1
|
Fimiani C, Pereira JA, Gerber J, Berg I, DeGeer J, Bachofner S, Fischer JS, Kauffmann M, Suter U. The E3 ubiquitin ligase Nedd4 fosters developmental myelination in the mouse central and peripheral nervous system. Glia 2025; 73:422-444. [PMID: 39511974 DOI: 10.1002/glia.24642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
Ubiquitination is a major post-translational regulatory mechanism that tunes numerous aspects of ubiquitinated target proteins, including localization, stability, and function. During differentiation and myelination, Oligodendrocytes (OLs) in the central nervous system and Schwann cells (SCs) in the peripheral nervous system undergo major cellular changes, including the tightly controlled production of large and accurate amounts of proteins and lipids. Such processes have been implied to depend on regulatory aspects of ubiquitination, with E3 ubiquitin ligases being generally involved in the selection of specific ubiquitination substrates by ligating ubiquitin to targets and granting target selectivity. In this study, we have used multiple transgenic mouse lines to investigate the functional impact of the E3 ubiquitin ligase Nedd4 in the OL- and SC-lineages. Our findings in the developing spinal cord indicate that Nedd4 is required for the correct accumulation of differentiated OLs and ensures proper myelination, supporting and further expanding previously suggested conceptual models. In sciatic nerves, we found that Nedd4 is required for timely radial sorting of axons by SCs as a pre-requirement for correct onset of myelination. Moreover, Nedd4 ensures correct myelin thickness in both SCs and spinal cord OLs.
Collapse
Affiliation(s)
- Cristina Fimiani
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jorge A Pereira
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Joanne Gerber
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ingrid Berg
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jonathan DeGeer
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Sven Bachofner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jonas S Fischer
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Manuel Kauffmann
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Meng Y, Chen L, Chai Y, Meng W, Yang G, Ren J, Li H, Qi P, Chen J, Wang N. PUM2 promoted osteoarthritis progression through PTEN-mediated chondrocyte ferroptosis by facilitating NEDD4 mRNA degradation. ENVIRONMENTAL TOXICOLOGY 2024; 39:4318-4332. [PMID: 38733337 DOI: 10.1002/tox.24310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease with a lack of effective therapeutic. Chondrocyte ferroptosis contributes to the progression of OA. PUM2 is shown to exacerbate ischemia-reperfusion-induced neuroinflammation by promoting ferroptosis, but its role in OA remains unexplored. Here, primary mouse chondrocytes were stimulated with IL-1β to mimic OA chondrocyte injury in vitro. And PUM2 was upregulated in OA cartilage tissues and IL-1β-induced chondrocytes. Silencing PUM2 alleviated IL-1β-induced chondrocyte inflammation and ECM degradation. Mechanistically, PUM2 facilitated the degradation of NEDD4 mRNA by binding to the 3'UTR of NEDD4 mRNA, which in turn inhibited NEDD4 induced PTEN ubiquitination and degradation. Consistently, NEDD4 silencing reversed the ameliorative effect of PUM2 knockdown on chondrocyte injury, and overexpression of PTEN abolished the improved role of NEDD4 in chondrocyte injury. Moreover, PTEN aggravated IL-1β-induced ferroptosis in chondrocytes through the Nrf2/HO-1 pathway by increasing the levels of Fe2+, ROS, MDA, and ACSL4 protein, decreasing the activity of SOD and the levels of GSH and GPX4 protein, and aggravating mitochondrial damage. Additionally, destabilized medial meniscus (DMM) were conducted to establish the OA mouse model, and adenovirus-mediated PUM2 shRNA was administered intra-articularly. Silencing PUM2 attenuated OA-induced cartilage damage in vivo. In conclusion, PUM2 promoted OA progression through PTEN-mediated chondrocyte ferroptosis by facilitating NEDD4 mRNA degradation.
Collapse
Affiliation(s)
- Yu Meng
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Chen
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuxia Chai
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weili Meng
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guohui Yang
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Ren
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongshuai Li
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peiyi Qi
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juwu Chen
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nan Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Choi KM, Kim SJ, Ji MJ, Kim E, Kim JS, Park HM, Kim JY. Activity-based protein profiling and global proteome analysis reveal MASTL as a potential therapeutic target in gastric cancer. Cell Commun Signal 2024; 22:397. [PMID: 39138495 PMCID: PMC11323684 DOI: 10.1186/s12964-024-01783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a prevalent malignancy with limited therapeutic options for advanced stages. This study aimed to identify novel therapeutic targets for GC by profiling HSP90 client kinases. METHODS We used mass spectrometry-based activity-based protein profiling (ABPP) with a desthiobiotin-ATP probe, combined with sensitivity analysis of HSP90 inhibitors, to profile kinases in a panel of GC cell lines. We identified kinases regulated by HSP90 in inhibitor-sensitive cells and investigated the impact of MASTL knockdown on GC cell behavior. Global proteomic analysis following MASTL knockdown was performed, and bioinformatics tools were used to analyze the resulting data. RESULTS Four kinases-MASTL, STK11, CHEK1, and MET-were identified as HSP90-regulated in HSP90 inhibitor-sensitive cells. Among these, microtubule-associated serine/threonine kinase-like (MASTL) was upregulated in GC and associated with poor prognosis. MASTL knockdown decreased migration, invasion, and proliferation of GC cells. Global proteomic profiling following MASTL knockdown revealed NEDD4-1 as a potential downstream mediator of MASTL in GC progression. NEDD4-1 was also upregulated in GC and associated with poor prognosis. Similar to MASTL inhibition, NEDD4-1 knockdown suppressed migration, invasion, and proliferation of GC cells. CONCLUSIONS Our multi-proteomic analyses suggest that targeting MASTL could be a promising therapy for advanced gastric cancer, potentially through the reduction of tumor-promoting proteins including NEDD4-1. This study enhances our understanding of kinase signaling pathways in GC and provides new insights for potential treatment strategies.
Collapse
Affiliation(s)
- Kyoung-Min Choi
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sung-Jin Kim
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Mi-Jung Ji
- Advanced Analysis and Data Center, Korea Institute of Science and Technology (KIST), Seoul, 02456, Republic of Korea
| | - Eunjung Kim
- Natural Product Informatics Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Hyun-Mee Park
- Advanced Analysis and Data Center, Korea Institute of Science and Technology (KIST), Seoul, 02456, Republic of Korea
| | - Jae-Young Kim
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
4
|
Fujita S, Tada H, Matsuura Y, Hiramoto T, Tanaka M, Shintani T, Gomi K. Glucose-induced endocytic degradation of the maltose transporter MalP is mediated through ubiquitination by the HECT-ubiquitin ligase HulA and its adaptor CreD in Aspergillus oryzae. Fungal Genet Biol 2024; 173:103909. [PMID: 38885923 DOI: 10.1016/j.fgb.2024.103909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
In the filamentous fungus Aspergillus oryzae, large amounts of amylolytic enzymes are inducibly produced by isomaltose, which is converted from maltose incorporated via the maltose transporter MalP. In contrast, the preferred sugar glucose strongly represses the expression of both amylolytic and malP genes through carbon catabolite repression. Simultaneously, the addition of glucose triggers the endocytic degradation of MalP on the plasma membrane. In budding yeast, the signal-dependent ubiquitin modification of plasma membrane transporters leads to selective endocytosis into the vacuole for degradation. In addition, during glucose-induced MalP degradation, the homologous of E6AP C-terminus-type E3 ubiquitin ligase (HulA) is responsible for the ubiquitin modification of MalP, and the arrestin-like protein CreD is required for HulA targeting. Although CreD-mediated MalP internalization occurs in response to glucose, the mechanism by which CreD regulates HulA-dependent MalP ubiquitination remains unclear. In this study, we demonstrated that three (P/L)PxY motifs present in the CreD protein are essential for functioning as HulA adaptors so that HulA can recognize MalP in response to glucose stimulation, enabling MalP internalization. Furthermore, four lysine residues (three highly conserved among Aspergillus species and yeast and one conserved among Aspergillus species) of CreD were found to be necessary for its ubiquitination, resulting in efficient glucose-induced MalP endocytosis. The results of this study pave the way for elucidating the regulatory mechanism of MalP endocytic degradation through ubiquitination by the HulA-CreD complex at the molecular level.
Collapse
Affiliation(s)
- Shoki Fujita
- Laboratory of Fermentation Microbiology, Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Hinako Tada
- Laboratory of Fungal Biotechnology, Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Yuka Matsuura
- Laboratory of Fungal Biotechnology, Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Tetsuya Hiramoto
- Laboratory of Fungal Biotechnology, Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Mizuki Tanaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Takahiro Shintani
- Laboratory of Fungal Biotechnology, Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Katsuya Gomi
- Laboratory of Fermentation Microbiology, Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Japan.
| |
Collapse
|
5
|
Zbieralski K, Staszewski J, Konczak J, Lazarewicz N, Nowicka-Kazmierczak M, Wawrzycka D, Maciaszczyk-Dziubinska E. Multilevel Regulation of Membrane Proteins in Response to Metal and Metalloid Stress: A Lesson from Yeast. Int J Mol Sci 2024; 25:4450. [PMID: 38674035 PMCID: PMC11050377 DOI: 10.3390/ijms25084450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
In the face of flourishing industrialization and global trade, heavy metal and metalloid contamination of the environment is a growing concern throughout the world. The widespread presence of highly toxic compounds of arsenic, antimony, and cadmium in nature poses a particular threat to human health. Prolonged exposure to these toxins has been associated with severe human diseases, including cancer, diabetes, and neurodegenerative disorders. These toxins are known to induce analogous cellular stresses, such as DNA damage, disturbance of redox homeostasis, and proteotoxicity. To overcome these threats and improve or devise treatment methods, it is crucial to understand the mechanisms of cellular detoxification in metal and metalloid stress. Membrane proteins are key cellular components involved in the uptake, vacuolar/lysosomal sequestration, and efflux of these compounds; thus, deciphering the multilevel regulation of these proteins is of the utmost importance. In this review, we summarize data on the mechanisms of arsenic, antimony, and cadmium detoxification in the context of membrane proteome. We used yeast Saccharomyces cerevisiae as a eukaryotic model to elucidate the complex mechanisms of the production, regulation, and degradation of selected membrane transporters under metal(loid)-induced stress conditions. Additionally, we present data on orthologues membrane proteins involved in metal(loid)-associated diseases in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ewa Maciaszczyk-Dziubinska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland; (K.Z.); (J.S.); (J.K.); (N.L.); (M.N.-K.); (D.W.)
| |
Collapse
|
6
|
Totland MZ, Knudsen LM, Rasmussen NL, Omori Y, Sørensen V, Elster VCW, Stenersen JM, Larsen M, Jensen CL, Zickfeldt Lade AA, Bruusgaard E, Basing S, Kryeziu K, Brech A, Aasen T, Lothe RA, Leithe E. The E3 ubiquitin ligase ITCH negatively regulates intercellular communication via gap junctions by targeting connexin43 for lysosomal degradation. Cell Mol Life Sci 2024; 81:171. [PMID: 38597989 PMCID: PMC11006747 DOI: 10.1007/s00018-024-05165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 04/11/2024]
Abstract
Intercellular communication via gap junctions has a fundamental role in regulating cell growth and tissue homeostasis, and its dysregulation may be involved in cancer development and radio- and chemotherapy resistance. Connexin43 (Cx43) is the most ubiquitously expressed gap junction channel protein in human tissues. Emerging evidence indicates that dysregulation of the sorting of Cx43 to lysosomes is important in mediating the loss of Cx43-based gap junctions in cancer cells. However, the molecular basis underlying this process is currently poorly understood. Here, we identified the E3 ubiquitin ligase ITCH as a novel regulator of intercellular communication via gap junctions. We demonstrate that ITCH promotes loss of gap junctions in cervical cancer cells, which is associated with increased degradation of Cx43 in lysosomes. The data further indicate that ITCH interacts with and regulates Cx43 ubiquitination and that the ITCH-induced loss of Cx43-based gap junctions requires its catalytic HECT (homologous to E6-AP C-terminus) domain. The data also suggest that the ability of ITCH to efficiently promote loss of Cx43-based gap junctions and degradation of Cx43 depends on a functional PY (PPXY) motif in the C-terminal tail of Cx43. Together, these data provide new insights into the molecular basis underlying the degradation of Cx43 and have implications for the understanding of how intercellular communication via gap junctions is lost during cancer development.
