pacemaker for the treatment of fetal arrhythmias would come to true.
Collapse
Affiliation(s)
- Shi-Min Yuan
- Department of Cardiothoracic Surgery, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, 389 Longdejing Street, Chengxiang District, Putian, 351100, Fujian Province, People's Republic of China.
| |
Collapse
|
25
|
Yuan SM. Fetal arrhythmias: Surveillance and management. Hellenic J Cardiol 2018; 60:72-81. [PMID: 30576831 DOI: 10.1016/j.hjc.2018.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022] Open
Abstract
Fetal arrhythmias warrant sophisticated surveillance and management, especially for the high-risk pregnancies. Clinically, fetal arrhythmias can be categorized into 3 types: premature contractions, tachyarrhythmias, and bradyarrhythmias. Fetal arrhythmias include electrocardiography, cardiotocography, echocardiography and magnetocardiography. Oxygen saturation monitoring can be an effective way of fetal surveillance for congenital complete AV block or SVT during labor. Genetic surveillance of fetal arrhythmias may facilitate the understanding of the mechanisms of the arrhythmias and provide theoretical basis for diagnosis and treatment. For fetal benign arrhythmias, usually no treatment but a close follow-up is need, while persistant fetal arrhythmias with congestive heart dysfunction or hydrops fetalis, intrauterine or postnatal treatments are required. The prognoses of fetal arrhythmias depend on the type and severity of fetal arrhythmias and the associated fetal conditions. Responses of fetal arrhythmias to individual treatments and clinical schemes are heterogeneous, and the prognoses are poor particularly under such circumstances.
Collapse
Affiliation(s)
- Shi-Min Yuan
- Department of Cardiothoracic Surgery, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, Putian, Fujian Province, People's Republic of China.
| |
Collapse
|
26
|
Chadda KR, Ajijola OA, Vaseghi M, Shivkumar K, Huang CLH, Jeevaratnam K. Ageing, the autonomic nervous system and arrhythmia: From brain to heart. Ageing Res Rev 2018; 48:40-50. [PMID: 30300712 DOI: 10.1016/j.arr.2018.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/21/2018] [Accepted: 09/30/2018] [Indexed: 02/08/2023]
Abstract
An ageing myocardium possesses significant electrophysiological alterations that predisposes the elderly patient to arrhythmic risk. Whilst these alterations are intrinsic to the cardiac myocytes, they are modulated by the cardiac autonomic nervous system (ANS) and consequently, ageing of the cardiac ANS is fundamental to the development of arrhythmias. A systems-based approach that incorporates the influence of the cardiac ANS could lead to better mechanistic understanding of how arrhythmogenic triggers and substrates interact spatially and temporally to produce sustained arrhythmia and why its incidence increases with age. Despite the existence of physiological oscillations of ANS activity on the heart, pathological oscillations can lead to defective activation and recovery properties of the myocardium. Such changes can be attributable to the decrease in functionality and structural alterations to ANS specific receptors in the myocardium with age. These altered ANS adaptive responses can occur either as a normal ageing process or accelerated in the presence of specific cardiac pathologies, such as genetic mutations or neurodegenerative conditions. Targeted intervention that seek to manipulate the ageing ANS influence on the myocardium may prove to be an efficacious approach for the management of arrhythmia in the ageing population.
Collapse
Affiliation(s)
- Karan R Chadda
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, United Kingdom; Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Health System/David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, UCLA Health System/David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center, UCLA Health System/David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom; Department of Biochemistry, Hopkins Building, University of Cambridge, Cambridge, CB2 1QW, United Kingdom
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, United Kingdom; Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom.
| |
Collapse
|
27
|
Scheiper S, Ramos-Luis E, Blanco-Verea A, Niess C, Beckmann BM, Schmidt U, Kettner M, Geisen C, Verhoff MA, Brion M, Kauferstein S. Sudden unexpected death in the young - Value of massive parallel sequencing in postmortem genetic analyses. Forensic Sci Int 2018; 293:70-76. [PMID: 30415094 DOI: 10.1016/j.forsciint.2018.09.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 01/22/2023]
Abstract
Cases of sudden cardiac death (SCD) in young and apparently healthy individuals represent a devastating event in affected families. Hereditary arrhythmia syndromes, which include primary electrical heart disorders as well as cardiomyopathies, are known to contribute to a significant number of these sudden death cases. We performed postmortem genetic analyses in young sudden death cases (aged <45years) by means of a defined gene panel using massive parallel sequencing (MPS). The data were evaluated bioinformatically and detected sequence variants were assessed using common databases and applying in silico prediction tools. In this study, we identified variants with likely pathogenic effect in 6 of 9 sudden unexpected death (SUD) cases. Due to the detection of numerous unknown and unclassified variants, interpretation of the results proved to be challenging. However, by means of an appropriate evaluation of the findings, MPS represents an important tool to support the forensic investigation and implies great progress for relatives of young SCD victims facilitating adequate risk stratification and genetic counseling.
Collapse
Affiliation(s)
- Stefanie Scheiper
- Institute of Legal Medicine, University Hospital Frankfurt, Goethe University, Frankfurt, Germany; German Red Cross Blood Center, Institute of Transfusion Medicine and Immunohaematology, University Hospital Frankfurt, Frankfurt, Germany.
