1
|
Gioia G, Severgnini M, Cremonesi P, Castiglioni B, Freeman J, Sipka A, Santisteban C, Wieland M, Gallardo VA, Scott JG, Moroni P, Addis MF. Genomic Characterization of Mycoplasma arginini Isolated from a Housefly on a Dairy Farm and Comparison with Isolates from Bovine Milk and Lung Tissue. Microbiol Spectr 2023; 11:e0301022. [PMID: 37199649 PMCID: PMC10269790 DOI: 10.1128/spectrum.03010-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
Mycoplasma mastitis can be highly contagious, unresponsive to treatment, and cause severe economic problems in affected herds. Notable routes of Mycoplasma spp. transmissions are contaminated milking equipment and animal contact through respiratory secretions. Only a few studies report the environment as a possible source of infection. Our group studied the presence of pathogens in houseflies (Musca domestica) in a New York State dairy in the United States. Among others, a Mycoplasma spp. was found in the gut of a housefly captured in the sick pen and identified as M. arginini. Here, we characterized its genome and investigated its relatedness with eight isolates from milk, one isolate from lung tissue collected in the same dairy, and five other dairies in New York State. We applied whole-genome sequencing and phylogenetic analysis based on the sequences of the 16S rRNA gene and 76 conserved proteins. We also assessed an in silico virulence profile by considering a panel of 94 putative virulence genes. As a result of the genome analysis, the housefly M. arginini isolate was highly similar to the milk isolates; interestingly, the similarity was highest with M. arginini isolated from milk on the same dairy farm where the housefly was captured. The housefly and milk M. arginini isolates possessed 54 of the 94 pathogenicity genes considered. Our data support the hypothesis that houseflies are carriers of Mycoplasma spp. and can be considered within the possible roots of environmental transmission of infection in dairy cows. Nevertheless, M. arginini pathogenicity will need to be investigated with dedicated studies. IMPORTANCE It is critical to control the spread of bovine mastitis caused by Mycoplasma spp., as this disease can be highly contagious and have a severe economic impact on affected dairies. A better understanding of possible transmission routes is crucial for infection control and prevention. Based on our data, the composite milk isolates are genetically similar to the housefly isolate. This provides evidence that the same Mycoplasma species found in milk and associated with mastitis can also be isolated from houseflies captured in the dairy environment.
Collapse
Affiliation(s)
- G. Gioia
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
| | - M. Severgnini
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - P. Cremonesi
- Institute of Agricultural Biology and Biotechnology, National Research Council, Lodi, Italy
| | - B. Castiglioni
- Institute of Agricultural Biology and Biotechnology, National Research Council, Lodi, Italy
| | - J. Freeman
- Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - A. Sipka
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
| | - C. Santisteban
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
| | - M. Wieland
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
| | - V. Alanis Gallardo
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - J. G. Scott
- Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - P. Moroni
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Lodi, Italy
- Laboratorio di Malattie Infettive degli Animali-MiLab, University of Milan, Lodi, Italy
| | - M. F. Addis
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Lodi, Italy
- Laboratorio di Malattie Infettive degli Animali-MiLab, University of Milan, Lodi, Italy
| |
Collapse
|
2
|
Ras TA, Strauss E, Botes A. Evaluating the Genetic Capacity of Mycoplasmas for Coenzyme A Biosynthesis in a Search for New Anti-mycoplasma Targets. Front Microbiol 2021; 12:791756. [PMID: 34987490 PMCID: PMC8721197 DOI: 10.3389/fmicb.2021.791756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Mycoplasmas are responsible for a wide range of disease states in both humans and animals, in which their parasitic lifestyle has allowed them to reduce their genome sizes and curtail their biosynthetic capabilities. The subsequent dependence on their host offers a unique opportunity to explore pathways for obtaining and producing cofactors - such as coenzyme A (CoA) - as possible targets for the development of new anti-mycoplasma agents. CoA plays an essential role in energy and fatty acid metabolism and is required for membrane synthesis. However, our current lack of knowledge of the relevance and importance of the CoA biosynthesis pathway in mycoplasmas, and whether it could be bypassed within their pathogenic context, prevents further exploration of the potential of this pathway. In the universal, canonical CoA biosynthesis pathway, five enzymes are responsible for the production of CoA. Given the inconsistent presence of the genes that code for these enzymes across Mycoplasma genomes, this study set out to establish the genetic capacity of mycoplasmas to synthesize their own CoA de novo. Existing functional annotations and sequence, family, motif, and domain analysis of protein products were used to determine the existence of relevant genes in Mycoplasma genomes. We found that most Mycoplasma species do have the genetic capacity to synthesize CoA, but there was a differentiated prevalence of these genes across species. Phylogenetic analysis indicated that the phylogenetic position of a species could not be used to predict its enzyme-encoding gene combinations. Despite this, the final enzyme in the biosynthesis pathway - dephospho-coenzyme A kinase (DPCK) - was found to be the most common among the studied species, suggesting that it has the most potential as a target in the search for new broad-spectrum anti-mycoplasma agents.
