1
|
Shand H, Patra S, Ghorai S. Fatty acid binding protein as a new age biomarker. Clin Chim Acta 2025; 565:120029. [PMID: 39515633 DOI: 10.1016/j.cca.2024.120029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Small lipid-binding proteins known as fatty acid-binding proteins (FABPs) are extensively expressed in cells having elevated levels of fatty acid (FA) metabolism. There are ten known FABPs in mammals that exhibit expression patterns specific to tissues and tertiary structures that are substantially preserved. FABPs were first investigated as FA transport proteins inside cells. Subsequent research has shown that they are involved in signalling within their expression cells and in metabolism of lipid, directly and through the control of expression of gene. Additionally, there is evidence that they might be released and influence circulatory function. It has been observed that some tissues and organs linked to inflammatory, metabolic illnesses and also infectious disease have markedly elevated expression levels of FABPs. Thus, in addition to previously identified markers, FABPs represent a promising new biomarker that require additional investigation to optimise illness detection and prognosis techniques.
Collapse
Affiliation(s)
- Harshita Shand
- Infection and Disease Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, West Bengal- 733134, India
| | - Soumendu Patra
- Infection and Disease Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, West Bengal- 733134, India
| | - Suvankar Ghorai
- Infection and Disease Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, West Bengal- 733134, India; Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA.
| |
Collapse
|
2
|
Zhao SS, Bai RR, Zhang BH, Sun XR, Huang N, Chen Y, Sun ZJ, Sun LM, Zhang Y, Cui ZQ. Investigating the diagnostic and prognostic significance of genes related to fatty acid metabolism in hepatocellular carcinoma. BMC Gastroenterol 2024; 24:409. [PMID: 39548390 PMCID: PMC11566841 DOI: 10.1186/s12876-024-03495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers worldwide, with death rates increasing by approximately 2-3% per year. The high mortality and poor prognosis of HCC are primarily due to inaccurate early diagnosis and lack of monitoring when liver transplantation is not feasible. Fatty acid (FA) metabolism is a critical metabolic pathway that provides energy and signaling factors in cancer, particularly in HCC, and promotes malignancy. Therefore, it is essential to explore specific FA metabolism-related diagnostic and prognostic signatures that can enable the effective early diagnosis and monitoring of HCC. METHODS In this study, we used genes associated with FA metabolism pathway and weighted gene co-expression network analysis (WGCNA) to establish a gene co-expression network and identify hub genes related to HCC (disease WGCNA) and FA clusters (cluster WGCNA). A diagnostic model was constructed using data downloaded from the Gene Expression Omnibus database (GSE25097), and a prognostic model was established using The Cancer Genome Atlas cohort, in which Univariate Cox regression analysis, multivariate Cox risk model, and LASSO Cox regression analysis were applied. The immune infiltration of HCC cells was evaluated using CIBERSORT. The function of the key SLC22A1 gene was experimentally verified in vitro and in vivo. RESULTS Twelve overlapping genes (CPEB3, ASPDH, DEPDC7, ETFDH, UGT2B7, GYS2, F11, ANXA10, CYP2C8, GLYATL1, C6, and SLC22A1) from disease and cluster WGCNA were identified as key genes and used in the construction of the diagnostic and prognostic models. The RF model had the highest area under the ROC curve (AUC) of 0.994 was identified as the most effective for distinguishing patients with HCC with different features. The top five important genes (C6, UGT2B7, SLC22A1, F11, and CYP2C8) from the RF model were selected as diagnostic genes for further analysis (ROC curves: AUC value = 0.986, 95% confidence interval [95% CI] = 0.967-0.999). Moreover, a risk score formula consisting of four genes (GYS2, F11, ANXA10 and SLC22A1) was established and its independent prognostic ability was further demonstrated (univariate Cox regression analysis: hazard ratio [HR] = 3.664%, 95% CI = 2.033-6.605, P < 0.001; multivariate Cox regression analysis: HR = 2.801%, 95% CI = 1.553-5.049, P < 0.001). Additionally, in vitro and in vivo experiments demonstrated that SLC22A1 inhibits HCC tumor development, suggesting it may be a potential therapeutic target for HCC. CONCLUSIONS These findings indicate a considerable value of specific FA metabolism-related genes in the diagnostic and prognostic evaluation of HCC, which provide novel insights into the disease's management, as well as has potential implications for personalized treatment strategies. However, further investigation of the effects of these model genes on HCC is required.
