1
|
Wang W, Liu Y, Wu J. The roles of lncRNAs in the development of drug resistance of oral cancers. Biomed Pharmacother 2024; 180:117458. [PMID: 39413618 DOI: 10.1016/j.biopha.2024.117458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024] Open
Abstract
Oral cancers are a significant global health concern, with a high incidence of treatment failure primarily due to the development of drug resistance. Long non-coding RNAs (lncRNAs) have emerged as critical regulators of gene expression, playing pivotal roles in various cellular processes, including tumor progression and response to therapy. This review explores the multifaceted roles of lncRNAs in the development of drug resistance in oral cancers. We highlight the mechanisms by which lncRNAs modulate drug efflux, apoptosis, epithelial-mesenchymal transition (EMT), and other pathways associated with chemoresistance. Key lncRNAs implicated in resistance to commonly used chemotherapeutic agents in oral cancers are discussed, along with their potential as therapeutic targets. Understanding the involvement of lncRNAs in drug resistance mechanisms offers promising avenues for overcoming treatment barriers and improving patient outcomes. This review underscores the need for further research to elucidate the precise roles of lncRNAs in oral cancer resistance and their translation into clinical interventions.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 43400, China
| | - Yi Liu
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 43400, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei 434000, China.
| |
Collapse
|
2
|
Wang H, Lau S, Tan A, Tang FR. Chronic Low-Dose-Rate Radiation-Induced Persistent DNA Damage and miRNA/mRNA Expression Changes in Mouse Hippocampus and Blood. Cells 2024; 13:1705. [PMID: 39451223 PMCID: PMC11505968 DOI: 10.3390/cells13201705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Our previous study demonstrated that the acute high-dose-rate (3.3 Gy/min) γ-ray irradiation (γ-irradiation) of postnatal day-3 (P3) mice with 5 Gy induced depression and drastic neuropathological changes in the dentate gyrus of the hippocampus of adult mice. The present study investigated the effects of chronic low-dose-rate (1.2 mGy/h) γ-irradiation from P3 to P180 with a cumulative dose of 5 Gy on animal behaviour, hippocampal cellular change, and miRNA and mRNA expression in the hippocampus and blood in female mice. The radiation exposure did not significantly affect the animal's body weight, and neuropsychiatric changes such as anxiety and depression were examined by neurobehavioural tests, including open field, light-dark box, elevated plus maze, tail suspension, and forced swim tests. Immunohistochemical staining did not detect any obvious loss of mature and immature neurons (NeuN and DCX) or any inflammatory glial response (IBA1, GFAP, and PDGFRα). Nevertheless, γH2AX foci in the stratum granulosum of the dentate gyrus were significantly increased, suggesting the chronic low-dose-rate irradiation induced persistent DNA damage foci in mice. miRNA sequencing and qRT-PCR indicated an increased expression of miR-448-3p and miR-361-5p but decreased expression of miR-193a-3p in the mouse hippocampus. Meanwhile, mRNA sequencing and qRT-PCR showed the changed expression of some genes, including Fli1, Hs3st5, and Eif4ebp2. Database searching by miRDB and TargetScan predicted that Fli1 and Hs3st5 are the targets of miR-448-3p, and Eif4ebp2 is the target of miR-361-5p. miRNA/mRNA sequencing and qRT-PCR results in blood showed the increased expression of miR-6967-3p and the decreased expression of its target S1pr5. The interactions of these miRNAs and mRNAs may be related to the chronic low-dose-rate radiation-induced persistent DNA damage.
Collapse
Affiliation(s)
| | | | | | - Feng Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore; (H.W.); (S.L.); (A.T.)
| |
Collapse
|
3
|
Zhou J, Zhang H, Ma L, Chen Y, He Z, Xu B. Identification and validation of autophagy-related genes influenced by paris polyphylla in tongue cancer using network pharmacology. BMC Oral Health 2024; 24:1022. [PMID: 39215239 PMCID: PMC11365180 DOI: 10.1186/s12903-024-04784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Tongue squamous cell carcinoma (TSCC) represents the most prevalent form of head and neck squamous cell carcinomas, comprising approximately one-third of all oral cancers. Paris polyphylla(PP) exhibit promising anti-tumor properties, yet their underlying mechanisms remain elusive. This study offers novel insights into the molecular mechanisms underlying TSCC treatment with PP and establishes a theoretical basis for their clinical application. METHODS Employing transcriptomics and network pharmacology methodologies, we identified autophagy-related key genes associated with the effects of PP. These genes were subjected to KEGG and GO enrichment analyses to determine their related functions. In vitro, CAL-27 cells were treated with 10, 30, and 60 μg/ml of PP for 24 h to assess tumor cell proliferation, apoptosis, and autophagy-related markers. KEY FINDINGS Molecular docking of MAPK3 and PSEN1 with PP revealed stable hydrogen bond interactions, indicating the therapeutic potential of these saponins in TSCC through the autophagy pathway. In vitro experiments demonstrated significant inhibition of proliferative activity in tongue squamous carcinoma CAL-27 cells and promotion of tumor cell apoptosis by PP. Western blot analysis confirmed alterations in the expression of autophagy markers P62, LC3B, and Beclin1 following treatment, suggesting activation of the autophagy pathway. CONCLUSIONS Our results suggest that PP inhibits tumor cells through the autophagy pathway, in which MAPK3 and PSEN1 play a role as potential functional molecules.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, 650106, China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China
- Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, 245 Renmin East Road, Kunming, 650106, China
| | - Hongrong Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, 650106, China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China
| | - Lingzhi Ma
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, 650106, China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China
| | - Yanyan Chen
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China
| | - Zhongshun He
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, 650106, China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China
- Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, 245 Renmin East Road, Kunming, 650106, China
| | - Biao Xu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, 650106, China.
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China.
| |
Collapse
|
4
|
Tashakori N, Kolour SSP, Ghafouri K, Ahmed SI, Kahrizi MS, Gerami R, Altafi M, Nazari A. Critical role of the long non-coding RNAs (lncRNAs) in radiotherapy (RT)-resistance of gastrointestinal (GI) cancer: Is there a way to defeat this resistance? Pathol Res Pract 2024; 258:155289. [PMID: 38703607 DOI: 10.1016/j.prp.2024.155289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 05/06/2024]
Abstract
Radiotherapy (RT) is a frequently used treatment for cervical cancer, effectively decreasing the likelihood of the disease returning in the same area and extending the lifespan of individuals with cervical cancer. Nevertheless, the primary reason for treatment failure in cancer patients is the cancer cells' resistance to radiation therapy (RT). Long non-coding RNAs (LncRNAs) are a subset of RNA molecules that do not code for proteins and are longer than 200 nucleotides. They have a significant impact on the regulation of gastrointestinal (GI) cancers biological processes. Recent research has shown that lncRNAs have a significant impact in controlling the responsiveness of GI cancer to radiation. This review provides a concise overview of the composition and operation of lncRNAs as well as the intricate molecular process behind radiosensitivity in GI cancer. Additionally, it compiles a comprehensive list of lncRNAs that are linked to radiosensitivity in such cancers. Furthermore, it delves into the potential practical implementation of these lncRNAs in modulating radiosensitivity in GI cancer.
Collapse
Affiliation(s)
- Nafiseh Tashakori
- Department of Internal Medicine, Faculty of Medicine, Tehran branch, Islamic Azad University, Tehran, Iran
| | | | - Kimia Ghafouri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sarah Ibrahem Ahmed
- Department of Anesthesia Techniques, Al-Noor University College, Nineveh, Iraq
| | | | - Reza Gerami
- Department of Radiology, Faculty of Medicine, AJA University of Medical Science, Tehran, Iran
| | - Mana Altafi
- Department of Radiology, Faculty of Biological Science and Technology, Shiraz Pardis Branch, Islamic Azad University, Shiraz, Iran.
| | - Afsaneh Nazari
- Department of Genetics, Faculty of Basic Sciences, Islamic Azad University, Zanjan Branch, Zanjan, Iran.
| |
Collapse
|
5
|
An L, Li M, Jia Q. Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma. Mol Cancer 2023; 22:140. [PMID: 37598158 PMCID: PMC10439611 DOI: 10.1186/s12943-023-01839-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the sixth most common cause of cancer-related mortality worldwide, with more than half of them occurred in China. Radiotherapy (RT) has been widely used for treating ESCC. However, radiation-induced DNA damage response (DDR) can promote the release of cytokines and chemokines, and triggers inflammatory reactions and changes in the tumor microenvironment (TME), thereby inhibiting the immune function and causing the invasion and metastasis of ESCC. Radioresistance is the major cause of disease progression and mortality in cancer, and it is associated with heterogeneity. Therefore, a better understanding of the radioresistance mechanisms may generate more reversal strategies to improve the cure rates and survival periods of ESCC patients. We mainly summarized the possible mechanisms of radioresistance in order to reveal new targets for ESCC therapy. Then we summarized and compared the current strategies to reverse radioresistance.