| | - Eva Ramos-Luis
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela (A Coruña), Spain; Medicina Xenómica, Universidade de Santiago de Compostela-Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela (A Coruña), Spain
| | - Alejandro Blanco-Verea
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela (A Coruña), Spain; Medicina Xenómica, Universidade de Santiago de Compostela-Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela (A Coruña), Spain
| | - Constanze Niess
- Institute of Legal Medicine, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Britt-Maria Beckmann
- Department of Medicine I, University Hospital Munich, Ludwig Maximilians University, Munich, Germany
| | - Ulrike Schmidt
- Institute of Legal Medicine, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mattias Kettner
- Institute of Legal Medicine, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Christof Geisen
- German Red Cross Blood Center, Institute of Transfusion Medicine and Immunohaematology, University Hospital Frankfurt, Frankfurt, Germany
| | - Marcel A Verhoff
- Institute of Legal Medicine, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Maria Brion
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela (A Coruña), Spain; Medicina Xenómica, Universidade de Santiago de Compostela-Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela (A Coruña), Spain
| | - Silke Kauferstein
- Institute of Legal Medicine, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
28
|
Nedumaran B, Pineda RH, Rudra P, Lee S, Malykhina AP. Association of genetic polymorphisms in the pore domains of mechano-gated TREK-1 channel with overactive lower urinary tract symptoms in humans. Neurourol Urodyn 2018; 38:144-150. [PMID: 30350878 DOI: 10.1002/nau.23862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022]
Abstract
AIMS Mechanosensitivity of the urinary bladder is regulated by many factors including mechano-gated two-pore domain (K2 P, KCNK) potassium channels. TWIK-related K+ channel, TREK-1, is a predominantly expressed member of K2 P channel family in the human detrusor, and its expression and function are diminished in patients with overactive lower urinary tract symptoms (LUTS). The changes in channel activity may result from spontaneously occurring gene mutations. The aim of this study was to compare single nucleotide polymorphisms (SNPs) in TREK-1 channel between patients with LUTS and healthy donors. METHODS Six SNPs (rs370266806, rs373919966, rs758937019, rs769301539, rs772497750, and rs775158737) in two pore domains of human TREK-1 gene were analyzed using TaqMan SNP genotyping assay with manufacturer-designed primers and allele-specific probes. The screening was done in control bladders and detrusor specimens from patients with overactive LUTS. Statistical analyses were performed using R, Fisher's exact test and Hardy-Weinberg Equilibrium. RESULTS Six SNPs in two pore domains of the human TREK-1 gene were analyzed in human bladder specimens. The frequencies of rs758937019-CT genotype (P = 0.0016) and rs758937019-T allele (P = 0.0022) were significantly higher in the group with overactive LUTS. There was no significant association of rs775158737-GA genotype and rs775158737-A allele with the overactive LUTS, though they were present only in the overactive LUTS group. CONCLUSIONS Our results provide evidence that altered expression and function of TREK-1 channel in patients with overactive LUTS could be due to genetic polymorphisms in the pore domains of TREK-1 channel (rs758937019).
Collapse
Affiliation(s)
- Balachandar Nedumaran
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado.,Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Ricardo H Pineda
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Pratyaydipta Rudra
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Sanghee Lee
- Department of Urology, University of California San Diego, La Jolla, California
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
29
|
van Deventer BS, du Toit-Prinsloo L, van Niekerk C. Feasibility of analysis of the SCN5A gene in paraffin embedded samples in sudden infant death cases at the Pretoria Medico-Legal Laboratory, South Africa. Forensic Sci Med Pathol 2018; 14:276-284. [PMID: 29907895 DOI: 10.1007/s12024-018-9995-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 12/19/2022]
Abstract
To determine variations in the SCN5A gene linked to inherited cardiac arrhythmogenic disorders in sudden, unexplained infant death (SUID) cases examined at the Pretoria Medico-Legal Laboratory, South Africa. A retrospective study was conducted on SUID cases and controls, analyzing DNA extracted from archived formalin-fixed, paraffin-embedded (FFPE) myocardial tissue samples as well as blood samples. A total of 48 FFPE tissue samples (cases), 10 control FFPE tissue samples and nine control blood samples were included. DNA extracted from all samples was used to test for variations in the SCN5A gene by using high resolution melt (HRM) real-time PCR and sequencing. Genetic analysis showed 31 different single nucleotide variants in the entire study population (n = 67). Five previously reported variants of known pathogenic significance, and 14 variants of benign clinical significance, were identified. The study found 12 different variants in the cases that were not published in any database or literature and were considered novel. Of these novel variants, two were predicted as "probably damaging" with a high level of certainty (found in four case samples), one (identified in another case sample) was predicted to be "possibly damaging" with a 50% chance of being disease-causing, and nine were predicted to be benign. This study shows the significant added value of using genetic testing in determining the cause of death in South African SUID cases. Considering the high heritability of these arrhythmic disorders, post mortem genetic testing could play an important role in the understanding of the pathogenesis thereof and could also aid in the diagnosis and treatment of family members at risk, ultimately preventing similar future cases.
Collapse
Affiliation(s)
| | - Lorraine du Toit-Prinsloo
- Department of Forensic Medicine, University of Pretoria, Pretoria, South Africa.,Department of Forensic Medicine, Sydney, Forensic & Analytical Science Services (FASS), NSW Health Pathology, Sydney, New South Wales, Australia
| | - Chantal van Niekerk
- Department of Chemical Pathology, University of Pretoria, R3-43 Pathology Building, Prinshof Campus, Pretoria, 0002, Republic of South Africa. .,Department of Chemical Pathology, National Health Laboratory Services (NHLS), Tshwane Academic Division, Pretoria, South Africa.
| |
Collapse
|
30
|
Hou ZS, Ulloa-Aguirre A, Tao YX. Pharmacoperone drugs: targeting misfolded proteins causing lysosomal storage-, ion channels-, and G protein-coupled receptors-associated conformational disorders. Expert Rev Clin Pharmacol 2018; 11:611-624. [DOI: 10.1080/17512433.2018.1480367] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhi-Shuai Hou
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM) and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
31
|
Sinus Bradycardia in Carriers of the SCN5A-1795insD Mutation: Unraveling the Mechanism through Computer Simulations. Int J Mol Sci 2018; 19:ijms19020634. [PMID: 29473904 PMCID: PMC5855856 DOI: 10.3390/ijms19020634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 11/25/2022] Open
Abstract
The SCN5A gene encodes the pore-forming α-subunit of the ion channel that carries the cardiac fast sodium current (INa). The 1795insD mutation in SCN5A causes sinus bradycardia, with a mean heart rate of 70 beats/min in mutation carriers vs. 77 beats/min in non-carriers from the same family (lowest heart rate 41 vs. 47 beats/min). To unravel the underlying mechanism, we incorporated the mutation-induced changes in INa into a recently developed comprehensive computational model of a single human sinoatrial node cell (Fabbri–Severi model). The 1795insD mutation reduced the beating rate of the model cell from 74 to 69 beats/min (from 49 to 43 beats/min in the simulated presence of 20 nmol/L acetylcholine). The mutation-induced persistent INa per se resulted in a substantial increase in beating rate. This gain-of-function effect was almost completely counteracted by the loss-of-function effect of the reduction in INa conductance. The further loss-of-function effect of the shifts in steady-state activation and inactivation resulted in an overall loss-of-function effect of the 1795insD mutation. We conclude that the experimentally identified mutation-induced changes in INa can explain the clinically observed sinus bradycardia. Furthermore, we conclude that the Fabbri–Severi model may prove a useful tool in understanding cardiac pacemaker activity in humans.
