1
|
Olascoaga S, Castañeda-Sánchez JI, Königsberg M, Gutierrez H, López-Diazguerrero NE. Oxidative stress-induced gene expression changes in prostate epithelial cells in vitro reveal a robust signature of normal prostatic senescence and aging. Biogerontology 2024; 25:1145-1169. [PMID: 39162979 PMCID: PMC11486819 DOI: 10.1007/s10522-024-10126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024]
Abstract
Oxidative stress has long been postulated to play an essential role in aging mechanisms, and numerous forms of molecular damage associated with oxidative stress have been well documented. However, the extent to which changes in gene expression in direct response to oxidative stress are related to actual cellular aging, senescence, and age-related functional decline remains unclear. Here, we ask whether H2O2-induced oxidative stress and resulting gene expression alterations in prostate epithelial cells in vitro reveal gene regulatory changes typically observed in naturally aging prostate tissue and age-related prostate disease. While a broad range of significant changes observed in the expression of non-coding transcripts implicated in senescence-related responses, we also note an overrepresentation of gene-splicing events among differentially expressed protein-coding genes induced by H2O2. Additionally, the collective expression of these H2O2-induced DEGs is linked to age-related pathological dysfunction, with their protein products exhibiting a dense network of protein-protein interactions. In contrast, co-expression analysis of available gene expression data reveals a naturally occurring highly coordinated expression of H2O2-induced DEGs in normally aging prostate tissue. Furthermore, we find that oxidative stress-induced DEGs statistically overrepresent well-known senescence-related signatures. Our results show that oxidative stress-induced gene expression in prostate epithelial cells in vitro reveals gene regulatory changes typically observed in naturally aging prostate tissue and age-related prostate disease.
Collapse
Affiliation(s)
- Samael Olascoaga
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Jorge I Castañeda-Sánchez
- División de Ciencias Biológicas y de la Salud, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Mexico City, Mexico
| | - Mina Königsberg
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | | | - Norma Edith López-Diazguerrero
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico.
| |
Collapse
|
2
|
Russell SJ, Zhao C, Biondic S, Menezes K, Hagemann-Jensen M, Librach CL, Petropoulos S. An atlas of small non-coding RNAs in human preimplantation development. Nat Commun 2024; 15:8634. [PMID: 39367016 PMCID: PMC11452719 DOI: 10.1038/s41467-024-52943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Understanding the molecular circuitries that govern early embryogenesis is important, yet our knowledge of these in human preimplantation development remains limited. Small non-coding RNAs (sncRNAs) can regulate gene expression and thus impact blastocyst formation, however, the expression of specific biotypes and their dynamics during preimplantation development remains unknown. Here we identify the abundance of and kinetics of piRNA, rRNA, snoRNA, tRNA, and miRNA from embryonic day (E)3-7 and isolate specific miRNAs and snoRNAs of particular importance in blastocyst formation and pluripotency. These sncRNAs correspond to specific genomic hotspots: an enrichment of the chromosome 19 miRNA cluster (C19MC) in the trophectoderm (TE), and the chromosome 14 miRNA cluster (C14MC) and MEG8-related snoRNAs in the inner cell mass (ICM), which may serve as 'master regulators' of potency and lineage. Additionally, we observe a developmental transition with 21 isomiRs and in tRNA fragment (tRF) codon usage and identify two novel miRNAs. Our analysis provides a comprehensive measure of sncRNA biotypes and their corresponding dynamics throughout human preimplantation development, providing an extensive resource. Better understanding the sncRNA regulatory programmes in human embryogenesis will inform strategies to improve embryo development and outcomes of assisted reproductive technologies. We anticipate broad usage of our data as a resource for studies aimed at understanding embryogenesis, optimising stem cell-based models, assisted reproductive technology, and stem cell biology.
Collapse
MESH Headings
- Humans
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Embryonic Development/genetics
- Blastocyst/metabolism
- Gene Expression Regulation, Developmental
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Female
- RNA, Small Interfering/metabolism
- RNA, Small Interfering/genetics
- Chromosomes, Human, Pair 19/genetics
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
Collapse
Affiliation(s)
| | - Cheng Zhao
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Savana Biondic
- Faculty of Medicine, Molecular Biology Program, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, Canada
| | | | | | - Clifford L Librach
- CReATe Fertility Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sophie Petropoulos
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden.
- Faculty of Medicine, Molecular Biology Program, Université de Montréal, Montréal, QC, Canada.
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, Canada.
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden.
- Faculty of Medicine, Département de Médecine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
3
|
Bhalla K, Rosier K, Monnens Y, Meulemans S, Vervoort E, Thorrez L, Agostinis P, Meier DT, Rochtus A, Resnick JL, Creemers JWM. Similar metabolic pathways are affected in both Congenital Myasthenic Syndrome-22 and Prader-Willi Syndrome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167175. [PMID: 38626828 DOI: 10.1016/j.bbadis.2024.167175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Loss of prolyl endopeptidase-like (PREPL) encoding a serine hydrolase with (thio)esterase activity leads to the recessive metabolic disorder Congenital Myasthenic Syndrome-22 (CMS22). It is characterized by severe neonatal hypotonia, feeding problems, growth retardation, and hyperphagia leading to rapid weight gain later in childhood. The phenotypic similarities with Prader-Willi syndrome (PWS) are striking, suggesting that similar pathways are affected. The aim of this study was to identify changes in the hypothalamic-pituitary axis in mouse models for both disorders and to examine mitochondrial function in skin fibroblasts of patients and knockout cell lines. We have demonstrated that Prepl is downregulated in the brains of neonatal PWS-IC-p/+m mice. In addition, the hypothalamic-pituitary axis is similarly affected in both Prepl-/- and PWS-IC-p/+m mice resulting in defective orexigenic signaling and growth retardation. Furthermore, we demonstrated that mitochondrial function is altered in PREPL knockout HEK293T cells and can be rescued with the supplementation of coenzyme Q10. Finally, PREPL-deficient and PWS patient skin fibroblasts display defective mitochondrial bioenergetics. The mitochondrial dysfunction in PWS fibroblasts can be rescued by overexpression of PREPL. In conclusion, we provide the first molecular parallels between CMS22 and PWS, raising the possibility that PREPL substrates might become therapeutic targets for treating both disorders.
Collapse
Affiliation(s)
- Kritika Bhalla
- Laboratory for Biochemical Neuroendocrinology, Department of Human genetics, KU Leuven, 3000 Leuven, Belgium
| | - Karen Rosier
- Laboratory for Biochemical Neuroendocrinology, Department of Human genetics, KU Leuven, 3000 Leuven, Belgium
| | - Yenthe Monnens
- Laboratory for Biochemical Neuroendocrinology, Department of Human genetics, KU Leuven, 3000 Leuven, Belgium
| | - Sandra Meulemans
- Laboratory for Biochemical Neuroendocrinology, Department of Human genetics, KU Leuven, 3000 Leuven, Belgium
| | - Ellen Vervoort
- Laboratory for Cell Death Research & Therapy, VIB, Department of Cellular and Molecular Medicine, Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieven Thorrez
- Department of Development and Regeneration, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium
| | - Patrizia Agostinis
- Laboratory for Cell Death Research & Therapy, VIB, Department of Cellular and Molecular Medicine, Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Daniel T Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Anne Rochtus
- Department of Development and Regeneration, UZ Leuven, 3000 Leuven, Belgium
| | - James L Resnick
- Department of Molecular genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - John W M Creemers
- Laboratory for Biochemical Neuroendocrinology, Department of Human genetics, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
4
|
Lin R, Mitsuhashi H, Fiori LM, Denniston R, Ibrahim EC, Belzung C, Mechawar N, Turecki G. SNORA69 is up-regulated in the lateral habenula of individuals with major depressive disorder. Sci Rep 2024; 14:8258. [PMID: 38589409 PMCID: PMC11001866 DOI: 10.1038/s41598-024-58278-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Major depressive disorder (MDD) is a complex and potentially debilitating illness whose etiology and pathology remains unclear. Non-coding RNAs have been implicated in MDD, where they display differential expression in the brain and the periphery. In this study, we quantified small nucleolar RNA (snoRNA) expression by small RNA sequencing in the lateral habenula (LHb) of individuals with MDD (n = 15) and psychiatrically-healthy controls (n = 15). We uncovered five snoRNAs that exhibited differential expression between MDD and controls (FDR < 0.01). Specifically, SNORA69 showed increased expression in MDD and was technically validated via RT-qPCR. We further investigated the expression of Snora69 in the LHb and peripheral blood of an unpredicted chronic mild stress (UCMS) mouse model of depression. Snora69 was specifically up-regulated in mice that underwent the UCMS paradigm. SNORA69 is known to guide pseudouridylation onto 5.8S and 18S rRNAs. We quantified the relative abundance of pseudouridines on 5.8S and 18S rRNA in human post-mortem LHb samples and found increased abundance of pseudouridines in the MDD group. Overall, our findings indicate the importance of brain snoRNAs in the pathology of MDD. Future studies characterizing SNORA69's role in MDD pathology is warranted.
Collapse
Affiliation(s)
- Rixing Lin
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Haruka Mitsuhashi
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Laura M Fiori
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Ryan Denniston
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - El Cherif Ibrahim
- CNRS, INT, Institute Neuroscience Timone, Aix-Marseille Université, Marseille, France
| | - Catherine Belzung
- Imaging Brain and Neuropsychiatry iBraiN U1253, INSERM, Université de Tours, Tours, France
| | - Naguib Mechawar
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Jagielski NP, Rai AK, Rajan KS, Mangal V, Garikipati VNS. A contemporary review of snoRNAs in cardiovascular health: RNA modification and beyond. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102087. [PMID: 38178918 PMCID: PMC10765057 DOI: 10.1016/j.omtn.2023.102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
As cardiovascular diseases continue to be the leading cause of death worldwide, groundbreaking research is being conducted to mitigate their effects. This review looks into the potential of small nucleolar RNAs (snoRNAs) and the opportunity to use these molecular agents as therapeutic biomarkers for cardiovascular issues specific to the heart. Through an investigation of snoRNA biogenesis, functionality, and roles in cardiovascular diseases, this review relates our past and present knowledge of snoRNAs to the current scientific literature. Considering the initial discovery of snoRNAs and the studies thereafter analyzing the roles of snoRNAs in disease, we look forward to uncovering many other noncanonical functions that could lead researchers closer to finding preventive and curative solutions for cardiovascular diseases.
Collapse
Affiliation(s)
- Noah Peter Jagielski
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Amit Kumar Rai
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - K. Shanmugha Rajan
- Department of Chemical and Structural Biology, Weizmann Institute, Rehovot 76100 001, Israel
| | - Vatsal Mangal
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Matveeva A, Vinogradov D, Zhuravlev E, Semenov D, Vlassov V, Stepanov G. Intron Editing Reveals SNORD-Dependent Maturation of the Small Nucleolar RNA Host Gene GAS5 in Human Cells. Int J Mol Sci 2023; 24:17621. [PMID: 38139448 PMCID: PMC10743478 DOI: 10.3390/ijms242417621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The GAS5 gene encodes a long non-coding RNA (lncRNA) and intron-located small nucleolar RNAs (snoRNAs). Its structure, splice variants, and diverse functions in mammalian cells have been thoroughly investigated. However, there are still no data on a successful knockout of GAS5 in human cells, with most of the loss-of-function experiments utilizing standard techniques to produce knockdowns. By using CRISPR/Cas9 to introduce double-strand breaks in the terminal intronic box C/D snoRNA genes (SNORDs), we created monoclonal cell lines carrying continuous deletions in one of the GAS5 alleles. The levels of GAS5-encoded box C/D snoRNAs and lncRNA GAS5 were assessed, and the formation of the novel splice variants was analyzed. To comprehensively evaluate the influence of specific SNORD mutations, human cell lines with individual mutations in SNORD74 and SNORD81 were obtained. Specific mutations in SNORD74 led to the downregulation of all GAS5-encoded SNORDs and GAS5 lncRNA. Further analysis revealed that SNORD74 contains a specific regulatory element modulating the maturation of the GAS5 precursor transcript. The results demonstrate that the maturation of GAS5 occurs through the m6A-associated pathway in a SNORD-dependent manner, which is a quite intriguing epitranscriptomic mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | - Grigory Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.M.); (D.V.); (E.Z.); (D.S.)
| |
Collapse
|
7
|
Gilmore RB, Liu Y, Stoddard CE, Chung MS, Carmichael GG, Cotney J. Identifying key underlying regulatory networks and predicting targets of orphan C/D box SNORD116 snoRNAs in Prader-Willi syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560773. [PMID: 37873184 PMCID: PMC10592975 DOI: 10.1101/2023.10.03.560773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Prader-Willi syndrome (PWS) is a rare neurodevelopmental disorder characterized principally by initial symptoms of neonatal hypotonia and failure-to-thrive in infancy, followed by hyperphagia and obesity. It is well established that PWS is caused by loss of paternal expression of the imprinted region on chromosome 15q11-q13. While most PWS cases exhibit megabase-scale deletions of the paternal chromosome 15q11-q13 allele, several PWS patients have been identified harboring a much smaller deletion encompassing primarily SNORD116. This finding suggests SNORD116 is a direct driver of PWS phenotypes. The SNORD116 gene cluster is composed of 30 copies of individual SNORD116 C/D box small nucleolar RNAs (snoRNAs). Many C/D box snoRNAs have been shown to guide chemical modifications of other RNA molecules, often ribosomal RNA (rRNA). However, SNORD116 snoRNAs are termed 'orphans' because no verified targets have been identified and their sequences show no significant complementarity to rRNA. It is crucial to identify the targets and functions of SNORD116 snoRNAs because all reported PWS cases lack their expression. To address this, we engineered two different deletions modelling PWS in two distinct human embryonic stem cell (hESC) lines to control for effects of genetic background. Utilizing an inducible expression system enabled quick, reproducible differentiation of these lines into neurons. Systematic comparisons of neuronal gene expression across deletion types and genetic backgrounds revealed a novel list of 42 consistently dysregulated genes. Employing the recently described computational tool snoGloBe, we discovered these dysregulated genes are significantly enriched for predicted SNORD116 targeting versus multiple control analyses. Importantly, our results showed it is critical to use multiple isogenic cell line pairs, as this eliminated many spuriously differentially expressed genes. Our results indicate a novel gene regulatory network controlled by SNORD116 is likely perturbed in PWS patients.
