1
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
2
|
Bhandari S, Kyrrestad I, Simón-Santamaría J, Li R, Szafranska KJ, Dumitriu G, Sánchez Romano J, Smedsrød B, Sørensen KK. Mouse liver sinusoidal endothelial cell responses to the glucocorticoid receptor agonist dexamethasone. Front Pharmacol 2024; 15:1377136. [PMID: 39439887 PMCID: PMC11494038 DOI: 10.3389/fphar.2024.1377136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) which make up the fenestrated wall of the hepatic sinusoids, are active scavenger cells involved in blood waste clearance and liver immune functions. Dexamethasone is a synthetic glucocorticoid commonly used in the clinic and as cell culture supplement. However, the response is dependent on tissue, cell type, and cell state. The aim of this study was to investigate the effect of dexamethasone on primary mouse LSECs (C57BL/6J); their viability (live-dead, LDH release, caspase 3/7 assays), morphology (scanning electron microscopy), release of inflammatory markers (ELISA), and scavenging functions (endocytosis assays), and associated biological processes and pathways. We have characterized and catalogued the proteome of LSECs cultured for 1, 10, or 48 h to elucidate time-dependent and dexamethasone-specific cell responses. More than 6,000 protein IDs were quantified using tandem mass tag technology and advanced mass spectrometry (synchronous precursor selection multi-notch MS3). Enrichment analysis showed a culture-induced upregulation of stress and inflammatory markers, and a significant shift in cell metabolism already at 10 h, with enhancement of glycolysis and concomitant repression of oxidative phosphorylation. At 48 h, changes in metabolic pathways were more pronounced with dexamethasone compared to time-matched controls. Dexamethasone repressed the activation of inflammatory pathways (IFN-gamma response, TNF-alpha signaling via NF-kB, Cell adhesion molecules), and culture-induced release of interleukin-6, VCAM-1, and ICAM-1, and improved cell viability partly through inhibition of apoptosis. The mouse LSECs did not proliferate in culture. Dexamethasone treated cells showed upregulation of xanthine dehydrogenase/oxidase (Xdh), and the transcription regulator Foxo1. The drug further delayed but did not block the culture-induced loss of LSEC fenestration. The LSEC capacity for endocytosis was significantly reduced at 48 h, independent of dexamethasone, which correlated with diminished expression of several scavenger receptors and C-type lectins and altered expression of proteins in the endocytic machinery. The glucocorticoid receptor (NR3C1) was suppressed by dexamethasone at 48 h, suggesting limited effect of the drug in prolonged LSEC culture. Conclusion: The study presents a detailed overview of biological processes and pathways affected by dexamethasone in mouse LSECs in vitro.
Collapse
|
3
|
Singh N, Eickhoff C, Garcia-Agundez A, Bertone P, Paudel SS, Tambe DT, Litzky LA, Cox-Flaherty K, Klinger JR, Monaghan SF, Mullin CJ, Pereira M, Walsh T, Whittenhall M, Stevens T, Harrington EO, Ventetuolo CE. Transcriptional profiles of pulmonary artery endothelial cells in pulmonary hypertension. Sci Rep 2023; 13:22534. [PMID: 38110438 PMCID: PMC10728171 DOI: 10.1038/s41598-023-48077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by endothelial cell (EC) dysfunction. There are no data from living patients to inform whether differential gene expression of pulmonary artery ECs (PAECs) can discern disease subtypes, progression and pathogenesis. We aimed to further validate our previously described method to propagate ECs from right heart catheter (RHC) balloon tips and to perform additional PAEC phenotyping. We performed bulk RNA sequencing of PAECs from RHC balloons. Using unsupervised dimensionality reduction and clustering we compared transcriptional signatures from PAH to controls and other forms of pulmonary hypertension. Select PAEC samples underwent single cell and population growth characterization and anoikis quantification. Fifty-four specimens were analyzed from 49 subjects. The transcriptome appeared stable over limited passages. Six genes involved in sex steroid signaling, metabolism, and oncogenesis were significantly upregulated in PAH subjects as compared to controls. Genes regulating BMP and Wnt signaling, oxidative stress and cellular metabolism were differentially expressed in PAH subjects. Changes in gene expression tracked with clinical events in PAH subjects with serial samples over time. Functional assays demonstrated enhanced replication competency and anoikis resistance. Our findings recapitulate fundamental biological processes of PAH and provide new evidence of a cancer-like phenotype in ECs from the central vasculature of PAH patients. This "cell biopsy" method may provide insight into patient and lung EC heterogeneity to advance precision medicine approaches in PAH.