Collapse
|
32
|
Exome analysis in 34 sudden unexplained death (SUD) victims mainly identified variants in channelopathy-associated genes. Int J Legal Med 2018; 132:1057-1065. [PMID: 29350269 DOI: 10.1007/s00414-018-1775-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022]
Abstract
Sudden cardiac death (SCD) is one of the major causes of mortality worldwide, mostly involving coronary artery disease in the elderly. In contrary, sudden death events in young victims often represent the first manifestation of undetected genetic cardiac diseases, which remained without any symptoms during lifetime. Approximately 30% of these sudden death cases have no definite cardiac etiology after a comprehensive medicolegal investigation and are therefore termed as sudden unexplained death (SUD) cases. Advances in high-throughput sequencing approaches have provided an efficient diagnostic tool to identify likely pathogenic variants in cardiovascular disease-associated genes in otherwise autopsy-negative SUD cases. The aim of this study was to genetically investigate a cohort of 34 unexplained death cases by focusing on candidate genes associated with cardiomyopathies and channelopathies. Exome analysis identified potentially disease-causing sequence alterations in 29.4% of the 34 SUD cases. Six (17.6%) individuals had variants with likely functional effects in the channelopathy-associated genes AKAP9, KCNE5, RYR2, and SEMA3A. Interestingly, four of these six SUD individuals were younger than 18 years of age. Since the total SUD cohort of this study included five children and adolescents, post-mortem molecular autopsy screening indicates a high diagnostic yield within this age group. Molecular genetic testing represents a valuable approach to uncover the cause of death in some of the SUD victims; however, 70-80% of the cases still remain elusive, emphasizing the importance of additional research to better understand the pathological mechanisms leading to a sudden death event.
Collapse
|
33
|
Broendberg AK, Christiansen MK, Nielsen JC, Pedersen LN, Jensen HK. Targeted next generation sequencing in a young population with suspected inherited malignant cardiac arrhythmias. Eur J Hum Genet 2018; 26:303-313. [PMID: 29343803 PMCID: PMC5838968 DOI: 10.1038/s41431-017-0060-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/19/2017] [Accepted: 11/18/2017] [Indexed: 12/19/2022] Open
Abstract
Aborted sudden cardiac death in the young often is due to inherited heart disease. However, the clinical phenotype in these patients is not always evident. The aim of this study was to identify pathogenic molecular genetic variants in a population with suspected inherited cardiac arrhythmias. Eligible patients were admitted to Aarhus University Hospital, Denmark during the period 1999–2013 with arrhythmias assumed caused by a hereditary heart disease, and in whom no genotype had been established. We used the Danish national pacemaker and ICD registry to identify this cohort. One third (24/80) of the study population had first-line genetic testing with a targeted next-generation sequencing (NGS) panel, and two-third (56/80) of the study population had second-line genetic testing with NGS where prior Sanger sequencing did not reveal a causative variant. Variants were assessed according to the American College of Medical Genetics and Genomics (ACMG) guidelines. We included 80 patients. Median age (IQR) was 38 (28–43) years, 54 (68%) were males. First-line genetic testing identified a genetic variant in 33% (8/24) of the cases and second-line genetic testing revealed a variant in 20% (11/56) of the cases. Eleven variants were considered pathogenic, three likely pathogenic and 10 were variants of unknown significance (VUS). Seventeen variants were very rare with a minor allele frequency (MAF) ≤0.02% in all population databases used in the study. Molecular genetic testing of patients with suspected inherited cardiac arrhythmias with NGS identifies a molecular-genetic cause in a significant proportion of patients.
Collapse
Affiliation(s)
- Anders Krogh Broendberg
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark. .,Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark.
| | - Morten Krogh Christiansen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Jens Cosedis Nielsen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | | | - Henrik Kjaerulf Jensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
34
|
Amarouch MY, El Hilaly J, Mazouzi D. AFM and FluidFM Technologies: Recent Applications in Molecular and Cellular Biology. SCANNING 2018; 2018:7801274. [PMID: 30069282 PMCID: PMC6057332 DOI: 10.1155/2018/7801274] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/27/2018] [Accepted: 05/22/2018] [Indexed: 05/05/2023]
Abstract
Atomic force microscopy (AFM) is a widely used imaging technique in material sciences. After becoming a standard surface-imaging tool, AFM has been proven to be useful in addressing several biological issues such as the characterization of cell organelles, quantification of DNA-protein interactions, cell adhesion forces, and electromechanical properties of living cells. AFM technique has undergone many successful improvements since its invention, including fluidic force microscopy (FluidFM), which combines conventional AFM with microchanneled cantilevers for local liquid dispensing. This technology permitted to overcome challenges linked to single-cell analyses. Indeed, FluidFM allows isolation and injection of single cells, force-controlled patch clamping of beating cardiac cells, serial weighting of micro-objects, and single-cell extraction for molecular analyses. This work aims to review the recent studies of AFM implementation in molecular and cellular biology.
Collapse
Affiliation(s)
- Mohamed Yassine Amarouch
- Materials, Natural Substances, Environment and Modeling Laboratory, Multidisciplinary Faculty of Taza, University Sidi Mohammed Ben Abdellah, Fez, Morocco
- Biology, Environment & Health Team, Department of Biology, Faculty of Sciences and Techniques Errachidia, University of Moulay Ismaïl Meknes, Meknes, Morocco
| | - Jaouad El Hilaly
- Materials, Natural Substances, Environment and Modeling Laboratory, Multidisciplinary Faculty of Taza, University Sidi Mohammed Ben Abdellah, Fez, Morocco
- Biology, Environment & Health Team, Department of Biology, Faculty of Sciences and Techniques Errachidia, University of Moulay Ismaïl Meknes, Meknes, Morocco
- Regional Institute of Education and Training Careers, Department of Life and Earth Sciences, Fez, Morocco
| | - Driss Mazouzi
- Materials, Natural Substances, Environment and Modeling Laboratory, Multidisciplinary Faculty of Taza, University Sidi Mohammed Ben Abdellah, Fez, Morocco
- Biology, Environment & Health Team, Department of Biology, Faculty of Sciences and Techniques Errachidia, University of Moulay Ismaïl Meknes, Meknes, Morocco
| |
Collapse
|
35
|
Wiśniowska B, Tylutki Z, Polak S. Humans Vary, So Cardiac Models Should Account for That Too! Front Physiol 2017; 8:700. [PMID: 28983251 PMCID: PMC5613127 DOI: 10.3389/fphys.2017.00700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/30/2017] [Indexed: 12/25/2022] Open
Abstract
The utilization of mathematical modeling and simulation in drug development encompasses multiple mathematical techniques and the location of a drug candidate in the development pipeline. Historically speaking they have been used to analyze experimental data (i.e., Hill equation) and clarify the involved physical and chemical processes (i.e., Fick laws and drug molecule diffusion). In recent years the advanced utilization of mathematical modeling has been an important part of the regulatory review process. Physiologically based pharmacokinetic (PBPK) models identify the need to conduct specific clinical studies, suggest specific study designs and propose appropriate labeling language. Their application allows the evaluation of the influence of intrinsic (e.g., age, gender, genetics, disease) and extrinsic [e.g., dosing schedule, drug-drug interactions (DDIs)] factors, alone or in combinations, on drug exposure and therefore provides accurate population assessment. A similar pathway has been taken for the assessment of drug safety with cardiac safety being one the most advanced examples. Mechanistic mathematical model-informed safety evaluation, with a focus on drug potential for causing arrhythmias, is now discussed as an element of the Comprehensive in vitro Proarrhythmia Assay. One of the pillars of this paradigm is the use of an in silico model of the adult human ventricular cardiomyocyte to integrate in vitro measured data. Existing examples (in vitro—in vivo extrapolation with the use of PBPK models) suggest that deterministic, epidemiological and clinical data based variability models can be merged with the mechanistic models describing human physiology. There are other methods available, based on the stochastic approach and on population of models generated by randomly assigning specific parameter values (ionic current conductance and kinetic) and further pruning. Both approaches are briefly characterized in this manuscript, in parallel with the drug-specific variability.