Collapse
Affiliation(s)
- Rachel B. Gilmore
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Yaling Liu
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Christopher E. Stoddard
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Michael S. Chung
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Gordon G. Carmichael
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Justin Cotney
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
8
|
Gawade K, Raczynska KD. Imprinted small nucleolar RNAs: Missing link in development and disease? WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1818. [PMID: 37722601 DOI: 10.1002/wrna.1818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023]
Abstract
The 14q32.2 (DLK1-DIO3) and 15q11-q13 (SNURF-SNRPN) imprinted gene loci harbor the largest known small nucleolar RNA clusters expressed from the respective maternal and paternal alleles. Recent studies have demonstrated significant roles for the 15q11-q13 located SNORD115-SNORD116 C/D box snoRNAs in Prader-Willi syndrome (PWS), a neurodevelopmental disorder. Even though the effect of SNORD116 deletion is apparent in the PWS phenotype, similar effects of a SNORD113-SNORD114 cluster deletion from the 14q32.2 locus in Kagami-Ogata syndrome (KOS14) and upregulation in Temple syndrome (TS14) remain to be explored. Moreover, apart from their probable involvement in neurodevelopmental disorders, snoRNAs from the SNORD113-SNORD114 cluster have been implicated in multiple biological processes, including pluripotency, development, cancers, and RNA modifications. Here we summarize the current understanding of the system to explore the possibility of a link between developmental disorders and C/D box snoRNA expression from the imprinted 14q32.2 locus. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development RNA Processing > Processing of Small RNAs.
Collapse
Affiliation(s)
- Kishor Gawade
- Laboratory of RNA Processing, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Katarzyna D Raczynska
- Laboratory of RNA Processing, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Poznan, Poland
| |
Collapse
|
9
|
Hope S, Nærland T, Olav Kolset S, Ueland T, Andreassen OA, Nordstrøm M. Systemic immune profile in Prader-Willi syndrome: elevated matrix metalloproteinase and myeloperoxidase and reduced macrophage inhibitory factor. Orphanet J Rare Dis 2023; 18:185. [PMID: 37430349 DOI: 10.1186/s13023-023-02730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/14/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Prader-Willi syndrome (PWS) is a rare genetic neurodevelopmental syndrome with highly increased risk of obesity and cardiovascular disease (CVD). Recent evidence suggests that inflammation is implicated in the pathogenesis. Here we investigated CVD related immune markers to shed light on pathogenetic mechanisms. METHODS We performed a cross-sectional study with 22 participants with PWS and 22 healthy controls (HC), and compared levels of 21 inflammatory markers that reflect activity in different aspects of CVD related immune pathways and analyzed their association with clinical CVD risk factors. RESULTS Serum levels of matrix metalloproteinase 9 (MMP-9) was (median (range)) 121 (182) ng/ml in PWS versus 44 (51) ng/ml in HC, p = 1 × 10-9), myeloperoxidase (MPO) was 183 (696) ng/ml versus 65 (180) ng/ml, p = 1 × 10-5) and macrophage inhibitory factor (MIF) was 46 (150) ng/ml versus 121 (163) ng/ml (p = 1 × 10-3), after adjusting for age and sex. Also other markers tended to be elevated (OPG, sIL2RA, CHI3L1, VEGF) but not significantly after Bonferroni correction (p > 0.002). As expected PWS had higher body mass index, waist circumference, leptin, C-reactive protein, glycosylated hemoglobin (HbA1c), VAI and cholesterol, but MMP-9, MPO and MIF remained significantly different in PWS after adjustment for these clinical CVD risk factors. CONCLUSION PWS had elevated levels of MMP-9 and MPO and of reduced levels of MIF, which were not secondary to comorbid CVD risk factors. This immune profile suggests enhanced monocyte/neutrophil activation, impaired macrophage inhibition with enhanced extracellular matrix remodeling. These findings warrant further studies targeting these immune pathways in PWS.
Collapse
Affiliation(s)
- Sigrun Hope
- K.G. Jebsen Centre for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Neurohabilitation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway.
- Nevsom, Department of Rare Diagnoses and Disabilities, Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.
| | - Terje Nærland
- K.G. Jebsen Centre for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Nevsom, Department of Rare Diagnoses and Disabilities, Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Svein Olav Kolset
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Rikshospitalet, Oslo, Norway
- K.G. Jebsen, TREC, University of Tromsø, Tromsø, Norway
| | - Ole A Andreassen
- K.G. Jebsen Centre for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT: Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Marianne Nordstrøm
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Frambu Resource Centre for Rare Disorders, Siggerud, Norway
- Unit for Rare Neuromuscular Disorders, Movement, Muscle and Neurodegeneration, Department of Neurology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
10
|
Midsize noncoding RNAs in cancers: a new division that clarifies the world of noncoding RNA or an unnecessary chaos? Rep Pract Oncol Radiother 2022; 27:1077-1093. [PMID: 36632289 PMCID: PMC9826665 DOI: 10.5603/rpor.a2022.0123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 12/31/2022] Open
Abstract
Most of the human genome is made out of noncoding RNAs (ncRNAs). These ncRNAs do not code for proteins but carry a vast number of important functions in human cells such as: modification and processing other RNAs (tRNAs, rRNAs, snRNAs, snoRNAs, miRNAs), help in the synthesis of ribosome proteins, initiation of DNA replication, regulation of transcription, processing of pre-messenger mRNA during its maturation and much more. The ncRNAs also have a significant impact on many events that occur during carcinogenesis in cancer cells, such as: regulation of cell survival, cellular signaling, apoptosis, proliferation or even influencing the metastasis process. The ncRNAs may be divided based on their length, into short and long, where 200 nucleotides is the "magic" border. However, a new division was proposed, suggesting the creation of the additional group called midsize noncoding RNAs, with the length ranging from 50-400 nucleotides. This new group may include: transfer RNA (tRNA), small nuclear RNAs (snRNAs) with 7SK and 7SL, small nucleolar RNAs (snoRNAs), small Cajal body-specific RNAs (scaRNAs) and YRNAs. In this review their structure, biogenesis, function and influence on carcinogenesis process will be evaluated. What is more, a question will be answered of whether this new division is a necessity that clears current knowledge or just creates an additional misunderstanding in the ncRNA world?
Collapse
|
11
|
Chao Y, Gao L, Wang X, Cai Y, Shu Y, Zou X, Qin Y, Hu C, Dai Y, Zhu M, Shen Z, Zou C. Dysregulated adipose tissue expansion and impaired adipogenesis in Prader-Willi syndrome children before obesity-onset. Metabolism 2022; 136:155295. [PMID: 36007622 DOI: 10.1016/j.metabol.2022.155295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Prader-Willi syndrome (PWS) is a rare genetic imprinting disorder resulting from the expression loss of genes on the paternally inherited chromosome 15q11-13. Early-onset life-thriving obesity and hyperphagia represent the clinical hallmarks of PWS. The noncoding RNA gene SNORD116 within the minimal PWS genetic lesion plays a critical role in the pathogenesis of the syndrome. Despite advancements in understanding the genetic basis for PWS, the pathophysiology of obesity development in PWS remains largely uncharacterized. Here, we aimed to investigate the signatures of adipose tissue development and expansion pathways and associated adipose biology in PWS children without obesity-onset at an early stage, mainly from the perspective of the adipogenesis process, and further elucidate the underlying molecular mechanisms. METHODS We collected inguinal (subcutaneous) white adipose tissues (ingWATs) from phase 1 PWS and healthy children with normal weight aged from 6 M to 2 Y. Adipose morphology and histological characteristics were assessed. Primary adipose stromal vascular fractions (SVFs) were isolated, cultured in vitro, and used to determine the capacity and function of white and beige adipogenic differentiation. High-throughput RNA-sequencing (RNA-seq) was performed in adipose-derived mesenchymal stem cells (AdMSCs) to analyze transcriptome signatures in PWS subjects. Transient repression of SNORD116 was conducted to evaluate its functional relevance in adipogenesis. The changes in alternative pre-mRNA splicing were investigated in PWS and SNORD116 deficient cells. RESULTS In phase 1 PWS children, impaired white adipose tissue (WAT) development and unusual fat expansion occurred long before obesity onset, which was characterized by the massive enlargement of adipocytes accompanied by increased apoptosis. White and beige adipogenesis programs were impaired and differentiated adipocyte functions were disturbed in PWS-derived SVFs, despite increased proliferation capacity, which were consistent with the results of RNA-seq analysis of PWS AdMSCs. We also experimentally validated disrupted beige adipogenesis in adipocytes with transient SNORD116 downregulation. The transcript and protein levels of PPARγ, the adipogenesis master regulator, were significantly lower in PWS than in control AdMSCs as well as in SNORD116 deficient AdMSCs/adipocytes than in scramble (Scr) cells, resulting in the inhibited adipogenic program. Additionally, through RNA-seq, we observed aberrant transcriptome-wide alterations in alternative RNA splicing patterns in PWS cells mediated by SNORD116 loss and specifically identified a changed PRDM16 gene splicing profile in vitro. CONCLUSIONS Imbalance in the WAT expansion pathway and developmental disruption are primary defects in PWS displaying aberrant adipocyte hypertrophy and impaired adipogenesis process, in which SNORD116 deficiency plays a part. Our findings suggest that dysregulated adiposity specificity existing at an early phase is a potential pathological mechanism exacerbating hyperphagic obesity onset in PWS. This mechanistic evidence on adipose biology in young PWS patients expands knowledge regarding the pathogenesis of PWS obesity and may aid in developing a new therapeutic strategy targeting disturbed adipogenesis and driving AT plasticity to combat abnormal adiposity and associated metabolic disorders for PWS patients.
Collapse
Affiliation(s)
- Yunqi Chao
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Lei Gao
- Department of Urology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Xiangzhi Wang
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Yuqing Cai
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Yingying Shu
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Xinyi Zou
- Zhejiang University City College, Hangzhou 310015, Zhejiang, China
| | - Yifang Qin
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Chenxi Hu
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Yangli Dai
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Mingqiang Zhu
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Zheng Shen
- Lab Center, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Chaochun Zou
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China.
| |
Collapse
|
12
|
Whittington J, Holland A. Next Steps in Prader-Willi Syndrome Research: On the Relationship between Genotype and Phenotype. Int J Mol Sci 2022; 23:ijms232012089. [PMID: 36292940 PMCID: PMC9603642 DOI: 10.3390/ijms232012089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 12/02/2022] Open
Abstract
This article reviews what we know of the phenotype and genotype of Prader-Willi syndrome and hypothesizes two possible paths from phenotype to genotype. It then suggests research that may strengthen the case for one or other of these hypotheses.