Collapse
Affiliation(s)
- Sha-Sha Zhao
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Rong-Rong Bai
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
- Suzhou Medical College of Soochow University, Suzhou, PR China
| | - Bao-Hua Zhang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | | | - Nan Huang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yan Chen
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Zi-Jiu Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Li-Mei Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Yue Zhang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
- Department of Clinical Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People's Hospital, Shanghai, 200435, China.
| | - Zhong-Qi Cui
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
3
|
Dillemuth P, Lövdahl P, Karskela T, Ayo A, Ponkamo J, Liljenbäck H, Paunonen S, Kunnas J, Rajander J, Tynninen O, Rosenholm JM, Roivainen A, Laakkonen P, Airaksinen AJ, Li XG. Switching the Chemoselectivity in the Preparation of [ 18F]FNA- N-CooP, a Free Thiol-Containing Peptide for Targeted Positron Emission Tomography Imaging of Fatty Acid Binding Protein 3. Mol Pharm 2024; 21:4147-4156. [PMID: 39008899 DOI: 10.1021/acs.molpharmaceut.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Fatty acid binding protein 3 (FABP3) is expressed both in tumor cells and in the tumor vasculature, making it a potential target for medical imaging and therapy. In this study, we aimed to radiolabel a CooP peptide with a free amino and thiol group, and evaluate the radiolabeled product [18F]FNA-N-CooP for imaging FABP3 expression in breast cancer brain metastases by positron emission tomography. [18F]FNA-N-CooP was prepared by highly chemoselective N-acylation and characterized using different chemical approaches. We validated its binding to the target using in vitro tissue section autoradiography and performed stability tests in vitro and in vivo. [18F]FNA-N-CooP was successfully synthesized in 16.8% decay-corrected radiochemical yield with high radiochemical purity (98.5%). It exhibited heterogeneous binding on brain metastasis tissue sections from a patient with breast cancer, with foci of radioactivity binding corresponding to FABP3 positivity. Furthermore, the tracer binding was reduced by 55% in the presence of nonradioactive FNA-N-CooP a blocker, indicating specific tracer binding and that FABP3 is a viable target for [18F]FNA-N-CooP. Favorably, the tracer did not bind to necrotic tumor tissue. However, [18F]FNA-N-CooP displayed limited stability both in vitro in mouse plasma or human serum and in vivo in mouse, therefore further studies are needed to improve the stability [18F]FNA-N-CooP to be used for in vivo applications.
Collapse
Affiliation(s)
- Pyry Dillemuth
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
- Department of Chemistry, University of Turku, Henrikinkatu 2, Turku FI-20500, Finland
| | - Petter Lövdahl
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, Turku FI-20520, Finland
| | - Tuomas Karskela
- Turku Centre for Chemical and Molecular Analytics, Åbo Akademi University and University of Turku, Henrikinkatu 2, Turku FI-20500, Finland
| | - Abiodun Ayo
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 4, Helsinki FI-00290, Finland
| | - Jesse Ponkamo
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
- Department of Chemistry, University of Turku, Henrikinkatu 2, Turku FI-20500, Finland
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
- Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, Turku FI-20520, Finland
| | - Sami Paunonen
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
- Department of Chemistry, University of Turku, Henrikinkatu 2, Turku FI-20500, Finland
| | - Jonne Kunnas
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, Turku FI-20520, Finland
| | - Johan Rajander
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
- Accelerator Laboratory, Åbo Akademi University, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
| | - Olli Tynninen
- Department of Pathology, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, Helsinki FI-00290, Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, Turku FI-20520, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
- Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, Turku FI-20520, Finland