Collapse
Affiliation(s)
- Max Zachrisson Totland
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Lars Mørland Knudsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Nikoline Lander Rasmussen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
- Centre for Molecular Medicine Norway, Faculty of Medicine, Oslo, Norway
| | - Yasufumi Omori
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Vigdis Sørensen
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, 0379, Norway
| | - Vilde C Wivestad Elster
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Jakob Mørkved Stenersen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Mathias Larsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Caroline Lunder Jensen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Anna A Zickfeldt Lade
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Emilie Bruusgaard
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Sebastian Basing
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Kushtrim Kryeziu
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Andreas Brech
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, 0379, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, Oslo, 0316, Norway
| | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, Oslo, 0316, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0317, Norway
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| |
Collapse
|
7
|
Liu B, Song F, Zhou X, Wu C, Huang H, Wu W, Li G, Wang Y. NEDD4L is a promoter for angiogenesis and cell proliferation in human umbilical vein endothelial cells. J Cell Mol Med 2024; 28:1-11. [PMID: 38526036 PMCID: PMC10962128 DOI: 10.1111/jcmm.18233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024] Open
Abstract
Dysregulated angiogenesis leads to neovascularization, which can promote or exacerbate various diseases. Previous studies have proved that NEDD4L plays an important role in hypertension and atherosclerosis. Hence, we hypothesized that NEDD4L may be a critical regulator of endothelial cell (EC) function. This study aimed to define the role of NEDD4L in regulating EC angiogenesis and elucidate their underlying mechanisms. Loss- and gain-of-function of NEDD4L detected the angiogenesis and mobility role in human umbilical vein endothelial cells (HUVECs) using Matrigel tube formation assay, cell proliferation and migration. Pharmacological pathway inhibitors and western blot were used to determine the underlying mechanism of NEDD4L-regulated endothelial functions. Knockdown of NEDD4L suppressed tube formation, cell proliferation and cell migration in HUVECs, whereas NEDD4L overexpression promoted these functions. Moreover, NEDD4L-regulated angiogenesis and cell progression are associated with the phosphorylation of Akt, Erk1/2 and eNOS and the expression of VEGFR2 and cyclin D1 and D3. Mechanically, further evidence was confirmed by using Akt blocker MK-2206, Erk1/2 blocker U0126 and eNOS blocker L-NAME. Overexpression NEDD4L-promoted angiogenesis, cell migration and cell proliferation were restrained by these inhibitors. In addition, overexpression NEDD4L-promoted cell cycle-related proteins cyclin D1 and D3 were also suppressed by Akt blocker MK-2206, Erk1/2 blocker U0126 and eNOS blocker L-NAME. Our results demonstrated a novel finding that NEDD4L promotes angiogenesis and cell progression by regulating the Akt/Erk/eNOS pathways.
Collapse
Affiliation(s)
- Binghong Liu
- Medical CollegeGuangxi UniversityNanningGuangxiChina
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Fei Song
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Xiaoxia Zhou
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Chan Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Huizhu Huang
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Weiyin Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Yan Wang
- Medical CollegeGuangxi UniversityNanningGuangxiChina
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| |
Collapse
|
8
|
Wang Q, Shang Y, Li Y, Li X, Wang X, He Y, Ma J, Ning S, Chen H. Identification of cuproptosis-related diagnostic biomarkers in idiopathic pulmonary fibrosis. Medicine (Baltimore) 2024; 103:e36801. [PMID: 38215148 PMCID: PMC10783416 DOI: 10.1097/md.0000000000036801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with clinical and pathological heterogeneity. Recent studies have identified cuproptosis as a novel cell death mechanism. However, the role of cuproptosis-related genes in the pathogenesis of IPF is still unclear. Two IPF datasets of the Gene Expression Omnibus database were studied. Mann-Whitney U test, correlation analysis, functional enrichment analyses, single-sample gene set enrichment analysis, CIBERSORT, unsupervised clustering, weighted gene co-expression network analysis, and receiver operating characteristic curve analysis were used to conduct our research. The dysregulated cuproptosis-related genes and immune responses were identified between IPF patients and controls. Two cuproptosis-related molecular clusters were established in IPF, the high immune score group (C1) and the low immune score group (C2). Significant heterogeneity in immunity between clusters was revealed by functional analyses results. The module genes with the strongest correlation to the 2 clusters were identified by weighted gene co-expression network analysis results. Seven hub genes were found using the Cytoscape software. Ultimately, 2 validated diagnostic biomarkers of IPF, CDKN2A and NEDD4, were obtained. Subsequently, the results were validated in GSE47460. Our investigation illustrates that CDKN2A and NEDD4 may be valid biomarkers that were useful for IPF diagnosis and copper-related clustering.
Collapse
Affiliation(s)
- Qi Wang
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Shang
- Department of Respiration, The First Hospital of Harbin, Harbin, China
| | - Yupeng Li
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xincheng Li
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Wang
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yaowu He
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Ma
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hong Chen
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Xu L, Xiang W, Yang J, Gao J, Wang X, Meng L, Ye K, Zhao XH, Zhang XD, Jin L, Ye Y. PHB2 promotes SHIP2 ubiquitination via the E3 ligase NEDD4 to regulate AKT signaling in gastric cancer. J Exp Clin Cancer Res 2024; 43:17. [PMID: 38200519 PMCID: PMC10782615 DOI: 10.1186/s13046-023-02937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Prohibitin 2 (PHB2) exhibits opposite functions of promoting or inhibiting tumour across various cancer types. In this study, we aim to investigate its functions and underlying mechanisms in the context of gastric cancer (GC). METHODS PHB2 protein expression levels in GC and normal tissues were examined using western blot and immunohistochemistry. PHB2 expression level associations with patient outcomes were examined through Kaplan-Meier plotter analysis utilizing GEO datasets (GSE14210 and GSE29272). The biological role of PHB2 and its subsequent regulatory mechanisms were elucidated in vitro and in vivo. GC cell viability and proliferation were assessed using MTT cell viability analysis, clonogenic assays, and BrdU incorporation assays, while the growth of GC xenografted tumours was measured via IHC staining of Ki67. The interaction among PHB2 and SHIP2, as well as between SHIP2 and NEDD4, was identified through co-immunoprecipitation, GST pull-down assays, and deletion-mapping experiments. SHIP2 ubiquitination and degradation were assessed using cycloheximide treatment, plasmid transfection and co-immunoprecipitation, followed by western blot analysis. RESULTS Our analysis revealed a substantial increase in PHB2 expression in GC tissues compared to adjacent normal tissues. Notably, higher PHB2 levels correlated with poorer patient outcomes, suggesting its clinical relevance. Functionally, silencing PHB2 in GC cells significantly reduced cell proliferation and retarded GC tumour growth, whereas overexpression of PHB2 further enhanced GC cell proliferation. Mechanistically, PHB2 physically interacted with Src homology 2-containing inositol 5-phosphatase 2 (SHIP2) in the cytoplasm of GC cells, thus leading to SHIP2 degradation via its novel E3 ligase NEDD4. It subsequently activated the PI3K/Akt signaling pathway and thus promoted GC cell proliferation. CONCLUSIONS Our findings highlight the importance of PHB2 upregulation in driving GC progression and its association with adverse patient outcomes. Understanding the functional impact of PHB2 on GC growth contributes valuable insights into the molecular underpinnings of GC and may pave the way for the development of targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Liang Xu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Wanying Xiang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jiezhen Yang
- Department of Pathology, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen, 361015, China
| | - Jing Gao
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xinyue Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Li Meng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Kaihong Ye
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-Coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-Coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450053, Henan, China
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, 2308, Australia.
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-Coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-Coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450053, Henan, China.
| | - Lei Jin
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-Coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-Coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450053, Henan, China.
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, 2308, Australia.
| | - Yan Ye
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
10
|
Jin J, He J, Li X, Ni X, Jin X. The role of ubiquitination and deubiquitination in PI3K/AKT/mTOR pathway: A potential target for cancer therapy. Gene 2023; 889:147807. [PMID: 37722609 DOI: 10.1016/j.gene.2023.147807] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
The PI3K/AKT/mTOR pathway controls key cellular processes, including proliferation and tumor progression, and abnormally high activation of this pathway is a hallmark in human cancers. The post-translational modification, such as Ubiquitination and deubiquitination, fine-tuning the protein level and the activity of members in this pathway play a pivotal role in maintaining normal physiological process. Emerging evidence show that the unbalanced ubiquitination/deubiquitination modification leads to human diseases via PI3K/AKT/mTOR pathway. Therefore, a comprehensive understanding of the ubiquitination/deubiquitination regulation of PI3K/AKT/mTOR pathway may be helpful to uncover the underlying mechanism and improve the potential treatment of cancer via targeting this pathway. Herein, we summarize the latest research progress of ubiquitination and deubiquitination of PI3K/AKT/mTOR pathway, systematically discuss the associated crosstalk between them, as well as focus the clinical transformation via targeting ubiquitination process.
Collapse
Affiliation(s)
- Jiabei Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jian He
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xinming Li
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaoqi Ni
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
11
|
Miyauchi S, Arimoto KI, Liu M, Zhang Y, Zhang DE. Reprogramming of tumor-associated macrophages via NEDD4-mediated CSF1R degradation by targeting USP18. Cell Rep 2023; 42:113560. [PMID: 38100351 PMCID: PMC10822669 DOI: 10.1016/j.celrep.2023.113560] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/25/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Tumor-associated myeloid cells modulate the tumor microenvironment and affect tumor progression. Type I interferon (IFN-I) has multiple effects on tumors and immune response, and ubiquitin-specific peptidase 18 (USP18) functions as a negative regulator of IFN-I signal transduction. This study aims to examine the function of IFN-I in myeloid cells during tumor progression. Here, we show that deletion of USP18 in myeloid cells suppresses tumor progression. Enhanced IFN-I signaling and blocked USP18 expression prompt downregulation of colony stimulating factor 1 receptor (CSF1R) and polarization of tumor-associated macrophages toward pro-inflammatory phenotypes. Further in vitro experiments reveal that downregulation of CSF1R is mediated by ubiquitin-proteasome degradation via E3 ligase neural precursor cell-expressed, developmentaly downregulated 4 (NEDD4) and the IFN-induced increase in ubiquitin E2 ubiquitin-conjugating enzyme H5. USP18 impairs ubiquitination and subsequent degradation of CSF1R by interrupting NEDD4 binding to CSF1R. These results reveal a previously unappreciated role of IFN-I in macrophage polarization by regulating CSF1R via USP18 and suggest targeting USP18 in myeloid-lineage cells as an effective strategy for IFN-based therapies.