Collapse
Affiliation(s)
- Lingbo An
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- College of Medical Technology, Xi'an Medical University, Xi'an, China
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| |
Collapse
|
6
|
Xu K, Guo H, Xia A, Wang Z, Wang S, Wang Q. Non-coding RNAs in radiotherapy resistance: Roles and therapeutic implications in gastrointestinal cancer. Biomed Pharmacother 2023; 161:114485. [PMID: 36917887 DOI: 10.1016/j.biopha.2023.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Radiotherapy has become an indispensable and conventional means for patients with advanced solid tumors including gastrointestinal cancer. However, innate or acquired radiotherapy resistance remains a significant challenge and greatly limits the therapeutic effect, which results in cancer relapse and poor prognosis. Therefore, it is an urgent need to identify novel biomarkers and therapeutic targets for clarify the biological characteristics and mechanism of radiotherapy resistance. Recently, lots of studies have revealed that non-coding RNAs (ncRNAs) are the potential indicators and regulators of radiotherapy resistance via the mediation of various targets/pathways in different cancers. These findings may serve as a potential therapeutic strategy to overcome radiotherapy resistance. In this review, we will shed light on the recent findings regarding the functions and regulatory mechanisms of ncRNAs following radiotherapy, and comprehensively discuss their potential as biomarkers and therapeutic targets in radiotherapy resistance of gastrointestinal cancer.
Collapse
Affiliation(s)
- Kaiyue Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; Department of Radiation Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou 215000, China
| | - Huimin Guo
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Anliang Xia
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Zhangding Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China.
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing 210093, China.
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Medical Transformation Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China.
| |
Collapse
|
7
|
Noncoding RNAs in esophageal cancer: A glimpse into implications for therapy resistance. Pharmacol Res 2023; 188:106678. [PMID: 36709789 DOI: 10.1016/j.phrs.2023.106678] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
Esophageal cancer (EC) is one of the most common malignancies of the digestive system and has a high morbidity and mortality worldwide. Chemotherapy in combination with radiotherapy is one of the most important treatment modalities for EC. Chemoradiotherapy is currently acknowledged worldwide as being the standard treatment for locally advanced or unresectable disease. Unfortunately, due to the existence of therapy resistance, a number of EC patients fail to benefit from drug or irradiation treatment, which ultimately leads to poor outcomes. Considerable efforts have been made to explore the mechanisms underlying the therapy resistance of EC. Notably, noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), are current research areas for the modulation of therapy responses and may serve as new targets to overcome treatment resistance in EC. Herein, we summarized the mechanisms by which ncRNAs are involved in drug and radiation resistance in EC and highlighted their role in promoting or repressing treatment resistance. Additionally, we discussed the clinical relevance of ncRNAs, which may serve as potential therapeutic targets and predictive biomarkers for EC.
Collapse
|
8
|
Mohammadi E, Aliarab A, Babaei G, Habibi NK, Jafari SM, Mir SM, Memar MY. MicroRNAs in esophageal squamous cell carcinoma: Application in prognosis, diagnosis, and drug delivery. Pathol Res Pract 2022; 240:154196. [PMID: 36356334 DOI: 10.1016/j.prp.2022.154196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) play a vital role in various cell biology processes, including cancer formation. These small non-coding RNAs could function as diagnostic and prognostic markers. They may involve esophageal squamous cell carcinoma (ESCC) and distinctive miRNA expression profiles; they are also known as therapeutic targets in human diseases. Therefore, in this study, the function of miRNAs was reviewed regarding the prognosis and diagnosis of ESCC. The changes in miRNAs before and after cancer therapy and the effects of miRNAs on chemo-susceptibility patterns were also investigated. MiRNA delivery systems in ESCC were also highlighted, providing a perspective on how these systems can improve miRNA efficiency.
Collapse
Affiliation(s)
- Elahe Mohammadi
- Department of Nutrition, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Azadeh Aliarab
- Department of Clinical Biochemistry, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nasim Kouhi Habibi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Seyed Mostafa Mir
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Han Y, Ding Z, Chen B, Liu Y, Liu Y. A Novel Inflammatory Response–Related Gene Signature Improves High-Risk Survival Prediction in Patients With Head and Neck Squamous Cell Carcinoma. Front Genet 2022; 13:767166. [PMID: 35480305 PMCID: PMC9035793 DOI: 10.3389/fgene.2022.767166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is a highly prevalent and malignant tumor that is difficult to effectively prognosticate outcomes. Recent reports have suggested that inflammation is strongly related to tumor progression, and several biomarkers linked to inflammation have been demonstrated to be useful for making a prognosis. The goal of this research was to explore the relevance between the inflammatory-related genes and HNSCC prognosis. Methods: The clinical information and gene expression data of patients with HNSCC were acquired from publicly available data sources. A multigene prognostic signature model was constructed in The Cancer Genome Atlas and verified in the Gene Expression Omnibus database. According to the risk score calculated for each patient, they were divided into low- and high-risk groups based on the median. The Kaplan–Meier survival curve and receiver operating characteristic curve were applied to determine the prognostic value of the risk model. Further analysis identified the independent prognostic factors, and a prognostic nomogram was built. The relationship between tumor immune infiltration status and risk scores was investigated using Spearman correlation analysis. Finally, to confirm the expression of genes in HNSCC, quantitative real-time polymerase chain reaction (qRT-PCR) was performed. Results: A prognostic model consisting of 14 inflammatory-related genes was constructed. The samples with a high risk had an apparently shorter overall survival than those with a low risk. Independent prognostic analysis found that risk scores were a separate prognostic factor in HNSCC patients. Immune infiltration analysis suggested that the abundance of B cells, CD8 T cells, M2 macrophages, myeloid dendritic cells, and monocytes in the low-risk group was higher, while that of M0, M1 macrophages, and resting NK cells was obviously higher in the high-risk group. The risk scores were related to chemotherapeutic sensitivity and the expression of several immune checkpoint genes. Moreover, CCL22 and IL10 were significantly higher in HNSCC tissues, as determined by qRT-PCR. Conclusion: Taken together, we constructed a novel inflammatory response–related gene signature, which may be used to estimate outcomes for patients with HNSCC and may be developed into a powerful tool for forecasting the efficacy of immunotherapeutic and chemotherapeutic drugs for HNSCC.
Collapse
Affiliation(s)
- Yanxun Han
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Zhao Ding
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Bangjie Chen
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuchen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Yehai Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yehai Liu,
| |
Collapse
|
10
|
Lohan-Codeço M, Barambo-Wagner ML, Nasciutti LE, Ribeiro Pinto LF, Meireles Da Costa N, Palumbo A. Molecular mechanisms associated with chemoresistance in esophageal cancer. Cell Mol Life Sci 2022; 79:116. [PMID: 35113247 PMCID: PMC11073146 DOI: 10.1007/s00018-022-04131-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023]
Abstract
Esophageal cancer (EC) is one of the most incident and lethal tumors worldwide. Although surgical resection is an important approach in EC treatment, late diagnosis, metastasis and recurrence after surgery have led to the management of adjuvant and neoadjuvant therapies over the past few decades. In this scenario, 5-fluorouracil (5-FU) and cisplatin (CISP), and more recently paclitaxel (PTX) and carboplatin (CBP), have been traditionally used in EC treatment. However, chemoresistance to these agents along EC therapeutic management represents the main obstacle to successfully treat this malignancy. In this sense, despite the fact that most of chemotherapy drugs were discovered several decades ago, in many cases, including EC, they still represent the most affordable and widely employed treatment approach for these tumors. Therefore, this review summarizes the main mechanisms through which the response to the most widely chemotherapeutic agents used in EC treatment is impaired, such as drug metabolism, apoptosis resistance, cancer stem cells (CSCs), cell cycle, autophagy, energetic metabolism deregulation, tumor microenvironment and epigenetic modifications.
Collapse
Affiliation(s)
- Matheus Lohan-Codeço
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Prédio do Centro de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, Rua César Pernetta, 1766 (LS.3.01), Rio de Janeiro, RJ, Brasil
| | - Maria Luísa Barambo-Wagner
- Programa de Carcinogênese Molecular Coordenação de Pesquisa, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6ºandar-Centro, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Prédio do Centro de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, Rua César Pernetta, 1766 (LS.3.01), Rio de Janeiro, RJ, Brasil
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular Coordenação de Pesquisa, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6ºandar-Centro, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular Coordenação de Pesquisa, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6ºandar-Centro, Rio de Janeiro, RJ, 20231-050, Brazil.
| | - Antonio Palumbo
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Prédio do Centro de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, Rua César Pernetta, 1766 (LS.3.01), Rio de Janeiro, RJ, Brasil.
| |
Collapse
|
11
|
Cui X, Yang Y, Yan A. MiR-654-3p Constrains Proliferation, Invasion, and Migration of Sinonasal Squamous Cell Carcinoma via CREB1/PSEN1 Regulatory Axis. Front Genet 2022; 12:799933. [PMID: 35096015 PMCID: PMC8791623 DOI: 10.3389/fgene.2021.799933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background: MiR-654-3p can repress malignant progression of cancer cells, whereas no relative reports were about its modulatory mechanism in sinonasal squamous cell carcinoma (SNSCC). This research committed to approaching modulatory effect of miR-654-3p on SNSCC cells. Methods: Bioinformatics methods were utilized for analyzing interaction of miR-654-3p/cAMP-responsive element binding protein 1 (CREB1)/presenilin-1 (PSEN1). Expression levels of miR-654-3p, CREB1, and PSEN1 mRNA were assessed by quantitative real-time polymerase chain reaction. Western blot was completed for level assessment of CREB1, PSEN1, and epithelial-mesenchymal transition-related proteins. The targeted relationship between miR-654-3p and CREB1, or CREB1 and PSEN1 was authenticated via dual-luciferase assay and ChIP assay. A trail of experiments in vitro was used for detection of the effects of miR-654-3p/CREB1/PSEN1 axis on malignant progression of SNSCC cells. Results: CREB1 as the downstream target mRNA of miR-654-3p could activate transcription of its downstream target gene PSEN1. Besides, miR-654-3p could target CREB1 to repress PSEN1 expression, thus restraining proliferation, migration, invasion, epithelial-mesenchymal transition, and hastening apoptosis of SNSCC cells. Conclusion: MiR-654-3p as an antitumor gene targeted CREB1 to hamper malignant progression of SNSCC through miR-654-3p/CREB1/PSEN1 axis.