- InFLAMES Research Flagship, University of Turku, Tykistökatu 6, Turku FI-20520, Finland
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 4, Helsinki FI-00290, Finland
- Laboratory Animal Centre, HiLIFE University of Helsinki, Haartmaninkatu 4, Helsinki FI-00290, Finland
- iCAN Flagship Program, University of Helsinki, Haartmaninkatu 4, Helsinki FI-00290, Finland
| | - Anu J Airaksinen
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
- Department of Chemistry, University of Turku, Henrikinkatu 2, Turku FI-20500, Finland
| | - Xiang-Guo Li
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
- Department of Chemistry, University of Turku, Henrikinkatu 2, Turku FI-20500, Finland
- InFLAMES Research Flagship, University of Turku, Tykistökatu 6, Turku FI-20520, Finland
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, Turku FI-20520, Finland
| |
Collapse
|
4
|
Li B, Mi J, Yuan Q. Fatty acid metabolism-related enzymes in colorectal cancer metastasis: from biological function to molecular mechanism. Cell Death Discov 2024; 10:350. [PMID: 39103344 DOI: 10.1038/s41420-024-02126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024] Open
Abstract
Colorectal cancer (CRC) is a highly aggressive and life-threatening malignancy that metastasizes in ~50% of patients, posing significant challenges to patient survival and treatment. Fatty acid (FA) metabolism regulates proliferation, immune escape, metastasis, angiogenesis, and drug resistance in CRC. FA metabolism consists of three pathways: de novo synthesis, uptake, and FA oxidation (FAO). FA metabolism-related enzymes promote CRC metastasis by regulating reactive oxygen species (ROS), matrix metalloproteinases (MMPs), angiogenesis and epithelial-mesenchymal transformation (EMT). Mechanistically, the PI3K/AKT/mTOR pathway, wnt/β-catenin pathway, and non-coding RNA signaling pathway are regulated by crosstalk of enzymes related to FA metabolism. Given the important role of FA metabolism in CRC metastasis, targeting FA metabolism-related enzymes and their signaling pathways is a potential strategy to treat CRC metastasis.
Collapse
Affiliation(s)
- Biao Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Jing Mi
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Qi Yuan
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
5
|
Ohguro H, Watanabe M, Hikage F, Sato T, Nishikiori N, Umetsu A, Higashide M, Ogawa T, Furuhashi M. Fatty Acid-Binding Protein 4-Mediated Regulation Is Pivotally Involved in Retinal Pathophysiology: A Review. Int J Mol Sci 2024; 25:7717. [PMID: 39062961 PMCID: PMC11277531 DOI: 10.3390/ijms25147717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Fatty acid-binding proteins (FABPs), a family of lipid chaperone molecules that are involved in intracellular lipid transportation to specific cellular compartments, stimulate lipid-associated responses such as biological signaling, membrane synthesis, transcriptional regulation, and lipid synthesis. Previous studies have shown that FABP4, a member of this family of proteins that are expressed in adipocytes and macrophages, plays pivotal roles in the pathogenesis of various cardiovascular and metabolic diseases, including diabetes mellitus (DM) and hypertension (HT). Since significant increases in the serum levels of FABP4 were detected in those patients, FABP4 has been identified as a crucial biomarker for these systemic diseases. In addition, in the field of ophthalmology, our group found that intraocular levels of FABP4 (ioFABP4) and free fatty acids (ioFFA) were substantially elevated in patients with retinal vascular diseases (RVDs) including proliferative diabetic retinopathy (PDR) and retinal vein occlusion (RVO), for which DM and HT are also recognized as significant risk factors. Recent studies have also revealed that ioFABP4 plays important roles in both retinal physiology and pathogenesis, and the results of these studies have suggested potential molecular targets for retinal diseases that might lead to future new therapeutic strategies.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Fumihito Hikage
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Nami Nishikiori
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Araya Umetsu
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Megumi Higashide
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.)