Collapse
Affiliation(s)
- Sayuri Miyauchi
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
| | - Kei-Ichiro Arimoto
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
| | - Mengdan Liu
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA; School of Biological Sciences, University of California San Diego, La Jolla, CA 92037, USA
| | - Yue Zhang
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA; School of Biological Sciences, University of California San Diego, La Jolla, CA 92037, USA
| | - Dong-Er Zhang
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA; School of Biological Sciences, University of California San Diego, La Jolla, CA 92037, USA; Department of Pathology, University of California San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
12
|
Gawden-Bone CM, Lehner PJ, Volkmar N. As a matter of fat: Emerging roles of lipid-sensitive E3 ubiquitin ligases. Bioessays 2023; 45:e2300139. [PMID: 37890275 DOI: 10.1002/bies.202300139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
The dynamic structure and composition of lipid membranes need to be tightly regulated to control the vast array of cellular processes from cell and organelle morphology to protein-protein interactions and signal transduction pathways. To maintain membrane integrity, sense-and-response systems monitor and adjust membrane lipid composition to the ever-changing cellular environment, but only a relatively small number of control systems have been described. Here, we explore the emerging role of the ubiquitin-proteasome system in monitoring and maintaining membrane lipid composition. We focus on the ER-resident RNF145 E3 ubiquitin ligase, its role in regulating adiponectin receptor 2 (ADIPOR2), its lipid hydrolase substrate, and the broader implications for understanding the homeostatic processes that fine-tune cellular membrane composition.
Collapse
Affiliation(s)
- Christian M Gawden-Bone
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Norbert Volkmar
- Institute for Molecular Systems Biology (IMSB), ETH Zürich, Zürich, Switzerland
| |
Collapse
|
13
|
Wan JX, Wang YQ, Lan SN, Chen L, Feng MQ, Chen X. Research Progress in Function and Regulation of E3 Ubiquitin Ligase SMURF1. Curr Med Sci 2023; 43:855-868. [PMID: 37558865 DOI: 10.1007/s11596-023-2774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 08/11/2023]
Abstract
Smad ubiquitylation regulatory factor 1 (Smurf1) is an important homologous member of E6-AP C-terminus type E3 ubiquitin ligase. Initially, Smurf1 was reportedly involved in the negative regulation of the bone morphogenesis protein (BMP) pathway. After further research, several studies have confirmed that Smurf1 is widely involved in various biological processes, such as bone homeostasis regulation, cell migration, apoptosis, and planar cell polarity. At the same time, recent studies have provided a deeper understanding of the regulatory mechanisms of Smurf1's expression, activity, and substrate selectivity. In our review, a brief summary of recent important biological functions and regulatory mechanisms of E3 ubiquitin ligase Smurf1 is proposed.
Collapse
Affiliation(s)
- Ji-Xi Wan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Qi Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Si-Na Lan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liu Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming-Qian Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Yang L, Li JN. E3 ubiquitin ligase neural precursor cell-expressed developmentally downregulated gene 4 motivates FOXA1 ubiquitination and restrains proliferation of diffuse large B-cell lymphoma cells via the Wnt/β-Catenin pathway. Cell Biol Int 2023; 47:1688-1701. [PMID: 37415495 DOI: 10.1002/cbin.12061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/11/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023]
Abstract
Neural precursor cell-expressed developmentally downregulated gene 4 (NEDD4) is an E3 ubiquitin ligase that recognizes substrates via protein-protein interactions and takes part in tumor development. This study aims to clarify NEDD4's functions in diffuse large B-cell lymphoma (DLBCL) and its downstream mechanisms. Collection of 53 DLBCL tissues and adjacent normal lymphoid tissues, and detection of NEDD4 and Forkhead box protein A1 (FOXA1) in the tissues were conducted. The selection of DLBCL cells was for FARAGE, and test of cells' advancement was after transfection. Analysis of NEDD4 and FOXA1's link, and test of Wnt/β-catenin pathway were implemented. In vivo tumor xenograft experiments were put into effect. Detection of the pathological conditions of tumor tissues and the positive Ki67 in the family was implemented. It came out NEDD4 was reduced in DLBCL tissues and cell lines, and FOXA1 was elevated; Enhancing NEDD4 or repressing FOXA1 refrained DLBCL cells' advancement; NEDD4 could combine with FOXA1 and trigger its ubiquitination and degradation; NEDD4 inactivates the Wnt/β-catenin pathway by motivating FOXA1 ubiquitination; NEDD4 enhancement refrained DLBCL growth in vivo. In conclusion, the E3 ubiquitin ligase NEDD4 accelerates FOXA1 ubiquitination but refrains DLBCL cell proliferation via the Wnt/β-Catenin pathway.
Collapse
Affiliation(s)
- Li Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing City, China
| | - Jun Nan Li
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing City, China
| |
Collapse
|
15
|
Guo Q, Cheng ZM, Gonzalez-Cantú H, Rotondi M, Huelgas-Morales G, Ethiraj P, Qiu Z, Lefkowitz J, Song W, Landry BN, Lopez H, Estrada-Zuniga CM, Goyal S, Khan MA, Walker TJ, Wang E, Li F, Ding Y, Mulligan LM, Aguiar RCT, Dahia PLM. TMEM127 suppresses tumor development by promoting RET ubiquitination, positioning, and degradation. Cell Rep 2023; 42:113070. [PMID: 37659079 PMCID: PMC10637630 DOI: 10.1016/j.celrep.2023.113070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 07/06/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023] Open
Abstract
The TMEM127 gene encodes a transmembrane protein of poorly known function that is mutated in pheochromocytomas, neural crest-derived tumors of adrenomedullary cells. Here, we report that, at single-nucleus resolution, TMEM127-mutant tumors share precursor cells and transcription regulatory elements with pheochromocytomas carrying mutations of the tyrosine kinase receptor RET. Additionally, TMEM127-mutant pheochromocytomas, human cells, and mouse knockout models of TMEM127 accumulate RET and increase its signaling. TMEM127 contributes to RET cellular positioning, trafficking, and lysosome-mediated degradation. Mechanistically, TMEM127 binds to RET and recruits the NEDD4 E3 ubiquitin ligase for RET ubiquitination and degradation via TMEM127 C-terminal PxxY motifs. Lastly, increased cell proliferation and tumor burden after TMEM127 loss can be reversed by selective RET inhibitors in vitro and in vivo. Our results define TMEM127 as a component of the ubiquitin system and identify aberrant RET stabilization as a likely mechanism through which TMEM127 loss-of-function mutations cause pheochromocytoma.
Collapse
Affiliation(s)
- Qianjin Guo
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Zi-Ming Cheng
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Hector Gonzalez-Cantú
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Matthew Rotondi
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Gabriela Huelgas-Morales
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Purushoth Ethiraj
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Zhijun Qiu
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Jonathan Lefkowitz
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Wan Song
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Bethany N Landry
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Hector Lopez
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Cynthia M Estrada-Zuniga
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Shivi Goyal
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Mohammad Aasif Khan
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Timothy J Walker
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Exing Wang
- Department Cell Structure and Anatomy, UTHSCSA, San Antonio, TX, USA
| | - Faqian Li
- Department of Pathology, UTHSCSA, San Antonio, TX, USA
| | - Yanli Ding
- Department of Pathology, UTHSCSA, San Antonio, TX, USA
| | - Lois M Mulligan
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Ricardo C T Aguiar
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA; Mays Cancer Center, UTHSCSA, San Antonio, TX, USA; South Texas Veterans Health Care System, Audie Murphy VA Hospital, San Antonio, TX 78229, USA
| | - Patricia L M Dahia
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA; Mays Cancer Center, UTHSCSA, San Antonio, TX, USA.
| |
Collapse
|
16
|
Qi Z, Smith C, Shah NP, Yu J. Complex Genomic Rearrangements Involving ETV6:: ABL1 Gene Fusion in an Individual with Myeloid Neoplasm. Genes (Basel) 2023; 14:1851. [PMID: 37895201 PMCID: PMC10606058 DOI: 10.3390/genes14101851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
ETV6::ABL1 gene fusion is a rare recurrent genomic rearrangement associated with hematologic malignancies, and frequently occurs with additional anomalies. Due to the opposite chromosome orientations of the ETV6 and ABL1 genes, an oncogenic in-frame ETV6::ABL1 gene fusion cannot be formed by a simple translocation. The molecular mechanism of the ETV6::ABL1 fusion and the significance of co-occurring anomalies are not fully understood. We characterized genomic alterations in an individual with ETV6::ABL1 gene-fusion-positive myeloid neoplasm using various genomic technologies. Our findings uncovered a molecular mechanism of the ETV6::ABL1 fusion, in which a paracentric inversion within the short arm of chromosome 12 (12p) and a translocation between the long arm of a chromosome 9 and the 12p with the inversion were involved. In addition, we detected multiple additional anomalies in the individual, and our findings suggested that the ETV6::ABL1 fusion occurred as a secondary event in a subset of cells with the additional anomalies. We speculate that the additional anomalies may predispose to further pathogenic changes, including ETV6::ABL1 fusion, leading to neoplastic transformation.
Collapse
Affiliation(s)
- Zhongxia Qi
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94107, USA
| | - Catherine Smith
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Neil P. Shah
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jingwei Yu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94107, USA
| |
Collapse
|
17
|
Dagdeviren S, Hoang MF, Sarikhani M, Meier V, Benoit JC, Okawa MC, Melnik VY, Ricci-Blair EM, Foot N, Friedline RH, Hu X, Tauer LA, Srinivasan A, Prigozhin MB, Shenoy SK, Kumar S, Kim JK, Lee RT. An insulin-regulated arrestin domain protein controls hepatic glucagon action. J Biol Chem 2023; 299:105045. [PMID: 37451484 PMCID: PMC10413355 DOI: 10.1016/j.jbc.2023.105045] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Glucagon signaling is essential for maintaining normoglycemia in mammals. The arrestin fold superfamily of proteins controls the trafficking, turnover, and signaling of transmembrane receptors as well as other intracellular signaling functions. Further investigation is needed to understand the in vivo functions of the arrestin domain-containing 4 (ARRDC4) protein family member and whether it is involved in mammalian glucose metabolism. Here, we show that mice with a global deletion of the ARRDC4 protein have impaired glucagon responses and gluconeogenesis at a systemic and molecular level. Mice lacking ARRDC4 exhibited lower glucose levels after fasting and could not suppress gluconeogenesis at the refed state. We also show that ARRDC4 coimmunoprecipitates with the glucagon receptor, and ARRDC4 expression is suppressed by insulin. These results define ARRDC4 as a critical regulator of glucagon signaling and glucose homeostasis and reveal a novel intersection of insulin and glucagon pathways in the liver.