Collapse
Affiliation(s)
- Xiao Cui
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Ying Yang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Aihui Yan
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Ketkar M, Dutt S. Epigenetic Regulation Towards Acquired Drug Resistance in Cancer. Subcell Biochem 2022; 100:473-502. [PMID: 36301503 DOI: 10.1007/978-3-031-07634-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Therapy resistance remains the most challenging obstacle in cancer treatment. Substantial efforts and evidences have accumulated over decades suggesting not only genetic but non-genomic mechanisms underlying this adaptation of tumor cells. Alterations in epigenome can have a fundamental effect on cellular functions and response to stresses like anticancer therapy. This chapter discusses the principal mechanisms by which epigenetic modifications in the genome and transcriptome aid tumor cells toward acquisition of resistance to chemotherapy.
Collapse
Affiliation(s)
- Madhura Ketkar
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Shilpee Dutt
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
- ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India.
| |
Collapse
|
13
|
Wei L, Sun J, Zhang N, Shen Y, Wang T, Li Z, Yang M. Novel Implications of MicroRNAs, Long Non-coding RNAs and Circular RNAs in Drug Resistance of Esophageal Cancer. Front Cell Dev Biol 2021; 9:764313. [PMID: 34881242 PMCID: PMC8645845 DOI: 10.3389/fcell.2021.764313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer is the eighth most common malignancy and the sixth leading cause of cancer-related deaths worldwide. Chemotherapy based on platinum drugs, 5-fluorouracil, adriamycin, paclitaxel, gemcitabine, and vinorelbine, as well as targeted treatment and immunotherapy with immune checkpoint inhibitors improved the prognosis in a portion of patients with advanced esophageal cancer. Unfortunately, a number of esophageal cancer patients develop drug resistance, resulting in poor outcomes. Multiple mechanisms contributing to drug resistance of esophageal cancer have been reported. Notably, non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), have been identified to play crucial roles in modulating esophageal cancer drug resistance. In the present review, we highlight the underlying mechanisms how miRNAs, lncRNAs, and circRNAs impact the drug resistance of esophageal cancer. Several miRNAs, lncRNAs, and circRNAs may have potential clinical implications as novel biomarkers and therapeutic targets for esophageal cancer.
Collapse
Affiliation(s)
- Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Yue Shen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Teng Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zengjun Li
- Department of Endoscopy, Shandong Cancer Hospital and Institute, Jinan, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
14
|
Dashti F, Mirazimi SMA, Rabiei N, Fathazam R, Rabiei N, Piroozmand H, Vosough M, Rahimian N, Hamblin MR, Mirzaei H. The role of non-coding RNAs in chemotherapy for gastrointestinal cancers. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:892-926. [PMID: 34760336 PMCID: PMC8551789 DOI: 10.1016/j.omtn.2021.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, hepatic, esophageal, and pancreatic tumors, are responsible for large numbers of deaths around the world. Chemotherapy is the most common approach used to treat advanced GI cancer. However, chemoresistance has emerged as a critical challenge that prevents successful tumor elimination, leading to metastasis and recurrence. Chemoresistance mechanisms are complex, and many factors and pathways are involved. Among these factors, non-coding RNAs (ncRNAs) are critical regulators of GI tumor development and subsequently can induce resistance to chemotherapy. This occurs because ncRNAs can target multiple signaling pathways, affect downstream genes, and modulate proliferation, apoptosis, tumor cell migration, and autophagy. ncRNAs can also induce cancer stem cell features and affect the epithelial-mesenchymal transition. Thus, ncRNAs could possibly act as new targets in chemotherapy combinations to treat GI cancer and to predict treatment response.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
15
|
Xu J, Pan HW, Wang XQ, Chen KP. Status of diagnosis and treatment of esophageal cancer and non-coding RNA correlation research: a narrative review. Transl Cancer Res 2021; 10:4532-4552. [PMID: 35116309 PMCID: PMC8798506 DOI: 10.21037/tcr-21-687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To describe and discuss the progression of the non-coding RNA as biomarkers in early esophageal cancer. BACKGROUND Esophageal cancer without obvious symptoms during early stages is one of the most common cancers, the current clinical treatments offer possibilities of a cure, but the survival rates and the prognoses remain poor, it is a serious threat to human life and health. Most patients are usually diagnosed during terminal stages due to low sensitivity of esophageal cancer's early detection techniques. With the development of molecular biology, an increasing number of non-coding RNAs are found to be associated with the occurrence, development, and prognosis of esophageal cancer. Some of these have begun to be used in clinics and laboratories for diagnosis, treatment, and prognosis, with the goal of reducing mortality. METHODS The information for this paper was collected from a variety of sources, including a search of the keynote's references, a search for texts in college libraries, and discussions with experts in the field of esophageal cancer clinical treatment. CONCLUSIONS Non-coding RNA does play a regulatory role in the development of esophageal cancer, which can predict the occurrence or prognosis of tumors, and become a new class of tumor markers and therapeutic targets in clinical applications. In this review, we survey the recent developments in the incidence, diagnosis, and treatment of esophageal cancer, especially with new research progresses on non-coding RNA biomarkers in detail, and discuss its potential clinical applications.
Collapse
Affiliation(s)
- Jia Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hui-Wen Pan
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Xue-Qi Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ke-Ping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
He XY, Xu Y, Xia QJ, Zhao XM, Li S, He XQ, Wang RR, Wang TH. Combined Scutellarin and C 18H 17NO 6 Imperils the Survival of Glioma: Partly Associated With the Repression of PSEN1/PI3K-AKT Signaling Axis. Front Oncol 2021; 11:663262. [PMID: 34568005 PMCID: PMC8460401 DOI: 10.3389/fonc.2021.663262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023] Open
Abstract
Glioma, the most common intracranial tumor, harbors great harm. Since the treatment for it has reached the bottleneck stage, the development of new drugs becomes a trend. Therefore, we focus on the effect of scutellarin (SCU) and its combination with C18H17NO6 (abbreviated as combination) on glioma and its possible mechanism in this study. Firstly, SCU and C18H17NO6 both suppressed the proliferation of U251 and LN229 cells in a dose-dependent manner, and C18H17NO6 augmented the inhibition effect of SCU on U251 and LN229 cells in vitro. Moreover, there was an interactive effect between them. Secondly, SCU and C18H17NO6 decreased U251 cells in G2 phase and LN229 cells in G2 and S phases but increased U251 cells in S phase, respectively. Meanwhile, the combination could further reduce U251 cells in G2 phase and LN229 cells in G2 and S phases. Thirdly, SCU and C18H17NO6 both induced the apoptosis of U251 and LN229. The combination further increased the apoptosis rate of both cells compared with the two drugs alone. Furthermore, SCU and C18H17NO6 both inhibited the lateral and vertical migration of both cells, which was further repressed by the combination. More importantly, the effect of SCU and the combination was better than positive control-temozolomide, and the toxicity was low. Additionally, SCU and C18H17NO6 could suppress the growth of glioma in vivo, and the effect of the combination was better. Finally, SCU and the combination upregulated the presenilin 1 (PSEN1) level but inactivated the phosphatidylinositol 3−kinase (PI3K)-protein kinase B (AKT) signaling in vitro and in vivo. Accordingly, we concluded that scutellarin and its combination with C18H17NO6 suppressed the proliferation/growth and migration and induced the apoptosis of glioma, in which the mechanism might be associated with the repression of PSEN1/PI3K-AKT signaling axis.
Collapse
Affiliation(s)
- Xiu-Ying He
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Xu
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qing-Jie Xia
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Ming Zhao
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Li
- Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| | - Xiao-Qiong He
- School of Public Health, Kunming Medical University, Kunming, China
| | - Ru-Rong Wang
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| |
Collapse
|
17
|
The Role of miRNA in the Pathophysiology of Neuroendocrine Tumors. Int J Mol Sci 2021; 22:ijms22168569. [PMID: 34445276 PMCID: PMC8395312 DOI: 10.3390/ijms22168569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroendocrine tumors (NETs) represent a tumor group that is both rare and heterogeneous. Prognosis is largely determined by the tumor grading and the site of the primary tumor and metastases. Despite intensive research efforts, only modest advances in diagnostic and therapeutic approaches have been achieved in recent years. For patients with non-respectable tumor stages, prognosis is poor. In this context, the development of novel diagnostic tools for early detection of NETs and prediction of tumor response to therapy as well as estimation of the overall prognosis would greatly improve the clinical management of NETs. However, identification of novel diagnostic molecules is hampered by an inadequate understanding of the pathophysiology of neuroendocrine malignancies. It has recently been demonstrated that microRNA (miRNA), a family of small RNA molecules with an established role in the pathophysiology of quite different cancer entities, may also play a role as a biomarker. Here, we summarize the available knowledge on the role of miRNAs in the development of NET and highlight their potential use as serum-based biomarkers in the context of this disease. We discuss important challenges currently preventing their use in clinical routine and give an outlook on future directions of miRNA research in NET.