Collapse
Affiliation(s)
- Barbara Wiśniowska
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical CollegeKrakow, Poland
| | - Zofia Tylutki
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical CollegeKrakow, Poland
| | - Sebastian Polak
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical CollegeKrakow, Poland.,SimcypCertara, Sheffield, United Kingdom
| |
Collapse
|
36
|
Haron-Khun S, Weisbrod D, Bueno H, Yadin D, Behar J, Peretz A, Binah O, Hochhauser E, Eldar M, Yaniv Y, Arad M, Attali B. SK4 K + channels are therapeutic targets for the treatment of cardiac arrhythmias. EMBO Mol Med 2017; 9:415-429. [PMID: 28219898 PMCID: PMC5376763 DOI: 10.15252/emmm.201606937] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress‐provoked ventricular arrhythmia, which also manifests sinoatrial node (SAN) dysfunction. We recently showed that SK4 calcium‐activated potassium channels are important for automaticity of cardiomyocytes derived from human embryonic stem cells. Here SK4 channels were identified in human induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) from healthy and CPVT2 patients bearing a mutation in calsequestrin 2 (CASQ2‐D307H) and in SAN cells from WT and CASQ2‐D307H knock‐in (KI) mice. TRAM‐34, a selective blocker of SK4 channels, prominently reduced delayed afterdepolarizations and arrhythmic Ca2+ transients observed following application of the β‐adrenergic agonist isoproterenol in CPVT2‐derived hiPSC‐CMs and in SAN cells from KI mice. Strikingly, in vivo ECG recording showed that intraperitoneal injection of the SK4 channel blockers, TRAM‐34 or clotrimazole, greatly reduced the arrhythmic features of CASQ2‐D307H KI and CASQ2 knockout mice at rest and following exercise. This work demonstrates the critical role of SK4 Ca2+‐activated K+ channels in adult pacemaker function, making them promising therapeutic targets for the treatment of cardiac ventricular arrhythmias such as CPVT.
Collapse
Affiliation(s)
- Shiraz Haron-Khun
- Department of Physiology and Pharmacology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| | - David Weisbrod
- Department of Physiology and Pharmacology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hanna Bueno
- Department of Physiology and Pharmacology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dor Yadin
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| | - Joachim Behar
- Laboratory of Bioenergetic and Bioelectric Systems, Biomedical Engineering Faculty, Technion-Israel Institute of Technology, Haifa, Israel
| | - Asher Peretz
- Department of Physiology and Pharmacology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Binah
- Department of Physiology, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Edith Hochhauser
- The Cardiac Research Laboratory of the Department of Cardiothoracic Surgery, Felsenstein Medical Research Center, Rabin Medical Center, Tel Aviv University, Petah Tikva, Israel
| | - Michael Eldar
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| | - Yael Yaniv
- Laboratory of Bioenergetic and Bioelectric Systems, Biomedical Engineering Faculty, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| | - Bernard Attali
- Department of Physiology and Pharmacology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Osterbur Badhey ML, Bertalovitz AC, McDonald TV. Express with caution: Epitope tags and cDNA variants effects on hERG channel trafficking, half-life and function. J Cardiovasc Electrophysiol 2017; 28:1070-1082. [PMID: 28544109 PMCID: PMC5671924 DOI: 10.1111/jce.13259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Genetic mutations in KCNH2, which encodes hERG, the alpha subunit of the potassium channel responsible for the IKr current, cause long QT syndrome (LQTS), an inherited cardiac arrhythmia disorder. Electrophysiology techniques are used to correlate genotype with molecular phenotype to determine which mutations identified in patients diagnosed with LQTS are disease causing, and which are benign. These investigations are usually done using heterologous expression in cell lines, and often, epitope fusion tags are used to enable isolation and identification of the protein of interest. METHODS AND RESULTS Here, we demonstrate through electrophysiology techniques and immunohistochemistry, that both N-terminal and C-terminal myc fusion tags may perturb hERG protein channel expression and kinetics of the IKr current. We also characterize the impact of 2 previously reported inadvertent cDNA variants on hERG channel expression and half-life. CONCLUSION Our results underscore the importance of careful characterization of the impact of epitope fusion tags and of confirming complete sequence accuracy prior to genotype-phenotype studies for ion channel proteins such as hERG.