Collapse
Affiliation(s)
- Navneet Singh
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Carsten Eickhoff
- Department of Computer Science, Brown University, Providence, RI, USA
| | | | - Paul Bertone
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Sunita S Paudel
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Dhananjay T Tambe
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Department of Mechanical Aerospace and Biomedical Engineering, College of Engineering, University of South Alabama, Mobile, AL, USA
| | - Leslie A Litzky
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - James R Klinger
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Sean F Monaghan
- Department of Surgery, Alpert Medical School of Brown University, Providence, RI, USA
| | - Christopher J Mullin
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | | | | | - Mary Whittenhall
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Troy Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Elizabeth O Harrington
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA
| | - Corey E Ventetuolo
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA.
- Department of Health Services, Policy and Practice, Brown University, Providence, RI, USA.
| |
Collapse
|
4
|
Chen L, Zhong S, Wang Y, Wang X, Liu Z, Hu G. Bmp4 in Zebrafish Enhances Antiviral Innate Immunity through p38 MAPK (Mitogen-Activated Protein Kinases) Pathway. Int J Mol Sci 2023; 24:14444. [PMID: 37833891 PMCID: PMC10572509 DOI: 10.3390/ijms241914444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are a group of structurally and functionally related signaling molecules that comprise a subfamily, belonging to the TGF-β superfamily. Most BMPs play roles in the regulation of embryonic development, stem cell differentiation, tumor growth and some cardiovascular and cerebrovascular diseases. Although evidence is emerging for the antiviral immunity of a few BMPs, more BMPs are needed to determine whether this function is universal. Here, we identified the zebrafish bmp4 ortholog, whose expression is up-regulated through challenge with grass carp reovirus (GCRV) or its mimic poly(I:C). The overexpression of bmp4 in epithelioma papulosum cyprini (EPC) cells significantly decreased the viral titer of GCRV-infected cells. Moreover, compared to wild-type zebrafish, viral load and mortality were significantly increased in both larvae and adults of bmp4-/- mutant zebrafish infected with GCRV virus. We further demonstrated that Bmp4 promotes the phosphorylation of Tbk1 and Irf3 through the p38 MAPK pathway, thereby inducing the production of type I IFNs in response to virus infection. These data suggest that Bmp4 plays an important role in the host defense against virus infection. Our study expands the understanding of BMP protein functions and opens up new targets for the control of viral infection.
Collapse
Affiliation(s)
| | | | | | | | - Zhenhui Liu
- College of Marine Life Science, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (L.C.); (S.Z.); (Y.W.); (X.W.)
| | - Guobin Hu
- College of Marine Life Science, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (L.C.); (S.Z.); (Y.W.); (X.W.)
| |
Collapse
|
5
|
Petrillo S, Manco M, Altruda F, Fagoonee S, Tolosano E. Liver Sinusoidal Endothelial Cells at the Crossroad of Iron Overload and Liver Fibrosis. Antioxid Redox Signal 2021; 35:474-486. [PMID: 32689808 DOI: 10.1089/ars.2020.8168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: Liver fibrosis results from different etiologies and represents one of the most serious health issues worldwide. Fibrosis is the outcome of chronic insults on the liver and is associated with several factors, including abnormal iron metabolism. Recent Advances: Multiple mechanisms underlying the profibrogenic role of iron have been proposed. The pivotal role of liver sinusoidal endothelial cells (LSECs) in iron-level regulation, as well as their morphological and molecular dedifferentiation occurring in liver fibrosis, has encouraged research on LSECs as prime regulators of very early fibrotic events. Importantly, normal differentiated LSECs may act as gatekeepers of fibrogenesis by maintaining the quiescence of hepatic stellate cells, while LSECs capillarization precedes the onset of liver fibrosis. Critical Issues: In the present review, the morphological and molecular alterations occurring in LSECs after liver injury are addressed in an attempt to highlight how vascular dysfunction promotes fibrogenesis. In particular, we discuss in depth how a vicious loop can be established in which iron dysregulation and LSEC dedifferentiation synergize to exacerbate and promote the progression of liver fibrosis. Future Directions: LSECs, due to their pivotal role in early liver fibrosis and iron homeostasis, show great promises as a therapeutic target. In particular, new strategies can be devised for restoring LSECs differentiation and thus their role as regulators of iron homeostasis, hence preventing the progression of liver fibrosis or, even better, promoting its regression. Antioxid. Redox Signal. 35, 474-486.