Collapse
|
18
|
miR-193a Directly Targets PSEN1 and Inhibits Gastric Cancer Cell Growth, the Activation of PI3K/Akt Signaling Pathway, and the Epithelial-to-Mesenchymal Transition. JOURNAL OF ONCOLOGY 2021; 2021:2804478. [PMID: 34335753 PMCID: PMC8298175 DOI: 10.1155/2021/2804478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/05/2021] [Indexed: 11/25/2022]
Abstract
Background Gastric cancer, a kind of gastrointestinal malignancy, is the second type of leading death cancer. miR-193a is a key tumor suppressor in several diseases. PSEN1 is mainly related to Alzheimer's disease and may be involved in the cleavage of the Notch receptor. Material and Methods. RT-PCR and western blot were applied to evaluate miR-193a and the expression level of PSEN1. Luciferase reporter assay was applied to verify whether PSEN1 was a target of miR-193a. The Kaplan–Meier method was employed to calculate the 5-year overall survival of gastric cancer patients. Results miR-193a was downregulated in gastric cancer tissues and cell lines, and downregulation of miR-193a predicted poor 5-year overall survival of gastric cancer. miR-193a inhibited the proliferation and the activation of the PI3K/AKT signaling pathway in gastric cancer cells. miR-193a inhibited gastric cancer tumor growth in vivo. miR-193a impaired cell invasion and epithelial-to-mesenchymal transition (EMT) in HGC-27 cells. In addition, PSEN1 was a direct target of miR-193a and PSEN1 reversed partial functions of miR-193a in cell proliferation and invasion. Conclusion miR-193a prominently decreased the proliferation, invasion, and activation of the PI3K/Akt signaling pathway and the abilities of epithelial-to-mesenchymal transition in gastric cancer cells. The newly identified miR-193a/PSEN1 axis provides novel insight into the pathogenesis of gastric cancer.
Collapse
|
19
|
Zhang H, Si J, Yue J, Ma S. The mechanisms and reversal strategies of tumor radioresistance in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol 2021; 147:1275-1286. [PMID: 33687564 DOI: 10.1007/s00432-020-03493-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/02/2020] [Indexed: 01/16/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of most lethal malignancies with high aggressive potential in the world. Radiotherapy is used as one curative treatment modality for ESCC patients. Due to radioresistance, the 5-year survival rates of patients after radiotherapy is less than 20%. Tumor radioresistance is very complex and heterogeneous. Cancer-associated fibroblasts (CAFs), as one major component of tumor microenvironment (TME), play critical roles in regulating tumor radioresponse through multiple mechanisms and are increasingly considered as important anti-cancer targets. Cancer stemness, which renders cancer cells to be extremely resistant to conventional therapies, is involved in ESCC radioresistance due to the activation of Wnt/β-catenin, Notch, Hedgehog and Hippo (HH) pathways, or the induction of epithelial-mesenchymal transition (EMT), hypoxia and autophagy. Non-protein-coding RNAs (ncRNAs), which account for more than 90% of the genome, are involved in esophageal cancer initiation and progression through regulating the activation or inactivation of downstream signaling pathways and the expressions of target genes. Herein, we mainly reviewed the role of CAFs, cancer stemness, non-coding RNAs as well as others in the development of radioresistance and clarify the involved mechanisms. Furthermore, we summarized the potential strategies which were reported to reverse radioresistance in ESCC. Together, this review gives a systematic coverage of radioresistance mechanisms and reversal strategies and contributes to better understanding of tumor radioresistance for the exploitation of novel intervention strategies in ESCC.
Collapse
Affiliation(s)
- Hongfang Zhang
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jingxing Si
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Jing Yue
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Shenglin Ma
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
| |
Collapse
|
20
|
Xue J, Xiao P, Yu X, Zhang X. A positive feedback loop between AlkB homolog 5 and miR-193a-3p promotes growth and metastasis in esophageal squamous cell carcinoma. Hum Cell 2021; 34:502-514. [PMID: 33231844 DOI: 10.1007/s13577-020-00458-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most frequent malignancies worldwide. miR-193a-3p acts as an oncogene or tumor suppressor in different cancers. However, the functional role and regulatory mechanism of miR-193a-3p in ESCC remain to be elucidated. Our results demonstrated that miR-193a-3p expression was significantly upregulated and associated with advanced TNM stage, recurrence, and poor prognosis in ESCC patients. miR-193-3p targeted ALKBH5 and suppressed its expression. ALKBH5 inhibited miR-193a-3p expression in turn. ALKBH5 affected the primary miR-193a-3p processing by negatively regulating its m6A modification. These findings suggested a positive feedback regulation between miR-193a-3p and ALKBH5 in ESCC cells. Moreover, the functional assays indicated that the miR-193-3p-ALKBH5 feedback loop promoted the proliferation, migration and invasion ability of ESCC cells in vitro, and facilitated tumor growth and metastasis in vivo. Collectively, our current study identified a novel positive feedback regulation between miR-193a-3p and ALKBH5 in ESCC, which may be helpful to gain insight into ESCC pathogenesis and provide novel therapeutic target for ESCC.
Collapse
Affiliation(s)
- Jinliang Xue
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, No.288, Zhongzhou Middle Road, Luoyang City, 471009, Henan Province, China
| | - Peng Xiao
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, No.288, Zhongzhou Middle Road, Luoyang City, 471009, Henan Province, China
| | - Xiangdong Yu
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, No.288, Zhongzhou Middle Road, Luoyang City, 471009, Henan Province, China
| | - Xiao Zhang
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, No.288, Zhongzhou Middle Road, Luoyang City, 471009, Henan Province, China.
| |
Collapse
|
21
|
Abstract
Esophageal cancer has recent shown a higher incidence but lower 5-year survival rate after normal clinical treatment in China. The aim of this study was to observe whether the inhibition of miR-196a affects esophageal cancer cell growth by modulating the nuclear factor-κB target gene and to detect the possible cooperative therapeutic effects on esophageal cancer by knocking down miR-196a expression combined with the specific inhibitor of nuclear factor-κB target genes. Thus, anti-miR-196a or sotrastaurin, a protein kinase C (PKC) inhibitor, were used to alter PKC expression. We found that miR-196a knockdown or PKC inhibition by sotrastaurin changed PKC expression which then reduced esophageal cancer cell proliferation and downregulated proliferating cell nuclear antigen expression via the classical B-cell receptor-PKC nuclear factor-κB pathway but not the alternative pathway; in addition, miR-196a inhibition can increase the caspase level and induce esophageal cancer cell apoptosis. Our current results provided the evidence that miR-196a was related to the classical nuclear factor-κB pathway, and these new findings proved the potential therapeutic effect of miR-196a in targeted therapy for clinical esophageal cancer patients.
Collapse
|
22
|
Ho HY, Lin FCF, Chen PN, Chen MK, Hsin CH, Yang SF, Lin CW. Tricetin Suppresses Migration and Presenilin-1 Expression of Nasopharyngeal Carcinoma through Akt/GSK-3β Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1203-1220. [PMID: 32668971 DOI: 10.1142/s0192415x20500597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lymph node migration results in poor prognoses for nasopharyngeal carcinoma (NPC) patients. Tricetin, a flavonoid derivative, regulates tumorigenesis activity through its antiproliferative and antimetastatic properties. However, the molecular mechanism of tricetin affecting the migration and invasion of NPC cells remains poorly understood. In this paper, we examined the antimetastatic properties of tricetin in human NPC cells. Our results demonstrated that tricetin at noncytotoxic concentrations (0-80 3M) noticeably reduced the migration and invasion of NPC cells (HONE-1, NPC-39, and NPC-BM). Moreover, tricetin suppressed the indicative protease, presenilin-1 (PS-1), as indicated by protease array. PS-1 was transcriptionally inhibited via the Akt signaling pathway but not mitogen-activated protein kinase pathways, such as the JNK, p38, and ERK1/2 pathways. In addition to upregulating GSK-3[Formula: see text] phosphorylation through Akt suppression, tricetin may downregulate the activity of PS-1. Overall, our study provides new insight into the role of tricetin-induced molecular regulation in the suppression of NPC metastasis and suggests that tricetin has prospective therapeutic applications for patients with NPC.
Collapse
Affiliation(s)
- Hsin-Yu Ho
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Frank Cheau-Feng Lin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Mu-Kuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chung-Han Hsin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
23
|
Autophagy-mediating microRNAs in cancer chemoresistance. Cell Biol Toxicol 2020; 36:517-536. [PMID: 32875398 DOI: 10.1007/s10565-020-09553-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022]
Abstract
Chemoresistance is a complex phenomenon responsible for failure in response to chemotherapy agents and more than 90% of deaths in cancer patients. MicroRNAs (miRNAs), as a subgroup of non-coding RNAs with lengths between 21 and 25 nucleotides, are involved in various cancer processes like chemoresistance via interacting with their target mRNAs and suppressing their expression. Autophagy is a greatly conserved procedure involving the lysosomal degradation of cytoplasmic contents and organelles to deal with environmental stresses like hypoxia and starvation. Autophagy contributes to response to chemotherapy agents: autophagy can act as a protective mechanism for mediating the resistance in response to chemotherapy or can induce autophagic cell death and mediate the sensitivity to chemotherapy. On the other hand, one of the processes targeted by microRNAs in the regulation of chemoresistance is autophagy. Hence, we studied the literatures on chemoresistance mechanisms, the miRNAs' role in cancer, and the miRNAs' role in chemoresistance by modulating autophagy. Graphical Abstract.