Collapse
Affiliation(s)
- Marika L Osterbur Badhey
- Department of Molecular Pharmacology, Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Alexander C Bertalovitz
- Department of Molecular Pharmacology, Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Thomas V McDonald
- Department of Molecular Pharmacology, Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
38
|
Lee HC, Rudy Y, Liang H, Chen CC, Luo CH, Sheu SH, Cui J. Pro-arrhythmogenic Effects of the V141M KCNQ1 Mutation in Short QT Syndrome and Its Potential Therapeutic Targets: Insights from Modeling. J Med Biol Eng 2017; 37:780-789. [PMID: 29213224 PMCID: PMC5714284 DOI: 10.1007/s40846-017-0257-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gain-of-function mutations in the pore-forming subunit of IKs channels, KCNQ1, lead to short QT syndrome (SQTS) and lethal arrhythmias. However, how mutant IKs channels cause SQTS and the possibility of IKs-specific pharmacological treatment remain unclear. V141M KCNQ1 is a SQTS associated mutation. We studied its effect on IKs gating properties and changes in the action potentials (AP) of human ventricular myocytes. Xenopus oocytes were used to study the gating mechanisms of expressed V141M KCNQ1/KCNE1 channels. Computational models were used to simulate human APs in endocardial, mid-myocardial, and epicardial ventricular myocytes with and without β-adrenergic stimulation. V141M KCNQ1 caused a gain-of-function in IKs characterized by increased current density, faster activation, and slower deactivation leading to IKs accumulation. V141M KCNQ1 also caused a leftward shift of the conductance-voltage curve compared to wild type (WT) IKs (V1/2 = 33.6 ± 4.0 mV for WT, and 24.0 ± 1.3 mV for heterozygous V141M). A Markov model of heterozygous V141M mutant IKs was developed and incorporated into the O’Hara–Rudy model. Compared to the WT, AP simulations demonstrated marked rate-dependent shortening of AP duration (APD) for V141M, predicting a SQTS phenotype. Transmural electrical heterogeneity was enhanced in heterozygous V141M AP simulations, especially under β-adrenergic stimulation. Computational simulations identified specific IK1 blockade as a beneficial pharmacologic target for reducing the transmural APD heterogeneity associated with V141M KCNQ1 mutation. V141M KCNQ1 mutation shortens ventricular APs and enhances transmural APD heterogeneity under β-adrenergic stimulation. Computational simulations identified IK1 blockers as a potential antiarrhythmic drug of choice for SQTS.
Collapse
Affiliation(s)
- Hsiang-Chun Lee
- Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, MO 63130, USA.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 100 Tzyou 1st Rd, Kaohsiung 807, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yoram Rudy
- Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hongwu Liang
- Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Ching-Hsing Luo
- Department of Electric Engineering, National Cheng Kung University, Tainan 804, Taiwan
| | - Sheng-Hsiung Sheu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 100 Tzyou 1st Rd, Kaohsiung 807, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jianmin Cui
- Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
39
|
Van Niekerk C, Van Deventer BS, du Toit-Prinsloo L. Long QT syndrome and sudden unexpected infant death. J Clin Pathol 2017; 70:808-813. [PMID: 28663329 DOI: 10.1136/jclinpath-2016-204199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/30/2022]
Abstract
Long QT syndrome (LQTS) is an inheritable primary electric disease of the heart characterised by abnormally long QT intervals and a propensity to develop atrial and ventricular tachyarrhythmias. It is caused by an inherited channelopathy responsible for sudden cardiac death in individuals with structurally normal hearts. Long QT syndrome can present early in life, and some studies suggest that it may be associated with up to 20% of sudden unexplained infant death (SUID), particularly when associated with external stressors such as asphyxia, which is commonly seen in many infant death scenes. With an understanding of the genetic defects, it has now been possible to retrospectively analyse samples from infants who have presented to forensic pathology services with a history of unexplained sudden death, which may, in turn, enable the implementation of preventative treatment for siblings previously not known to have pathogenic genetic variations. In this viewpoint article, we will discuss SUID, LQTS and postmortem genetic analysis.
Collapse
Affiliation(s)
- Chantal Van Niekerk
- Department of Chemical Pathology, National Health Laboratory Service, Johannesburg, Gauteng, South Africa.,Department of Chemical Pathology, University of Pretoria, Pretoria, South Africa
| | | | | |
Collapse
|
40
|
Luo L, Hu P, Miao C, Ma A, Wang T. Clenbuterol Attenuates hERG Channel by Promoting the Mature Channel Degradation. Int J Toxicol 2017; 36:314-324. [PMID: 28535735 DOI: 10.1177/1091581817710786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Clenbuterol, a β2-selective adrenergic receptor agonist, is illicitly used in weight loss and performance enhancement and animal production. Increasing evidence demonstrates that clenbuterol induces various kinds of arrhythmias and QTc interval prolongation. However, little is known about the underlying mechanism. Most drugs are associated with QTc prolongation through interfering with human ether-a-go-go-related gene (hERG) K+ channels. The present study aims to investigate the effects and underlying mechanisms of clenbuterol on the hERG channel. HEK 293 cells were transfected with wild type and Y652A or F656A mutants of the hERG channel and treated with clenbuterol. The hERG current was recorded using whole-cell patch-clamp technique, and protein level was evaluated by Western blot. We found that clenbuterol decreases the mature form of the hERG protein at the cell membrane in a concentration- and time-dependent manner, without affecting the immature form. Correspondingly, clenbuterol chronic treatment reduced hERG current to a greater extent compared to acute treatment. In the presence of Brefeldin A (BFA), which was used to block hERG channel trafficking to cell membrane, clenbuterol reduced hERG on plasma membrane to a greater extent than BFA alone. In addition, the hERG channel's drug binding sites mutant Y652A and F656A abolished clenbuterol-mediated hERG reduction and current blockade. In conclusion, clenbuterol reduces hERG channel expression and current by promoting the channel degradation. The effect of clenbuterol on the hERG channel is related to the drug-binding sites, Tyr-652 and Phe-656, located on the S6 domain. This biophysical mechanism may underlie clenbuterol-induced QTc prolongation or arrhythmia.
Collapse
Affiliation(s)
- Ling Luo
- 1 Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peijing Hu
- 1 Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Changqing Miao
- 1 Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Aiqun Ma
- 1 Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,2 Key Laboratory of Molecular Cardiology, Shaanxi, China.,3 Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Tingzhong Wang
- 1 Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,2 Key Laboratory of Molecular Cardiology, Shaanxi, China.,3 Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| |
Collapse
|
41
|
Post-mortem whole-exome analysis in a large sudden infant death syndrome cohort with a focus on cardiovascular and metabolic genetic diseases. Eur J Hum Genet 2017; 25:404-409. [PMID: 28074886 DOI: 10.1038/ejhg.2016.199] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/18/2016] [Accepted: 12/14/2016] [Indexed: 12/23/2022] Open
Abstract
Sudden infant death syndrome (SIDS) is described as the sudden and unexplained death of an apparently healthy infant younger than one year of age. Genetic studies indicate that up to 35% of SIDS cases might be explained by familial or genetic diseases such as cardiomyopathies, ion channelopathies or metabolic disorders that remained undetected during conventional forensic autopsy procedures. Post-mortem genetic testing by using massive parallel sequencing (MPS) approaches represents an efficient and rapid tool to further investigate unexplained death cases and might help to elucidate pathogenic genetic variants and mechanisms in cases without a conclusive cause of death. In this study, we performed whole-exome sequencing (WES) in 161 European SIDS infants with focus on 192 genes associated with cardiovascular and metabolic diseases. Potentially causative variants were detected in 20% of the SIDS cases. The majority of infants had variants with likely functional effects in genes associated with channelopathies (9%), followed by cardiomyopathies (7%) and metabolic diseases (1%). Although lethal arrhythmia represents the most plausible and likely cause of death, the majority of SIDS cases still remains elusive and might be explained by a multifactorial etiology, triggered by a combination of different genetic and environmental risk factors. As WES is not substantially more expensive than a targeted sequencing approach, it represents an unbiased screening of the exome, which could help to investigate different pathogenic mechanisms within the genetically heterogeneous SIDS cohort. Additionally, re-analysis of the datasets provides the basis to identify new candidate genes in sudden infant death.