Collapse
Affiliation(s)
- Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Marta Manco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, CNR c/o Molecular Biotechnology Center, Torino, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
6
|
Angiodiversity and organotypic functions of sinusoidal endothelial cells. Angiogenesis 2021; 24:289-310. [PMID: 33745018 PMCID: PMC7982081 DOI: 10.1007/s10456-021-09780-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/04/2021] [Indexed: 02/08/2023]
Abstract
‘Angiodiversity’ refers to the structural and functional heterogeneity of endothelial cells (EC) along the segments of the vascular tree and especially within the microvascular beds of different organs. Organotypically differentiated EC ranging from continuous, barrier-forming endothelium to discontinuous, fenestrated endothelium perform organ-specific functions such as the maintenance of the tightly sealed blood–brain barrier or the clearance of macromolecular waste products from the peripheral blood by liver EC-expressed scavenger receptors. The microvascular bed of the liver, composed of discontinuous, fenestrated liver sinusoidal endothelial cells (LSEC), is a prime example of organ-specific angiodiversity. Anatomy and development of LSEC have been extensively studied by electron microscopy as well as linage-tracing experiments. Recent advances in cell isolation and bulk transcriptomics or single-cell RNA sequencing techniques allowed the identification of distinct LSEC molecular programs and have led to the identification of LSEC subpopulations. LSEC execute homeostatic functions such as fine tuning the vascular tone, clearing noxious substances from the circulation, and modulating immunoregulatory mechanisms. In recent years, the identification and functional analysis of LSEC-derived angiocrine signals, which control liver homeostasis and disease pathogenesis in an instructive manner, marks a major change of paradigm in the understanding of liver function in health and disease. This review summarizes recent advances in the understanding of liver vascular angiodiversity and the functional consequences resulting thereof.
Collapse
|
7
|
The role of vascular niche and endothelial cells in organogenesis and regeneration. Exp Cell Res 2020; 398:112398. [PMID: 33271129 DOI: 10.1016/j.yexcr.2020.112398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 02/08/2023]
Abstract
The term vascular niche indicate the physical and biochemical microenvironment around blood vessel where endothelial cells, pericytes, and smooth muscle cells organize themselves to form blood vessels and release molecules involved in the recruitment of hematopoietic stem cells, endothelial progenitor cells and mesenchymal stem cells. The vascular niche creates a permissive environment that enables different cell types to realize their developmental or regenerative programs. In this context, the proximity between the endothelium and the new-forming cellular components of organs suggests an essential role of endothelial cells in the organs maturation. Dynamic interactions between specific organ endothelial cells and different cellular conponents are crucial for different organ morphogenesis and function. Conversely, organs provide cues shaping vascular network structure.