Collapse
|
24
|
Gou C, Han P, Li J, Gao L, Ji X, Dong F, Su Q, Zhang Y, Liu X. Knockdown of lncRNA BLACAT1 enhances radiosensitivity of head and neck squamous cell carcinoma cells by regulating PSEN1. Br J Radiol 2020; 93:20190154. [PMID: 31944856 PMCID: PMC7362927 DOI: 10.1259/bjr.20190154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE This work focused on the function role and underlying mechanism of BLACAT1 in regulating the radiosensitivity of head and neck squamous cell carcinoma (HNSCC) cells via PSEN1. METHODS BLACAT1 and PSEN1 expression in HNSCC tissues and cells were measured by qRT-PCR. Kaplan-Meier method and Spearman's correlation analysis determined the prognostic roles and association of BLCAT1 and PSEN1 in HNSCC. The impacts of BLACAT1 and PSEN1, alone and in combination, on radiosensitivity of HNSCC cells were separately assessed through CCK-8, colony formation, flow cytometry, western blot and γH2AX foci staining assays. RESULTS Our study disclosed that BLACAT1 and PSEN1 were both in association with poor prognosis and radioresistance of HNSCC cells. BLACAT1 knockdown improved the radiosensitivity of HNSCC cells by changing cellular activities containing repressed cell viability, accelerated cell apoptosis, induced cell cycle arrest, and stimulated DNA damage response. Further, we found that PSEN1 was positively correlated with BLACAT1. Rescue assays confirmed that BLACAT1 regulated the radiosensitivity of HNSCC cells by modulating PSEN1. CONCLUSION We revealed that BLACAT1 knockdown enhanced radioresistance of HNSCC cells via regulating PSEN1, exposing the probable target role of BLACAT1 in HNSCC. ADVANCES IN KNOWLEDGE This was the first time that the pivotal role of BLACAT1 was investigated in HNSCC, which provided a novel therapeutic direction for HNSCC patients.
Collapse
Affiliation(s)
- Caixia Gou
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, No.2 Small West Lake East Street, Qilihe District, Lanzhou City, Gansu Province, 730050, China
| | - Pengbing Han
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, No.2 Small West Lake East Street, Qilihe District, Lanzhou City, Gansu Province, 730050, China
| | - Jin Li
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, No.2 Small West Lake East Street, Qilihe District, Lanzhou City, Gansu Province, 730050, China
| | - Liying Gao
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, No.2 Small West Lake East Street, Qilihe District, Lanzhou City, Gansu Province, 730050, China
| | - Xuejuan Ji
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, No.2 Small West Lake East Street, Qilihe District, Lanzhou City, Gansu Province, 730050, China
| | - Fang Dong
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, No.2 Small West Lake East Street, Qilihe District, Lanzhou City, Gansu Province, 730050, China
| | - Qun Su
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, No.2 Small West Lake East Street, Qilihe District, Lanzhou City, Gansu Province, 730050, China
| | - Yanping Zhang
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, No.2 Small West Lake East Street, Qilihe District, Lanzhou City, Gansu Province, 730050, China
| | - Xiaofeng Liu
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, No.2 Small West Lake East Street, Qilihe District, Lanzhou City, Gansu Province, 730050, China
| |
Collapse
|
25
|
Zhang X, Xie K, Zhou H, Wu Y, Li C, Liu Y, Liu Z, Xu Q, Liu S, Xiao D, Tao Y. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mol Cancer 2020; 19:47. [PMID: 32122355 PMCID: PMC7050132 DOI: 10.1186/s12943-020-01171-z] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/24/2020] [Indexed: 02/08/2023] Open
Abstract
As the standard treatments for cancer, chemotherapy and radiotherapy have been widely applied to clinical practice worldwide. However, the resistance to cancer therapies is a major challenge in clinics and scientific research, resulting in tumor recurrence and metastasis. The mechanisms of therapy resistance are complicated and result from multiple factors. Among them, non-coding RNAs (ncRNAs), along with their modifiers, have been investigated to play key roles in regulating tumor development and mediating therapy resistance within various cancers, such as hepatocellular carcinoma, breast cancer, lung cancer, gastric cancer, etc. In this review, we attempt to elucidate the mechanisms underlying ncRNA/modifier-modulated resistance to chemotherapy and radiotherapy, providing some therapeutic potential points for future cancer treatment.
Collapse
Affiliation(s)
- Xinyi Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Cardiovascular Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Kai Xie
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Honghua Zhou
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Cardiovascular Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yuwei Wu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Cardiovascular Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Chan Li
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yating Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhaoya Liu
- Department of Geriatrics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Qian Xu
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Desheng Xiao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China.
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
26
|
Yang W, Wu PF, Ma JX, Liao MJ, Xu LS, Xu MH, Yi L. Presenilin1 exerts antiproliferative effects by repressing the Wnt/β-catenin pathway in glioblastoma. Cell Commun Signal 2020; 18:22. [PMID: 32046730 PMCID: PMC7014622 DOI: 10.1186/s12964-019-0501-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/23/2019] [Indexed: 01/02/2023] Open
Abstract
Background Glioblastoma and Alzheimer’s disease (AD) are the most common and devastating diseases in the central nervous system. The dysfunction of Presenilin1 is the main reason for AD pathogenesis. However, the molecular function of Presenilin1 and its relative mechanism in glioblastoma remain unclear. Methods Expression of presenilin1 in glioma was determined by IHC. CCK-8, colony formation, Flow cytometry, Edu staining were utilized to evaluate functions of presenilin1 on glioblastoma proliferation. The mechanism of above process was assessed by Western blotting and cell immunofluorescence. Mouse transplanting glioblastoma model and micro-MRI detection were used to verified presenilin1 function in vivo. Results In this study, we found that all grades of glioma maintained relatively low Presenilin1 expression and that the expression of Presenilin1 in high-grade glioma was significantly lower than that in low-grade glioma. Moreover, the Presenilin1 level had a positive correlation with glioma and glioblastoma patient prognosis. Next, we determined that Presenilin1 inhibited the growth and proliferation of glioblastoma cells by downregulating CDK6, C-myc and Cyclin D1 to arrest the cell cycle at the G1/S phase. Mechanistically, Presenilin1 promoted the direct phosphorylation of β-catenin at the 45 site and indirect phosphorylation at the 33/37/41 site, then decreased the stabilized part of β-catenin and hindered its translocation from the cytoplasm to the nucleus. Furthermore, we found that Presenilin1 downregulation clearly accelerated the growth of subcutaneous glioblastoma, and Presenilin1 overexpression significantly repressed the subcutaneous and intracranial transplantation of glioblastoma by hindering β-catenin-dependent cell proliferation. Conclusion Our data implicate the antiproliferative effect of Presenilin1 in glioblastoma by suppressing Wnt/β-catenin signaling, which may provide a novel therapeutic agent for glioblastoma. Video Abstract.
Collapse
Affiliation(s)
- Wei Yang
- Department of Neurosurgery, Daping Hospital & Institute Research of Surgery of Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Peng-Fei Wu
- Department of Neurosurgery, Daping Hospital & Institute Research of Surgery of Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Jian-Xing Ma
- Department of Neurosurgery, Daping Hospital & Institute Research of Surgery of Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Mao-Jun Liao
- Department of Neurosurgery, Daping Hospital & Institute Research of Surgery of Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Lun-Shan Xu
- Department of Neurosurgery, Daping Hospital & Institute Research of Surgery of Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Min-Hui Xu
- Department of Neurosurgery, Daping Hospital & Institute Research of Surgery of Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042, China.
| | - Liang Yi
- Department of Neurosurgery, Daping Hospital & Institute Research of Surgery of Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
27
|
Han Y, Wang C, Dong Q, Chen T, Yang F, Liu Y, Chen B, Zhao Z, Qi L, Zhao W, Liang H, Guo Z, Gu Y. Genetic Interaction-Based Biomarkers Identification for Drug Resistance and Sensitivity in Cancer Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:688-700. [PMID: 31400611 PMCID: PMC6700431 DOI: 10.1016/j.omtn.2019.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/21/2019] [Accepted: 07/06/2019] [Indexed: 01/08/2023]
Abstract
Cancer cells generally harbor hundreds of alterations in the cancer genomes and act as crucial factors in the development and progression of cancer. Gene alterations in the cancer genome form genetic interactions, which affect the response of patients to drugs. We developed an algorithm that mines copy number alteration and whole-exome mutation profiles from The Cancer Genome Atlas (TCGA), as well as functional screen data generated to identify potential genetic interactions for specific cancer types. As a result, 4,529 synthetic viability (SV) interactions and 10,637 synthetic lethality (SL) interactions were detected. The pharmacogenomic datasets revealed that SV interactions induced drug resistance in cancer cells and that SL interactions mediated drug sensitivity in cancer cells. Deletions of HDAC1 and DVL1, both of which participate in the Notch signaling pathway, had an SV effect in cancer cells, and deletion of DVL1 induced resistance to HDAC1 inhibitors in cancer cells. In addition, patients with low expression of both HDAC1 and DVL1 had poor prognosis. Finally, by integrating current reported genetic interactions from other studies, the Cancer Genetic Interaction database (CGIdb) (http://www.medsysbio.org/CGIdb) was constructed, providing a convenient retrieval for genetic interactions in cancer.