Collapse
|
42
|
Chiamvimonvat N, Chen-Izu Y, Clancy CE, Deschenes I, Dobrev D, Heijman J, Izu L, Qu Z, Ripplinger CM, Vandenberg JI, Weiss JN, Koren G, Banyasz T, Grandi E, Sanguinetti MC, Bers DM, Nerbonne JM. Potassium currents in the heart: functional roles in repolarization, arrhythmia and therapeutics. J Physiol 2017; 595:2229-2252. [PMID: 27808412 DOI: 10.1113/jp272883] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/11/2016] [Indexed: 12/19/2022] Open
Abstract
This is the second of the two White Papers from the fourth UC Davis Cardiovascular Symposium Systems Approach to Understanding Cardiac Excitation-Contraction Coupling and Arrhythmias (3-4 March 2016), a biennial event that brings together leading experts in different fields of cardiovascular research. The theme of the 2016 symposium was 'K+ channels and regulation', and the objectives of the conference were severalfold: (1) to identify current knowledge gaps; (2) to understand what may go wrong in the diseased heart and why; (3) to identify possible novel therapeutic targets; and (4) to further the development of systems biology approaches to decipher the molecular mechanisms and treatment of cardiac arrhythmias. The sessions of the Symposium focusing on the functional roles of the cardiac K+ channel in health and disease, as well as K+ channels as therapeutic targets, were contributed by Ye Chen-Izu, Gideon Koren, James Weiss, David Paterson, David Christini, Dobromir Dobrev, Jordi Heijman, Thomas O'Hara, Crystal Ripplinger, Zhilin Qu, Jamie Vandenberg, Colleen Clancy, Isabelle Deschenes, Leighton Izu, Tamas Banyasz, Andras Varro, Heike Wulff, Eleonora Grandi, Michael Sanguinetti, Donald Bers, Jeanne Nerbonne and Nipavan Chiamvimonvat as speakers and panel discussants. This article summarizes state-of-the-art knowledge and controversies on the functional roles of cardiac K+ channels in normal and diseased heart. We endeavour to integrate current knowledge at multiple scales, from the single cell to the whole organ levels, and from both experimental and computational studies.
Collapse
Affiliation(s)
- Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Genome and Biomedical Science Facility, Rm 6315, Davis, CA, 95616, USA.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, 95655, USA
| | - Ye Chen-Izu
- Department of Internal Medicine, University of California, Davis, Genome and Biomedical Science Facility, Rm 6315, Davis, CA, 95616, USA.,Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA.,Department of Biomedical Engineering, University of California, Davis, Genome and Biomedical Science Facility, Rm 2303, Davis, CA, 95616, USA
| | - Colleen E Clancy
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Isabelle Deschenes
- Department of Physiology and Biophysics, and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44109, USA.,Heart and Vascular Research Center, MetroHealth Medical Center, Cleveland, OH, 44109, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Leighton Izu
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Zhilin Qu
- Division of Cardiology, Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, 3645 MRL, Los Angeles, CA, 90095, USA
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia
| | - James N Weiss
- Division of Cardiology, Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, 3645 MRL, Los Angeles, CA, 90095, USA
| | - Gideon Koren
- Cardiovascular Research Center, Rhode Island Hospital and the Cardiovascular Institute, The Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Tamas Banyasz
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Michael C Sanguinetti
- Department of Internal Medicine, University of Utah, Nora Eccles Harrison Cardiovascular Research & Training Institute, Salt Lake City, UT, 84112, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Jeanne M Nerbonne
- Departments of Developmental Biology and Internal Medicine, Cardiovascular Division, Washington University Medical School, St Louis, MO, 63110, USA
| |
Collapse
|
43
|
In Silico Evaluation of the Potential Antiarrhythmic Effect of Epigallocatechin-3-Gallate on Cardiac Channelopathies. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:7861653. [PMID: 27882075 PMCID: PMC5110949 DOI: 10.1155/2016/7861653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/21/2016] [Accepted: 09/29/2016] [Indexed: 01/17/2023]
Abstract
Ion channels are transmembrane proteins that allow the passage of ions according to the direction of their electrochemical gradients. Mutations in more than 30 genes encoding ion channels have been associated with an increasingly wide range of inherited cardiac arrhythmias. In this line, ion channels become one of the most important molecular targets for several classes of drugs, including antiarrhythmics. Nevertheless, antiarrhythmic drugs are usually accompanied by some serious side effects. Thus, developing new approaches could offer added values to prevent and treat the episodes of arrhythmia. In this sense, green tea catechins seem to be a promising alternative because of the significant effect of Epigallocatechin-3-Gallate (E3G) on the electrocardiographic wave forms of guinea pig hearts. Thus, the aim of this study was to evaluate the benefits-risks balance of E3G consumption in the setting of ion channel mutations linked with aberrant cardiac excitability phenotypes. Two gain-of-function mutations, Nav1.5-p.R222Q and Nav1.5-p.I141V, which are linked with cardiac hyperexcitability phenotypes were studied. Computer simulations of action potentials (APs) show that 30 μM E3G reduces and suppresses AP abnormalities characteristics of these phenotypes. These results suggest that E3G may have a beneficial effect in the setting of cardiac sodium channelopathies displaying a hyperexcitability phenotype.