Collapse
|
8
|
Dickinson M, Kliszczak AE, Giannoulatou E, Peppa D, Pellegrino P, Williams I, Drakesmith H, Borrow P. Dynamics of Transforming Growth Factor (TGF)-β Superfamily Cytokine Induction During HIV-1 Infection Are Distinct From Other Innate Cytokines. Front Immunol 2020; 11:596841. [PMID: 33329587 PMCID: PMC7732468 DOI: 10.3389/fimmu.2020.596841] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection triggers rapid induction of multiple innate cytokines including type I interferons, which play important roles in viral control and disease pathogenesis. The transforming growth factor (TGF)-β superfamily is a pleiotropic innate cytokine family, some members of which (activins and bone morphogenetic proteins (BMPs)) were recently demonstrated to exert antiviral activity against Zika and hepatitis B and C viruses but are poorly studied in HIV-1 infection. Here, we show that TGF-β1 is systemically induced with very rapid kinetics (as early as 1-4 days after viremic spread begins) in acute HIV-1 infection, likely due to release from platelets, and remains upregulated throughout infection. Contrastingly, no substantial systemic upregulation of activins A and B or BMP-2 was observed during acute infection, although plasma activin levels trended to be elevated during chronic infection. HIV-1 triggered production of type I interferons but not TGF-β superfamily cytokines from plasmacytoid dendritic cells (DCs) in vitro, putatively explaining their differing in vivo induction; whilst lipopolysaccharide (but not HIV-1) elicited activin A production from myeloid DCs. These findings underscore the need for better definition of the protective and pathogenic capacity of TGF-β superfamily cytokines, to enable appropriate modulation for therapeutic purposes.
Collapse
Affiliation(s)
- Matthew Dickinson
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.,MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Anna E Kliszczak
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Eleni Giannoulatou
- Computational Genomics Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Dimitra Peppa
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.,Mortimer Market Centre, Department of HIV, CNWL NHS Trust, London, United Kingdom
| | - Pierre Pellegrino
- Centre for Sexual Health and HIV Research, University College London, London, United Kingdom
| | - Ian Williams
- Centre for Sexual Health and HIV Research, University College London, London, United Kingdom
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Liu HL, Yeh IJ, Phan NN, Wu YH, Yen MC, Hung JH, Chiao CC, Chen CF, Sun Z, Jiang JZ, Hsu HP, Wang CY, Lai MD. Gene signatures of SARS-CoV/SARS-CoV-2-infected ferret lungs in short- and long-term models. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104438. [PMID: 32615317 PMCID: PMC7832673 DOI: 10.1016/j.meegid.2020.104438] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022]
Abstract
Coronaviruses (CoVs) consist of six strains, and the severe acute respiratory syndrome coronavirus (SARS-CoV), newly found coronavirus (SARS-CoV-2) has rapidly spread leading to a global outbreak. The ferret (Mustela putorius furo) serves as a useful animal model for studying SARS-CoV/SARS-CoV-2 infection and developing therapeutic strategies. A holistic approach for distinguishing differences in gene signatures during disease progression is lacking. The present study discovered gene expression profiles of short-term (3 days) and long-term (14 days) ferret models after SARS-CoV/SARS-CoV-2 infection using a bioinformatics approach. Through Gene Ontology (GO) and MetaCore analyses, we found that the development of stemness signaling was related to short-term SARS-CoV/SARS-CoV-2 infection. In contrast, pathways involving extracellular matrix and immune responses were associated with long-term SARS-CoV/SARS-CoV-2 infection. Some highly expressed genes in both short- and long-term models played a crucial role in the progression of SARS-CoV/SARS-CoV-2 infection, including DPP4, BMP2, NFIA, AXIN2, DAAM1, ZNF608, ME1, MGLL, LGR4, ABHD6, and ACADM. Meanwhile, we revealed that metabolic, glucocorticoid, and reactive oxygen species-associated networks were enriched in both short- and long-term infection models. The present study showed alterations in gene expressions from short-term to long-term SARS-CoV/SARS-CoV-2 infection. The current result provides an explanation of the pathophysiology for post-infectious sequelae and potential targets for treatment.