Collapse
Affiliation(s)
- Yue Han
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Chengyu Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Qi Dong
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Tingting Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Fan Yang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Yaoyao Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Bo Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Zhangxiang Zhao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Lishuang Qi
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Wenyuan Zhao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Haihai Liang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zheng Guo
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
28
|
Yao Z, Zhang Y, Xu D, Zhou X, Peng P, Pan Z, Xiao N, Yao J, Li Z. Research Progress on Long Non-Coding RNA and Radiotherapy. Med Sci Monit 2019; 25:5757-5770. [PMID: 31375656 PMCID: PMC6690404 DOI: 10.12659/msm.915647] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), a group of non-protein-coding RNAs longer than 200 nucleotides, are involved in multiple biological and pathological processes, such as proliferation, apoptosis, migration, invasion, angiogenesis, and immune escape. Many studies have shown that lncRNAs participate in the complex network of cancer and play vital roles as oncogenes or tumor-suppressor genes in a variety of cancers. Moreover, recent research has shown that abnormal expression of lncRNAs in malignant tumor cells before and after radiotherapy may participate in the progression of cancers and affect the radiation sensitivity of malignant tumor cells mediated by specific signaling pathways or cell cycle regulation. In this review, we summarize the published studies on lncRNAs in radiotherapy regarding the biological function and mechanism of human cancers, including esophageal cancer, pancreatic cancers, nasopharyngeal carcinoma, hepatocellular carcinoma, cervical cancer, colorectal cancer, and gastric cancer.
Collapse
Affiliation(s)
- Zhifeng Yao
- Department of Radiotherapy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Department of Oncology, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yiwen Zhang
- Department of Nursing, The Affiliated Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Danghui Xu
- Department of Medical Imaging, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Xuejun Zhou
- Department of Medical Imaging, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| | - Peng Peng
- Department of Nursing, Nanjing Health Higher Vocational and Technical College, Nanjing, Jiangsu, China (mainland)
| | - Zhiyao Pan
- Department of Basic Medicine, Zhejiang University Medical College, Hangzhou, Zhejiang, China (mainland)
| | - Nan Xiao
- Department of Medical Imaging, Nanjing Health Higher Vocational and Technical College, Nanjing, Jiangsu, China (mainland)
| | - Jianxin Yao
- Department of Medical Imaging, Nanjing Health Higher Vocational and Technical College, Nanjing, Jiangsu, China (mainland)
| | - Zhifeng Li
- Department of Medical Imaging, Nanjing Health Higher Vocational and Technical College, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
29
|
Tang Y, Yang S, Wang M, Liu D, Liu Y, Zhang Y, Zhang Q. Epigenetically altered miR‑193a‑3p promotes HER2 positive breast cancer aggressiveness by targeting GRB7. Int J Mol Med 2019; 43:2352-2360. [PMID: 31017268 PMCID: PMC6488183 DOI: 10.3892/ijmm.2019.4167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/12/2019] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence has demonstrated that microRNAs (miRNAs/miRs) have various biological functions in the development of human epidermal growth factor receptor 2 (HER2) positive breast cancer. The aim of the present study is to reveal the mechanism of miR‑193a‑3p inhibiting the progress of HER2 positive breast cancer. The expression of miR‑193a‑3p was evaluated by quantitative polymerase chain reaction (PCR). The methylation status of miR‑193a‑3p was evaluated by PCR and pyrosequencing analysis. Overexpression of miR‑193a‑3p and growth factor receptor bound protein 7 (GRB7) combined with in vitro tumorigenic assays were conducted to determine the carcinostatic capacities of miR‑193a‑3p in HER2 positive breast cancer cells. The association between miR‑193a‑3p and GRB7 was determined by luciferase reporter assay. Protein level was evaluated using western blot analysis. miR‑193a‑3p was downregulated in HER2 positive breast cancer cells and clinical tissues. Methylation‑mediated silencing led to decreased expression of miR‑193a‑3p in HER2 positive breast cancer. Overexpression of miR‑193a‑3p could inhibit proliferation, migration and invasion of breast cancer cells. Overexpression of GRB7 could abolish this effect. miR‑193a‑3p could directly target the 3' untranslated region of GRB7. miR‑193a‑3p could directly or indirectly target extracellular signal‑regulated kinase 1/2 (ERK1/2) and forkhead box M1 (FOXM1) signaling. In conclusion, it was identified that silencing of miR‑193a‑3p through hypermethylation can promote HER2 positive breast cancer progress by targeting GRB7, ERK1/2 and FOXM1 signaling. The function of miR‑193a‑3p in HER2 positive breast cancer implicates its potential application in therapy.
Collapse
Affiliation(s)
- Yiyin Tang
- First Department of Mammary Surgery, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Siyuan Yang
- First Department of Mammary Surgery, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Maohua Wang
- First Department of Mammary Surgery, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Dequan Liu
- First Department of Mammary Surgery, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Yang Liu
- First Department of Mammary Surgery, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Ying Zhang
- First Department of Mammary Surgery, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Qian Zhang
- First Department of Mammary Surgery, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
30
|
Feng W, Su Z, Yin Q, Zong W, Shen X, Ju S. ncRNAs associated with drug resistance and the therapy of digestive system neoplasms. J Cell Physiol 2019; 234:19143-19157. [PMID: 30941775 DOI: 10.1002/jcp.28551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 12/19/2022]
Abstract
Digestive system cancer remains a common cancer and the main cause of cancer-related death worldwide. Drug resistance is a major challenge in the therapy of digestive system cancer, and represents a primary obstacle in the treatment of cancer by restricting the efficiency of both traditional chemotherapy and biological therapies. Existing studies indicate that noncoding RNAs play an important role in the evolution and progression of drug resistance in digestive system cancer, mainly by modulating drug transporter-related proteins, DNA damage repair, cell-cycle-related proteins, cell apoptosis-related proteins, drug target-related proteins, and the tumor microenvironment. In this review, we address the potential mechanisms of ncRNAs underlying drug resistance in digestive system tumors and discuss the possible application of ncRNAs against drug resistance in digestive system tumors.
Collapse
Affiliation(s)
- Wei Feng
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhangyao Su
- School of Medicine, Nantong University, Nantong, China
| | - Qingqing Yin
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Zong
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xianjuan Shen
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
31
|
Khordadmehr M, Shahbazi R, Sadreddini S, Baradaran B. miR-193: A new weapon against cancer. J Cell Physiol 2019; 234:16861-16872. [PMID: 30779342 DOI: 10.1002/jcp.28368] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/06/2019] [Indexed: 12/12/2022]
Abstract
microRNAs (miRNAs) are known as a large group of short noncoding RNAs, which structurally consist of 19-22 nucleotides in length and functionally act as one of the main regulators of gene expression in important biological and physiological contexts like cell growth, apoptosis, proliferation, differentiation, movement (cell motility), and angiogenesis as well as disease formation and progression importantly in cancer cell invasion, migration, and metastasis. Among these notable tiny molecules, many studies recently presented the important role of the miR-193 family comprising miR-193a-3p, miR-193a-5p, miR-193b-3p, and miR-193b-5p in health and disease biological processes by interaction with special targeting and signaling, which mainly contribute as a tumor suppressor. Therefore, in the present paper, we review the functional role of this miRNA family in both health and disease conditions focusing on various tumor developments, diagnoses, prognoses, and treatment.
Collapse
Affiliation(s)
- Monireh Khordadmehr
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Roya Shahbazi
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sanam Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Izadpanah S, Shabani P, Aghebati-Maleki A, Baghbani E, Baghbanzadeh A, Fotouhi A, Bakhshinejad B, Aghebati-Maleki L, Baradaran B. Insights into the roles of miRNAs; miR-193 as one of small molecular silencer in osteosarcoma therapy. Biomed Pharmacother 2019; 111:873-881. [PMID: 30841466 DOI: 10.1016/j.biopha.2018.12.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/09/2018] [Accepted: 12/23/2018] [Indexed: 12/13/2022] Open
Abstract
Today, cancer is one of the most common causes of death. Osteosarcoma (OS) is a tumor in long bones and its prevalence is high in teenagers and young people. Among the methods that used to treat cancer, one can name chemotherapy, surgery, and radiotherapy. Since these methods have some disadvantages and they are not absolutely successful, the use of microRNAs (miRNAs) is very useful in diagnosis and treatment of OS. MiRNAs are small non-coding RNA molecules, containing 18-25 nucleotides, which are involved in the regulation of gene expression via binding to messenger RNA (mRNA). These RNAs are divided into two classes of suppressors and oncogenes. During OS, there is aberrant expression of several miRNAs. Among these miRNAs are downregulation of miR-193 that has been associated with cancer occurrence. The aim of the current manuscript is to have overview on the treatment approaches of OS with special focus on miR-193.