Collapse
Affiliation(s)
- Joyce Whittington
- Correspondence: ; Tel.: +41 (0)1223 465255; Fax: +41 (0) 1223 465270
| | | |
Collapse
|
13
|
Cheng Z, Zhang Y, Zhao R, Zhou Y, Dong Y, Qiu A, Xu H, Liu Y, Zhang W, Chang Q, Chu M. A novel circRNA-SNP may increase susceptibility to silicosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113855. [PMID: 35835075 DOI: 10.1016/j.ecoenv.2022.113855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
In this study, we aimed to reveal the association between circRNA-related single nucleotide polymorphisms (SNPs) with the susceptibility of silicosis. To achieve this goal, a silicosis-related GWAS was constructed to select the candidate SNPs, and circBase database was utilized to select the promising SNPs which may locate on circRNAs. In addition, the eQTL analysis between the SNPs and located genes was performed to select the candidate SNPs. Finally, the association between candidate SNPs with the susceptibility of silicosis was validated. As a result, we firstly selected 10,922 SNPs with P < 1 × 10-3 through the silicosis-related GWAS. Among which, 1,752 SNPs were identified that may locate on 2,660 circRNAs. After the MAF evaluation and the sequences checking, we obtained 94 SNPs and related 105 circRNAs. EQTL analysis indicated that 7 circRNA-SNPs might regulate the expression of located genes. Subsequently, a strong association was found between variant A of rs17115143 and silicosis risk in the validation stage (OR= 1.68, P = 0.032). Combination of the GWAS data and Taqman genotyping data also revealed a strong association between rs17115143 and silicosis risk in both dominant and additive models (dom: OR= 1.96, P = 3.98 × 10-4; add: OR= 1.40, P = 3.06 × 10-4). In conclusion, the variant A allele of circRNA-SNP rs17115143 could be a risk factor in the progression of silicosis. And related 6 circRNAs may function as novel biomarkers for the diagnostic of silicosis. Further researches to explore the biological mechanisms of rs17115143 related 6 circRNAs in the regulation of silicosis are warranted.
Collapse
Affiliation(s)
- Zhounan Cheng
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China; Department of Scientific Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yingyi Zhang
- Department of Occupational Disease, the Occupational Disease Institute of Wuxi, Wuxi, Jiangsu, China
| | - Rui Zhao
- Department of Respiratory, the Occupational Disease Institute of Wuxi, Wuxi, Jiangsu, China
| | - Yan Zhou
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yang Dong
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Anni Qiu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Huiwen Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yiran Liu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Wendi Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Qing Chang
- Department of Occupational Disease, the Occupational Disease Institute of Wuxi, Wuxi, Jiangsu, China.
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
14
|
Small Nucleolar RNAs and Their Comprehensive Biological Functions in Hepatocellular Carcinoma. Cells 2022; 11:cells11172654. [PMID: 36078062 PMCID: PMC9454744 DOI: 10.3390/cells11172654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are a class of highly conserved, stable non-coding RNAs involved in both post-transcriptional modification of RNA and in ribosome biogenesis. Recent research shows that the dysfunction of snoRNAs plays a pivotal role in hepatocellular carcinoma (HCC) and related etiologies, such as hepatitis B virus (HBV), hepatitis C virus (HCV), and non-alcoholic fatty liver disease (NAFLD). Growing evidence suggests that snoRNAs act as oncogenes or tumor suppressors in hepatocellular carcinoma (HCC) through multiple mechanisms. Furthermore, snoRNAs are characterized by their stability in body fluids and their clinical relevance and represent promising tools as diagnostic and prognostic biomarkers. SnoRNAs represent an emerging area of cancer research. In this review, we summarize the classification, biogenesis, activity, and functions of snoRNAs, as well as highlight the mechanism and roles of snoRNAs in HCC and related diseases. Our findings will aid in the understanding of complex processes of tumor occurrence and development, as well as suggest potential diagnostic markers and treatment targets. Furthermore, we discuss several limitations and suggest future research and application directions.
Collapse
|
15
|
Abstract
MicroRNAs (miRNAs) are key players in gene regulation that target specific mRNAs for degradation or translational repression. Each miRNA is synthesized as a miRNA duplex comprising two strands (5p and 3p). However, only one of the two strands becomes active and is selectively incorporated into the RNA-induced silencing complex in a process known as miRNA strand selection. Recently, significant progress has been made in understanding the factors and processes involved in strand selection. Here, we explore the selection and functionality of the miRNA star strand (either 5p or 3p), which is generally present in the cell at low levels compared to its partner strand and, historically, has been thought to possess no biological activity. We also highlight the concepts of miRNA arm switching and miRNA isomerism. Finally, we offer insights into the impact of aberrant strand selection on immunity and cancer. Leading us through this journey is miR-155, a well-established regulator of immunity and cancer, and the increasing evidence that its 3p strand plays a role in these arenas. Interestingly, the miR-155-5p/-3p ratio appears to vary dependent on the timing of the immune response, and the 3p strand seems to play a regulatory role upon its partner 5p strand.
Collapse
Affiliation(s)
- Owen Dawson
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
16
|
Holland A, Manning K, Whittington J. The paradox of Prader-Willi syndrome revisited: Making sense of the phenotype. EBioMedicine 2022; 78:103952. [PMID: 35316681 PMCID: PMC8943243 DOI: 10.1016/j.ebiom.2022.103952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/25/2022] Open
Abstract
Prader-Willi syndrome arises as a consequence of absent paternal copies of maternally imprinted genes at 15q11-13. Such gender-of-origin imprinted genes are expressed in the brain and also in mammalian placenta where paternally expressed imprinted genes drive foetal nutritional demand. We hypothesise that the PWS phenotype is the result of the genotype impacting two pathways: first, directly on brain development and secondly, on placental nutritional pathways that results in its down-regulation and relative foetal starvation. The early PWS phenotype establishes the basis for the later characteristic phenotype. Hyperphagia. and other phenotypic characteristics arise as a consequence of impaired hypothalamic development. Hypothalamic feeding pathways become set in a state indicative of starvation, with a high satiety threshold and a dysfunctional neurophysiological state due to incorrect representations of reward needs, based on inputs that indicate a false requirement for food. Our hypotheses, if confirmed, would lead to novel and effective interventions.
Collapse
Affiliation(s)
- Anthony Holland
- Department of Psychiatry, University of Cambridge, Douglas House, 18b Trumpington Road, Cambridge CB2 8AH, UK.
| | - Katie Manning
- Essex Partnership University NHS Foundation Trust and University of Essex, UK
| | - Joyce Whittington
- Department of Psychiatry, University of Cambridge, Douglas House, 18b Trumpington Road, Cambridge CB2 8AH, UK
| |
Collapse
|
17
|
Zhou J, Zhu X, Long J. Insights into the Prognostic Value of Small Nucleolar RNA U81 and SNORA7B in Breast Cancer. Int J Gen Med 2022. [DOI: 10.2147/ijgm.s345945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Riffo-Campos AL, Perez-Hernandez J, Ortega A, Martinez-Arroyo O, Flores-Chova A, Redon J, Cortes R. Exosomal and Plasma Non-Coding RNA Signature Associated with Urinary Albumin Excretion in Hypertension. Int J Mol Sci 2022; 23:ijms23020823. [PMID: 35055008 PMCID: PMC8775608 DOI: 10.3390/ijms23020823] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Non-coding RNA (ncRNA), released into circulation or packaged into exosomes, plays important roles in many biological processes in the kidney. The purpose of the present study is to identify a common ncRNA signature associated with early renal damage and its related molecular pathways. Three individual libraries (plasma and urinary exosomes, and total plasma) were prepared from each hypertensive patient (with or without albuminuria) for ncRNA sequencing analysis. Next, an RNA-based transcriptional regulatory network was constructed. The three RNA biotypes with the greatest number of differentially expressed transcripts were long-ncRNA (lncRNA), microRNA (miRNA) and piwi-interacting RNA (piRNAs). We identified a common 24 ncRNA molecular signature related to hypertension-associated urinary albumin excretion, of which lncRNAs were the most representative. In addition, the transcriptional regulatory network showed five lncRNAs (LINC02614, BAALC-AS1, FAM230B, LOC100505824 and LINC01484) and the miR-301a-3p to play a significant role in network organization and targeting critical pathways regulating filtration barrier integrity and tubule reabsorption. Our study found an ncRNA profile associated with albuminuria, independent of biofluid origin (urine or plasma, circulating or in exosomes) that identifies a handful of potential targets, which may be utilized to study mechanisms of albuminuria and cardiovascular damage.
Collapse
Affiliation(s)
- Angela L. Riffo-Campos
- Millennium Nucleus on Sociomedicine (SocioMed) and Vicerrectoría Académica, Universidad de La Frontera, Temuco 4780000, Chile;
- Department of Computer Science, ETSE, University of Valencia, 46010 Valencia, Spain
| | - Javier Perez-Hernandez
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.P.-H.); (A.O.); (O.M.-A.); (A.F.-C.); (J.R.)
- Departament of Nutrition and Health, Valencian International University (VIU), 46010 Valencia, Spain
- T-Cell Tolerance, Biomarkers and Therapies in Type 1 Diabetes Team, Institut Cochin, CNRS, INSERM, Université de Paris, 75014 Paris, France
| | - Ana Ortega
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.P.-H.); (A.O.); (O.M.-A.); (A.F.-C.); (J.R.)
| | - Olga Martinez-Arroyo
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.P.-H.); (A.O.); (O.M.-A.); (A.F.-C.); (J.R.)
| | - Ana Flores-Chova
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.P.-H.); (A.O.); (O.M.-A.); (A.F.-C.); (J.R.)
| | - Josep Redon
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.P.-H.); (A.O.); (O.M.-A.); (A.F.-C.); (J.R.)
- Internal Medicine Unit, Hospital Clinico Universitario, 46010 Valencia, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Minister of Health, 28029 Madrid, Spain
| | - Raquel Cortes
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.P.-H.); (A.O.); (O.M.-A.); (A.F.-C.); (J.R.)
- Correspondence: ; Tel.: +34-961973517
| |
Collapse
|
19
|
Baldini L, Robert A, Charpentier B, Labialle S. Phylogenetic and molecular analyses identify SNORD116 targets involved in the Prader Willi syndrome. Mol Biol Evol 2021; 39:6454102. [PMID: 34893870 PMCID: PMC8789076 DOI: 10.1093/molbev/msab348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The eutherian-specific SNORD116 family of repeated box C/D snoRNA genes is suspected to play a major role in the Prader–Willi syndrome (PWS), yet its molecular function remains poorly understood. Here, we combined phylogenetic and molecular analyses to identify candidate RNA targets. Based on the analysis of several eutherian orthologs, we found evidence of extensive birth-and-death and conversion events during SNORD116 gene history. However, the consequences for phylogenetic conservation were heterogeneous along the gene sequence. The standard snoRNA elements necessary for RNA stability and association with dedicated core proteins were the most conserved, in agreement with the hypothesis that SNORD116 generate genuine snoRNAs. In addition, one of the two antisense elements typically involved in RNA target recognition was largely dominated by a unique sequence present in at least one subset of gene paralogs in most species, likely the result of a selective effect. In agreement with a functional role, this ASE exhibited a hybridization capacity with putative mRNA targets that was strongly conserved in eutherians. Moreover, transient downregulation experiments in human cells showed that Snord116 controls the expression and splicing levels of these mRNAs. The functions of two of them, diacylglycerol kinase kappa and Neuroligin 3, extend the description of the molecular bases of PWS and reveal unexpected molecular links with the Fragile X syndrome and autism spectrum disorders.
Collapse
Affiliation(s)
- Laeya Baldini
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Anne Robert
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | | |
Collapse
|
20
|
Emerging Functions for snoRNAs and snoRNA-Derived Fragments. Int J Mol Sci 2021; 22:ijms221910193. [PMID: 34638533 PMCID: PMC8508363 DOI: 10.3390/ijms221910193] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
The widespread implementation of mass sequencing has revealed a diverse landscape of small RNAs derived from larger precursors. Whilst many of these are likely to be byproducts of degradation, there are nevertheless metabolically stable fragments derived from tRNAs, rRNAs, snoRNAs, and other non-coding RNA, with a number of examples of the production of such fragments being conserved across species. Coupled with specific interactions to RNA-binding proteins and a growing number of experimentally reported examples suggesting function, a case is emerging whereby the biological significance of small non-coding RNAs extends far beyond miRNAs and piRNAs. Related to this, a similarly complex picture is emerging of non-canonical roles for the non-coding precursors, such as for snoRNAs that are also implicated in such areas as the silencing of gene expression and the regulation of alternative splicing. This is in addition to a body of literature describing snoRNAs as an additional source of miRNA-like regulators. This review seeks to highlight emerging roles for such non-coding RNA, focusing specifically on “new” roles for snoRNAs and the small fragments derived from them.