| |
Collapse
|
6
|
Michler S, Schöffmann FA, Robaa D, Volmer J, Hinderberger D. Fatty acid binding to the human transport proteins FABP3, FABP4, and FABP5 from a Ligand's perspective. J Biol Chem 2024; 300:107396. [PMID: 38777142 PMCID: PMC11231610 DOI: 10.1016/j.jbc.2024.107396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Fatty acid binding proteins (FABPs) are a family of amphiphilic transport proteins with high diversity in terms of their amino acid sequences and binding preferences. Beyond their main biological role as cytosolic fatty acid transporters, many aspects regarding their binding mechanism and functional specializations in human cells remain unclear. In this work, the binding properties and thermodynamics of FABP3, FABP4, and FABP5 were analyzed under various physical conditions. For this purpose, the FABPs were loaded with fatty acids bearing fluorescence or spin probes as model ligands, comparing their binding affinities via microscale thermophoresis (MST) and continuous-wave electron paramagnetic resonance (CW EPR) spectroscopy. The CW EPR spectra of non-covalently bound 5- and 16-DOXYL stearic acid (5/16-DSA) deliver in-depth information about the dynamics and chemical environments of ligands inside the binding pockets of the FABPs. EPR spectral simulations allow the construction of binding curves, revealing two different binding states ('intermediately' and 'strongly' bound). The proportion of bound 5/16-DSA depends strongly on the FABP concentration and the temperature but with remarkable differences between the three isoforms. Additionally, the more dynamic state ('intermediately bound') seems to dominate at body temperature with thermodynamic preference. The ligand binding studies were supplemented by aggregation studies via dynamic light scattering and bioinformatic analyses. Beyond the remarkably fine-tuned binding properties exhibited by each FABP, which were discernible with our EPR-centered approach, the results of this work attest to the power of simple spectroscopic experiments to provide new insights into the ligand binding mechanisms of proteins in general on a molecular level.
Collapse
Affiliation(s)
- Sebastian Michler
- Physical Chemistry - Complex Self-Organizing Systems, Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Florian Arndt Schöffmann
- Physical Chemistry - Complex Self-Organizing Systems, Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jonas Volmer
- Physical Chemistry - Complex Self-Organizing Systems, Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dariush Hinderberger
- Physical Chemistry - Complex Self-Organizing Systems, Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
7
|
Li C, Li B, Qu L, Song R, Liu H, Su S. Progesterone improved the behavior of PC12 cells under OGD/R by reducing FABP5 expression and inhibiting TLR4/NF-κB signaling pathway. J Bioenerg Biomembr 2024; 56:117-124. [PMID: 38105294 PMCID: PMC10995011 DOI: 10.1007/s10863-023-09998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/26/2023] [Indexed: 12/19/2023]
Abstract
Herein, PC12 cells were applied to detect the impact of progesterone under oxygen glucose deprivation/reperfusion (OGD/R) stimulation. The cell proliferation of PC12 cells was evaluated by cell counting kit-8 assay, and the concentrations of MDA, ROS and SOD were examined by their corresponding Enzyme Linked Immunosorbent Assay kits. The invasion and migration properties of PC12 cells were evaluated by transwell and wound healing assays, respectively. The expression patterns of related genes were evaluated by western blot and qPCR. Under OGD/R stimulation, progesterone treatment could elevate the viability of PC12 cells, reduce the levels of MDA and ROS, and elevate the concentration of SOD. Moreover, progesterone treatment could strengthen the invasion and migration abilities of PC12 cells under OGD/R condition, as well as decrease the apoptosis and inflammation. FABP5 expression was significantly increased in PC12 cells under OGD/R stimulation, which was reversed after progesterone stimulation. Under OGD/R stimulation, the protective effects of progesterone on PC12 cells were strengthened after si-FABP5 treatment. The protein levels of TLR4, p-P65 NF-κB, and P65 NF-κB in OGD/R-induced PC12 cells were increased, which were inhibited after progesterone treatment. Progesterone exerted protective effects on PC12 cells by targeting FABP5 under OGD/R stimulation.