Collapse
Affiliation(s)
- Sama Izadpanah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parastoo Shabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Bakhshinejad
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Malhotra A, Sharma U, Puhan S, Chandra Bandari N, Kharb A, Arifa PP, Thakur L, Prakash H, Vasquez KM, Jain A. Stabilization of miRNAs in esophageal cancer contributes to radioresistance and limits efficacy of therapy. Biochimie 2018; 156:148-157. [PMID: 30326253 DOI: 10.1016/j.biochi.2018.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 10/11/2018] [Indexed: 12/15/2022]
Abstract
The five-year survival rate of esophageal cancer patients is less than 20%. This may be due to increased resistance (acquired or intrinsic) of tumor cells to chemo/radiotherapies, often caused by aberrant cell cycle, deregulated apoptosis, increases in growth factor signaling pathways, and/or changes in the proteome network. In addition, deregulation in non-coding RNA-mediated signaling pathways may contribute to resistance to therapies. At the molecular level, these resistance factors have now been linked to various microRNA (miRNAs), which have recently been shown to control cell development, differentiation and neoplasia. The increased stability and dysregulated expression of miRNAs have been associated with increased resistance to various therapies in several cancers, including esophageal cancer. Therefore, miRNAs represent the next generation of molecules with tremendous potential as biomarkers and therapeutic targets. However, detailed studies on miRNA-based therapeutic interventions are still in their infancy. Hence, in this review, we have summarized the current status of microRNAs in dictating the resistance/sensitivity of tumor cells to chemotherapy and radiotherapy. In addition, we have discussed various strategies to increase radiosensitivity, including targeted therapy, and the use of miRNAs as radiosensitive/radioresistance biomarkers for esophageal cancer in the clinical setting.
Collapse
Affiliation(s)
- Akshay Malhotra
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Uttam Sharma
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Shyamly Puhan
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Naga Chandra Bandari
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anjali Kharb
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - P P Arifa
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Lovlesh Thakur
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Hridayesh Prakash
- Laboratory Oncology Unit, Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India; Institute of Virology and Immunology, Amity University, NOIDA, India.
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Aklank Jain
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
34
|
Corrà F, Agnoletto C, Minotti L, Baldassari F, Volinia S. The Network of Non-coding RNAs in Cancer Drug Resistance. Front Oncol 2018; 8:327. [PMID: 30211115 PMCID: PMC6123370 DOI: 10.3389/fonc.2018.00327] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have been implicated in most cellular functions. The disruption of their function through somatic mutations, genomic imprinting, transcriptional and post-transcriptional regulation, plays an ever-increasing role in cancer development. ncRNAs, including notorious microRNAs, have been thus proposed to function as tumor suppressors or oncogenes, often in a context-dependent fashion. In parallel, ncRNAs with altered expression in cancer have been reported to exert a key role in determining drug sensitivity or restoring drug responsiveness in resistant cells. Acquisition of resistance to anti-cancer drugs is a major hindrance to effective chemotherapy and is one of the most important causes of relapse and mortality in cancer patients. For these reasons, non-coding RNAs have become recent focuses as prognostic agents and modifiers of chemo-sensitivity. This review starts with a brief outline of the role of most studied non-coding RNAs in cancer and then highlights the modulation of cancer drug resistance via known ncRNAs based mechanisms. We identified from literature 388 ncRNA-drugs interactions and analyzed them using an unsupervised approach. Essentially, we performed a network analysis of the non-coding RNAs with direct relations with cancer drugs. Within such a machine-learning framework we detected the most representative ncRNAs-drug associations and groups. We finally discussed the higher integration of the drug-ncRNA clusters with the goal of disentangling effectors from downstream effects and further clarify the involvement of ncRNAs in the cellular mechanisms underlying resistance to cancer treatments.
Collapse
Affiliation(s)
- Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
35
|
Ma H, Yuan L, Li W, Xu K, Yang L. The LncRNA H19/miR-193a-3p axis modifies the radio-resistance and chemotherapeutic tolerance of hepatocellular carcinoma cells by targeting PSEN1. J Cell Biochem 2018; 119:8325-8335. [PMID: 29968942 DOI: 10.1002/jcb.26883] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/21/2018] [Indexed: 12/21/2022]
Abstract
This study was designated to verify if the lncRNA H19/miR-193a-3p axis would play a regulatory role in the radio-/chemo-resistances of HCC cells through targeting PSEN1. Within the study, five human HCC cell lines were prepared, including Bel-7402, HepG2, Hep3b, QGY-7703, and SMMC-7721. Moreover, docetaxel (DT), paclitaxel (Pt), vinorelbine (Vb), and 5-fluorouracil (5-Fu) were managed as the chemo-therapeutics, and single-dose X-rays were performed as radio-therapies. Besides, lncRNA H19 and miR-193a-3p were detected by qRT-PCR and Western blot were implemented to quantify the expressional levels of PSEN1, Ku80, γ-H2AX, and RAD51. Luciferase reporter gene assay was advanced to verify the targeted relationship between lncRNA H19 and miR-193a-3p. As a consequence, QGY-7703 and Bel-7402 were, respectively, the most radiation-sensitive and radiation-proof cell lines, and Bel-7402 was associated with the highest resistances to DT, Pt, Vb, and 5-FU. The restrained lncRNA H19 and over-expressed miR-193a-3p expressions tended to significantly elevate the survival rate and proliferation of Bel-7402 cells, when they were exposed to radiation and subject to chemo-therapies. The lncRNA H19 was also found to directly target miR-193a-3p in inducing the HCC development. PSEN1 appeared to be subject to the modification of lncRNA H19 and miR-193a-3p in its acting on the survival rates and proliferative abilities of HCC cells. The lncRNA H19/miR-193a-3p/PSEN1 axis could be regarded as the treatment targets for HCC, so as to further improve the treatment efficacy of chemo- and radio-therapies for HCC.
Collapse
Affiliation(s)
- Hongbin Ma
- Department of Radiotherapy, Eastern Hepatobiliary Surgery Hospital, ShangHai, China
| | - Lei Yuan
- The First Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Wanhu Li
- Department of Radiology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Kaiyun Xu
- Department of General Medicine, Eastern Hepatobiliary Surgery Hospital, ShangHai, China
| | - Liang Yang
- Department of Radiotherapy, Eastern Hepatobiliary Surgery Hospital, ShangHai, China
| |
Collapse
|
36
|
Fang C, Dai CY, Mei Z, Jiang MJ, Gu DN, Huang Q, Tian L. microRNA-193a stimulates pancreatic cancer cell repopulation and metastasis through modulating TGF-β2/TGF-βRIII signalings. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:25. [PMID: 29433538 PMCID: PMC5809917 DOI: 10.1186/s13046-018-0697-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/02/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Pancreatic cancer characterizes high recurrence and poor prognosis. In clinical practice, radiotherapy is widely used for pancreatic cancer treatment. However, the outcome remains undesirable due to tumor repopulation and following recurrence and metastasis after radiation. So, it is highly needed to explore the underlying molecular mechanisms and accordingly develop therapeutic strategies. Our previous studies revealed that dying cells from chemoradiation could stimulate repopulation of surviving pancreatic cancer cells. However, we still knew little how dying cells provoke pancreatic cancer cell repopulation. We herein would explore the significance of TGF-β2 changes and investigate the modulation of microRNA-193a (miR-193a), and identify their contributions to pancreatic cancer repopulation and metastasis. METHODS In vitro and in vivo repopulation models were established to mimic the biological processes of pancreatic cancer after radiation. Western blot, real-time PCR and dual-luciferase reporter assays were accordingly used to detect miR-193a and TGF-β2/TGF-βRIII signalings at the level of molecular, cellular and experimental animal model, respectively. Flow cytometry analysis, wound healing and transwell assay, vascular endothelial cell penetration experiment, and bioluminescence imaging were employed to assessthe biological behaviors of pancreatic cancer after different treatments. Patient-derived tumor xenograft (PDX) mice models were established to evaluate the therapeutic potential of miR-193a antagonist on pancreatic cancer repopulation and metastasis after radiation. RESULTS miR-193a was highly expressed in the irradiated pancreatic cancer dying cells, accordingly elevated the level of miR-193a in surviving cells, and further promoted pancreatic cancer repopulation and metastasis in vitro and in vivo. miR-193a accelerated pancreatic cancer cell cycle and stimulated cell proliferation and repopulation through inhibiting TGF-β2/TGF-βRIII/SMADs/E2F6/c-Myc signaling, and even destroyed normal intercellular junctions and promoted metastasis via repressing TGF-β2/TGF-βRIII/ARHGEF15/ABL2 pathway. Knockdown of miR-193a or restoration of TGF-β2/TGF-βRIII signaling in pancreatic cancer cells was found to block pancreatic cancer repopulation and metastasis after radiation. In PDX models, the treatment in combination with miR-193a antagonist and radiation was found to dramatically inhibit pancreatic cancer cell repopulation and metastasis, and further improved the survival after radiation. CONCLUSIONS Our findings demonstrated that miR-193a stimulated pancreatic cancer cell repopulation and metastasis through modulating TGF-β2/TGF-βRIII signalings, and miR-193a might be a potential therapeutic target for pancreatic cancer repopulation and metastasis.