Collapse
|
21
|
Huang WK, Wong SZH, Pather SR, Nguyen PTT, Zhang F, Zhang DY, Zhang Z, Lu L, Fang W, Chen L, Fernandes A, Su Y, Song H, Ming GL. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells. Cell Stem Cell 2021; 28:1657-1670.e10. [PMID: 33961804 PMCID: PMC8419002 DOI: 10.1016/j.stem.2021.04.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/21/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Human brain organoids represent remarkable platforms for recapitulating features of human brain development and diseases. Existing organoid models do not resolve fine brain subregions, such as different nuclei in the hypothalamus. We report the generation of arcuate organoids (ARCOs) from human induced pluripotent stem cells (iPSCs) to model the development of the human hypothalamic arcuate nucleus. Single-cell RNA sequencing of ARCOs revealed significant molecular heterogeneity underlying different arcuate cell types, and machine learning-aided analysis based on the neonatal human hypothalamus single-nucleus transcriptome further showed a human arcuate nucleus molecular signature. We also explored ARCOs generated from Prader-Willi syndrome (PWS) patient iPSCs. These organoids exhibit aberrant differentiation and transcriptomic dysregulation similar to postnatal hypothalamus of PWS patients, indicative of cellular differentiation deficits and exacerbated inflammatory responses. Thus, patient iPSC-derived ARCOs represent a promising experimental model for investigating nucleus-specific features and disease-relevant mechanisms during early human arcuate development.
Collapse
Affiliation(s)
- Wei-Kai Huang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Program in Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Samuel Zheng Hao Wong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sarshan R Pather
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Phuong T T Nguyen
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Feng Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Y Zhang
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhijian Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lu Lu
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wanqi Fang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luyun Chen
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Analiese Fernandes
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yijing Su
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Zahova SK, Humby T, Davies JR, Morgan JE, Isles AR. Comparison of mouse models reveals a molecular distinction between psychotic illness in PWS and schizophrenia. Transl Psychiatry 2021; 11:433. [PMID: 34417445 PMCID: PMC8379171 DOI: 10.1038/s41398-021-01561-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022] Open
Abstract
Prader-Willi Syndrome (PWS) is a neurodevelopmental disorder caused by mutations affecting paternal chromosome 15q11-q13, and characterized by hypotonia, hyperphagia, impaired cognition, and behavioural problems. Psychotic illness is a challenging problem for individuals with PWS and has different rates of prevalence in distinct PWS genotypes. Previously, we demonstrated behavioural and cognitive endophenotypes of relevance to psychiatric illness in a mouse model for one of the associated PWS genotypes, namely PWS-IC, in which deletion of the imprinting centre leads to loss of paternally imprinted gene expression and over-expression of Ube3a. Here we examine the broader gene expression changes that are specific to the psychiatric endophenotypes seen in this model. To do this we compared the brain transcriptomic profile of the PWS-IC mouse to the PWS-cr model that carries a deletion of the PWS minimal critical interval spanning the snoRNA Snord116 and Ipw. Firstly, we examined the same behavioural and cognitive endophenotypes of relevance to psychiatric illness in the PWS-cr mice. Unlike the PWS-IC mice, PWS-cr exhibit no differences in locomotor activity, sensory-motor gating, and attention. RNA-seq analysis of neonatal whole brain tissue revealed a greater number of transcriptional changes between PWS-IC and wild-type littermates than between PWS-cr and wild-type littermates. Moreover, the differentially expressed genes in the PWS-IC brain were enriched for GWAS variants of episodes of psychotic illness but, interestingly, not schizophrenia. These data illustrate the molecular pathways that may underpin psychotic illness in PWS and have implications for potential therapeutic interventions.
Collapse
Affiliation(s)
- Simona K Zahova
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Trevor Humby
- School of Psychology, Cardiff University, Cardiff, UK
| | - Jennifer R Davies
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Joanne E Morgan
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Anthony R Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
23
|
McGrath FM, Francis A, Fatovich DM, Macdonald SPJ, Arendts G, Bosco A, Woo A, Bosio E. Small nucleolar RNA networks are up-regulated during human anaphylaxis. Clin Exp Allergy 2021; 51:1310-1321. [PMID: 34228845 DOI: 10.1111/cea.13982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/04/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Anaphylaxis is a severe, potentially life-threatening allergic reaction driven primarily by the activation of mast cells. We still fail to understand factors underlying reaction severity. Furthermore, there is currently no reliable diagnostic test to confirm anaphylaxis in the emergency department (ED). OBJECTIVE This study sought to explore gene expression changes associated with anaphylaxis severity in peripheral blood leucocytes and evaluate biomarker potential. METHODS Microarray analysis (total RNA) was performed using peripheral blood samples from ED patients with moderate (n = 6) or severe (n = 12) anaphylaxis and sepsis (n = 20) at presentation (T0) and one hour later (T1). Results were compared between groups and healthy controls (n = 10 and n = 11 matched to anaphylaxis and sepsis patients, respectively). Changes in gene expression were determined using R programming language, and pathway analysis applied to explore biological processes and pathways associated with genes. Differentially expressed genes were validated in an independent cohort of anaphylaxis (n = 30) and sepsis (n = 20) patients, and healthy controls (n = 10), using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS Significant up-regulation of small nucleolar RNAs (snoRNAs) was demonstrated in anaphylaxis compared to sepsis patients in the microarray cohort, at T0 and T1. qRT-PCR analysis of the validation cohort showed five genes: SNORD61, SNORD8, SNORD69, SNORD119 and HIST1H1D to be significantly up-regulated (adjusted p < 0.05) in severe anaphylaxis compared to sepsis. Seven genes (SNORD61, SNORD8, SCARNA21, SNORD69, SNORD110, SNORD119 and SNORD59A) were significantly up-regulated (adjusted p < 0.05) in severe anaphylaxis compared to healthy controls. CONCLUSION This study demonstrates for the first time the unique involvement of snoRNAs in the pathogenesis of anaphylaxis and suggests they are not a general feature of systemic inflammation. Further investigation of snoRNA expression in anaphylaxis could provide insights into disease pathogenesis. CLINICAL RELEVANCE SnoRNAs are up-regulated during acute anaphylaxis in humans and could potentially be used as biomarkers of severe anaphylaxis.
Collapse
Affiliation(s)
- Francesca Marina McGrath
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Abbie Francis
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia.,Centre for Child Health Research, The University of Western Australia, Telethon Kids Institute, Nedlands, WA, Australia
| | - Daniel M Fatovich
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia.,Division of Emergency Medicine, Medical School, University of Western Australia, Perth, WA, Australia.,Emergency Department, Royal Perth Hospital, Perth, WA, Australia
| | - Stephen P J Macdonald
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia.,Division of Emergency Medicine, Medical School, University of Western Australia, Perth, WA, Australia.,Emergency Department, Royal Perth Hospital, Perth, WA, Australia
| | - Glenn Arendts
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia.,Division of Emergency Medicine, Medical School, University of Western Australia, Perth, WA, Australia.,Emergency Department, Fiona Stanley Hospital, Perth, WA, Australia
| | - Anthony Bosco
- Centre for Child Health Research, The University of Western Australia, Telethon Kids Institute, Nedlands, WA, Australia
| | - Andrew Woo
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Erika Bosio
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia.,Division of Emergency Medicine, Medical School, University of Western Australia, Perth, WA, Australia.,Emergency Department, Royal Perth Hospital, Perth, WA, Australia
| |
Collapse
|
24
|
Jacovetti C, Bayazit MB, Regazzi R. Emerging Classes of Small Non-Coding RNAs With Potential Implications in Diabetes and Associated Metabolic Disorders. Front Endocrinol (Lausanne) 2021; 12:670719. [PMID: 34040585 PMCID: PMC8142323 DOI: 10.3389/fendo.2021.670719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Most of the sequences in the human genome do not code for proteins but generate thousands of non-coding RNAs (ncRNAs) with regulatory functions. High-throughput sequencing technologies and bioinformatic tools significantly expanded our knowledge about ncRNAs, highlighting their key role in gene regulatory networks, through their capacity to interact with coding and non-coding RNAs, DNAs and proteins. NcRNAs comprise diverse RNA species, including amongst others PIWI-interacting RNAs (piRNAs), involved in transposon silencing, and small nucleolar RNAs (snoRNAs), which participate in the modification of other RNAs such as ribosomal RNAs and transfer RNAs. Recently, a novel class of small ncRNAs generated from the cleavage of tRNAs or pre-tRNAs, called tRNA-derived small RNAs (tRFs) has been identified. tRFs have been suggested to regulate protein translation, RNA silencing and cell survival. While for other ncRNAs an implication in several pathologies is now well established, the potential involvement of piRNAs, snoRNAs and tRFs in human diseases, including diabetes, is only beginning to emerge. In this review, we summarize fundamental aspects of piRNAs, snoRNAs and tRFs biology. We discuss their biogenesis while emphasizing on novel sequencing technologies that allow ncRNA discovery and annotation. Moreover, we give an overview of genomic approaches to decrypt their mechanisms of action and to study their functional relevance. The review will provide a comprehensive landscape of the regulatory roles of these three types of ncRNAs in metabolic disorders by reporting their differential expression in endocrine pancreatic tissue as well as their contribution to diabetes incidence and diabetes-underlying conditions such as inflammation. Based on these discoveries we discuss the potential use of piRNAs, snoRNAs and tRFs as promising therapeutic targets in metabolic disorders.
Collapse
Affiliation(s)
- Cécile Jacovetti
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Mustafa Bilal Bayazit
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Kocher MA, Huang FW, Le E, Good DJ. Snord116 Post-transcriptionally Increases Nhlh2 mRNA Stability: Implications for Human Prader-Willi Syndrome. Hum Mol Genet 2021; 30:1101-1110. [PMID: 33856031 DOI: 10.1093/hmg/ddab103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022] Open
Abstract
The smallest genomic region causing Prader-Willi Syndrome (PWS) deletes the non-coding RNA SNORD116 cluster; however, the function of SNORD116 remains a mystery. Previous work in the field revealed the tantalizing possibility that expression of NHLH2, a gene previously implicated in both obesity and hypogonadism, was downregulated in PWS patients and differentiated stem cells. In silico RNA: RNA modeling identified several potential interaction domains between SNORD116 and NHLH2 mRNA. One of these interaction domains was highly conserved in most vertebrate NHLH2 mRNAs examined. A construct containing the Nhlh2 mRNA, including its 3'-UTR, linked to a c-myc tag was transfected into a hypothalamic neuron cell line in the presence and absence of exogenously-expressed Snord116. Nhlh2 mRNA expression was upregulated in the presence of Snord116 dependent on the length and type of 3'UTR used on the construct. Furthermore, use of actinomycin D to stop new transcription in N29/2 cells demonstrated that the upregulation occurred through increased stability of the Nhlh2 mRNA in the 45 minutes immediately following transcription. In silico modeling also revealed that a single nucleotide variant (SNV) in the NHLH2 mRNA could reduce the predicted interaction strength of the NHLH2:SNORD116 diad. Indeed, use of an Nhlh2 mRNA construct containing this SNV significantly reduces the ability of Snord116 to increase Nhlh2 mRNA levels. For the first time, these data identify a motif and mechanism for SNORD116-mediated regulation of NHLH2, clarifying the mechanism by which deletion of the SNORD116 snoRNAs locus leads to PWS phenotypes.
Collapse
Affiliation(s)
- Matthew A Kocher
- Translational Biology, Medicine and Health Graduate Program, 1 Riverside Circle, Virginia Tech, Roanoke, VA 24016
| | - Fenix W Huang
- Biocomplexity Institute & Initiative, University of Virginia, 995 Research Park Blvd, Town Center III, 4th Floor, Charlottesville, VA 22911
| | - Erin Le
- Department of Human Nutrition, Foods, and Exercise, 1981 Kraft Drive (0913), Integrated Life Sciences Building, Virginia Tech, Blacksburg, VA 24060
| | - Deborah J Good
- Translational Biology, Medicine and Health Graduate Program, 1 Riverside Circle, Virginia Tech, Roanoke, VA 24016.,Department of Human Nutrition, Foods, and Exercise, 1981 Kraft Drive (0913), Integrated Life Sciences Building, Virginia Tech, Blacksburg, VA 24060
| |
Collapse
|
26
|
Breast Cancer and the Other Non-Coding RNAs. Int J Mol Sci 2021; 22:ijms22063280. [PMID: 33807045 PMCID: PMC8005115 DOI: 10.3390/ijms22063280] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is very heterogenous and the most common gynaecological cancer, with various factors affecting its development. While its impact on human lives and national health budgets is still rising in almost all global areas, many molecular mechanisms affecting its onset and development remain unclear. Conventional treatments still prove inadequate in some aspects, and appropriate molecular therapeutic targets are required for improved outcomes. Recent scientific interest has therefore focused on the non-coding RNAs roles in tumour development and their potential as therapeutic targets. These RNAs comprise the majority of the human transcript and their broad action mechanisms range from gene silencing to chromatin remodelling. Many non-coding RNAs also have altered expression in breast cancer cell lines and tissues, and this is often connected with increased proliferation, a degraded extracellular environment, and higher endothelial to mesenchymal transition. Herein, we summarise the known abnormalities in the function and expression of long non-coding RNAs, Piwi interacting RNAs, small nucleolar RNAs and small nuclear RNAs in breast cancer, and how these abnormalities affect the development of this deadly disease. Finally, the use of RNA interference to suppress breast cancer growth is summarised.