Collapse
Affiliation(s)
- Hsin-Liang Liu
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - I-Jeng Yeh
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Nam Nhut Phan
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Yen-Hung Wu
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Chung-Chieh Chiao
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chien-Fu Chen
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Zhengda Sun
- Kaiser Permanente, Northern California Regional Laboratories, The Permanente Medical Group, 1725 Eastshore Hwy, Berkeley, CA 94710, USA
| | - Jia-Zhen Jiang
- Emergency Department, Huashan Hospital North, Fudan University, Shanghai 201508, People's Republic of China
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
10
|
Zhu S, Bennett S, Kuek V, Xiang C, Xu H, Rosen V, Xu J. Endothelial cells produce angiocrine factors to regulate bone and cartilage via versatile mechanisms. Am J Cancer Res 2020; 10:5957-5965. [PMID: 32483430 PMCID: PMC7255007 DOI: 10.7150/thno.45422] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Blood vessels are conduits distributed throughout the body, supporting tissue growth and homeostasis by the transport of cells, oxygen and nutrients. Endothelial cells (ECs) form the linings of the blood vessels, and together with pericytes, are essential for organ development and tissue homeostasis through producing paracrine signalling molecules, called angiocrine factors. In the skeletal system, ECs - derived angiocrine factors, combined with bone cells-released angiogenic factors, orchestrate intercellular crosstalk of the bone microenvironment, and the coupling of angiogenesis-to-osteogenesis. Whilst the involvement of angiogenic factors and the blood vessels of the skeleton is relatively well established, the impact of ECs -derived angiocrine factors on bone and cartilage homeostasis is gradually emerging. In this review, we survey ECs - derived angiocrine factors, which are released by endothelial cells of the local microenvironment and by distal organs, and act specifically as regulators of skeletal growth and homeostasis. These may potentially include angiocrine factors with osteogenic property, such as Hedgehog, Notch, WNT, bone morphogenetic protein (BMP), fibroblast growth factor (FGF), insulin-like growth factor (IGF), and platelet-derived growth factor (PDGF). Understanding the versatile mechanisms by which ECs-derived angiocrine factors orchestrate bone and cartilage homeostasis, and pathogenesis, is an important step towards the development of therapeutic potential for skeletal diseases.
Collapse
|
11
|
Local delivery of bone morphogenetic protein-2 from near infrared-responsive hydrogels for bone tissue regeneration. Biomaterials 2020; 241:119909. [PMID: 32135355 DOI: 10.1016/j.biomaterials.2020.119909] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/27/2022]
Abstract
Achievement of spatiotemporal control of growth factors production remains a main goal in tissue engineering. In the present work, we combined inducible transgene expression and near infrared (NIR)-responsive hydrogels technologies to develop a therapeutic platform for bone regeneration. A heat-activated and dimerizer-dependent transgene expression system was incorporated into mesenchymal stem cells to conditionally control the production of bone morphogenetic protein 2 (BMP-2). Genetically engineered cells were entrapped in hydrogels based on fibrin and plasmonic gold nanoparticles that transduced incident energy of an NIR laser into heat. In the presence of dimerizer, photoinduced mild hyperthermia induced the release of bioactive BMP-2 from NIR-responsive cell constructs. A critical size bone defect, created in calvaria of immunocompetent mice, was filled with NIR-responsive hydrogels entrapping cells that expressed BMP-2 under the control of the heat-activated and dimerizer-dependent gene circuit. In animals that were treated with dimerizer, NIR irradiation of implants induced BMP-2 production in the bone lesion. Induction of NIR-responsive cell constructs conditionally expressing BMP-2 in bone defects resulted in the formation of new mineralized tissue, thus indicating the therapeutic potential of the technological platform.
Collapse
|
12
|
Horn P, Newsome PN. Emerging therapeutic targets for NASH: key innovations at the preclinical level. Expert Opin Ther Targets 2020; 24:175-186. [PMID: 32053033 DOI: 10.1080/14728222.2020.1728742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: nonalcoholic steatohepatitis (NASH) is a globally emerging health problem, mainly caused by increasing trends in the prevalence of obesity and metabolic syndrome. Patients with NASH are mainly affected by cardiovascular risk and extrahepatic cancer, but a significant proportion of patients will develop advanced liver disease, eventually resulting in liver failure or hepatocellular carcinoma. Recent research has yielded a better understanding of the underlying mechanisms and potential targetability for drug development.Areas covered: This review focuses on the role of fructose metabolism, de novo lipogenesis (DNL), endoplasmic reticulum (ER) stress, NLRP3 inflammasome, bone morphogenetic protein (BMP) signaling and platelets in the pathophysiology of NASH. We discuss the suitability of these substrates for targeting liver disease as well as cardiovascular health in patients with NASH. A non-systematic literature search was performed on PubMed and ClinicalTrials.gov.Expert opinion: Targeting fructose metabolism, DNL, ER stress, NLRP3 inflammasome, BMP signaling and platelets are promising therapeutic strategies, warranting further preclinical and clinical investigation. The discussed approaches might not only benefit liver-related outcomes but improve cardiovascular disease as well. Amidst the euphoria of advances in drug development for NASH, parallel endeavors need to address the underlying causes of obesity and metabolic syndrome to prevent NASH.