Collapse
Affiliation(s)
- Chunlin Li
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jing Shi Road, Lixia District, Jinan, Shandong, 250014, People's Republic of China
| | - Bowen Li
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 16369 Jing Shi Road, Lixia District, Jinan, Shandong, 250014, People's Republic of China
| | - Linglong Qu
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 16369 Jing Shi Road, Lixia District, Jinan, Shandong, 250014, People's Republic of China
| | - Ruichang Song
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 16369 Jing Shi Road, Lixia District, Jinan, Shandong, 250014, People's Republic of China
| | - Hui Liu
- Department of Chinese Internal Medicine, First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, No. 16369 Jing Shi Road, Lixia District, Jinan, Shandong, 250014, People's Republic of China
| | - Shanshan Su
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, Shandong, 250014, People's Republic of China.
| |
Collapse
|
8
|
Ahmed T, Liu FCF, Wu XY. An update on strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery: exploiting transformability and bioactivity of PLN and harnessing intracellular lipid transport mechanism. Expert Opin Drug Deliv 2024; 21:245-278. [PMID: 38344771 DOI: 10.1080/17425247.2024.2318459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Polymer-lipid hybrid nanoparticle (PLN) is an emerging nanoplatform with distinct properties and functionalities from other nanocarrier systems. PLN can be optimized to overcome various levels of drug delivery barriers to achieve desired therapeutic outcomes via rational selection of polymer and lipid combinations based on a thorough understanding of their properties and interactions with therapeutic agents and biological systems. AREAS COVERED This review provides an overview of PLN including the motive and history of PLN development, types of PLN, preparation methods, attestations of their versatility, and design strategies to circumvent various barriers for increasing drug delivery accuracy and efficiency. It also highlights recent advances in PLN design including: rationale selection of polymer and lipid components to achieve spatiotemporal drug targeting and multi-targeted cascade drug delivery; utilizing the intracellular lipid transport mechanism for active targeting to desired organelles; and harnessing bioreactive lipids and polymers to magnify therapeutic effects. EXPERT OPINION A thorough understanding of properties of PLN components and their biofate is important for enhancing disease site targeting, deep tumor tissue penetration, cellular uptake, and intracellular trafficking of PLN. For futuristic PLN development, active lipid transport and dual functions of lipids and polymers as both nanocarrier material and pharmacological agents can be further explored.
Collapse
Affiliation(s)
- Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Fuh-Ching Franky Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
9
|
Mujammami M, Rafiullah M, Akkour K, Alfadda AA, Masood A, Joy SS, Alhalal H, Arafah M, Alshehri E, Alanazi IO, Benabdelkamel H. Plasma Proteomic Signature of Endometrial Cancer in Patients with Diabetes. ACS OMEGA 2024; 9:4721-4732. [PMID: 38313512 PMCID: PMC10831832 DOI: 10.1021/acsomega.3c07992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024]
Abstract
The incidence and mortality of endometrial cancer (EC) have increased in recent years. There is mounting evidence that diabetes may play a role in the greater incidence of EC. The molecular mechanisms of the interaction between type 2 diabetes and EC are not yet clearly understood yet. The present study was undertaken to investigate the plasma proteomics of EC patients with diabetes in comparison to those of EC patients without diabetes. Plasma samples were obtained from age-matched patients (EC diabetic and EC nondiabetic). Untargeted proteomic analysis was carried out using a two-dimensional differential gel electrophoresis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Of the 33 proteins identified, which significantly differed in the plasma abundance between groups, 17 were upregulated and 16 were downregulated. The majority of the altered proteins are involved in the acute phase reaction, cholesterol metabolism, scavenging of heme from plasma, and plasma lipoprotein assembly and mobilization. α-2-macroglobulin, Ras association domain-containing protein 3, apolipoprotein A-I, α-1B-glycoprotein, and zinc-α-2-glycoprotein were significantly upregulated. The significantly downregulated proteins included haptoglobin, apolipoprotein A-IV, hemopexin, and α-1-antichymotrypsin. The differential expression of proteins found in patients who had EC and diabetes indicated severe disease and a poor prognosis. The protein interaction analysis showed dysregulation of cholesterol metabolism and heme scavenging pathways in these patients.