Collapse
Affiliation(s)
| | | | - Annelise Botes
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
3
|
Kordafshari S, Marenda MS, Agnew R, Shil P, Shahid MA, Marth C, Konsak BM, Noormohammadi AH. Complementation of the Mycoplasma synoviae MS-H vaccine strain with wild-type oppF1 influences its growth characteristics. Avian Pathol 2020; 49:275-285. [PMID: 32054292 DOI: 10.1080/03079457.2020.1729957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The Mycoplasma synoviae (MS) vaccine strain MS-H harbours a frameshift mutation in oppF1 (oligopeptide permease transporter) which results in expression of a truncated OppF1. The effect of this mutation on growth and attenuation of the MS-H is unknown. In this study, the impact of the mutation on the vaccine phenotype was investigated in vitro by introducing a wild-type copy of oppF1 gene in the MS-H genome. Wild-type oppF1 was cloned under the vlhA promoter into an oriC vector carrying a tetracycline resistance gene. MS-H was successfully transformed with the final construct pMS-oppF1-tetM or with a similar vector lacking oppF1 coding sequence (pMS-tetM). The MS-H transformed with pMS-oppF1-tetM exhibited smaller colony size than MS-H transformed with pMS-tetM. Monospecific rabbit sera against C-terminus of OppF1 detected bands of expected size for full-length OppF1 in the 86079/7NS parental strain of MS-H and the MS-H transformed with pMS-oppF1-tetM, but not in MS-H and MS-H transformed with pMS-tetM. Comparison of the growth curve of MS-H transformants harvested from media with/without tetracycline was conducted using vlhA Q-PCR which revealed that MS-H transformed with pMS-tetM had a higher growth rate than MS-H transformed with pMS-oppF1-tetM in the media with/without tetracycline. Lastly, the whole genome sequencing of MS-H transformed with pMS-oppF1-tetM (passage 27) showed that the chromosomal copy of the mutated oppF1 had been replaced with a wild-type version of the gene. This study reveals that the truncation of oppF1 impacts on growth characteristics of the MS-H and provides insight into the molecular pathogenesis of MS and perhaps broader mycoplasma species.RESEARCH HIGHLIGHTS The full-length OppF1 was expressed in Mycoplasma synoviae MS-H vaccine.Truncation of oppF1 impacts on growth characteristics of the MS-H.Chromosomal copy of the mutated oppF1 in MS-H was replaced with wild-type oppF1.
Collapse
Affiliation(s)
- Somayeh Kordafshari
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Marc S Marenda
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Rebecca Agnew
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Pollob Shil
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Muhammad A Shahid
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Christina Marth
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Barbara M Konsak
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Amir H Noormohammadi
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Werribee, Australia
| |
Collapse
|
4
|
Wium M, Jonker HI, Olivier AJ, Bellstedt DU, Botes A. DNA Vaccines Against Mycoplasma Elicit Humoral Immune Responses in Ostriches. Front Immunol 2019; 10:1061. [PMID: 31139188 PMCID: PMC6527592 DOI: 10.3389/fimmu.2019.01061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022] Open
Abstract
In ostriches, the population densities resulting from intensive rearing increases susceptibility to pathogens such as mycoplasmas. In addition to good management practices, vaccination offers an attractive alternative for controlling mycoplasma infections in food animals, instead of using antibiotics, which often leave unacceptable residues. The use of live attenuated vaccines, however, carry the concern of reversion to virulence or genetic recombination with field strains. Currently there are no commercially available vaccines against ostrich-infecting mycoplasmas and this study therefore set out to develop and evaluate the use of a DNA vaccine against mycoplasma infections in ostriches using an OppA protein as antigen. To this end, the oppA gene of “Mycoplasma nasistruthionis sp. nov.” str. Ms03 was cloned into two DNA vaccine expression vectors after codon correction by site-directed mutagenesis. Three-months-old ostriches were then vaccinated intramuscularly at different doses followed by a booster vaccination after 6 weeks. The ability of the DNA vaccines to elicit an anti-OppA antibody response was evaluated by ELISA using the recombinant OppA protein of Ms03 as coating antigen. A statistically significant anti-OppA antibody response could be detected after administration of a booster vaccination indicating that the OppA protein was successfully immunogenic. The responses were also both dose and vector dependent. In conclusion, the DNA vaccines were able to elicit an immune response in ostriches and can therefore be viewed as an option for the development of vaccines against mycoplasma infections.