Collapse
Affiliation(s)
- Chi Fang
- Institute of Translational Medicine, Science bldg. Rm 205, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Rd No.650, Songjiang District, Shanghai, 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen-Yun Dai
- Institute of Translational Medicine, Science bldg. Rm 205, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Rd No.650, Songjiang District, Shanghai, 201620, China
| | - Zhu Mei
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Jie Jiang
- Institute of Translational Medicine, Science bldg. Rm 205, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Rd No.650, Songjiang District, Shanghai, 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dian-Na Gu
- Institute of Translational Medicine, Science bldg. Rm 205, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Rd No.650, Songjiang District, Shanghai, 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The Comprehensive Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Tian
- Institute of Translational Medicine, Science bldg. Rm 205, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Rd No.650, Songjiang District, Shanghai, 201620, China. .,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
37
|
Yang W, Ma J, Zhou W, Zhou X, Cao B, Zhang H, Zhao Q, Fan D, Hong L. Molecular mechanisms and clinical implications of miRNAs in drug resistance of esophageal cancer. Expert Rev Gastroenterol Hepatol 2017; 11:1151-1163. [PMID: 28838272 DOI: 10.1080/17474124.2017.1372189] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
With the increasing incidence of esophageal cancer, drug resistance is becoming a major obstacle to successful cancer therapy since chemotherapy is regarded as a curative approach to inhibit cancer cell proliferation. Despite the great progress in anticancer treatment achieved during the last decades, the mechanisms of multidrug resistance have not been completely elucidated. Recently, accumulating studies and pre-clinical reports highlighted the role of miRNAs in the drug resistance of esophageal cancer. Areas covered: In this review, we mainly summarized the current advances of miRNAs in esophageal cancer and the mechanisms underlying drug resistance. We also reviewed the potential role of miRNAs as biomarkers for predicting drug response and prognosis. Finally, we envisaged the future orientation and challenges in translating the existing knowledge of drug resistance related miRNAs into clinical applications. Expert commentary: Based on the current knowledge of certain miRNAs, we believe that miRNAs would be helpful to overcome the drug resistance and provide personalized treatment for patients with esophageal cancer. The aims of this study were to provide a comprehensive summary on the emerging role of miRNAs in the drug resistance of esophageal cancer and attract broad attention of more researchers on this field.
Collapse
Affiliation(s)
- Wanli Yang
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Jiaojiao Ma
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Wei Zhou
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Xin Zhou
- b The First Brigade of Student , Fourth Military Medical University , Xi'an , China
| | - Bo Cao
- b The First Brigade of Student , Fourth Military Medical University , Xi'an , China
| | - Hongwei Zhang
- c Department of Digestive Surgery , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Qingchuan Zhao
- c Department of Digestive Surgery , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Daiming Fan
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Liu Hong
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| |
Collapse
|
38
|
Involvement of aberrantly activated HOTAIR/EZH2/miR-193a feedback loop in progression of prostate cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:159. [PMID: 29141691 PMCID: PMC5688662 DOI: 10.1186/s13046-017-0629-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/02/2017] [Indexed: 12/22/2022]
Abstract
Background Though androgen deprivation therapy is the standard treatment for prostate cancer (PCa), most patients would inevitably progress to castration-resistant prostate cancer (CRPC) which is the main cause of PCa death. Therefore, the identification of novel molecular mechanism regulating cancer progression and achievement of new insight into target therapy would be necessary for improving the benefits of PCa patients. This study aims to study the function and regulatory mechanism of HOTAIR/EZH2/miR-193a feedback loop in PCa progression. Methods MSKCC and TCGA datasets were used to identify miR-193a expression profile in PCa. Cell Counting Kit-8 (CCK-8) assays, colony formation, invasion, migration, flow cytometry, a xenograft model and Gene Set Enrichment Analysis were used to detect and analyze the biological function of miR-193a. Then, we assessed the role of HOTAIR and EZH2 in regulation of miR-193a expression by using plasmid, lentivirus and small interfering RNA (siRNA). Luciferase reporter assays and chromatin immunoprecipitation assays were performed to detect the transcriptional activation of miR-193a by EZH2 and HOTAIR. Further, qRT-PCR and luciferase reporter assays were conducted to examine the regulatory role of miR-193a controlling the HOTAIR expression in PCa. Finally, the correlation between HOTAIR, EZH2 and miR-193a expression were analyzed using In situ hybridization and immunohistochemistry. Results We found that miR-193a was significantly downregulated in metastatic PCa through mining MSKCC and TCGA datasets. In vitro studies revealed that miR-193a inhibited PCa cell growth, suppressed migration and invasion, and promoted apoptosis; in vivo results demonstrated that overexpression of miR-193a mediated by lentivirus dramatically reduced PCa xenograft tumor growth. Importantly, we found EZH2 coupled with HOTAIR to repress miR-193a expression through trimethylation of H3K27 at miR-193a promoter in PC3 and DU145 cells. Interestingly, further evidence illustrated that miR-193a directly targets HOTAIR showing as significantly reduced HOTAIR level in miR-193a overexpressed cells and tissues. The expression level of miR-193a was inversely associated with that of HOTAIR and EZH2 in PCa. Conclusion This study firstly demonstrated that miR-193a acted as tumor suppressor in CRPC and the autoregulatory feedback loop of HOTAIR/EZH2/miR-193a served an important mechanism in PCa development. Targeting this aberrantly activated feedback loop may provide a potential therapeutic strategy. Electronic supplementary material The online version of this article (doi: 10.1186/s13046-017-0629-7) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Biological Function of MicroRNA193a-3p in Health and Disease. Int J Genomics 2017; 2017:5913195. [PMID: 29038785 PMCID: PMC5605928 DOI: 10.1155/2017/5913195] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that act mainly as negative regulators of gene expression. Several studies demonstrated that miRNAs take part in numerous biological processes, such as proliferation, apoptosis, and migration. The dysregulation of miRNAs has been frequently observed in different types of disease, including cancer. Here, we provide a comprehensive review on the human miR-193a-3p by considering its role in both physiological and pathological contexts. Different mechanisms involved in regulating miR-193a-3p expression have been reported, including epigenetic modifications and transcription factors. In physiological contexts, miR-193a-3p seemed able to limit proliferation and cell cycle progression in normal cells. Remarkably, several publications demonstrated that miR-193a-3p acted as a tumor suppressor miRNA in cancer by targeting different genes involved in proliferation, apoptosis, migration, invasion, and metastasis. Furthermore, the downregulation of miR-193a-3p has been observed in many primary tumors and altered levels of circulating miR-193a-3p have been identified in serum or plasma of cancer patients and subjects affected by Parkinson's disease or by schizophrenia. In a clinical perspective, further studies are needed to explore the antitumor effects of the miR-193a-3p mimics delivery and the relevance of this miRNA detection as a possible diagnostic and prognostic biomarker.
Collapse
|
40
|
Ayers D, Vandesompele J. Influence of microRNAs and Long Non-Coding RNAs in Cancer Chemoresistance. Genes (Basel) 2017; 8:genes8030095. [PMID: 28273813 PMCID: PMC5368699 DOI: 10.3390/genes8030095] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022] Open
Abstract
Innate and acquired chemoresistance exhibited by most tumours exposed to conventional chemotherapeutic agents account for the majority of relapse cases in cancer patients. Such chemoresistance phenotypes are of a multi-factorial nature from multiple key molecular players. The discovery of the RNA interference pathway in 1998 and the widespread gene regulatory influences exerted by microRNAs (miRNAs) and other non-coding RNAs have certainly expanded the level of intricacy present for the development of any single physiological phenotype, including cancer chemoresistance. This review article focuses on the latest research efforts in identifying and validating specific key molecular players from the two main families of non-coding RNAs, namely miRNAs and long non-coding RNAs (lncRNAs), having direct or indirect influences in the development of cancer drug resistance properties and how such knowledge can be utilised for novel theranostics in oncology.
Collapse
Affiliation(s)
- Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M1 7DN, UK.
| | - Jo Vandesompele
- Center for Medical Genetics Ghent, Ghent University, Ghent 9000, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
41
|
Ma Y, Wang B, Guo Y, Zhang Y, Huang S, Bao X, Bai M. Inhibition of miR-196a affects esophageal cancer cell growth in vitro. Biomed Pharmacother 2016; 84:22-27. [DOI: 10.1016/j.biopha.2016.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/20/2016] [Accepted: 09/06/2016] [Indexed: 02/07/2023] Open
|
42
|
Zhou J, Duan H, Xie Y, Ning Y, Zhang X, Hui N, Wang C, Zhang J, Zhou J. MiR-193a-5p Targets the Coding Region of AP-2α mRNA and Induces Cisplatin Resistance in Bladder Cancers. J Cancer 2016; 7:1740-1746. [PMID: 27698912 PMCID: PMC5039396 DOI: 10.7150/jca.15620] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/29/2016] [Indexed: 12/21/2022] Open
Abstract
Transcription factor AP-2 alpha (AP-2α or TFAP2A) is a newly identified prognostic marker of chemotherapy; its expression is positively correlated with chemosensitivity and survival of cancer patients. Using computational programs, we predicted that the coding region of AP-2α gene contains a potential miRNA response element (MRE) of miR-193a-5p, and the single nucleotide polymorphism (SNP) site (c.497A>G, rs111681798) resides within the predicted MRE. The results of luciferase assays and Western blot analysis demonstrated that miR-193a-5p negatively regulated the expression of AP-2α proteins, but have no influence on the mutant AP-2α (c.497A>G). Infection with lentiviral AP-2α gene or miR-193a-5p inhibitor in the bladder cancer cells decreased migration and cisplatin resistance, while knockdown of AP-2α gene or overexpression of miR-193a-5p in the urothelial cell line SV-HUC-1 increased migration and cisplatin resistances. We concluded that miR-193a-5p induced cisplatin resistance by repressing AP-2α expression in bladder cancer cells.
Collapse
Affiliation(s)
- Ji Zhou
- College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Huaxin Duan
- Hunan Provincial People's Hospital, Changsha 410005, Hunan, China
| | - Yu Xie
- Hunan Cancer Hospital, Changsha 410013, Hunan, China
| | - Yichong Ning
- College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Xing Zhang
- College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Na Hui
- College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Chunqing Wang
- College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Jian Zhang
- College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Jianlin Zhou
- College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| |
Collapse
|