Collapse
|
27
|
Salles J, Lacassagne E, Eddiry S, Franchitto N, Salles JP, Tauber M. What can we learn from PWS and SNORD116 genes about the pathophysiology of addictive disorders? Mol Psychiatry 2021; 26:51-59. [PMID: 33082508 DOI: 10.1038/s41380-020-00917-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Addictive disorders have been much investigated and many studies have underlined the role of environmental factors such as social interaction in the vulnerability to and maintenance of addictive behaviors. Research on addiction pathophysiology now suggests that certain behavioral disorders are addictive, one example being food addiction. Yet, despite the growing body of knowledge on addiction, it is still unknown why only some of the individuals exposed to a drug become addicted to it. This observation has prompted the consideration of genetic heritage, neurodevelopmental trajectories, and gene-environment interactions in addiction vulnerability. Prader-Willi syndrome (PWS) is a rare neurodevelopmental disorder in which children become addicted to food and show early social impairment. PWS is caused by the deficiency of imprinted genes located on the 15q11-q13 chromosome. Among them, the SNORD116 gene was identified as the minimal gene responsible for the PWS phenotype. Several studies have also indicated the role of the Snord116 gene in animal and cellular models to explain PWS pathophysiology and phenotype (including social impairment and food addiction). We thus present here the evidence suggesting the potential involvement of the SNORD116 gene in addictive disorders.
Collapse
Affiliation(s)
- Juliette Salles
- Université de Toulouse III, F-31000, Toulouse, France.,CHU de Toulouse, Service de psychiatrie et psychologie, psychiatrie Toulouse, F-31000, Toulouse, France.,Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France.,CHU de Toulouse, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, F-31000, Toulouse, France
| | - Emmanuelle Lacassagne
- Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France
| | - Sanaa Eddiry
- Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France
| | - Nicolas Franchitto
- Université de Toulouse III, F-31000, Toulouse, France.,CHU de Toulouse, Service d'addictologie clinique, urgences réanimation médecine, F-31000, Toulouse, France
| | - Jean-Pierre Salles
- Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France
| | - Maithé Tauber
- Université de Toulouse III, F-31000, Toulouse, France. .,Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France. .,CHU de Toulouse, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, F-31000, Toulouse, France. .,CHU de Toulouse, Centre de référence du Syndrome de Prader-Willi et autres syndromes avec troubles du comportement alimentaire, Unité d'endocrinologie, obésités, maladies osseuses, génétique et gynécologie médicale, F-31000, Toulouse, France.
| |
Collapse
|
28
|
Whittington JE, Holland AJ. Disorders of hypothalamic function: Insights from Prader-Willi syndrome and the effects of craniopharyngioma. HANDBOOK OF CLINICAL NEUROLOGY 2021; 181:381-389. [PMID: 34238472 DOI: 10.1016/b978-0-12-820683-6.00028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Either physical damage or being born with a specific genetic abnormality can impact on the functioning of the hypothalamus, resulting in diverse physical manifestations and/or specific behavior disorders. The impact of physical damage due to craniopharyngioma (CP) and/or surgery to remove a craniopharyngioma is compared and contrasted with the impact resulting from the genetic abnormalities associated with Prader-Willi syndrome (PWS). Similarities between PWS and CP posttreatment include hyperphagia and weight gain, low growth hormone levels, low bone density in adults, hypogonadism, disturbed temperature regulation, disturbed sleep and daytime sleepiness, memory difficulties, and problems with behavior and with peer relationships. These disturbances are an indication of the hypothalamus's central role in homeostasis. Most of the abnormalities appear to be more severe postoperatively in people with CP. Differences include higher ghrelin levels in PWS, complete absence of pituitary hormones in many cases of CP, higher incidence of thyroid dysfunction in CP, "growth without growth hormone" in obese children with CP, different types of diabetes (diabetes insipidus in CP and diabetes mellitus in PWS), and evidence of developmental delay and low IQ in people with PWS.
Collapse
Affiliation(s)
- Joyce E Whittington
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - Anthony J Holland
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
29
|
Forster J, Duis J, Butler MG. Pharmacodynamic Gene Testing in Prader-Willi Syndrome. Front Genet 2020; 11:579609. [PMID: 33329716 PMCID: PMC7715001 DOI: 10.3389/fgene.2020.579609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/20/2020] [Indexed: 01/14/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a rare genetic disorder with a complex neurobehavioral phenotype associated with considerable psychiatric co-morbidity. This clinical case series, for the first time, describes the distribution and frequency of polymorphisms of pharmacodynamic genes (serotonin transporter, serotonin 2A and 2C receptors, catechol-o-methyltransferase, adrenergic receptor 2A, methylene tetrahydrofolate reductase, and human leucocytic antigens) across the two major molecular classes of PWS in a cohort of 33 referred patients who met medical criteria for testing. When results were pooled across PWS genetic subtypes, genotypic and allelic frequencies did not differ from normative population data. However, when the genetic subtype of PWS was examined, there were differences observed across all genes tested that may affect response to psychotropic medication. Due to small sample size, no statistical significance was found, but results suggest that pharmacodynamic gene testing should be considered before initiating pharmacotherapy in PWS. Larger scale studies are warranted.
Collapse
Affiliation(s)
| | - Jessica Duis
- Section of Genetics and Inherited Metabolic Disease, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Merlin G Butler
- Division of Research and Genetics, Department of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
30
|
Chhatriya B, Mukherjee M, Ray S, Saha B, Lahiri S, Halder S, Ghosh I, Khamrui S, Das K, Bhattacharjee S, Mohapatra SK, Goswami S. Transcriptome analysis identifies putative multi-gene signature distinguishing benign and malignant pancreatic head mass. J Transl Med 2020; 18:420. [PMID: 33160365 PMCID: PMC7648960 DOI: 10.1186/s12967-020-02597-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background Most often, the patients with pancreatic diseases are presented with a mass in pancreatic head region and existing methods of diagnosis fail to confirm whether the head mass is malignant or benign. As subsequent management of the disease hugely depends on the correct diagnosis, we wanted to explore possible biomarkers which could distinguish benign and malignant pancreatic head masses. Methods In order to address that gap, we performed a case–control study to identify genome-wide differentially expressed coding and noncoding genes between pancreatic tissues collected from benign and malignant head masses. These genes were next shortlisted using stringent criteria followed by selection of top malignancy specific genes. They subsequently got validated by quantitative RT-PCR and also in other patient cohorts. Survival analysis and ROC analysis were also performed. Results We identified 55 coding and 13 noncoding genes specific for malignant pancreatic head masses. Further shortlisting and validation, however, resulted in 5 coding genes as part of malignancy specific multi-gene signature, which was validated in three independent patient cohorts of 145 normal and 153 PDAC patients. We also found that overexpression of these genes resulted in survival disadvantage in the patients and ROC analysis identified that combination of 5 coding genes had the AUROC of 0.94, making them potential biomarker. Conclusions Our study identified a multi-gene signature comprising of 5 coding genes (CDCA7, DLGAP5, FOXM1, TPX2 and OSBPL3) to distinguish malignant head masses from benign ones.
Collapse
Affiliation(s)
- Bishnupriya Chhatriya
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, 741251, West Bengal, India
| | - Moumita Mukherjee
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, 741251, West Bengal, India
| | - Sukanta Ray
- School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Barsha Saha
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, 741251, West Bengal, India
| | - Somdatta Lahiri
- Department of Surgery, R G Kar Medical College and Hospital, Kolkata, West Bengal, India
| | - Sandip Halder
- Department of Surgery, R G Kar Medical College and Hospital, Kolkata, West Bengal, India
| | - Indranil Ghosh
- Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Sujan Khamrui
- School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Kshaunish Das
- School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Samsiddhi Bhattacharjee
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, 741251, West Bengal, India
| | - Saroj Kant Mohapatra
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, 741251, West Bengal, India
| | - Srikanta Goswami
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, 741251, West Bengal, India.
| |
Collapse
|
31
|
Ritz MF, Jenoe P, Bonati L, Engelter S, Lyrer P, Peters N. Combined Transcriptomic and Proteomic Analyses of Cerebral Frontal Lobe Tissue Identified RNA Metabolism Dysregulation as One Potential Pathogenic Mechanism in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL). Curr Neurovasc Res 2020; 16:481-493. [PMID: 31657685 DOI: 10.2174/1567202616666191023111059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cerebral small vessel disease (SVD) is an important cause of stroke and vascular cognitive impairment (VCI), leading to subcortical ischemic vascular dementia. As a hereditary form of SVD with early onset, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) represents a pure form of SVD and may thus serve as a model disease for SVD. To date, underlying molecular mechanisms linking vascular pathology and subsequent neuronal damage in SVD are incompletely understood. OBJECTIVE We performed comparative transcriptional profiling microarray and proteomic analyses on post-mortem frontal lobe specimen from 2 CADASIL patients and 5 non neurologically diseased controls in order to identify dysregulated pathways potentially involved in the development of tissue damage in CADASIL. METHODS Transcriptional microarray analysis of material extracted from frontal grey and white matter (WM) identified subsets of up- or down-regulated genes enriched into biological pathways mostly in WM areas. Proteomic analysis of these regions also highlighted cellular processes identified by dysregulated proteins. RESULTS Discrepancies between proteomic and transcriptomic data were observed, but a number of pathways were commonly associated with genes and corresponding proteins, such as: "ribosome" identified by upregulated genes and proteins in frontal cortex or "spliceosome" associated with down-regulated genes and proteins in frontal WM. CONCLUSION This latter finding suggests that defective expression of spliceosomal components may alter widespread splicing profile, potentially inducing expression abnormalities that could contribute to cerebral WM damage in CADASIL.
Collapse
Affiliation(s)
- Marie-Françoise Ritz
- Department of Biomedicine, Brain Tumor Biology Laboratory, University of Basel, and University Hospital of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Paul Jenoe
- Proteomics Core Facility, Biocenter, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Leo Bonati
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Stefan Engelter
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland.,Neurorehabilitation Unit, University of Basel and University Center for Medicine of Aging, Felix Platter Hospital, Burgfelderstrasse 101, 4055 Basel, Switzerland
| | - Philippe Lyrer
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Nils Peters
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland.,Neurorehabilitation Unit, University of Basel and University Center for Medicine of Aging, Felix Platter Hospital, Burgfelderstrasse 101, 4055 Basel, Switzerland
| |
Collapse
|
32
|
Peffers MJ, Chabronova A, Balaskas P, Fang Y, Dyer P, Cremers A, Emans PJ, Feczko PZ, Caron MM, Welting TJM. SnoRNA signatures in cartilage ageing and osteoarthritis. Sci Rep 2020; 10:10641. [PMID: 32606371 PMCID: PMC7326970 DOI: 10.1038/s41598-020-67446-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/08/2020] [Indexed: 01/23/2023] Open
Abstract
Osteoarthritis presents as a change in the chondrocyte phenotype and an imbalance between anabolic and catabolic processes. Age affects its onset and progression. Small nucleolar RNAs (SnoRNAs) direct chemical modification of RNA substrates to fine-tune spliceosomal and rRNA function, accommodating changing requirements for splicing and protein synthesis during health and disease. Articular cartilage from young, old and OA knees was used in a microarray study to identify alterations in snoRNA expression. Changes in snoRNAs in osteoarthritis-like conditions were studied in chondrocytes using interleukin-1 and osteoarthritic synovial fluid. SNORD26 and SNORD96A knockdown and overexpression were undertaken using antisense oligonucleotides and overexpression plasmids. We identified panels of snoRNAs differentially expressed due to ageing (including SNORD96A, SNORD44) and osteoarthritis (including SNORD26 and SNORD116). In vitro experiments using osteoarthritis-like conditions affected snoRNA expression. Knockdown or overexpression of SNORD26 or SNORD96A resulted in changes in chondrogenic, hypertrophic, rRNA and osteoarthritis related gene expression. We demonstrate that snoRNA expression changes in cartilage ageing, and osteoarthritis and in osteoarthritis-like conditions, and when the expression of these snoRNAs is altered this affects chondrogenic and hypertrophic gene expression. Thus, we propose an additional dimension in the molecular mechanisms underlying cartilage ageing and osteoarthritis through the dysregulation of snoRNAs.