Collapse
Affiliation(s)
- Martha Wium
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | | | - Dirk Uwe Bellstedt
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Annelise Botes
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
5
|
Zhang B, Bai P, Zhao X, Yu Y, Zhang X, Li D, Liu C. Increased growth rate and amikacin resistance of Salmonella enteritidis after one-month spaceflight on China's Shenzhou-11 spacecraft. Microbiologyopen 2019; 8:e00833. [PMID: 30912318 PMCID: PMC6741137 DOI: 10.1002/mbo3.833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
China launched the Tiangong-2 space laboratory in 2016 and will eventually build a basic space station by the early 2020s. These spaceflight missions require astronauts to stay on the space station for more than 6 months, and they inevitably carry microbes into the space environment. It is known that the space environment affects microbial behavior, including growth rate, biofilm formation, virulence, drug resistance, and metabolism. However, the mechanisms of these alternations have not been fully elucidated. Therefore, it is beneficial to monitor microorganisms for preventing infections among astronauts in a space environment. Salmonella enteritidis is a Gram-negative bacterial pathogen that commonly causes acute gastroenteritis in humans. In this study, to better understand the effects of the space environment on S. enteritidis, a S. enteritidis strain was taken into space by the Shenzhou-11 spacecraft from 17 October 2016 to 18 November 2016, and a ground simulation with similar temperature conditions was simultaneously performed as a control. It was found that the flight strain displayed an increased growth rate, enhanced amikacin resistance, and some metabolism alterations compared with the ground strain. Enrichment analysis of proteome revealed that the increased growth rate might be associated with differentially expressed proteins involved in transmembrane transport and energy production and conversion assembly. A combined transcriptome and proteome analysis showed that the amikacin resistance was due to the downregulation of the oppA gene and oligopeptide transporter protein OppA. In conclusion, this study is the first systematic analysis of the phenotypic, genomic, transcriptomic, and proteomic variations in S. enteritidis during spaceflight and will provide beneficial insights for future studies on space microbiology.
Collapse
Affiliation(s)
- Bin Zhang
- Nankai University School of Medicine, Tianjin, China.,Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Po Bai
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China.,Respiratory Diseases Department, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xian Zhao
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yi Yu
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xuelin Zhang
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Diangeng Li
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Changting Liu
- Nankai University School of Medicine, Tianjin, China.,Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Zhu L, Shahid MA, Markham J, Browning GF, Noormohammadi AH, Marenda MS. Genome analysis of Mycoplasma synoviae strain MS-H, the most common M. synoviae strain with a worldwide distribution. BMC Genomics 2018; 19:117. [PMID: 29394882 PMCID: PMC5797395 DOI: 10.1186/s12864-018-4501-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/28/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The bacterial pathogen Mycoplasma synoviae can cause subclinical respiratory disease, synovitis, airsacculitis and reproductive tract disease in poultry and is a major cause of economic loss worldwide. The M. synoviae strain MS-H was developed by chemical mutagenesis of an Australian isolate and has been used as a live attenuated vaccine in many countries over the past two decades. As a result it may now be the most prevalent strain of M. synoviae globally. Differentiation of the MS-H vaccine from local field strains is important for epidemiological investigations and is often required for registration of the vaccine. RESULTS The complete genomic sequence of the MS-H strain was determined using a combination of Illumina and Nanopore methods and compared to WVU-1853, the M. synoviae type strain isolated in the USA 30 years before the parent strain of MS-H, and MS53, a more recent isolate from Brazil. The vaccine strain genome had a slightly larger number of pseudogenes than the two other strains and contained a unique 55 kb chromosomal inversion partially affecting a putative genomic island. Variations in gene content were also noted, including a deoxyribose-phosphate aldolase (deoC) fragment and an ATP-dependent DNA helicase gene found only in MS-H. Some of these sequences may have been acquired horizontally from other avian mycoplasma species. CONCLUSIONS MS-H was somewhat more similar to WVU-1853 than to MS53. The genome sequence of MS-H will enable identification of vaccine-specific genetic markers for use as diagnostic and epidemiological tools to better control M. synoviae.