Collapse
Affiliation(s)
- Sezin Dagdeviren
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Megan F Hoang
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Mohsen Sarikhani
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Vanessa Meier
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Jake C Benoit
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Marinna C Okawa
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Veronika Y Melnik
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Elisabeth M Ricci-Blair
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Natalie Foot
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Randall H Friedline
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Xiaodi Hu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lauren A Tauer
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Arvind Srinivasan
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Maxim B Prigozhin
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Sudha K Shenoy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
18
|
Cao L, Li H, Liu X, Wang Y, Zheng B, Xing C, Zhang N, Liu J. Expression and regulatory network of E3 ubiquitin ligase NEDD4 family in cancers. BMC Cancer 2023; 23:526. [PMID: 37291499 DOI: 10.1186/s12885-023-11007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
NEDD4 family represent an important group of E3 ligases, which regulate various cellular pathways of cell proliferation, cell junction and inflammation. Emerging evidence suggested that NEDD4 family members participate in the initiation and development of tumor. In this study, we systematically investigated the molecular alterations as well as the clinical relevance regarding NEDD4 family genes in 33 cancer types. Finally, we found that NEDD4 members showed increased expression in pancreas cancer and decreased expression in thyroid cancer. NEDD4 E3 ligase family genes had an average mutation frequency in the range of 0-32.1%, of which HECW1 and HECW2 demonstrated relatively high mutation rate. Breast cancer harbors large amount of NEDD4 copy number amplification. NEDD4 family members interacted proteins were enriched in various pathways including p53, Akt, apoptosis and autophagy, which were confirmed by further western blot and flow cytometric analysis in A549 and H1299 lung cancer cells. In addition, expression of NEDD4 family genes were associated with survival of cancer patients. Our findings provide novel insight into the effect of NEDD4 E3 ligase genes on cancer progression and treatment in the future.
Collapse
Affiliation(s)
- Liangzi Cao
- Department of Anus and Intestine Surgery, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Hao Li
- Department of Clinical Laboratory, The First Hospital of China Medical University, Shenyang, China
| | - Xiaofang Liu
- Department of Anus and Intestine Surgery, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Yubang Wang
- Department of Anus and Intestine Surgery, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Bowen Zheng
- Department of Anus and Intestine Surgery, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Chengzhong Xing
- Department of Anus and Intestine Surgery, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jingwei Liu
- Department of Anus and Intestine Surgery, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| |
Collapse
|
19
|
Cabezas F, Cabello-Verrugio C, González N, Salas J, Ramírez MJ, de la Vega E, Olguín HC. NEDD4-1 deficiency impairs satellite cell function during skeletal muscle regeneration. Biol Res 2023; 56:21. [PMID: 37147738 PMCID: PMC10161651 DOI: 10.1186/s40659-023-00432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Satellite cells are tissue-specific stem cells primarily responsible for the regenerative capacity of skeletal muscle. Satellite cell function and maintenance are regulated by extrinsic and intrinsic mechanisms, including the ubiquitin-proteasome system, which is key for maintaining protein homeostasis. In this context, it has been shown that ubiquitin-ligase NEDD4-1 targets the transcription factor PAX7 for proteasome-dependent degradation, promoting muscle differentiation in vitro. Nonetheless, whether NEDD4-1 is required for satellite cell function in regenerating muscle remains to be determined. RESULTS Using conditional gene ablation, we show that NEDD4-1 loss, specifically in the satellite cell population, impairs muscle regeneration resulting in a significant reduction of whole-muscle size. At the cellular level, NEDD4-1-null muscle progenitors exhibit a significant decrease in the ability to proliferate and differentiate, contributing to the formation of myofibers with reduced diameter. CONCLUSIONS These results indicate that NEDD4-1 expression is critical for proper muscle regeneration in vivo and suggest that it may control satellite cell function at multiple levels.
Collapse
Affiliation(s)
- Felipe Cabezas
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, 7510157, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Natalia González
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jeremy Salas
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel J Ramírez
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo de la Vega
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo C Olguín
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
20
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
21
|
Zhao X, Richardson DR. The role of the NDRG1 in the pathogenesis and treatment of breast cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188871. [PMID: 36841367 DOI: 10.1016/j.bbcan.2023.188871] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Breast cancer (BC) is the leading cause of cancer death in women. This disease is heterogeneous, with clinical subtypes being estrogen receptor-α (ER-α) positive, having human epidermal growth factor receptor 2 (HER2) overexpression, or being triple-negative for ER-α, progesterone receptor, and HER2 (TNBC). The ER-α positive and HER2 overexpressing tumors can be treated with agents targeting these proteins, including tamoxifen and pertuzumab, respectively. Despite these treatments, resistance and metastasis are problematic, while TNBC is challenging to treat due to the lack of suitable targets. Many studies examining BC and other tumors indicate a role for N-myc downstream-regulated gene-1 (NDRG1) as a metastasis suppressor. The ability of NDRG1 to inhibit metastasis is due, in part, to the inhibition of the initial step in metastasis, namely the epithelial-to-mesenchymal transition. Paradoxically, there are also reports of NDRG1 playing a pro-oncogenic role in BC pathogenesis. The oncogenic effects of NDRG1 in BC have been reported to relate to lipid metabolism or the mTOR signaling pathway. The molecular mechanism(s) of how NDRG1 regulates the activity of multiple signaling pathways remains unclear. Therapeutic strategies that up-regulate NDRG1 have been developed and include agents of the di-2-pyridylketone thiosemicarbazone class. These compounds target oncogenic drivers in BC cells, suppressing the expression of multiple key hormone receptors including ER-α, progesterone receptor, androgen receptor, and prolactin receptor, and can also overcome tamoxifen resistance. Considering the varying role of NDRG1 in BC pathogenesis, further studies are required to examine what subset of BC patients would benefit from pharmacopeia that up-regulate NDRG1.
Collapse
Affiliation(s)
- Xiao Zhao
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
22
|
Hong Z, Cao J, Liu D, Liu M, Chen M, Zeng F, Qin Z, Wang J, Tao T. Celastrol targeting Nedd4 reduces Nrf2-mediated oxidative stress in astrocytes after ischemic stroke. J Pharm Anal 2023; 13:156-169. [PMID: 36908855 PMCID: PMC9999302 DOI: 10.1016/j.jpha.2022.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/13/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Stroke is the second leading cause of death worldwide, and oxidative stress plays a crucial role. Celastrol exhibits strong antioxidant properties in several diseases; however, whether it can affect oxidation in cerebral ischemic-reperfusion injury (CIRI) remains unclear. This study aimed to determine whether celastrol could reduce oxidative damage during CIRI and to elucidate the underlying mechanisms. Here, we found that celastrol attenuated oxidative injury in CIRI by upregulating nuclear factor E2-related factor 2 (Nrf2). Using alkynyl-tagged celastrol and liquid chromatography-tandem mass spectrometry, we showed that celastrol directly bound to neuronally expressed developmentally downregulated 4 (Nedd4) and then released Nrf2 from Nedd4 in astrocytes. Nedd4 promoted the degradation of Nrf2 through K48-linked ubiquitination and thus contributed to astrocytic reactive oxygen species production in CIRI, which was significantly blocked by celastrol. Furthermore, by inhibiting oxidative stress and astrocyte activation, celastrol effectively rescued neurons from axon damage and apoptosis. Our study uncovered Nedd4 as a direct target of celastrol, and that celastrol exerts an antioxidative effect on astrocytes by inhibiting the interaction between Nedd4 and Nrf2 and reducing Nrf2 degradation in CIRI.
Collapse
Affiliation(s)
- Zexuan Hong
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, 524045, China
| | - Jun Cao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Dandan Liu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Maozhu Liu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Mengyuan Chen
- Department of Pharmacy, Xi'an Daxing Hospital, Xi'an, 710000, China
| | - Fanning Zeng
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zaisheng Qin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jigang Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tao Tao
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, 524045, China
| |
Collapse
|
23
|
E3 Ubiquitin Ligase NEDD4 Affects Estrogen Receptor α Expression and the Prognosis of Patients with Hormone Receptor-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15020539. [PMID: 36672488 PMCID: PMC9857178 DOI: 10.3390/cancers15020539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Neural precursor cell-expressed developmentally downregulated 4-1 (NEDD4) is an E3 ligase that leads to the degradation of proteins, including estrogen receptor α. We evaluated whether the expression level of NEDD4 affected the outcome of breast cancer patients. We performed a retrospective cohort study enrolling 143 patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative early breast cancer. Of the 66 patients with high NEDD4 mRNA levels (high NEDD4 group) and 77 patients with low NEDD4 mRNA levels (low NEDD4 group), 98.4% and 96.1%, respectively, of the patients had received neoadjuvant/adjuvant hormone therapy. Disease-free survival and overall survival were significantly longer in the low NEDD4 group than in the high NEDD4 group (p = 0.048 and p = 0.022, respectively). Western blotting revealed a high expression of estrogen receptor α in the NEDD4-knockdown culture cells. The proliferation of NEDD4-knockdown cells treated with tamoxifen or estradiol deprivation was suppressed, compared with that of NEDD4-expressing cells. Knockdown of NEDD4 in breast cancer cells induced the accumulation of estrogen receptor α and increased sensitivity to hormone therapy. In summary, this mechanism may lead to a better prognosis in hormone receptor-positive breast cancer patients with a low expression of NEDD4.
Collapse
|
24
|
Xia H, Hu H, Wang Z, Xia L, Chen W, Long M, Gan Z, Fan H, Yu D, Lu Y. Molecular cloning, expression analysis and functional characterization of NEDD4 from Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2022; 131:257-263. [PMID: 36183983 DOI: 10.1016/j.fsi.2022.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Neural precursor cell-expressed developmentally downregulated gene 4 (NEDD4) was a member of HECT E3 ubiquitin ligases, which participated in various biological processes. In this study, a NEDD4 was identified and analyzed in Nile tilapia, Oreochromis niloticus (OnNEDD4) and its open reading frame was 2781 bp, encoding 926 amino acids. Three conserved structure features were found in OnNEDD4, including C2 domain, WW domains and HECT domain. OnNEDD4 was constitutively expressed in all examined tissues and the highest expression level was observed in thymus. After Streptococcus agalactiae stimulation, OnNEDD4 was significantly induced in several tissues, including thymus, intestine, blood and gill. Moreover, yeast two-hybrid assay shown OnNEDD4 could interact with extracellular region of OnCD40, but this interaction didn't affect the phagocytosis of monocytes/macrophages (MO/MΦ) to S. agalactiae and A. hydrophila. Taken together, the present study suggested that OnNEDD4 participate in CD40-mediated immune response excluding phagocytosis.
Collapse
Affiliation(s)
- Hongli Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Huiling Hu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhiwen Wang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Liqun Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Wenjie Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Meng Long
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Zhen Gan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Huimin Fan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Dapeng Yu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
25
|
González B, Cullen PJ. Regulation of Cdc42 protein turnover modulates the filamentous growth MAPK pathway. J Cell Biol 2022; 221:213675. [PMID: 36350310 PMCID: PMC9811999 DOI: 10.1083/jcb.202112100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/25/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022] Open
Abstract
Rho GTPases are central regulators of cell polarity and signaling. How Rho GTPases are directed to function in certain settings remains unclear. Here, we show the protein levels of the yeast Rho GTPase Cdc42p are regulated, which impacts a subset of its biological functions. Specifically, the active conformation of Cdc42p was ubiquitinated by the NEDD4 ubiquitin ligase Rsp5p and HSP40/HSP70 chaperones and turned over in the proteasome. A GTP-locked (Q61L) turnover-defective (TD) version, Cdc42pQ61L+TD, hyperactivated the MAPK pathway that regulates filamentous growth (fMAPK). Cdc42pQ61L+TD did not influence the activity of the mating pathway, which shares components with the fMAPK pathway. The fMAPK pathway adaptor, Bem4p, stabilized Cdc42p levels, which resulted in elevated fMAPK pathway signaling. Our results identify Cdc42p turnover regulation as being critical for the regulation of a MAPK pathway. The control of Rho GTPase levels by stabilization and turnover may be a general feature of signaling pathway regulation, which can result in the execution of a specific developmental program.