Collapse
Affiliation(s)
- Mandy J Peffers
- Institute of Ageing and Chronic Disease, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Alzbeta Chabronova
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Centre, 6202 AZ, Maastricht, The Netherlands
| | - Panagiotis Balaskas
- Institute of Ageing and Chronic Disease, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK
| | - Philip Dyer
- Institute of Ageing and Chronic Disease, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Andy Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Centre, 6202 AZ, Maastricht, The Netherlands
| | - Pieter J Emans
- Department of Orthopaedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Peter Z Feczko
- Department of Orthopaedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marjolein M Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Centre, 6202 AZ, Maastricht, The Netherlands
| | - Tim J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Centre, 6202 AZ, Maastricht, The Netherlands.,Department of Orthopaedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
33
|
Håkansson KEJ, Goossens EAC, Trompet S, van Ingen E, de Vries MR, van der Kwast RVCT, Ripa RS, Kastrup J, Hohensinner PJ, Kaun C, Wojta J, Böhringer S, Le Cessie S, Jukema JW, Quax PHA, Nossent AY. Genetic associations and regulation of expression indicate an independent role for 14q32 snoRNAs in human cardiovascular disease. Cardiovasc Res 2020; 115:1519-1532. [PMID: 30544252 DOI: 10.1093/cvr/cvy309] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/30/2018] [Accepted: 12/11/2018] [Indexed: 01/12/2023] Open
Abstract
AIMS We have shown that 14q32 microRNAs are highly involved in vascular remodelling and cardiovascular disease. However, the 14q32 locus also encodes 41 'orphan' small nucleolar RNAs (snoRNAs). We aimed to gather evidence for an independent role for 14q32 snoRNAs in human cardiovascular disease. METHODS AND RESULTS We performed a lookup of the 14q32 region within the dataset of a genome wide association scan in 5244 participants of the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER). Single nucleotide polymorphisms (SNPs) in the snoRNA-cluster were significantly associated with heart failure. These snoRNA-cluster SNPs were not linked to SNPs in the microRNA-cluster or in MEG3, indicating that snoRNAs modify the risk of cardiovascular disease independently. We looked at expression of 14q32 snoRNAs throughout the human cardio-vasculature. Expression profiles of the 14q32 snoRNAs appeared highly vessel specific. When we compared expression levels of 14q32 snoRNAs in human vena saphena magna (VSM) with those in failed VSM-coronary bypasses, we found that 14q32 snoRNAs were up-regulated. SNORD113.2, which showed a 17-fold up-regulation in failed bypasses, was also up-regulated two-fold in plasma samples drawn from patients with ST-elevation myocardial infarction directly after hospitalization compared with 30 days after start of treatment. However, fitting with the genomic associations, 14q32 snoRNA expression was highest in failing human hearts. In vitro studies show that the 14q32 snoRNAs bind predominantly to methyl-transferase Fibrillarin, indicating that they act through canonical mechanisms, but on non-canonical RNA targets. The canonical C/D-box snoRNA seed sequences were highly conserved between humans and mice. CONCLUSION 14q32 snoRNAs appear to play an independent role in cardiovascular pathology. 14q32 snoRNAs are specifically regulated throughout the human vasculature and their expression is up-regulated during cardiovascular disease. Our data demonstrate that snoRNAs merit increased effort and attention in future basic and clinical cardiovascular research.
Collapse
Affiliation(s)
- Kjell E J Håkansson
- Department of Surgery, K6-R, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Eveline A C Goossens
- Department of Surgery, K6-R, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Eva van Ingen
- Department of Surgery, K6-R, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Margreet R de Vries
- Department of Surgery, K6-R, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Reginald V C T van der Kwast
- Department of Surgery, K6-R, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Rasmus S Ripa
- Department of Cardiology, Rigshospitalet University of Copenhagen, Copenhagen, Denmark
| | - Jens Kastrup
- Department of Cardiology, Rigshospitalet University of Copenhagen, Copenhagen, Denmark
| | | | - Christoph Kaun
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Stefan Böhringer
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Saskia Le Cessie
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul H A Quax
- Department of Surgery, K6-R, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - A Yaël Nossent
- Department of Surgery, K6-R, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria
| |
Collapse
|
34
|
Bratkovič T, Božič J, Rogelj B. Functional diversity of small nucleolar RNAs. Nucleic Acids Res 2020; 48:1627-1651. [PMID: 31828325 PMCID: PMC7038934 DOI: 10.1093/nar/gkz1140] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/17/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are short non-protein-coding RNAs with a long-recognized role in tuning ribosomal and spliceosomal function by guiding ribose methylation and pseudouridylation at targeted nucleotide residues of ribosomal and small nuclear RNAs, respectively. SnoRNAs are increasingly being implicated in regulation of new types of post-transcriptional processes, for example rRNA acetylation, modulation of splicing patterns, control of mRNA abundance and translational efficiency, or they themselves are processed to shorter stable RNA species that seem to be the principal or alternative bioactive isoform. Intriguingly, some display unusual cellular localization under exogenous stimuli, or tissue-specific distribution. Here, we discuss the new and unforeseen roles attributed to snoRNAs, focusing on the presumed mechanisms of action. Furthermore, we review the experimental approaches to study snoRNA function, including high resolution RNA:protein and RNA:RNA interaction mapping, techniques for analyzing modifications on targeted RNAs, and cellular and animal models used in snoRNA biology research.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI1000 Ljubljana, Slovenia
| | - Janja Božič
- Jozef Stefan Institute, Department of Biotechnology, Jamova cesta 39, SI1000 Ljubljana, Slovenia.,Biomedical Research Institute BRIS, Puhova ulica 10, SI1000 Ljubljana, Slovenia
| | - Boris Rogelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI1000 Ljubljana, Slovenia.,Jozef Stefan Institute, Department of Biotechnology, Jamova cesta 39, SI1000 Ljubljana, Slovenia.,Biomedical Research Institute BRIS, Puhova ulica 10, SI1000 Ljubljana, Slovenia.,University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI1000 Ljubljana, Slovenia
| |
Collapse
|
35
|
Bochukova EG, Lawler K, Croizier S, Keogh JM, Patel N, Strohbehn G, Lo KK, Humphrey J, Hokken-Koelega A, Damen L, Donze S, Bouret SG, Plagnol V, Farooqi IS. A Transcriptomic Signature of the Hypothalamic Response to Fasting and BDNF Deficiency in Prader-Willi Syndrome. Cell Rep 2019; 22:3401-3408. [PMID: 29590610 PMCID: PMC5896230 DOI: 10.1016/j.celrep.2018.03.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/07/2018] [Accepted: 03/05/2018] [Indexed: 01/07/2023] Open
Abstract
Transcriptional analysis of brain tissue from people with molecularly defined causes of obesity may highlight disease mechanisms and therapeutic targets. We performed RNA sequencing of hypothalamus from individuals with Prader-Willi syndrome (PWS), a genetic obesity syndrome characterized by severe hyperphagia. We found that upregulated genes overlap with the transcriptome of mouse Agrp neurons that signal hunger, while downregulated genes overlap with the expression profile of Pomc neurons activated by feeding. Downregulated genes are expressed mainly in neuronal cells and contribute to neurogenesis, neurotransmitter release, and synaptic plasticity, while upregulated, predominantly microglial genes are involved in inflammatory responses. This transcriptional signature may be mediated by reduced brain-derived neurotrophic factor expression. Additionally, we implicate disruption of alternative splicing as a potential molecular mechanism underlying neuronal dysfunction in PWS. Transcriptomic analysis of the human hypothalamus may identify neural mechanisms involved in energy homeostasis and potential therapeutic targets for weight loss. Overlap between genes expressed in human PWS hypothalamus and mouse Agrp neurons Downregulated genes are involved in neuronal development SNORD116 deletion reduces neural development and survival in cells Alternative splicing is disturbed in PWS
Collapse
Affiliation(s)
- Elena G Bochukova
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Katherine Lawler
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Sophie Croizier
- The Saban Research Institute, Developmental Neuroscience Program, and Diabetes and Obesity Program, Children's Hospital Los Angeles, Center for Endocrinology, Diabetes and Metabolism, University of Southern California, Los Angeles, CA 90027, USA; Inserm, Jean-Pierre Aubert Research Center, U1172, University Lille 2, Lille, 59045, France; Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Julia M Keogh
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Nisha Patel
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Garth Strohbehn
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Kitty K Lo
- University College London Genetics Institute (UGI), Department of Genetics, Environment and Evolution, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Jack Humphrey
- University College London Genetics Institute (UGI), Department of Genetics, Environment and Evolution, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK; Department of Neurodegenerative Disease, University College London Institute of Neurology, London, WC1N 3BG, UK
| | - Anita Hokken-Koelega
- Erasmus University Medical Center, Rotterdam, the Netherlands; Dutch Growth Research Foundation, Rotterdam, the Netherlands
| | - Layla Damen
- Erasmus University Medical Center, Rotterdam, the Netherlands; Dutch Growth Research Foundation, Rotterdam, the Netherlands
| | - Stephany Donze
- Erasmus University Medical Center, Rotterdam, the Netherlands; Dutch Growth Research Foundation, Rotterdam, the Netherlands
| | - Sebastien G Bouret
- The Saban Research Institute, Developmental Neuroscience Program, and Diabetes and Obesity Program, Children's Hospital Los Angeles, Center for Endocrinology, Diabetes and Metabolism, University of Southern California, Los Angeles, CA 90027, USA; Inserm, Jean-Pierre Aubert Research Center, U1172, University Lille 2, Lille, 59045, France
| | - Vincent Plagnol
- University College London Genetics Institute (UGI), Department of Genetics, Environment and Evolution, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
36
|
Liang J, Wen J, Huang Z, Chen XP, Zhang BX, Chu L. Small Nucleolar RNAs: Insight Into Their Function in Cancer. Front Oncol 2019; 9:587. [PMID: 31338327 PMCID: PMC6629867 DOI: 10.3389/fonc.2019.00587] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/17/2019] [Indexed: 02/04/2023] Open
Abstract
Small nucleolar RNAs (SnoRNAs) are a class of non-coding RNAs divided into two classes: C/D box snoRNAs and H/ACA box snoRNAs. The canonical function of C/D box and H/ACA box snoRNAs are 2'-O-ribose methylation and pseudouridylation of ribosomal RNAs (rRNAs), respectively. Emerging evidence has demonstrated that snoRNAs are involved in various physiological and pathological cellular processes. Mutations and aberrant expression of snoRNAs have been reported in cell transformation, tumorigenesis, and metastasis, indicating that snoRNAs may serve as biomarkers and/or therapeutic targets of cancer. Hence, further study of the functions and underlying mechanism of snoRNAs is valuable. In this review, we summarize the biogenesis and functions of snoRNAs, as well as the association of snoRNAs in different types of cancers and their potential roles in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyuan Wen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Single-Case Study of Appetite Control in Prader-Willi Syndrome, Over 12-Years by the Indian Extract Caralluma fimbriata. Genes (Basel) 2019; 10:genes10060447. [PMID: 31212875 PMCID: PMC6627187 DOI: 10.3390/genes10060447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 12/27/2022] Open
Abstract
This paper reports on the successful management of hyperphagia (exaggerated hunger) in a 14yr-old female with Prader–Willi syndrome (PWS). This child was diagnosed with PWS, (maternal uniparental disomy) at 18 months due to developmental delay, hypertonia, weight gain and extreme eating behaviour. Treatment of a supplement for appetite suppression commenced at 2 years of age. This single-case records ingestion of an Indian cactus succulent Caralluma fimbriata extract (CFE) over 12 years, resulting in anecdotal satiety, free access to food and management of weight within normal range. CFE was administered in a drink daily and dose was slowly escalated by observation for appetite suppression. Rigorous testing determined blood count, vitamins, key minerals, HbA1c, IGF-1 and function of the liver and thyroid all within normal range. The report suggests a strategy for early intervention against hyperphagia and obesity in PWS. This case was the instigator of the successful Australian PWS/CFE pilot and though anecdotal, the adolescent continues to ingest CFE followed by paediatricians at the Royal Children’s Hospital Melbourne, Victoria, Australia. Future clinical trials are worth considering, to determine an appropriate dose for individuals with PWS.