Collapse
|
44
|
Rudic B, Chaykovskaya M, Tsyganov A, Kalinin V, Tülümen E, Papavassiliu T, Dösch C, Liebe V, Kuschyk J, Röger S, El-Battrawy I, Akin I, Yakovleva M, Zaklyazminskaya E, Shestak A, Kim S, Chmelevsky M, Borggrefe M. Simultaneous Non-Invasive Epicardial and Endocardial Mapping in Patients With Brugada Syndrome: New Insights Into Arrhythmia Mechanisms. J Am Heart Assoc 2016; 5:JAHA.116.004095. [PMID: 27930354 PMCID: PMC5210320 DOI: 10.1161/jaha.116.004095] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background The underlying mechanisms of Brugada syndrome (BrS) are not completely understood. Recent studies provided evidence that the electrophysiological substrate, leading to electrocardiogram abnormalities and/or ventricular arrhythmias, is located in the right ventricular outflow tract (RVOT). The purpose of this study was to examine abnormalities of epicardial and endocardial local unipolar electrograms by simultaneous noninvasive mapping in patients with BrS. Methods and Results Local epicardial and endocardial unipolar electrograms were analyzed using a novel noninvasive epi‐ and endocardial electrophysiology system (NEEES) in 12 patients with BrS and 6 with right bundle branch block for comparison. Fifteen normal subjects composed the control group. Observed depolarization abnormalities included fragmented electrograms in the anatomical area of RVOT endocardially and epicardially, significantly prolonged activation time in the RVOT endocardium (65±20 vs 38±13 ms in controls; P=0.008), prolongation of the activation‐recovery interval in the RVOT epicardium (281±34 vs 247±26 ms in controls; P=0.002). Repolarization abnormalities included a larger area of ST‐segment elevation >2 mV and T‐wave inversions. Negative voltage gradient (−2.5 to −6.0 mV) between epicardium and endocardium of the RVOT was observed in 8 of 12 BrS patients, not present in patients with right bundle branch block or in controls. Conclusions Abnormalities of epicardial and endocardial electrograms associated with depolarization and repolarization properties were found using NEEES exclusively in the RVOT of BrS patients. These findings support both, depolarization and repolarization abnormalities, being operative at the same time in patients with BrS.
Collapse
Affiliation(s)
- Boris Rudic
- Department of Medicine, University Medical Center Mannheim, Mannheim, Germany .,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | | | - Alexey Tsyganov
- Petrovsky National Research Center of Surgery, Moscow, Russia
| | | | - Erol Tülümen
- Department of Medicine, University Medical Center Mannheim, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Theano Papavassiliu
- Department of Medicine, University Medical Center Mannheim, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Christina Dösch
- Department of Medicine, University Medical Center Mannheim, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Volker Liebe
- Department of Medicine, University Medical Center Mannheim, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Jürgen Kuschyk
- Department of Medicine, University Medical Center Mannheim, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Susanne Röger
- Department of Medicine, University Medical Center Mannheim, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Ibrahim El-Battrawy
- Department of Medicine, University Medical Center Mannheim, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Ibrahim Akin
- Department of Medicine, University Medical Center Mannheim, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | | | - Elena Zaklyazminskaya
- Petrovsky National Research Center of Surgery, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anna Shestak
- Petrovsky National Research Center of Surgery, Moscow, Russia
| | - Stanislav Kim
- Petrovsky National Research Center of Surgery, Moscow, Russia
| | | | - Martin Borggrefe
- Department of Medicine, University Medical Center Mannheim, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| |
Collapse
|
45
|
Koh W, Wong C, Tang WHW. Genetic Predispositions to Heart Failure. CURRENT CARDIOVASCULAR RISK REPORTS 2016. [DOI: 10.1007/s12170-016-0525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
MacKenzie M, Hall R. Pharmacogenomics and pharmacogenetics for the intensive care unit: a narrative review. Can J Anaesth 2016; 64:45-64. [PMID: 27752976 DOI: 10.1007/s12630-016-0748-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/31/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Knowledge of how alterations in pharmacogenomics and pharmacogenetics may affect drug therapy in the intensive care unit (ICU) has received little study. We review the clinically relevant application of pharmacogenetics and pharmacogenomics to drugs and conditions encountered in the ICU. SOURCE We selected relevant literature to illustrate the important concepts contained within. PRINCIPAL FINDINGS Two main approaches have been used to identify genetic abnormalities - the candidate gene approach and the genome-wide approach. Genetic variability in response to drugs may occur as a result of alterations of drug-metabolizing (cytochrome P [CYP]) enzymes, receptors, and transport proteins leading to enhancement or delay in the therapeutic response. Of relevance to the ICU, genetic variation in CYP-450 isoenzymes results in altered effects of midazolam, fentanyl, morphine, codeine, phenytoin, clopidogrel, warfarin, carvedilol, metoprolol, HMG-CoA reductase inhibitors, calcineurin inhibitors, non-steroidal anti-inflammatory agents, proton pump inhibitors, and ondansetron. Changes in cholinesterase enzyme function may affect the disposition of succinylcholine, benzylisoquinoline muscle relaxants, remifentanil, and hydralazine. Genetic variation in transport proteins leads to differences in the response to opioids and clopidogrel. Polymorphisms in drug receptors result in altered effects of β-blockers, catecholamines, antipsychotic agents, and opioids. Genetic variation also contributes to the diversity and incidence of diseases and conditions such as sepsis, malignant hyperthermia, drug-induced hypersensitivity reactions, cardiac channelopathies, thromboembolic disease, and congestive heart failure. CONCLUSION Application of pharmacogenetics and pharmacogenomics has seen improvements in drug therapy. Ongoing study and incorporation of these concepts into clinical decision making in the ICU has the potential to affect patient outcomes.
Collapse
Affiliation(s)
- Meghan MacKenzie
- Pharmacy Department, Nova Scotia Health Authority, Halifax, NS, Canada.,College of Pharmacy, Dalhousie University, Halifax, NS, Canada
| | - Richard Hall
- Departments of Anesthesia, Pain Management and Perioperative Medicine and Critical Care Medicine and Pharmacology, Dalhousie University and the Nova Scotia Health Authority, Halifax, NS, B3H 3A7, Canada.