Collapse
Affiliation(s)
- Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY
| | - Paul J. Cullen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY,Correspondence to Paul J. Cullen:
| |
Collapse
|
26
|
Jayaprakash S, Hegde M, BharathwajChetty B, Girisa S, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Unraveling the Potential Role of NEDD4-like E3 Ligases in Cancer. Int J Mol Sci 2022; 23:ijms232012380. [PMID: 36293239 PMCID: PMC9604169 DOI: 10.3390/ijms232012380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is a deadly disease worldwide, with an anticipated 19.3 million new cases and 10.0 million deaths occurring in 2020 according to GLOBOCAN 2020. It is well established that carcinogenesis and cancer development are strongly linked to genetic changes and post-translational modifications (PTMs). An important PTM process, ubiquitination, regulates every aspect of cellular activity, and the crucial enzymes in the ubiquitination process are E3 ubiquitin ligases (E3s) that affect substrate specificity and must therefore be carefully regulated. A surfeit of studies suggests that, among the E3 ubiquitin ligases, neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4)/NEDD4-like E3 ligases show key functions in cellular processes by controlling subsequent protein degradation and substrate ubiquitination. In addition, it was demonstrated that NEDD4 mainly acts as an oncogene in various cancers, but also plays a tumor-suppressive role in some cancers. In this review, to comprehend the proper function of NEDD4 in cancer development, we summarize its function, both its tumor-suppressive and oncogenic role, in multiple types of malignancies. Moreover, we briefly explain the role of NEDD4 in carcinogenesis and progression, including cell survival, cell proliferation, autophagy, cell migration, invasion, metastasis, epithelial-mesenchymal transition (EMT), chemoresistance, and multiple signaling pathways. In addition, we briefly explain the significance of NEDD4 as a possible target for cancer treatment. Therefore, we conclude that targeting NEDD4 as a therapeutic method for treating human tumors could be a practical possibility.
Collapse
Affiliation(s)
- Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
- Correspondence: (G.S.); (A.B.K.)
| |
Collapse
|
27
|
Sun F, Sun Y, Zhu J, Wang X, Ji C, Zhang J, Chen S, Yu Y, Xu W, Qian H. Mesenchymal stem cells-derived small extracellular vesicles alleviate diabetic retinopathy by delivering NEDD4. Stem Cell Res Ther 2022; 13:293. [PMID: 35841055 PMCID: PMC9284871 DOI: 10.1186/s13287-022-02983-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/29/2022] [Indexed: 01/08/2023] Open
Abstract
Background As a leading cause of vision decline and severe blindness in adults, diabetic retinopathy (DR) is characterized by the aggravation of retinal oxidative stress and apoptosis in the early stage. Emerging studies reveal that mesenchymal stem cells-derived small extracellular vesicles (MSC-sEV) treatment represents a promising cell-free approach to alleviate ocular disorders. However, the repairing effects of MSC-sEV in DR remain largely unclear. This study aimed at exploring the role and the underlying mechanism of MSC-sEV in hyperglycemia-induced retinal degeneration. Methods In vivo, we used streptozotocin (STZ) to establish diabetic rat model, followed by the intravitreal injection of MSC-sEV to determine the curative effect. The cell viability and antioxidant capacity of retinal pigment epithelium (RPE) cells stimulated with high-glucose (HG) medium after MSC-sEV treatment were analyzed in vitro. By detecting the response of cell signaling pathways in MSC-sEV-treated RPE cells, we explored the functional mechanism of MSC-sEV. Mass spectrometry was performed to reveal the bioactive protein which mediated the role of MSC-sEV. Results The intravitreal injection of MSC-sEV elicited antioxidant effects and counteracted retinal apoptosis in STZ-induced DR rat model. MSC-sEV treatment also reduced the oxidative level and enhanced the proliferation ability of RPE cells cultured in HG conditions in vitro. Further studies showed that the increased level of phosphatase and tensin homolog (PTEN) inhibited AKT phosphorylation and nuclear factor erythroid 2-related factor 2 (NRF2) expression in RPE cells stimulated with HG medium, which could be reversed by MSC-sEV intervention. Through mass spectrometry, we illustrated that MSC-sEV-delivered neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4) could cause PTEN ubiquitination and degradation, activate AKT signaling and upregulate NRF2 level to prevent DR progress. Moreover, NEDD4 knockdown impaired MSC-sEV-mediated retinal therapeutic effects. Conclusions Our findings indicated that MSC-sEV ameliorated DR through NEDD4-induced regulation on PTEN/AKT/NRF2 signaling pathway, thus revealing the efficiency and mechanism of MSC-sEV-based retinal protection and providing new insights into the treatment of DR. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02983-0.
Collapse
Affiliation(s)
- Fengtian Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuntong Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Junyan Zhu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiaoling Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shenyuan Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yifan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
28
|
Castillo F, Corbi-Verge C, Murciano-Calles J, Candel AM, Han Z, Iglesias-Bexiga M, Ruiz-Sanz J, Kim PM, Harty RN, Martinez JC, Luque I. Phage display identification of nanomolar ligands for human NEDD4-WW3: Energetic and dynamic implications for the development of broad-spectrum antivirals. Int J Biol Macromol 2022; 207:308-323. [PMID: 35257734 DOI: 10.1016/j.ijbiomac.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Abstract
The recognition of PPxY viral Late domains by the third WW domain of the human HECT-E3 ubiquitin ligase NEDD4 (NEDD4-WW3) is essential for the budding of many viruses. Blocking these interactions is a promising strategy to develop broad-spectrum antivirals. As all WW domains, NEDD4-WW3 is a challenging therapeutic target due to the low binding affinity of its natural interactions, its high conformational plasticity, and its complex thermodynamic behavior. In this work, we set out to investigate whether high affinity can be achieved for monovalent ligands binding to the isolated NEDD4-WW3 domain. We show that a competitive phage-display set-up allows for the identification of high-affinity peptides showing inhibitory activity of viral budding. A detailed biophysical study combining calorimetry, nuclear magnetic resonance, and molecular dynamic simulations reveals that the improvement in binding affinity does not arise from the establishment of new interactions with the domain, but is associated to conformational restrictions imposed by a novel C-terminal -LFP motif in the ligand, unprecedented in the PPxY interactome. These results, which highlight the complexity of WW domain interactions, provide valuable insight into the key elements for high binding affinity, of interest to guide virtual screening campaigns for the identification of novel therapeutics targeting NEDD4-WW3 interactions.
Collapse
Affiliation(s)
- Francisco Castillo
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Carles Corbi-Verge
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain; Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics & Department of Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Javier Murciano-Calles
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Adela M Candel
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Ziying Han
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Philadelphia, PA 19104, USA
| | - Manuel Iglesias-Bexiga
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Javier Ruiz-Sanz
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Philip M Kim
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics & Department of Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Philadelphia, PA 19104, USA
| | - Jose C Martinez
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Irene Luque
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain.
| |
Collapse
|
29
|
Wang K, Liu J, Li YL, Li JP, Zhang R. Ubiquitination/de-ubiquitination: A promising therapeutic target for PTEN reactivation in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188723. [DOI: 10.1016/j.bbcan.2022.188723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023]
|
30
|
Shao Y, Jiang Z, He D, Shen J. NEDD4 attenuates phosgene-induced acute lung injury through the inhibition of Notch1 activation. J Cell Mol Med 2022; 26:2831-2840. [PMID: 35355403 PMCID: PMC9097839 DOI: 10.1111/jcmm.17296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 11/28/2022] Open
Abstract
Phosgene gas leakage can cause life-threatening acute lung injury (ALI), which is characterized by inflammation, increased vascular permeability, pulmonary oedema and oxidative stress. Although the downregulation of neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4) is known to be associated with inflammation and oxidative damage, its functions in phosgene-induced ALI remain unclear. In this study, rats with phosgene-induced ALI were intravenously injected with NEDD4-overexpressing lentiviruses to determine the functions of NEDD4 in this inflammatory condition. NEDD4 expression was decreased in the lung parenchyma of phosgene-exposed control rats, whereas its expression level was high in the NEDD4-overexpressing rats. Phosgene exposure increased the wet-to-dry lung weight ratio, but NEDD4 abrogated this effect. NEDD4 overexpression attenuated phosgene-induced lung inflammation, lowering the high lung injury score (based on total protein, inflammatory cells and inflammatory factors in bronchoalveolar lavage fluid) and also reduced phosgene-induced oxidative stress and cell apoptosis. Finally, NEDD4 was found to interact with Notch1, enhancing its ubiquitination and thereby its degradation, thus attenuating the inflammatory responses to ALI. Therefore, we demonstrated that NEDD4 plays a protective role in alleviating phosgene-induced ALI, suggesting that enhancing the effect of NEDD4 may be a new approach for treating phosgene-induced ALI.
Collapse
Affiliation(s)
- Yiru Shao
- Center of Emergency & Intensive Care UnitJinshan HospitalFudan UniversityShanghaiChina
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health CommissionShanghaiChina
- Medical Research Center for Chemical Injury, Emergency and Critical Care of Chemical InjuryJinshan HospitalFudan UniversityShanghaiChina
| | - Zhifeng Jiang
- Center of Emergency & Intensive Care UnitJinshan HospitalFudan UniversityShanghaiChina
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health CommissionShanghaiChina
- Medical Research Center for Chemical Injury, Emergency and Critical Care of Chemical InjuryJinshan HospitalFudan UniversityShanghaiChina
| | - Daikun He
- Center of Emergency & Intensive Care UnitJinshan HospitalFudan UniversityShanghaiChina
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health CommissionShanghaiChina
- Medical Research Center for Chemical Injury, Emergency and Critical Care of Chemical InjuryJinshan HospitalFudan UniversityShanghaiChina
| | - Jie Shen
- Center of Emergency & Intensive Care UnitJinshan HospitalFudan UniversityShanghaiChina
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health CommissionShanghaiChina
- Medical Research Center for Chemical Injury, Emergency and Critical Care of Chemical InjuryJinshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
31
|
Research progress of Nedd4L in cardiovascular diseases. Cell Death Dis 2022; 8:206. [PMID: 35429991 PMCID: PMC9013375 DOI: 10.1038/s41420-022-01017-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Post-translational modifications (PTMs) are a covalent processing process of proteins after translation. Proteins are capable of playing their roles only after being modified, so as to maintain the normal physiological function of cells. As a key modification of protein post-translational modification, ubiquitination is an essential element, which forms an enzyme-linked reaction through ubiquitin-activating enzyme, ubiquitin binding enzyme, and ubiquitin ligase, aiming to regulate the expression level and function of cellular proteins. Nedd4 family is the largest group of ubiquitin ligases, including 9 members, such as Nedd4-1, Nedd4L (Nedd4-2), WWP1, WWP2, ITCH, etc. They could bind to substrate proteins through their WW domain and play a dominant role in the ubiquitination process, and then participate in various pathophysiological processes of cardiovascular diseases (such as hypertension, myocardial hypertrophy, heart failure, etc.). At present, the role of Nedd4L in the cardiovascular field is not fully understood. This review aims to summarize the progress and mechanism of Nedd4L in cardiovascular diseases, and provide potential perspective for the clinical treatment or prevention of related cardiovascular diseases by targeting Nedd4L.