Collapse
|
38
|
Aliberti P, Sethi R, Belgorosky A, Chandran UR, Plant TM, Walker WH. Gonadotrophin-mediated miRNA expression in testis at onset of puberty in rhesus monkey: predictions on regulation of thyroid hormone activity and DLK1-DIO3 locus. Mol Hum Reprod 2019; 25:124-136. [PMID: 30590698 PMCID: PMC6396851 DOI: 10.1093/molehr/gay054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/30/2018] [Accepted: 12/20/2018] [Indexed: 12/28/2022] Open
Abstract
Molecular mechanisms responsible for the initiation of primate spermatogenesis remain poorly characterized. Previously, 48 h stimulation of the testes of three juvenile rhesus monkeys with pulsatile LH and FSH resulted in down-regulation of a cohort of genes recognized to favor spermatogonia stem cell renewal. This change in genetic landscape occurred in concert with amplification of Sertoli cell proliferation and the commitment of undifferentiated spermatogonia to differentiate. In this report, the non-protein coding small RNA transcriptomes of the same testes were characterized using RNA sequencing: 537 mature micro-RNAs (miRNAs), 322 small nucleolar RNAs (snoRNAs) and 49 small nuclear RNAs (snRNAs) were identified. Pathway analysis of the 20 most highly expressed miRNAs suggested that these transcripts contribute to limiting the proliferation of the primate Sertoli cell during juvenile development. Gonadotrophin treatment resulted in differential expression of 35 miRNAs, 12 snoRNAs and four snRNA transcripts. Ten differentially expressed miRNAs were derived from the imprinted delta-like homolog 1-iodothyronine deiodinase 3 (DLK1-DIO3) locus that is linked to stem cell fate decisions. Four gonadotrophin-regulated expressed miRNAs were predicted to trigger a local increase in thyroid hormone activity within the juvenile testis. The latter finding leads us to predict that, in primates, a gonadotrophin-induced selective increase in testicular thyroid hormone activity, together with the established increase in androgen levels, at the onset of puberty is necessary for the normal timing of Sertoli cell maturation, and therefore initiation of spermatogenesis. Further examination of this hypothesis requires that peripubertal changes in thyroid hormone activity of the testis of a representative higher primate be determined empirically.
Collapse
Affiliation(s)
- Paula Aliberti
- Endocrine Service, Hospital de Pediatría Garrahan, Combate de los Pozos 1881(C 1245 AAM) C.A.B.A., Buenos Aires, Argentina
| | - Rahil Sethi
- Department of Biomedical Informatics, University of Pittsburgh Cancer Institute, 5607 Baum Boulevard, Suite 500, Pittsburgh, PA, USA
| | - Alicia Belgorosky
- Endocrine Service, Hospital de Pediatría Garrahan, Combate de los Pozos 1881(C 1245 AAM) C.A.B.A., Buenos Aires, Argentina
| | - Uma R Chandran
- Department of Biomedical Informatics, University of Pittsburgh Cancer Institute, 5607 Baum Boulevard, Suite 500, Pittsburgh, PA, USA
| | - Tony M Plant
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, USA
| | - William H Walker
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, USA
| |
Collapse
|
39
|
Kothari C, Ouellette G, Labrie Y, Jacob S, Diorio C, Durocher F. Identification of a gene signature for different stages of breast cancer development that could be used for early diagnosis and specific therapy. Oncotarget 2018; 9:37407-37420. [PMID: 30647841 PMCID: PMC6324778 DOI: 10.18632/oncotarget.26448] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022] Open
Abstract
Breast cancer (BC) is a heterogeneous disease where the survival rate of patients decreases with progression of the disease. BC usually has a linear progression, classified into normal/benign, atypical ductal hyperplasia (ADH), ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC). This study aimed to identify gene signature for each of these subgroups. We performed human transcriptome array analysis on 5 patient samples from each Normal, ADH, IDC and DCIS and 2 replicates of MCF10A cell line representative of each subgroup. We identified SFRP1 and snoRNAs (especially SNORD115 and SNORD114) as the initial regulators of cancer progression, accompanied by significant changes in extracellular matrix organization. Tumor progression to the IDC stage showed upregulation of tumor promoting genes responsible for increased invasion, inflammation, survival in stress environment and metastasis. The gene signatures identified in this study could represent potential biomarkers for each subgroup of breast cancer progression, which could assist in early diagnosis of breast cancer progression as well as treatment interventions. Moreover, these gene signatures could serve in discovery of specific targeted therapies for each subgroup.
Collapse
Affiliation(s)
- Charu Kothari
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer, Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Geneviève Ouellette
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer, Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Yvan Labrie
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer, Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Simon Jacob
- Centre de recherche sur le cancer, Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
- Laboratoire de pathologie, Hôpital du Saint-Sacrement, CHU de Québec-Université Laval, Québec, Canada
| | - Caroline Diorio
- Centre de recherche sur le cancer, Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
- Département de médecine sociale et préventive, Faculté de médecine, Université Laval, Québec, Canada
| | - Francine Durocher
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer, Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
| |
Collapse
|
40
|
Griggs JL, Mathai ML, Sinnayah P. Caralluma fimbriata extract activity involves the 5-HT2c receptor in PWS Snord116 deletion mouse model. Brain Behav 2018; 8:e01102. [PMID: 30353709 PMCID: PMC6305914 DOI: 10.1002/brb3.1102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/09/2018] [Accepted: 07/29/2018] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION In Prader-Willi syndrome (PWS), nonprotein coding small nucleolar (sno) RNAs are involved in the paternally deleted region of chromosome 15q11.2-q13, which is believed to cause the hyperphagic phenotype of PWS. Central to this is SnoRNA116. The supplement Caralluma fimbriata extract (CFE) has been shown to decrease appetite behavior in some individuals with PWS. We therefore investigated the mechanism underpinning the effect of CFE on food intake in the Snord116del mouse. Experiments utilized appetite stimulants which included a 5-hydroxytryptamine (5-HT) 2c receptor antagonist (SB242084), as the 5-HT2cR is implicated in central signaling of satiety. METHODS After 9-week chronic CFE treatment (33 mg or 100 mg kg-1 day-1 ) or placebo, the 14-week-old Snord116del (SNO) and wild-type mice (n = 72) were rotated through intraperitoneal injections of (a) isotonic saline; (b) 400 mg/kg of 2-deoxyglucose (2DG) (glucose deprivation); (c) 100 mglkg beta-mercaptoacetate (MA), fatty acid signaling; and (d) SB242084 (a selective 5HT2cR antagonist), with 5 days between reagents. Assessments of food intake were from baseline to 4 hr, followed by immunohistochemistry of neural activity utilizing c-Fos, neuropeptide Y, and alpha-melanocyte-stimulating hormone within hypothalamic appetite pathways. RESULTS Caralluma fimbriata extract administration decreased food intake more strongly in the SNO100CFE group with significantly stimulated food intake demonstrated during coadministration with SB242084. Though stimulatory deprivation was expected to stimulate food intake, 2DG and MA resulted in lower intake in the snord116del mice compared to the WT animals (p = <0.001). Immunohistochemical mapping of hypothalamic neural activity was consistent with the behavioral studies. CONCLUSIONS This study identifies a role for the 5-HT2cR in CFE-induced appetite suppression and significant stimulatory feeding disruptions in the snord116del mouse model.
Collapse
Affiliation(s)
- Joanne L Griggs
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Michael L Mathai
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Puspha Sinnayah
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
The Role of the Prader-Willi Syndrome Critical Interval for Epigenetic Regulation, Transcription and Phenotype. EPIGENOMES 2018. [DOI: 10.3390/epigenomes2040018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Prader-Willi Syndrome (PWS) is a neurodevelopmental disorder caused by loss of expression of the paternally inherited genes on chromosome 15q11.2-q13. However, the core features of PWS have been attributed to a critical interval (PWS-cr) within the 15q11.2-q13 imprinted gene cluster, containing the small nucleolar RNA (snoRNA) SNORD116 and non-coding RNA IPW (Imprinted in Prader-Willi) exons. SNORD116 affects the transcription profile of hundreds of genes, possibly via DNA methylation or post-transcriptional modification, although the exact mechanism is not completely clear. IPW on the other hand has been shown to specifically modulate histone methylation of a separate imprinted locus, the DLK1-DIO3 cluster, which itself is associated with several neurodevelopmental disorders with similarities to PWS. Here we review what is currently known of the molecular targets of SNORD116 and IPW and begin to disentangle their roles in contributing to the Prader-Willi Syndrome phenotype.
Collapse
|
42
|
Welden JR, Zhang Z, Duncan MJ, Falaleeva M, Wells T, Stamm S. The posterior pituitary expresses the serotonin receptor 2C. Neurosci Lett 2018; 684:132-139. [PMID: 29969651 DOI: 10.1016/j.neulet.2018.06.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/19/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
The serotonin receptor 2C (5HT2C) is an important drug target to treat obesity and depression. Its pre-mRNA undergoes alternative splicing, encoding a short RNA1 isoform that is localized intracellularly and a full-length isoform (RNA2) that can reach the cell membrane. These splicing isoforms are deregulated in Prader-Willi syndrome (PWS), due to the loss of a trans-acting regulatory RNA, SNORD115. Here we show that the 5HT2C mRNA is expressed in the posterior pituitary, suggesting that 5HT2C mRNA is generated in the hypothalamus and subsequently conveyed by axonal transport. In the pituitary, the ratio of 5HT2C isoforms is regulated by feeding, and can be manipulated using a splice-site changing oligonucleotide injected into the blood. The pituitary expression of the 5HT2C mRNA may constitute a previously unknown mechanism whereby serotonin in the circulation or drugs targeting the 5HT2C might induce side-effects. Finally, the deregulation of 5HT2C splicing isoforms in PWS could contribute to the known hormonal imbalances.
Collapse
Affiliation(s)
- Justin R Welden
- Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40503, United States
| | - Zhaiyi Zhang
- Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40503, United States
| | - Marilyn J Duncan
- Dept. of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, 40536, United States
| | - Marina Falaleeva
- Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40503, United States
| | - Timothy Wells
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom
| | - Stefan Stamm
- Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40503, United States.
| |
Collapse
|
43
|
Belzeaux R, Lin R, Ju C, Chay MA, Fiori LM, Lutz PE, Turecki G. Transcriptomic and epigenomic biomarkers of antidepressant response. J Affect Disord 2018; 233:36-44. [PMID: 28918100 DOI: 10.1016/j.jad.2017.08.087] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/09/2017] [Accepted: 08/31/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Antidepressant treatment is associated with a high rate of poor response, and thus, biomarker development is warranted. METHODS We aimed to synthesize studies investigating gene expression, small RNAs, and epigenomic biomarkers of antidepressant response. We conducted a narrative review of the literature. RESULTS Firstly, we detailed the challenges involved, in terms of biological tissues, relevant study time frames, and mandatory statistical tools. Secondly we synthesized results obtained in gene expression studies, focusing mainly on genome-wide studies, particularly small non-coding RNA, including micro-RNA and other small RNA species. In addition, we reviewed the potential biomarkers of antidepressant response arising from studies investigating DNA methylation variation and histone modifications. LIMITATIONS We did not conduct a meta-analysis due to the heterogeneity of the study. CONCLUSION Although promising, the field of gene expression and epigenomic biomarkers of antidepressant response is still in its infancy, and needs further development to define useful biomarkers in clinical practice.
Collapse
Affiliation(s)
- Raoul Belzeaux
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Rixing Lin
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Chelsey Ju
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Marc-Aurele Chay
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Laura M Fiori
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Pierre-Eric Lutz
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Institute of Cellular and Integrative Neuroscience, CNRS, UPR3212, Strasbourg, France
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
44
|
Bratkovič T, Modic M, Camargo Ortega G, Drukker M, Rogelj B. Neuronal differentiation induces SNORD115 expression and is accompanied by post-transcriptional changes of serotonin receptor 2c mRNA. Sci Rep 2018; 8:5101. [PMID: 29572515 PMCID: PMC5865145 DOI: 10.1038/s41598-018-23293-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Abstract
The serotonin neurotransmitter system is widespread in the brain and implicated in modulation of neuronal responses to other neurotransmitters. Among 14 serotonin receptor subtypes, 5-HT2cR plays a pivotal role in controlling neuronal network excitability. Serotonergic activity conveyed through receptor 5-HT2cR is regulated post-transcriptionally via two mechanisms, alternative splicing and A-to-I RNA editing. Brain-specific small nucleolar RNA SNORD115 harbours a phylogenetically conserved 18-nucleotide antisense element with perfect complementarity to the region of 5ht2c primary transcript that undergoes post-transcriptional changes. Previous 5ht2c minigene studies have implicated SNORD115 in fine-tuning of both post-transcriptional events. We monitored post-transcriptional changes of endogenous 5ht2c transcripts during neuronal differentiation. Both SNORD115 and 5ht2c were upregulated upon neuronal commitment. We detected increased 5ht2c alternative exon Vb inclusion already at the stage of neuronal progenitors, and more extensive A-to-I editing of non-targeted sites A and B compared to adjacent adenosines at sites E, C and D throughout differentiation. As the extent of editing is known to positively correlate with exon Vb usage while it reduces receptor functionality, our data support the model where SNORD115 directly promotes alternative exon inclusion without the requirement for conversion of key adenosines to inosines, thereby favouring production of full-length receptor isoforms with higher potency.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Biology, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Miha Modic
- Institute of Stem Cell Research and the Induced Pluripotent Stem Cell Core Facility, Helmholtz Center Munich, 85764, Neuherberg, Germany
| | - Germán Camargo Ortega
- Institute of Stem Cell Research and the Induced Pluripotent Stem Cell Core Facility, Helmholtz Center Munich, 85764, Neuherberg, Germany.,Physiological Genomics, Biomedical Center, Ludwig-Maximilian University Munich, Munich, Germany
| | - Micha Drukker
- Institute of Stem Cell Research and the Induced Pluripotent Stem Cell Core Facility, Helmholtz Center Munich, 85764, Neuherberg, Germany
| | - Boris Rogelj
- Jozef Stefan Institute, Department of Biotechnology, Jamova 39, 1000, Ljubljana, Slovenia. .,Biomedical Research Institute BRIS, Puhova 10, 1000, Ljubljana, Slovenia. .,University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000, Ljubljana, Slovenia.