Collapse
Affiliation(s)
- Paul Horn
- National Institute for Health Research Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, UK.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Phlip N Newsome
- National Institute for Health Research Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, UK.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
13
|
Eddowes LA, Al-Hourani K, Ramamurthy N, Frankish J, Baddock HT, Sandor C, Ryan JD, Fusco DN, Arezes J, Giannoulatou E, Boninsegna S, Chevaliez S, Owens BMJ, Sun CC, Fabris P, Giordani MT, Martines D, Vukicevic S, Crowe J, Lin HY, Rehwinkel J, McHugh PJ, Binder M, Babitt JL, Chung RT, Lawless MW, Armitage AE, Webber C, Klenerman P, Drakesmith H. Antiviral activity of bone morphogenetic proteins and activins. Nat Microbiol 2019; 4:339-351. [PMID: 30510168 PMCID: PMC6590058 DOI: 10.1038/s41564-018-0301-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/22/2018] [Indexed: 12/19/2022]
Abstract
Understanding the control of viral infections is of broad importance. Chronic hepatitis C virus (HCV) infection causes decreased expression of the iron hormone hepcidin, which is regulated by hepatic bone morphogenetic protein (BMP)/SMAD signalling. We found that HCV infection and the BMP/SMAD pathway are mutually antagonistic. HCV blunted induction of hepcidin expression by BMP6, probably via tumour necrosis factor (TNF)-mediated downregulation of the BMP co-receptor haemojuvelin. In HCV-infected patients, disruption of the BMP6/hepcidin axis and genetic variation associated with the BMP/SMAD pathway predicted the outcome of infection, suggesting that BMP/SMAD activity influences antiviral immunity. Correspondingly, BMP6 regulated a gene repertoire reminiscent of type I interferon (IFN) signalling, including upregulating interferon regulatory factors (IRFs) and downregulating an inhibitor of IFN signalling, USP18. Moreover, in BMP-stimulated cells, SMAD1 occupied loci across the genome, similar to those bound by IRF1 in IFN-stimulated cells. Functionally, BMP6 enhanced the transcriptional and antiviral response to IFN, but BMP6 and related activin proteins also potently blocked HCV replication independently of IFN. Furthermore, BMP6 and activin A suppressed growth of HBV in cell culture, and activin A inhibited Zika virus replication alone and in combination with IFN. The data establish an unappreciated important role for BMPs and activins in cellular antiviral immunity, which acts independently of, and modulates, IFN.