Collapse
|
32
|
Aisenberg WH, McCray BA, Sullivan JM, Diehl E, DeVine LR, Alevy J, Bagnell AM, Carr P, Donohue JK, Goretzki B, Cole RN, Hellmich UA, Sumner CJ. Multiubiquitination of TRPV4 reduces channel activity independent of surface localization. J Biol Chem 2022; 298:101826. [PMID: 35300980 PMCID: PMC9010760 DOI: 10.1016/j.jbc.2022.101826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin (Ub)-mediated regulation of plasmalemmal ion channel activity canonically occurs via stimulation of endocytosis. Whether ubiquitination can modulate channel activity by alternative mechanisms remains unknown. Here, we show that the transient receptor potential vanilloid 4 (TRPV4) cation channel is multiubiquitinated within its cytosolic N-terminal and C-terminal intrinsically disordered regions (IDRs). Mutagenizing select lysine residues to block ubiquitination of the N-terminal but not C-terminal IDR resulted in a marked elevation of TRPV4-mediated intracellular calcium influx, without increasing cell surface expression levels. Conversely, enhancing TRPV4 ubiquitination via expression of an E3 Ub ligase reduced TRPV4 channel activity but did not decrease plasma membrane abundance. These results demonstrate Ub-dependent regulation of TRPV4 channel function independent of effects on plasma membrane localization. Consistent with ubiquitination playing a key negative modulatory role of the channel, gain-of-function neuropathy-causing mutations in the TRPV4 gene led to reduced channel ubiquitination in both cellular and Drosophila models of TRPV4 neuropathy, whereas increasing mutant TRPV4 ubiquitination partially suppressed channel overactivity. Together, these data reveal a novel mechanism via which ubiquitination of an intracellular flexible IDR domain modulates ion channel function independently of endocytic trafficking and identify a contributory role for this pathway in the dysregulation of TRPV4 channel activity by neuropathy-causing mutations.
Collapse
Affiliation(s)
- William H Aisenberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brett A McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy M Sullivan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erika Diehl
- Department of Chemistry, Biochemistry Section, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Lauren R DeVine
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathan Alevy
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anna M Bagnell
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Patrice Carr
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jack K Donohue
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Benedikt Goretzki
- Institute of Organic Chemistry and Macromolecular Chemistry, Cluster of Excellence 'Balance of the Microverse', Friedrich-Schiller-Universität, Jena, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, Frankfurt am Main, Germany
| | - Robert N Cole
- Institute of Organic Chemistry and Macromolecular Chemistry, Cluster of Excellence 'Balance of the Microverse', Friedrich-Schiller-Universität, Jena, Germany
| | - Ute A Hellmich
- Institute of Organic Chemistry and Macromolecular Chemistry, Cluster of Excellence 'Balance of the Microverse', Friedrich-Schiller-Universität, Jena, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, Frankfurt am Main, Germany
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
33
|
Wang T, Woodman P, Humphrey SJ, Petersen J. Environmental control of Pub1 (NEDD4 family E3 ligase) in Schizosaccharomyces pombe is regulated by TORC2 and Gsk3. Life Sci Alliance 2022; 5:5/5/e202101082. [PMID: 35121625 PMCID: PMC8817228 DOI: 10.26508/lsa.202101082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
The NEDD4 family E3 ligase Pub1 is regulated by the nutrient environment, TORC2, and Gsk3 signalling pathway to control the level of amino acid transporters on the plasma membrane and thus nutrient uptake. Cells respond to changing nutrient environments by adjusting the abundance of surface nutrient transporters and receptors. This can be achieved by modulating ubiquitin-dependent endocytosis, which in part is regulated by the NEDD4 family of E3 ligases. Here we report novel regulation of Pub1, a fission yeast Schizosaccharomyces pombe member of the NEDD4-family of E3 ligases. We show that nitrogen stress inhibits Pub1 function, thereby increasing the abundance of the amino acid transporter Aat1 at the plasma membrane and enhancing sensitivity to the toxic arginine analogue canavanine. We show that TOR complex 2 (TORC2) signalling negatively regulates Pub1, thus TORC2 mutants under nutrient stress have decreased Aat1 at the plasma membrane and are resistant to canavanine. Inhibition of TORC2 signalling increases Pub1 phosphorylation, and this is dependent on Gsk3 activity. Addition of the Tor inhibitor Torin1 increases phosphorylation of Pub1 at serine 199 (S199) by 2.5-fold, and Pub1 protein levels in S199A phospho-ablated mutants are reduced. S199 is conserved in NEDD4 and is located immediately upstream of a WW domain required for protein interaction. Together, we describe how the major TORC2 nutrient-sensing signalling network regulates environmental control of Pub1 to modulate the abundance of nutrient transporters.
Collapse
Affiliation(s)
- Tingting Wang
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, Australia
| | - Philip Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Australia
| | - Janni Petersen
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, Australia
| |
Collapse
|
34
|
Viral Proteins with PxxP and PY Motifs May Play a Role in Multiple Sclerosis. Viruses 2022; 14:v14020281. [PMID: 35215874 PMCID: PMC8879583 DOI: 10.3390/v14020281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a debilitating disease that arises from immune system attacks to the protective myelin sheath that covers nerve fibers and ensures optimal communication between brain and body. Although the cause of MS is unknown, a number of factors, which include viruses, have been identified as increasing the risk of displaying MS symptoms. Specifically, the ubiquitous and highly prevalent Epstein–Barr virus, human herpesvirus 6, cytomegalovirus, varicella–zoster virus, and other viruses have been identified as potential triggering agents. In this review, we examine the specific role of proline-rich proteins encoded by these viruses and their potential role in MS at a molecular level.
Collapse
|
35
|
The Ubiquitin E3 Ligase Nedd4 Regulates the Expression and Amyloid-β Peptide Export Activity of P-Glycoprotein. Int J Mol Sci 2022; 23:ijms23031019. [PMID: 35162941 PMCID: PMC8834788 DOI: 10.3390/ijms23031019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
The ATP-binding cassette transporter, P-glycoprotein (P-gp), has been demonstrated to facilitate the clearance of amyloid-beta (Aβ) peptides, exporting the neurotoxic entity out of neurons and out of the brain via the blood–brain barrier. However, its expression and function diminish with age and in Alzheimer’s disease. P-gp is known to undergo ubiquitination, a post-translational modification that results in internalisation and/or degradation of the protein. NEDD4-1 is a ubiquitin E3 ligase that has previously been shown to ubiquitinate P-gp and reduce its cell surface expression. However, whether this effect translates into altered P-gp activity remains to be determined. siRNA was used to knockdown the expression of Nedd4 in CHO-APP cells. Western blot analysis confirmed that absence of Nedd4 was associated with increased P-gp protein expression. This was accompanied by increased transport activity, as shown by export of the P-gp substrate calcein-AM, as well as enhanced secretion of Aβ peptides, as shown by ELISA. These results implicate Nedd4 in the regulation of P-gp, and highlight a potential approach for restoring or augmenting P-gp expression and function to facilitate Aβ clearance from the brain.
Collapse
|
36
|
Sun A, Zhu J, Xia S, Li Y, Wu T, Shao G, Yang W, Lin Q. MEKK5 Interacts with and Negatively Regulates the E3 Ubiquitin Ligase NEDD4 for Mediating Lung Cancer Cell Migration. Life (Basel) 2021; 11:life11111153. [PMID: 34833029 PMCID: PMC8620495 DOI: 10.3390/life11111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Our previous studies have shown that the HECT E3 ubiquitin ligase NEDD4 and kinase MEKK5 both play an essential role in lung cancer migration. A report predicts that MEKK5 may be ubiquitinated by NEDD4; however, interaction of MEKK5 with NEDD4 and ubiquitination of MEKK5 by NEDD4 have not been characterized. In this report, we show that NEDD4 interacts with MEKK5 through a conserved WW3 domain by the co-immunoprecipitation and the GST-pulldown assays. The ubiquitination assay indicates that MEKK5 is not a ubiquitination substrate of NEDD4, but negatively regulates NEDD4-mediated ubiquitination. Furthermore, overexpression of MEKK5 significantly reduced the NEDD4-promoted lung cancer cell migration. Taken together, our studies have defined an inhibitory role of MEKK5 in regulation of NEDD4-mediated ubiquitination.
Collapse
|
37
|
Yan S, Ripamonti R, Kawabe H, Ben-Yehuda Greenwald M, Werner S. NEDD4-1 is a key regulator of epidermal homeostasis and wound repair. J Invest Dermatol 2021; 142:1703-1713.e11. [PMID: 34756879 DOI: 10.1016/j.jid.2021.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022]
Abstract
The ubiquitin ligase Nedd4-1 plays key roles in organ development, tissue homeostasis and cancer, but its functions in the skin are largely unknown. Here we show perturbations in keratinocyte proliferation and terminal differentiation, epidermal barrier function, and hair follicle cycling as well as increased UV-induced apoptosis in mice lacking Nedd4-1 in keratinocytes. In particular, re-epithelialization of full-thickness excisional wounds was delayed in the mutant mice. This was caused by severely impaired migration and proliferation of Nedd4-1-deficient keratinocytes. Therefore, a few keratinocytes, which had escaped recombination and expressed Nedd4-1, obtained a growth advantage and contributed to re-epithelialization. Mechanistically, Nedd4-1-deficient keratinocytes failed to efficiently activate the Erk1/2 mitogen-activated kinases and the YAP transcriptional co-activator. These results identify Nedd4-1 as an essential player in wound repair through its effect on mitogenic and motogenic signaling pathways in keratinocytes.
Collapse
Affiliation(s)
- Shen Yan
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Raphael Ripamonti
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; Department of Pharmacology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 317-8511, Japan
| | - Maya Ben-Yehuda Greenwald
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|
38
|
Implications of Phosphoinositide 3-Kinase-Akt (PI3K-Akt) Pathway in the Pathogenesis of Alzheimer's Disease. Mol Neurobiol 2021; 59:354-385. [PMID: 34699027 DOI: 10.1007/s12035-021-02611-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the foremost type of dementia that afflicts considerable morbidity and mortality in aged population. Several transcription molecules, pathways, and molecular mechanisms such as oxidative stress, inflammation, autophagy, and immune system interact in a multifaceted way that disrupt physiological processes (cell growth, differentiation, survival, lipid and energy metabolism, endocytosis) leading to apoptosis, tauopathy, β-amyloidopathy, neuron, and synapse loss, which play an important role in AD pathophysiology. Despite of stupendous advancements in pathogenic mechanisms, treatment of AD is still a nightmare in the field of medicine. There is compelling urgency to find not only symptomatic but effective disease-modifying therapies. Recently, phosphoinositide 3-kinase (PI3K) and Akt are identified as a pathway triggered by diverse stimuli, including insulin, growth factors, cytokines, and cellular stress, that link amyloid-β, neurofibrillary tangles, and brain atrophy. The present review aims to explore and analyze the role of PI3K-Akt pathway in AD and agents which may modulate Akt and have therapeutic prospects in AD. The literature was researched using keywords "PI3K-Akt" and "Alzheimer's disease" from PubMed, Web of Science, Bentham, Science Direct, Springer Nature, Scopus, and Google Scholar databases including books. Articles published from 1992 to 2021 were prioritized and analyzed for their strengths and limitations, and most appropriate ones were selected for the purpose of review. PI3K-Akt pathway regulates various biological processes such as cell proliferation, motility, growth, survival, and metabolic functions, and inhibits many neurotoxic mechanisms. Furthermore, experimental data indicate that PI3K-Akt signaling might be an important therapeutic target in treatment of AD.