| |
Collapse
|
45
|
Qi Y, Purtell L, Fu M, Zhang L, Zolotukhin S, Campbell L, Herzog H. Hypothalamus Specific Re-Introduction of SNORD116 into Otherwise Snord116 Deficient Mice Increased Energy Expenditure. J Neuroendocrinol 2017; 29. [PMID: 28094877 DOI: 10.1111/jne.12457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/21/2016] [Accepted: 01/11/2017] [Indexed: 02/02/2023]
Abstract
The Snord116 gene cluster has been recognised as a critical contributor to the Prader-Willi syndrome (PWS), with mice lacking Snord116 displaying many classical PWS phenotypes, including low postnatal body weight, reduced bone mass and increased food intake. However, these mice do not develop obesity as a result of increased energy expenditure. To understand the physiological function of SNORD116 better and potentially rescue the altered metabolism of Snord116-/- mice, we used an adeno-associated viral (AAV) approach to reintroduce the product of the Snord116 gene into the hypothalamus in Snord116-/- mice at different ages. The results obtained show that mid-hypothalamic re-introduction of SNORD116 in 6-week-old Snord116-/- mice leads to significantly reduced body weight and weight gain, which is associated with elevated energy expenditure. Importantly, when the intervention targets other areas such as the anterior region of the hypothalamus or the reintroduction occurs in older mice, the positive effects on energy expenditure are diminished. These data indicate that the metabolic symptoms of PWS develop gradually and the Snord116 gene plays a critical role during this process. Furthermore, when we investigated the consequences of SNORD116 re-introduction under conditions of thermoneutrality where the mild cold stress influences are avoided, we also observed a significant increase in energy expenditure. In conclusion, the rescue of mid-hypothalamic Snord116 deficiency in young Snord116 germline deletion mice increases energy expenditure, providing fundamental information contributing to potential virus-mediated genetic therapy in PWS.
Collapse
Affiliation(s)
- Y Qi
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, Australia
| | - L Purtell
- Diabetes Division, Garvan Institute of Medical Research, Sydney, Australia
| | - M Fu
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, Australia
| | - L Zhang
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, Australia
| | - S Zolotukhin
- Department of Pediatrics, College of Medicine, Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - L Campbell
- Diabetes Division, Garvan Institute of Medical Research, Sydney, Australia
| | - H Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, Australia
| |
Collapse
|
46
|
Non-coding RNAs and disease: the classical ncRNAs make a comeback. Biochem Soc Trans 2017; 44:1073-8. [PMID: 27528754 DOI: 10.1042/bst20160089] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Indexed: 01/16/2023]
Abstract
Many human diseases have been attributed to mutation in the protein coding regions of the human genome. The protein coding portion of the human genome, however, is very small compared with the non-coding portion of the genome. As such, there are a disproportionate number of diseases attributed to the coding compared with the non-coding portion of the genome. It is now clear that the non-coding portion of the genome produces many functional non-coding RNAs and these RNAs are slowly being linked to human diseases. Here we discuss examples where mutation in classical non-coding RNAs have been attributed to human disease and identify the future potential for the non-coding portion of the genome in disease biology.
Collapse
|
47
|
Falaleeva M, Welden JR, Duncan MJ, Stamm S. C/D-box snoRNAs form methylating and non-methylating ribonucleoprotein complexes: Old dogs show new tricks. Bioessays 2017; 39:10.1002/bies.201600264. [PMID: 28505386 PMCID: PMC5586538 DOI: 10.1002/bies.201600264] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
C/D box snoRNAs (SNORDs) are an abundantly expressed class of short, non-coding RNAs that have been long known to perform 2'-O-methylation of rRNAs. However, approximately half of human SNORDs have no predictable rRNA targets, and numerous SNORDs have been associated with diseases that show no defects in rRNAs, among them Prader-Willi syndrome, Duplication 15q syndrome and cancer. This apparent discrepancy has been addressed by recent studies showing that SNORDs can act to regulate pre-mRNA alternative splicing, mRNA abundance, activate enzymes, and be processed into shorter ncRNAs resembling miRNAs and piRNAs. Furthermore, recent biochemical studies have shown that a given SNORD can form both methylating and non-methylating ribonucleoprotein complexes, providing an indication of the likely physical basis for such diverse new functions. Thus, SNORDs are more structurally and functionally diverse than previously thought, and their role in gene expression is under-appreciated. The action of SNORDs in non-methylating complexes can be substituted with oligonucleotides, allowing devising therapies for diseases like Prader-Willi syndrome.
Collapse
Affiliation(s)
- Marina Falaleeva
- University Kentucky, Institute for Biochemistry, Lexington, KY, USA
| | - Justin R. Welden
- University Kentucky, Institute for Biochemistry, Lexington, KY, USA
| | | | - Stefan Stamm
- University Kentucky, Institute for Biochemistry, Lexington, KY, USA
| |
Collapse
|
48
|
Fontana P, Grasso M, Acquaviva F, Gennaro E, Galli ML, Falco M, Scarano F, Scarano G, Lonardo F. SNORD116 deletions cause Prader-Willi syndrome with a mild phenotype and macrocephaly. Clin Genet 2017; 92:440-443. [PMID: 28266014 DOI: 10.1111/cge.13005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 12/20/2022]
Abstract
Prader-Willi syndrome is a complex condition caused by lack of expression of imprinted genes in the paternally derived region of chromosome 15 (15q11q13). A small number of patients with Prader-Willi phenotype have been discovered to have narrow deletions, not encompassing the whole critical region, but only the SNORD116 cluster, which includes genes codifying for small nucleolar RNAs. This kind of deletion usually is not detected by the classic DNA methylation analysis test. We present the case of a male patient with a mild Prader-Willi phenotype and a small deletion including SNORD116, diagnosed by methylation-sensitive multiplex ligation-dependent probe amplification (MLPA. The patient showed neonatal hypotonia, hyperphagia, obesity, central hypogonadism, hypothyroidism, strabismus. Stature and intellectual development are within the normal range. The presence of macrocephaly, observed in other cases of SNORD116 deletions as well, is uncommon for the classic phenotype of the syndrome.
Collapse
Affiliation(s)
- P Fontana
- U.O.S.D. Genetica Medica, A.O.R.N. Gaetano Rummo, Benevento, Italy
| | - M Grasso
- S.C. Laboratorio Genetica Umana, EO Ospedali Galliera, Genova, Italy
| | - F Acquaviva
- U.O.S.D. Genetica Medica, A.O.R.N. Gaetano Rummo, Benevento, Italy
| | - E Gennaro
- S.C. Laboratorio Genetica Umana, EO Ospedali Galliera, Genova, Italy
| | - M L Galli
- S.C. Laboratorio Genetica Umana, EO Ospedali Galliera, Genova, Italy
| | - M Falco
- U.O.S.D. Genetica Medica, A.O.R.N. Gaetano Rummo, Benevento, Italy
| | - F Scarano
- U.O.S.D. Genetica Medica, A.O.R.N. Gaetano Rummo, Benevento, Italy
| | - G Scarano
- U.O.S.D. Genetica Medica, A.O.R.N. Gaetano Rummo, Benevento, Italy
| | - F Lonardo
- U.O.S.D. Genetica Medica, A.O.R.N. Gaetano Rummo, Benevento, Italy
| |
Collapse
|
49
|
Cavaillé J. Box C/D small nucleolar RNA genes and the Prader-Willi syndrome: a complex interplay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28296064 DOI: 10.1002/wrna.1417] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 12/22/2022]
Abstract
The nucleolus of mammalian cells contains hundreds of box C/D small nucleolar RNAs (SNORDs). Through their ability to base pair with ribosomal RNA precursors, most play important roles in the synthesis and/or activity of ribosomes, either by guiding sequence-specific 2'-O-methylations or by facilitating RNA folding and cleavages. A growing number of SNORD genes with elusive functions have been discovered recently. Intriguingly, the vast majority of them are located in two large, imprinted gene clusters at human chromosome region 15q11q13 (the SNURF-SNRPN domain) and at 14q32 (the DLK1-DIO3 domain) where they are expressed, respectively, only from the paternally and maternally inherited alleles. These placental mammal-specific SNORD genes have many features of the canonical SNORDs that guide 2'-O-methylations, yet they lack obvious complementarity with ribosomal RNAs and, surprisingly, they are processed from large, tandemly repeated genes expressed preferentially in the brain. This review summarizes our understanding of the biology of these peculiar SNORD genes, focusing particularly on SNORD115 and SNORD116 in the SNURF-SNRPN domain. It examines the growing evidence that altered levels of these SNORDs and/or their host-gene transcripts may be a primary cause of Prader-Willi syndrome (PWS; a rare disorder characterized by overeating and obesity) as well as abnormalities in signaling through the 5-HT2C serotonin receptor. Finally, the hypothesis that PWS may be a ribosomopathy (ribosomal disease) is also discussed. WIREs RNA 2017, 8:e1417. doi: 10.1002/wrna.1417 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jérôme Cavaillé
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse; UPS and CNRS, LMBE, Toulouse, France
| |
Collapse
|
50
|
Koduru SV, Tiwari AK, Leberfinger A, Hazard SW, Kawasawa YI, Mahajan M, Ravnic DJ. A Comprehensive NGS Data Analysis of Differentially Regulated miRNAs, piRNAs, lncRNAs and sn/snoRNAs in Triple Negative Breast Cancer. J Cancer 2017; 8:578-596. [PMID: 28367238 PMCID: PMC5370502 DOI: 10.7150/jca.17633] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/06/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer is the second leading cause of death in the United States and is a major public health concern worldwide. Basic, clinical and epidemiological research is leading to improved cancer detection, prevention, and outcomes. Recent technological advances have allowed unbiased and comprehensive screening of genome-wide gene expression. Small non-coding RNAs (sncRNAs) have been shown to play an important role in biological processes and could serve as a diagnostic, prognostic and therapeutic biomarker for specific diseases. Recent findings have begun to reveal and enhance our understanding of the complex architecture of sncRNA expression including miRNAs, piRNAs, lncRNAs, sn/snoRNAs and their relationships with biological systems. We used publicly available small RNA sequencing data that was derived from 24 triple negative breast cancers (TNBC) and 14 adjacent normal tissue samples to remap various types of sncRNAs. We found a total of 55 miRNAs were aberrantly expressed (p<0.005) in TNBC samples (8 miRNAs upregulated; 47 downregulated) compared to adjacent normal tissues whereas the original study reported only 25 novel miRs. In this study, we used pathway analysis of differentially expressed miRNAs which revealed TGF-beta signaling pathways to be profoundly affected in the TNBC samples. Furthermore, our comprehensive re-mapping strategy allowed us to discover a number of other differentially expressed sncRNAs including piRNAs, lncRNAs, sn/snoRNAs, rRNAs, miscRNAs and nonsense-mediated decay RNAs. We believe that our sncRNA analysis workflow is extremely comprehensive and suitable for discovery of novel sncRNAs changes, which may lead to the development of innovative diagnostic and therapeutic tools for TNBC.
Collapse
Affiliation(s)
- Srinivas V Koduru
- Division of Plastic Surgery, Department of Surgery, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, PA 17033
| | - Amit K Tiwari
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo - Health Sciences Campus, 300 Arlington Ave, Toledo, OH 43614
| | - Ashley Leberfinger
- Division of Plastic Surgery, Department of Surgery, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, PA 17033
| | - Sprague W Hazard
- Department of Anesthesia, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, PA 17033
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Department of Biochemistry and Molecular Biology, and Institute for Personalized Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA17033
| | - Milind Mahajan
- Genomics Facility, Department of Genetics and Genomics Sciences, Icahn School of Medicine, Mount Sinai, 1425 Madison Ave, New York, NY 10029
| | - Dino J Ravnic
- Division of Plastic Surgery, Department of Surgery, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, PA 17033
| |
Collapse
|