| |
Collapse
|
47
|
Bourdin B, Segura E, Tétreault MP, Lesage S, Parent L. Determination of the Relative Cell Surface and Total Expression of Recombinant Ion Channels Using Flow Cytometry. J Vis Exp 2016. [PMID: 27768059 DOI: 10.3791/54732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Inherited or de novo mutations in cation-selective channels may lead to sudden cardiac death. Alteration in the plasma membrane trafficking of these multi-spanning transmembrane proteins, with or without change in channel gating, is often postulated to contribute significantly in this process. It has thus become critical to develop a method to quantify the change of the relative cell surface expression of cardiac ion channels on a large scale. Herein, a detailed protocol is provided to determine the relative total and cell surface expression of cardiac L-type calcium channels CaV1.2 and membrane-associated subunits in tsA-201 cells using two-color fluorescent cytometry assays. Compared with other microscopy-based or immunoblotting-based qualitative methods, flow cytometry experiments are fast, reproducible, and large-volume assays that deliver quantifiable end-points on large samples of live cells (ranging from 104 to 106 cells) with similar cellular characteristics in a single flow. Constructs were designed to constitutively express mCherry at the intracellular C-terminus (thus allowing a rapid assessment of the total protein expression) and express an extracellular-facing hemagglutinin (HA) epitope to estimate the cell surface expression of membrane proteins using an anti-HA fluorescence conjugated antibody. To avoid false negative, experiments were also conducted in permeabilized cells to confirm the accessibility and proper expression of the HA epitope. The detailed procedure provides: (1) design of tagged DNA (deoxyribonucleic acid) constructs, (2) lipid-mediated transfection of constructs in tsA-201 cells, (3) culture, harvest, and staining of non-permeabilized and permeabilized cells, and (4) acquisition and analysis of fluorescent signals. Additionally, the basic principles of flow cytometry are explained and the experimental design, including the choice of fluorophores, titration of the HA antibody and control experiments, is thoroughly discussed. This specific approach offers objective relative quantification of the total and cell surface expression of ion channels that can be extended to study ion pumps and plasma membrane transporters.
Collapse
Affiliation(s)
- Benoîte Bourdin
- Département de Physiologie Moléculaire et Intégrative, Montreal Heart Institute Research Centre
| | - Emilie Segura
- Département de Physiologie Moléculaire et Intégrative, Montreal Heart Institute Research Centre
| | | | - Sylvie Lesage
- Département de Microbiologie, Infectiologie, Immunologie, Centre de recherche de l'Hôpital Maisonneuve-Rosemont
| | - Lucie Parent
- Département de Physiologie Moléculaire et Intégrative, Montreal Heart Institute Research Centre;
| |
Collapse
|
48
|
Faragli A, Underwood K, Priori SG, Mazzanti A. Is There a Role for Genetics in the Prevention of Sudden Cardiac Death? J Cardiovasc Electrophysiol 2016; 27:1124-32. [PMID: 27279603 DOI: 10.1111/jce.13028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/27/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022]
Abstract
The identification of patients at risk for sudden cardiac death (SCD) is fundamental for both acquired cardiovascular diseases (such as coronary artery diseases, CAD) and inherited arrhythmia syndromes (such as the long-QT syndrome, LQTS). Genetics may play a role in both situations, although the potential to exploit this information to reduce the burden of SCD varies among these two groups. Concerning acquired cardiovascular diseases, which affect most of the general population, preliminary data suggest an association between genetics and the risk of dying suddenly. The maximal utility, instead, is reached in inherited arrhythmia syndromes, where the discovery of monogenic diseases such as LQTS tracked the way for the first genotype-phenotype correlations. The aim of this review is to provide a general overview focusing on the current genetic knowledge and on the present and future applicability for prevention in these two populations at risk for SCD.
Collapse
Affiliation(s)
| | | | - Silvia G Priori
- Molecular Cardiology, IRCCS Salvatore Maugeri Foundation, Pavia, Italy. .,Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| | - Andrea Mazzanti
- Molecular Cardiology, IRCCS Salvatore Maugeri Foundation, Pavia, Italy
| |
Collapse
|
49
|
Burgos M, Arenas A, Cabrera R. Semiconductor Whole Exome Sequencing for the Identification of Genetic Variants in Colombian Patients Clinically Diagnosed with Long QT Syndrome. Mol Diagn Ther 2016; 20:353-62. [PMID: 27251404 DOI: 10.1007/s40291-016-0207-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVE Inherited long QT syndrome (LQTS) is a cardiac channelopathy characterized by a prolongation of QT interval and the risk of syncope, cardiac arrest, and sudden cardiac death. Genetic diagnosis of LQTS is critical in medical practice as results can guide adequate management of patients and distinguish phenocopies such as catecholaminergic polymorphic ventricular tachycardia (CPVT). However, extensive screening of large genomic regions is required in order to reliably identify genetic causes. Semiconductor whole exome sequencing (WES) is a promising approach for the identification of variants in the coding regions of most human genes. METHODS DNA samples from 21 Colombian patients clinically diagnosed with LQTS were enriched for coding regions using multiplex polymerase chain reaction (PCR) and subjected to WES using a semiconductor sequencer. RESULTS Semiconductor WES showed mean coverage of 93.6 % for all coding regions relevant to LQTS at >10× depth with high intra- and inter-assay depth heterogeneity. Fifteen variants were detected in 12 patients in genes associated with LQTS. Three variants were identified in three patients in genes associated with CPVT. Co-segregation analysis was performed when possible. All variants were analyzed with two pathogenicity prediction algorithms. The overall prevalence of LQTS and CPVT variants in our cohort was 71.4 %. All LQTS variants previously identified through commercial genetic testing were identified. CONCLUSION Standardized WES assays can be easily implemented, often at a lower cost than sequencing panels. Our results show that WES can identify LQTS-causing mutations and permits differential diagnosis of related conditions in a real-world clinical setting. However, high heterogeneity in sequencing depth and low coverage in the most relevant genes is expected to be associated with reduced analytical sensitivity.
Collapse
Affiliation(s)
- Mariana Burgos
- Laboratorio de Biología Molecular y Pruebas Diagnósticas de Alta Complejidad, Fundación Cardioinfantil - Instituto de Cardiología, Calle 163ª #13b -60 Torre A Piso 1, Bogotá, Colombia
| | - Alvaro Arenas
- Centro de Cardiopatías Congénitas, Fundación Cardioinfantil - Instituto de Cardiología, Bogotá, Colombia
| | - Rodrigo Cabrera
- Laboratorio de Biología Molecular y Pruebas Diagnósticas de Alta Complejidad, Fundación Cardioinfantil - Instituto de Cardiología, Calle 163ª #13b -60 Torre A Piso 1, Bogotá, Colombia.
| |
Collapse
|
50
|
Abstract
Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this article, we will review their molecular identities and biophysical properties. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmacology, College of Physicians & Surgeons of Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Kevin J Sampson
- Department of Pharmacology, College of Physicians & Surgeons of Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Robert S Kass
- Department of Pharmacology, College of Physicians & Surgeons of Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|