Collapse
Affiliation(s)
- Muhammad Mujammami
- University
Diabetes Center, King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
- Department
of Medicine, College of Medicine, King Saud
University, Riyadh 11461, Saudi Arabia
| | - Mohamed Rafiullah
- Strategic
Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Khalid Akkour
- Obstetrics
and Gynecology Department, College of Medicine, King Saud University Medical City,King Saud University, Riyadh 12372, Kingdom of Saudi Arabia
| | - Assim A. Alfadda
- Department
of Medicine, College of Medicine, King Saud
University, Riyadh 11461, Saudi Arabia
- Strategic
Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Proteomics
Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Afshan Masood
- Proteomics
Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Salini Scaria Joy
- Strategic
Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Hani Alhalal
- Obstetrics
and Gynecology Department, College of Medicine, King Saud University Medical City,King Saud University, Riyadh 12372, Kingdom of Saudi Arabia
| | - Maria Arafah
- Department
of Pathology, College of Medicine, King Saud University, King Saud University Medical City, Riyadh 11461, Saudi Arabia
| | - Eman Alshehri
- Obstetrics
and Gynecology Department, College of Medicine, King Saud University Medical City,King Saud University, Riyadh 12372, Kingdom of Saudi Arabia
| | - Ibrahim O. Alanazi
- Proteomics
Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Healthy
Aging Research Institute, King Abdulaziz
City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics
Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| |
Collapse
|
10
|
Huang Y, Cui X, Li Z, Yuan S, Han Y, Xu X, Fu X, Shi K, Zhang Z, Wei J, Xia S, Xiao Y, Xue S, Sun L, Liu H, Zhu X. High-expression of FABP4 in Tubules is a Risk Factor for Poor Prognosis in DKD Patients. Curr Med Chem 2024; 31:3436-3446. [PMID: 38299395 DOI: 10.2174/0109298673268265231228125431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Lipid metabolism imbalance is involved in the mechanism of renal tubular injury in diabetic kidney disease (DKD). Fatty acid binding protein 4 (FABP4) has been reported to participate in cellular lipid toxicity. However, the expression of FABP4 in renal tissues of DKD and its correlation with clinical/ pathological parameters and prognosis have not been studied. METHODS A retrospective cohort study was conducted in 108 hospitalized Type 2 diabetes (T2D) patients with renal injury, including 70 with DKD and 38 with NDKD (non-DKD). Clinical features, pathological findings, and follow-up parameters were collected. Serum and urine FABP4 were detected by ELISA. An immunohistochemistry stain was used to determine FABP4 in renal tubulointerstitium. A double immunofluorescence stain was employed to assess FABP4- and CD68-positive macrophages. Correlation analysis, logistic regression models, receiver operating characteristic (ROC), and Kaplan-Meier survival curve were performed for statistical analysis. RESULTS DKD patients had increased expression of FABP4 and ectopic fat deposition in tubules. As shown by correlation analyses, FABP4 expression in renal tubules was positively correlated with UNAG (r=0.589, p=0.044) and ESRD (r=0.740, p=0.004). Multivariate regression analysis revealed that UNAG level was correlated with FABP4 expression level above median value (odds ratio:1.154, 95% confidence interval:1.009-1.321, p=0.037). High-expression of FABP4 in renal tubules of DKD was at an increased risk of ESRD. Increased FABP4 expression in inflammatory cells was also associated with ESRD in DKD. CONCLUSION High-expression of FABP4 is involved in the pathogenesis of renal tubular lipid injury and is a risk factor for poor prognosis in DKD patients.