Collapse
Affiliation(s)
- Ling Zhu
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC 3030 Australia
| | - Muhammad A. Shahid
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Punjab 60800 Pakistan
| | - John Markham
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3000 Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Amir H. Noormohammadi
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC 3030 Australia
| | - Marc S. Marenda
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC 3030 Australia
| |
Collapse
|
7
|
Henrich B, Kretzmer F, Deenen R, Köhrer K. Validation of a novel Mho microarray for a comprehensive characterisation of the Mycoplasma hominis action in HeLa cell infection. PLoS One 2017; 12:e0181383. [PMID: 28753664 PMCID: PMC5533444 DOI: 10.1371/journal.pone.0181383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/29/2017] [Indexed: 12/30/2022] Open
Abstract
Mycoplasma hominis is the second smallest facultative pathogen of the human urogenital tract. With less than 600 protein-encoding genes, it represents an ideal model organism for the study of host-pathogen interactions. For a comprehensive characterisation of the M. hominis action in infection a customized Mho microarray, which was based on two genome sequences (PG21 and LBD-4), was designed to analyze the dynamics of the mycoplasma transcriptome during infection and validated for M. hominis strain FBG. RNA preparation was evaluated and adapted to ensure the highest recovery of mycoplasmal mRNAs from in vitro HeLa cell infection assays. Following cRNA hybridization, the read-out strategy of the hybridization results was optimized and confirmed by RT-PCR. A statistically robust infection assay with M. hominis strain FBG enabled the identification of differentially regulated key effector molecules such as critical cytoadhesins (4 h post infection (pI)), invasins (48 h pI) and proteins associated with establishing chronic infection of the host (336 h pI). Of the 294 differentially regulated genes (>2-fold) 128 (43.5%) encoded hypothetical proteins, including lipoproteins that seem to play a central role as virulence factors at each stage of infection: P75 as a novel cytoadhesin candidate, which is also differentially upregulated in chronic infection; the MHO_2100 protein, a postulated invasin and the MHO_730-protein, a novel ecto-nuclease and domain of an ABC transporter, the function of which in chronic infection has still to be elucidated. Implementation of the M. hominis microarray strategy led to a comprehensive identification of to date unknown candidates for virulence factors at relevant stages of host cell infection.
Collapse
Affiliation(s)
- Birgit Henrich
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty of Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
- * E-mail:
| | - Freya Kretzmer
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty of Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
- Biological and Medical Research Centre (BMFZ), Medical Faculty of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - René Deenen
- Biological and Medical Research Centre (BMFZ), Medical Faculty of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Centre (BMFZ), Medical Faculty of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
8
|
Burmistrova DA, Tillib SV, Shcheblyakov DV, Dolzhikova IV, Shcherbinin DN, Zubkova OV, Ivanova TI, Tukhvatulin AI, Shmarov MM, Logunov DY, Naroditsky BS, Gintsburg AL. Genetic Passive Immunization with Adenoviral Vector Expressing Chimeric Nanobody-Fc Molecules as Therapy for Genital Infection Caused by Mycoplasma hominis. PLoS One 2016; 11:e0150958. [PMID: 26962869 PMCID: PMC4786110 DOI: 10.1371/journal.pone.0150958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/22/2016] [Indexed: 12/18/2022] Open
Abstract
Developing pathogen-specific recombinant antibody fragments (especially nanobodies) is a very promising strategy for the treatment of infectious disease. Nanobodies have great potential for gene therapy application due to their single-gene nature. Historically, Mycoplasma hominis has not been considered pathogenic bacteria due to the lack of acute infection and partially due to multiple studies demonstrating high frequency of isolation of M. hominis samples from asymptomatic patients. However, recent studies on the role of latent M. hominis infection in oncologic transformation, especially prostate cancer, and reports that M. hominis infects Trichomonas and confers antibiotic resistance to Trichomonas, have generated new interest in this field. In the present study we have generated specific nanobody against M. hominis (aMh), for which the identified target is the ABC-transporter substrate-binding protein. aMh exhibits specific antibacterial action against M. hominis. In an attempt to improve the therapeutic properties, we have developed the adenoviral vector-based gene therapy approach for passive immunization with nanobodies against M. hominis. For better penetration into the mucous layer of the genital tract, we fused aMh with the Fc-fragment of IgG. Application of this comprehensive approach with a single systemic administration of recombinant adenovirus expressing aMh-Fc demonstrated both prophylactic and therapeutic effects in a mouse model of genital M. hominis infection.
Collapse
Affiliation(s)
- Daria A. Burmistrova
- Department of Immunobiotechnology, Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
- * E-mail: (D. Shcheblyakov); (DB)
| | - Sergey V. Tillib
- Department of Molecular Biotechnology, Institute of Gene Biology, Moscow, Russia
| | - Dmitry V. Shcheblyakov
- Department of Immunobiotechnology, Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
- * E-mail: (D. Shcheblyakov); (DB)
| | - Inna V. Dolzhikova
- Department of Cellular Microbiology, Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
| | - Dmitry N. Shcherbinin
- Department of Molecular Biotechnology, Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
| | - Olga V. Zubkova
- Department of Molecular Biotechnology, Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
| | - Tatiana I. Ivanova
- Department of Molecular Biotechnology, Institute of Gene Biology, Moscow, Russia
| | - Amir I. Tukhvatulin
- Department of Cellular Microbiology, Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
| | - Maxim M. Shmarov
- Department of Molecular Biotechnology, Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
| | - Denis Y. Logunov
- Department of Cellular Microbiology, Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
| | - Boris S. Naroditsky
- Department of Immunobiotechnology, Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
| | | |
Collapse
|