Collapse
Affiliation(s)
- Lucy A Eddowes
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Kinda Al-Hourani
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Narayan Ramamurthy
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Jamie Frankish
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hannah T Baddock
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Cynthia Sandor
- Dementia Research Institute, Cardiff University, Cardiff, UK
| | - John D Ryan
- Centre for Liver Disease, Mater Misericordiae University Hospital, Dublin, Ireland
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| | - Dahlene N Fusco
- Liver Center, Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - João Arezes
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Eleni Giannoulatou
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sara Boninsegna
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Department of Surgical Gastroenterological Science, University of Padua, Padova, Italy
| | - Stephane Chevaliez
- Liver Center, Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin M J Owens
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| | - Chia Chi Sun
- Program in Anemia Signaling Research, Nephrology Division, Program in Membrane Biology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Paolo Fabris
- Department of Infectious Diseases and Tropical Medicine, San Bortolo Hospital, Vicenza, Italy
| | - Maria Teresa Giordani
- Department of Infectious Diseases and Tropical Medicine, San Bortolo Hospital, Vicenza, Italy
| | - Diego Martines
- Department of Surgical Gastroenterological Science, University of Padua, Padova, Italy
| | - Slobodan Vukicevic
- Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - John Crowe
- Centre for Liver Disease, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Herbert Y Lin
- Program in Anemia Signaling Research, Nephrology Division, Program in Membrane Biology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jan Rehwinkel
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jodie L Babitt
- Program in Anemia Signaling Research, Nephrology Division, Program in Membrane Biology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Raymond T Chung
- Liver Center, Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew W Lawless
- Experimental Medicine, UCD School of Medicine and Medical Science, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Andrew E Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Caleb Webber
- Dementia Research Institute, Cardiff University, Cardiff, UK
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, Headington, Oxford, UK
- NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
- Haematology Theme Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
14
|
Wohlfeil SA, Häfele V, Dietsch B, Schledzewski K, Winkler M, Zierow J, Leibing T, Mohammadi MM, Heineke J, Sticht C, Olsavszky V, Koch PS, Géraud C, Goerdt S. Hepatic Endothelial Notch Activation Protects against Liver Metastasis by Regulating Endothelial-Tumor Cell Adhesion Independent of Angiocrine Signaling. Cancer Res 2018; 79:598-610. [PMID: 30530502 DOI: 10.1158/0008-5472.can-18-1752] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/14/2018] [Accepted: 12/03/2018] [Indexed: 11/16/2022]
Abstract
The interaction of tumor cells with organ-specific endothelial cells (EC) is an important step during metastatic progression. Notch signaling in organ-specific niches has been implicated in mediating opposing effects on organotropic metastasis to the lungs and the liver, respectively. In this study, we scrutinized the role of endothelial Notch activation during liver metastasis. To target hepatic EC (HEC), a novel EC subtype-specific Cre driver mouse was generated. Clec4g-Cretg/wt mice were crossed to Rosa26N1ICD-IRES-GFP to enhance Notch signaling in HEC (NICDOE-HEC). In NICDOE-HEC mice, hepatic metastasis of malignant melanoma and colorectal carcinoma was significantly reduced. These mice revealed reduced liver growth and impaired metabolic zonation due to suppression of hepatic angiocrine Wnt signaling. Hepatic metastasis, however, was not controlled by angiocrine Wnt signaling, as deficiency of the Wnt cargo receptor Wls in HEC of WlsHEC-KO mice did not affect hepatic metastasis. In contrast, the hepatic microvasculature in NICDOE-HEC mice revealed a special form of sinusoidal capillarization, with effacement of endothelial zonation functionally paralleled by reduced tumor cell adhesion in vivo. Notably, expression of endothelial adhesion molecule ICAM1 by HEC was significantly reduced. Treatment with an anti-ICAM1 antibody significantly inhibited tumor cell adhesion to HEC in wild-type mice confirming that Notch controls hepatic metastasis via modulation of HEC adhesion molecules. As endothelial Notch activation in the lung has been shown to promote lung metastasis, tumor therapy will require approaches that target Notch in an organ-, cell type-, and context-specific manner. SIGNIFICANCE: Manipulation of Notch signaling in the endothelium has opposing, organ-specific effects on metastasis to the lung and the liver, demonstrating that this pathway should be targeted in a cell- and context-specific fashion.