Collapse
|
39
|
Predicting PY motif-mediated protein-protein interactions in the Nedd4 family of ubiquitin ligases. PLoS One 2021; 16:e0258315. [PMID: 34637467 PMCID: PMC8509885 DOI: 10.1371/journal.pone.0258315] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/23/2021] [Indexed: 01/07/2023] Open
Abstract
The Nedd4 family contains several structurally related but functionally distinct HECT-type ubiquitin ligases. The members of the Nedd4 family are known to recognize substrates through their multiple WW domains, which recognize PY motifs (PPxY, LPxY) or phospho-threonine or phospho-serine residues. To better understand protein interactor recognition mechanisms across the Nedd4 family, we report the development and implementation of a python-based tool, PxYFinder, to identify PY motifs in the primary sequences of previously identified interactors of Nedd4 and related ligases. Using PxYFinder, we find that, on average, half of Nedd4 family interactions are likely PY-motif mediated. Further, we find that PPxY motifs are more prevalent than LPxY motifs and are more likely to occur in proline-rich regions and that PPxY regions are more disordered on average relative to LPxY-containing regions. Informed by consensus sequences for PY motifs across the Nedd4 interactome, we rationally designed a focused peptide library and employed a computational screen, revealing sequence- and biomolecular interaction-dependent determinants of WW-domain/PY-motif interactions. Cumulatively, our efforts provide a new bioinformatic tool and expand our understanding of sequence and structural factors that contribute to PY-motif mediated interactor recognition across the Nedd4 family.
Collapse
|
40
|
Song Y, Song X, Zhang D, Yang Y, Wang L, Song L. An HECT domain ubiquitin ligase CgWWP1 regulates granulocytes proliferation in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104148. [PMID: 34097916 DOI: 10.1016/j.dci.2021.104148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Ubiquitination is involved in the regulation of granulocyte proliferation in vertebrate, and E3 ubiquitin ligase WWP1 has been reported to play an essential role in this process. In the present study, an HECT type E3 ubiquitin ligase (CgWWP1) was identified from oyster Crassostrea gigas, which contained a N-terminal C2 domain, four WW domains, and a C-terminal HECT domain. CgWWP1 was able to bind the activated ubiquitin (Ub) and formed CgWWP1-Ub complex in vitro. The mRNA transcripts of CgWWP1 were expressed in granulocytes, semi-granulocytes and agranulocytes, with the highest expression level in granulocytes. The expressions of potential granulocyte markers CgSOX11 (0.18-fold, p < 0.05) and CgAATase (0.2-fold, p < 0.01) in haemocytes were significantly down-regulated at 24 h after the treatment with Indole-3-carbinol (I3C), a WWP1 inhibitor. The proportions of EdU+ granulocytes reduced significantly at 12 h (8.1% ± 1.4%) and 24 h (9.7% ± 2.8%) after I3C treatment, which were significantly lower than that in the sterile seawater treatment (SW) group at 12 h (15.8% ± 4.2%) and 24 h (17.6% ± 0.8%), respectively. Meanwhile, the green EdU signals observed by confocal scanning microscopy in granulocytes of oysters treated by I3C became weaker compared to that in the SW group. These results indicated that CgWWP1 was involved in the regulation of granulocyte proliferation as a ubiquitin-protein ligase.
Collapse
Affiliation(s)
- Ying Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Dan Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Ying Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
41
|
Wang L, Sun X, He J, Liu Z. Functions and Molecular Mechanisms of Deltex Family Ubiquitin E3 Ligases in Development and Disease. Front Cell Dev Biol 2021; 9:706997. [PMID: 34513839 PMCID: PMC8424196 DOI: 10.3389/fcell.2021.706997] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination is a posttranslational modification of proteins that significantly affects protein stability and function. The specificity of substrate recognition is determined by ubiquitin E3 ligase during ubiquitination. Human Deltex (DTX) protein family, which functions as ubiquitin E3 ligases, comprises five members, namely, DTX1, DTX2, DTX3, DTX3L, and DTX4. The characteristics and functional diversity of the DTX family proteins have attracted significant attention over the last decade. DTX proteins have several physiological and pathological roles and are closely associated with cell signal transduction, growth, differentiation, and apoptosis, as well as the occurrence and development of various tumors. Although they have been extensively studied in various species, data on structural features, biological functions, and potential mechanisms of action of the DTX family proteins remain limited. In this review, recent research progress on each member of the DTX family is summarized, providing insights into future research directions and potential strategies in disease diagnosis and therapy.
Collapse
Affiliation(s)
- Lidong Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodan Sun
- Postdoctoral Research Workstation, Jilin Cancer Hospital, Changchun, China
| | - Jingni He
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
42
|
Park JS, Ma H, Roh YS. Ubiquitin pathways regulate the pathogenesis of chronic liver disease. Biochem Pharmacol 2021; 193:114764. [PMID: 34529948 DOI: 10.1016/j.bcp.2021.114764] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver disease (CLD) is considered the leading cause of global mortality. In westernized countries, increased consumption of alcohol and overeating foods with high fat/ high glucose promote progression of CLD such as alcoholic liver disease (ALD) and non-alcoholic liver disease (NAFLD). Accumulating evidence and research suggest that ubiquitin, a 75 amino acid protein, plays crucial role in the pathogenesis of CLD through dynamic post-translational modifications (PTMs) exerting diverse cellular outcomes such as protein degradation through ubiquitin-proteasome system (UPS) and autophagy, and regulation of signal transduction. In this review, we present the function of ubiquitination and latest findings on diverse mechanism of PTMs, UPS and autophagy which significantly contribute to the pathogenesis of alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), cirrhosis, and HCC. Despite its high prevalence, morbidity, and mortality, there are only few FDA approved drugs that could be administered to CLD patients. The goal of this review is to present a variety of pathways and therapeutic targets involving ubiquitination in the pathogenesis of CLD. Further, this review summarizes collective views of pharmaceutical inhibition or activation of recent drugs targeting UPS and autophagy system to highlight potential targets and new approaches to treat CLD.
Collapse
Affiliation(s)
- Jeong-Su Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea
| | - Hwan Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea.
| |
Collapse
|
43
|
Zhao H, Zhang J, Fu X, Mao D, Qi X, Liang S, Meng G, Song Z, Yang R, Guo Z, Tong B, Sun M, Zuo B, Li G. Integrated bioinformatics analysis of the NEDD4 family reveals a prognostic value of NEDD4L in clear-cell renal cell cancer. PeerJ 2021; 9:e11880. [PMID: 34458018 PMCID: PMC8378337 DOI: 10.7717/peerj.11880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
The members of the Nedd4-like E3 family participate in various biological processes. However, their role in clear cell renal cell carcinoma (ccRCC) is not clear. This study systematically analyzed the Nedd4-like E3 family members in ccRCC data sets from multiple publicly available databases. NEDD4L was identified as the only NEDD4 family member differentially expressed in ccRCC compared with normal samples. Bioinformatics tools were used to characterize the function of NEDD4L in ccRCC. It indicated that NEDD4L might regulate cellular energy metabolism by co-expression analysis, and subsequent gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. A prognostic model developed by the LASSO Cox regression method showed a relatively good predictive value in training and testing data sets. The result revealed that NEDD4L was associated with biosynthesis and metabolism of ccRCC. Since NEDD4L is downregulated and dysregulation of metabolism is involved in tumor progression, NEDD4L might be a potential therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, China.,Department of Urology, China Rehabilitation Research Centre, Rehabilitation School of Capital Medical University, Beijing, China
| | - Junjun Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoliang Fu
- Department of Urology, The Second Affiliated Hospital of Air Force Medical University, Xian, China
| | - Dongdong Mao
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xuesen Qi
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Shuai Liang
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Gang Meng
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ru Yang
- Henan Key Laboratory of Neurorestoratology, The First Affliated Hospital of Xinxiang Medical University, Weihui, China
| | - Zhenni Guo
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Binghua Tong
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Meiqing Sun
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Baile Zuo
- Tumor Molecular Immunology and Immunotherapy Laboratory, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Guoyin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
44
|
Koshizuka T, Kondo H, Kato H, Takahashi K. Human cytomegalovirus UL42 protein inhibits the degradation of glycoprotein B through inhibition of Nedd4 family ubiquitin E3 ligases. Microbiol Immunol 2021; 65:472-480. [PMID: 34260096 DOI: 10.1111/1348-0421.12932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022]
Abstract
Human cytomegalovirus (HCMV) is a globally ubiquitous pathogen and causes congenital infection as well as opportunistic infection in immunocompromised patients. The HCMV UL42 gene encodes a membrane protein that regulates the function of Nedd4 family ubiquitin E3 ligases through its PPxY motif. As HCMV envelope glycoprotein B (gB) also has a PPxY motif at its C-terminal cytoplasmic domain, we examined whether there was any relationship between UL42 protein with gB. Among the Nedd4 family proteins, Nedd4, Nedd4L, and Itch induced the degradation of gB in transiently expressing cells. The degradation of gB by Nedd4 was inhibited by proteasome inhibitor MG132, lysosome inhibitor chloroquine, and the co-expression of UL42 proteins. Among those Nedd4 family proteins, Itch was re-localized by the co-expression of gB to the perinuclear region of the cytoplasm. A co-immunoprecipitation assay demonstrated an interaction between gB and Itch through its PPxY motif. The 150 kDa gB precursor was aberrantly ubiquitinated, and the total amount of gB was quickly decreased in the absence of UL42. Our results indicate that UL42 prevent the degradation of gB by the inhibition of Nedd4 family proteins. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tetsuo Koshizuka
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroki Kondo
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroki Kato
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Keita Takahashi
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
45
|
The emerging role of WWP1 in cancer development and progression. Cell Death Discov 2021; 7:163. [PMID: 34226507 PMCID: PMC8257788 DOI: 10.1038/s41420-021-00532-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/08/2021] [Accepted: 05/23/2021] [Indexed: 12/16/2022] Open
Abstract
Emerging evidence demonstrates that WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) participates into carcinogenesis and tumor progression. In this review article, we will describe the association between dysregulated WWP1 expression and clinical features of cancer patients. Moreover, we summarize the both oncogenic and tumor suppressive functions of WWP1 in a variety of human cancers. Furthermore, we briefly describe the downstream substrates of WWP1 and its upstream factors to regulate the expression of WWP1. Notably, targeting WWP1 by its inhibitors or natural compounds is potentially useful for treating human malignancies. Finally, we provide the perspectives regarding WWP1 in cancer development and therapies. We hope this review can stimulate the research to improve our understanding of WWP1-mediated tumorigenesis and accelerate the discovery of novel therapeutic strategies via targeting WWP1 expression in cancers.