Collapse
Affiliation(s)
- Sebastian A Wohlfeil
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Verena Häfele
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Bianca Dietsch
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany.,Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kai Schledzewski
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Manuel Winkler
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Johanna Zierow
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Thomas Leibing
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Mona Malek Mohammadi
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), partner site Mannheim/Heidelberg, Germany
| | - Joerg Heineke
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), partner site Mannheim/Heidelberg, Germany
| | - Carsten Sticht
- Center for Medical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Victor Olsavszky
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Philipp-Sebastian Koch
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany. .,Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sergij Goerdt
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
15
|
Polyzos SA, Kountouras J, Anastasilakis AD, Makras P, Hawa G, Sonnleitner L, Missbichler A, Doulberis M, Katsinelos P, Terpos E. Noggin levels in nonalcoholic fatty liver disease: the effect of vitamin E treatment. Hormones (Athens) 2018; 17:573-579. [PMID: 30467685 DOI: 10.1007/s42000-018-0083-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022]
Abstract
AIM The evaluation of (a) noggin levels in patients with simple steatosis (SS) vs. nonalcoholic steatohepatitis (NASH) vs. controls, and (b) the effect of combined spironolactone plus vitamin E vs. vitamin E monotherapy on noggin levels in biopsy-proven patients with nonalcoholic fatty liver disease (NAFLD). METHODS In the case-control study, 15 patients with SS, 16 with NASH, and 24 controls were included. In the randomized controlled trial, NAFLD patients were assigned to vitamin E (400 IU/d) or spironolactone (25 mg/d) plus vitamin E for 52 weeks. RESULTS Noggin levels were lower in SS (5.8 ± 1.5 pmol/l) and NASH (8.7 ± 2.4 pmol/l) patients than in controls (13.7 ± 2.7 pmol/l; p for trend = 0.040), but were similar in SS and NASH patients. After adjustment for potential cofounders, log(noggin) remained different between groups. Log(noggin) levels similarly increased post-treatment in both groups: log(noggin) was not different between groups (p = 0.20), but increased within groups over time (p < 0.001), without a significant group × time interaction (p = 0.62). Log(noggin) significantly increased at month 2 post-treatment (p = 0.008 vs. baseline) and remained stable thereafter. CONCLUSIONS Lower noggin levels were observed in NAFLD patients than in controls. Noggin levels increased similarly by either combined low-dose spironolactone plus vitamin E or vitamin E monotherapy. TRIAL REGISTRATION NCT01147523.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Jannis Kountouras
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Polyzois Makras
- Department of Endocrinology and Diabetes, 251 Hellenic Air Force & VA General Hospital, Athens, Greece
| | | | | | | | - Michael Doulberis
- Department of Internal Medicine, University Hospital Inselspital, Bern, Switzerland
| | - Panagiotis Katsinelos
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
16
|
Savarese A, Lasek AW. Regulation of anxiety-like behavior and Crhr1 expression in the basolateral amygdala by LMO3. Psychoneuroendocrinology 2018; 92:13-20. [PMID: 29609111 PMCID: PMC5924609 DOI: 10.1016/j.psyneuen.2018.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/20/2018] [Accepted: 03/25/2018] [Indexed: 11/28/2022]
Abstract
The LIM domain only protein LMO3 is a transcriptional regulator that has been shown to regulate several behavioral responses to alcohol. Specifically, Lmo3 null (Lmo3Z) mice consume more ethanol in a binge-drinking test and show enhanced ethanol-induced sedation. Due to the high comorbidity of alcohol use and anxiety, we investigated anxiety-like behavior in Lmo3Z mice. Lmo3Z mice spent more time in the open arms of the elevated plus maze compared with their wild-type littermates, but the effect was confounded by reduced locomotor activity. To verify the anxiety phenotype in the Lmo3Z mice, we tested them for novelty-induced hypophagia and found that they also showed reduced anxiety in this test. We next explored the mechanism by which LMO3 might regulate anxiety by measuring mRNA and protein levels of corticotropin releasing factor (encoded by the Crh gene) and its receptor type 1 (Crhr1) in Lmo3Z mice. Reduced Crhr1 mRNA and protein was evident in the basolateral amygdala (BLA) of Lmo3Z mice. To examine whether Lmo3 in the amygdala is important for anxiety-like behavior, we locally reduced Lmo3 expression in the BLA of wild type mice using a lentiviral vector expressing a short hairpin RNA targeting the Lmo3 transcript. Mice with Lmo3 knockdown in the BLA exhibited decreased anxiety-like behavior relative to control mice. These results suggest that Lmo3 promotes anxiety-like behavior specifically in the BLA, possibly by altering Crhr1 expression. This study is the first to support a role for Lmo3 in anxiety-like behavior.
Collapse
Affiliation(s)
- Antonia Savarese
- Center for Alcohol Research in Epigenetics and Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA; Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL 60612 USA.
| | - Amy W. Lasek
- Center for Alcohol Research in Epigenetics and Department of
Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA,Corresponding author: Amy W. Lasek, Ph.D., Department of
Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St, MC 912,
Chicago, IL 60612, Phone: 312-355-1593,
| |
Collapse
|