Collapse
|
46
|
Rooj AK, Cormet-Boyaka E, Clark EB, Qadri YJ, Lee W, Boddu R, Agarwal A, Tambi R, Uddin M, Parpura V, Sorscher EJ, Fuller CM, Berdiev BK. Association of cystic fibrosis transmembrane conductance regulator with epithelial sodium channel subunits carrying Liddle's syndrome mutations. Am J Physiol Lung Cell Mol Physiol 2021; 321:L308-L320. [PMID: 34037494 DOI: 10.1152/ajplung.00298.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The association of the cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC) in the pathophysiology of cystic fibrosis (CF) is controversial. Previously, we demonstrated a close physical association between wild-type (WT) CFTR and WT ENaC. We have also shown that the F508del CFTR fails to associate with ENaC unless the mutant protein is rescued pharmacologically or by low temperature. In this study, we present the evidence for a direct physical association between WT CFTR and ENaC subunits carrying Liddle's syndrome mutations. We show that all three ENaC subunits bearing Liddle's syndrome mutations (both point mutations and the complete truncation of the carboxy terminus), could be coimmunoprecipitated with WT CFTR. The biochemical studies were complemented by fluorescence lifetime imaging microscopy (FLIM), a distance-dependent approach that monitors protein-protein interactions between fluorescently labeled molecules. Our measurements revealed significantly increased fluorescence resonance energy transfer between CFTR and all tested ENaC combinations as compared with controls (ECFP and EYFP cotransfected cells). Our findings are consistent with the notion that CFTR and ENaC are within reach of each other even in the setting of Liddle's syndrome mutations, suggestive of a direct intermolecular interaction between these two proteins.
Collapse
Affiliation(s)
- Arun K Rooj
- Department of Cell, Developmental & Integrative Biology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | | | - Edlira B Clark
- Department of Cell, Developmental & Integrative Biology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Yawar J Qadri
- Department of Anesthesiology, The Emory University School of Medicine, Atlanta, Georgia
| | - William Lee
- Department of Neurobiology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Ravindra Boddu
- Department of Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Anupam Agarwal
- Department of Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Richa Tambi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Eric J Sorscher
- Department of Pediatrics, The Emory University School of Medicine, Atlanta, Georgia
| | - Cathy M Fuller
- Department of Cell, Developmental & Integrative Biology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Bakhrom K Berdiev
- Department of Cell, Developmental & Integrative Biology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
47
|
Kim T, Chokkalla AK, Vemuganti R. Deletion of ubiquitin ligase Nedd4l exacerbates ischemic brain damage. J Cereb Blood Flow Metab 2021; 41:1058-1066. [PMID: 32703111 PMCID: PMC8054722 DOI: 10.1177/0271678x20943804] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ubiquitination by Nedd4 (neuronally expressed developmentally downregulated 4) family of HECT type E3 ligases plays a key role in degrading misfolded and damaged proteins, and its disruption leads to neurodegeneration. Parkinson's disease-causing protein α-Synuclein (α-Syn) is ubiquitinated by the Nedd4 family and degraded by endosomes. Nedd4l is the only Nedd4 homolog that showed upregulation in post-stroke surviving cortical neurons where it correlated with neuroprotection. We tested the role of Nedd4l after stroke by subjecting the Nedd4l-/- mice to transient middle cerebral artery occlusion. Focal ischemia significantly increased Nedd4l expression and poly-ubiquitinated α-Syn levels, and knockout of Nedd4l reduced post-ischemic poly-ubiquitinated α-Syn that is majorly located in the peri-infarct neurons. Co-immunoprecipitation further shows that focal ischemia enhances the α-Syn-Nedd4l interaction resulting in increased ubiquitination of α-Syn. Nedd4l knockout mice (n = 7 mice/group) showed exacerbated post-ischemic motor dysfunction manifested by decreased time on the rotarod and increased number of foot faults, and significantly increased ischemic brain damage. This suggests that Nedd4l might be a potential therapeutic target to minimize α-Syn-mediated toxicity after cerebral ischemia.
Collapse
Affiliation(s)
- TaeHee Kim
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,Cellular & Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,Cellular & Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA.,William S. Middleton VA Hospital, Madison, WI, USA
| |
Collapse
|
48
|
Rodrigues DC, Mufteev M, Weatheritt RJ, Djuric U, Ha KCH, Ross PJ, Wei W, Piekna A, Sartori MA, Byres L, Mok RSF, Zaslavsky K, Pasceri P, Diamandis P, Morris Q, Blencowe BJ, Ellis J. Shifts in Ribosome Engagement Impact Key Gene Sets in Neurodevelopment and Ubiquitination in Rett Syndrome. Cell Rep 2021; 30:4179-4196.e11. [PMID: 32209477 DOI: 10.1016/j.celrep.2020.02.107] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 12/30/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Regulation of translation during human development is poorly understood, and its dysregulation is associated with Rett syndrome (RTT). To discover shifts in mRNA ribosomal engagement (RE) during human neurodevelopment, we use parallel translating ribosome affinity purification sequencing (TRAP-seq) and RNA sequencing (RNA-seq) on control and RTT human induced pluripotent stem cells, neural progenitor cells, and cortical neurons. We find that 30% of transcribed genes are translationally regulated, including key gene sets (neurodevelopment, transcription and translation factors, and glycolysis). Approximately 35% of abundant intergenic long noncoding RNAs (lncRNAs) are ribosome engaged. Neurons translate mRNAs more efficiently and have longer 3' UTRs, and RE correlates with elements for RNA-binding proteins. RTT neurons have reduced global translation and compromised mTOR signaling, and >2,100 genes are translationally dysregulated. NEDD4L E3-ubiquitin ligase is translationally impaired, ubiquitinated protein levels are reduced, and protein targets accumulate in RTT neurons. Overall, the dynamic translatome in neurodevelopment is disturbed in RTT and provides insight into altered ubiquitination that may have therapeutic implications.
Collapse
Affiliation(s)
- Deivid C Rodrigues
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Marat Mufteev
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert J Weatheritt
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ugljesa Djuric
- Laboratory Medicine and Pathology Program, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Kevin C H Ha
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Vector Institute, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - P Joel Ross
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Wei Wei
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Alina Piekna
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Maria A Sartori
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Loryn Byres
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rebecca S F Mok
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kirill Zaslavsky
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Peter Pasceri
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Phedias Diamandis
- Laboratory Medicine and Pathology Program, University Health Network, Toronto, ON M5G 2C4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Pathology, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Quaid Morris
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Vector Institute, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Benjamin J Blencowe
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - James Ellis
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
49
|
Wan T, Lei Z, Tu B, Wang T, Wang J, Huang F. NEDD4 Induces K48-Linked Degradative Ubiquitination of Hepatitis B Virus X Protein and Inhibits HBV-Associated HCC Progression. Front Oncol 2021; 11:625169. [PMID: 33767993 PMCID: PMC7985090 DOI: 10.3389/fonc.2021.625169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/01/2021] [Indexed: 12/25/2022] Open
Abstract
Neural precursor cell expressed developmentally downregulated gene 4 (NEDD4) plays two opposite roles in carcinogenesis. It has been reported that NEDD4 inhibits hepatocellular carcinoma (HCC) progression; however, little is known about its potential function and molecular mechanism in HCC in the context of hepatitis B virus (HBV) infection. In this study, we analyzed NEDD4 expression in 199 HCC specimens with or without HBV infection and observed that NEDD4 expression was unrelated to HBV exposure in HCC tumor tissue but that high NEDD4 expression conferred better overall survival (OS) and progression-free survival (PFS) than low NEDD4 expression in patients with HBV-associated HCC. Upregulation of NEDD4 inhibited proliferation, migration and invasion in HBV-related HCC cell lines. We demonstrated that NEDD4 interacts with HBV X protein (HBx) and that HBx upregulation could reverse the suppression of proliferation and mobility induced by NEDD4 overexpression. Furthermore, we confirmed that NEDD4 induced the degradation of HBx in a ubiquitin/proteasome-dependent manner via K48-linked ubiquitination. Our findings suggest that NEDD4 exerts a tumor-suppressive effect in HBV-associated HCC by acting as an E3 ubiquitin ligase for HBx degradation and provide new insights into the function of NEDD4.
Collapse
Affiliation(s)
| | | | | | | | | | - Feizhou Huang
- Department of Hepatobiliary Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
50
|
González-Calvo I, Iyer K, Carquin M, Khayachi A, Giuliani FA, Sigoillot SM, Vincent J, Séveno M, Veleanu M, Tahraoui S, Albert M, Vigy O, Bosso-Lefèvre C, Nadjar Y, Dumoulin A, Triller A, Bessereau JL, Rondi-Reig L, Isope P, Selimi F. Sushi domain-containing protein 4 controls synaptic plasticity and motor learning. eLife 2021; 10:65712. [PMID: 33661101 PMCID: PMC7972451 DOI: 10.7554/elife.65712] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/03/2021] [Indexed: 01/28/2023] Open
Abstract
Fine control of protein stoichiometry at synapses underlies brain function and plasticity. How proteostasis is controlled independently for each type of synaptic protein in a synapse-specific and activity-dependent manner remains unclear. Here, we show that Susd4, a gene coding for a complement-related transmembrane protein, is expressed by many neuronal populations starting at the time of synapse formation. Constitutive loss-of-function of Susd4 in the mouse impairs motor coordination adaptation and learning, prevents long-term depression at cerebellar synapses, and leads to misregulation of activity-dependent AMPA receptor subunit GluA2 degradation. We identified several proteins with known roles in the regulation of AMPA receptor turnover, in particular ubiquitin ligases of the NEDD4 subfamily, as SUSD4 binding partners. Our findings shed light on the potential role of SUSD4 mutations in neurodevelopmental diseases.
Collapse
Affiliation(s)
- Inés González-Calvo
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, Université de Strasbourg, Strasbourg, France
| | - Keerthana Iyer
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Mélanie Carquin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Anouar Khayachi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Fernando A Giuliani
- Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, Université de Strasbourg, Strasbourg, France
| | - Séverine M Sigoillot
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Jean Vincent
- Institut Biology Paris Seine (IBPS), Neuroscience Paris Seine (NPS), CeZaMe, CNRS, Sorbonne University, INSERM, Paris, France
| | - Martial Séveno
- BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Maxime Veleanu
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Sylvana Tahraoui
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Mélanie Albert
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Oana Vigy
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Célia Bosso-Lefèvre
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Yann Nadjar
- École Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL Research University, Paris, France
| | - Andréa Dumoulin
- École Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL Research University, Paris, France
| | - Antoine Triller
- École Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL Research University, Paris, France
| | - Jean-Louis Bessereau
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut Neuromyogène, Lyon, France
| | - Laure Rondi-Reig
- Institut Biology Paris Seine (IBPS), Neuroscience Paris Seine (NPS), CeZaMe, CNRS, Sorbonne University, INSERM, Paris, France
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, Université de Strasbourg, Strasbourg, France
| | - Fekrije Selimi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|