Collapse
Affiliation(s)
- Yao Huang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xinyuan Cui
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Zheng Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shuguang Yuan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xiangqing Xu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xiao Fu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Kewen Shi
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Zurong Zhang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Jinying Wei
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shiyu Xia
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yang Xiao
- Key Laboratory of Diabetes Immunology, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Song Xue
- Key Laboratory of Diabetes Immunology, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, China
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xuejing Zhu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
11
|
Romo-Perez A, Domínguez-Gómez G, Chávez-Blanco AD, González-Fierro A, Correa-Basurto J, Dueñas-González A. PaSTe. Blockade of the Lipid Phenotype of Prostate Cancer as Metabolic Therapy: A Theoretical Proposal. Curr Med Chem 2024; 31:3265-3285. [PMID: 37287286 DOI: 10.2174/0929867330666230607104441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Prostate cancer is the most frequently diagnosed malignancy in 112 countries and is the leading cause of death in eighteen. In addition to continuing research on prevention and early diagnosis, improving treatments and making them more affordable is imperative. In this sense, the therapeutic repurposing of low-cost and widely available drugs could reduce global mortality from this disease. The malignant metabolic phenotype is becoming increasingly important due to its therapeutic implications. Cancer generally is characterized by hyperactivation of glycolysis, glutaminolysis, and fatty acid synthesis. However, prostate cancer is particularly lipidic; it exhibits increased activity in the pathways for synthesizing fatty acids, cholesterol, and fatty acid oxidation (FAO). OBJECTIVE Based on a literature review, we propose the PaSTe regimen (Pantoprazole, Simvastatin, Trimetazidine) as a metabolic therapy for prostate cancer. Pantoprazole and simvastatin inhibit the enzymes fatty acid synthase (FASN) and 3-hydroxy-3-methylglutaryl- coenzyme A reductase (HMGCR), therefore, blocking the synthesis of fatty acids and cholesterol, respectively. In contrast, trimetazidine inhibits the enzyme 3-β-Ketoacyl- CoA thiolase (3-KAT), an enzyme that catalyzes the oxidation of fatty acids (FAO). It is known that the pharmacological or genetic depletion of any of these enzymes has antitumor effects in prostatic cancer. RESULTS Based on this information, we hypothesize that the PaSTe regimen will have increased antitumor effects and may impede the metabolic reprogramming shift. Existing knowledge shows that enzyme inhibition occurs at molar concentrations achieved in plasma at standard doses of these drugs. CONCLUSION We conclude that this regimen deserves to be preclinically evaluated because of its clinical potential for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Adriana Romo-Perez
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Alma D Chávez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Aurora González-Fierro
- Subdirección de Investigación Básica, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - José Correa-Basurto
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alfonso Dueñas-González
- Subdirección de Investigación Básica, Instituto Nacional de Cancerologia, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
12
|
Akbar S, Rahman A, Ahmad N, Imran M, Hafeez Z. Understanding the Role of Polyunsaturated Fatty Acids in the Development and Prevention of Cancer. Cancer Treat Res 2024; 191:57-93. [PMID: 39133404 DOI: 10.1007/978-3-031-55622-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Polyunsaturated fatty acids (PUFAs), notably omega-3 (n-3) and omega-6 (n-6), have received much attention owing to their multifaceted effects not only in the management of diverse pathological conditions but also in the maintenance of overall health of an individual. A disproportionately high n-6 to n-3 ratio contributes to the development of various disorders including cancer, which ranks as a leading cause of death worldwide with profound social and economic burden. Epidemiological studies and clinical trials combined with the animal and cell culture models have demonstrated the beneficial effects of n-3 PUFAs in reducing the risk of various cancer types including breast, prostate and colon cancer. The anti-cancer actions of n-3 PUFAs are mainly attributed to their role in the modulation of a wide array of cellular processes including membrane dynamics, apoptosis, inflammation, angiogenesis, oxidative stress, gene expression and signal transduction pathways. On the contrary, n-6 PUFAs have been shown to exert pro-tumor actions; however, the inconsistent findings and controversial data emphasize upon the need to further investigation. Nevertheless, one of the biggest challenges in future is to optimize the n-6 to n-3 ratio despite the genetic predisposition, age, gender and disease severity. Moreover, a better understanding of the potential risks and benefits as well as the cellular and molecular mechanisms of the basic actions of these PUFAs is required to explore their role as adjuvants in cancer therapy. All these aspects will be reviewed in this chapter.
Collapse
Affiliation(s)
- Samina Akbar
- CALBINOTOX, Université de Lorraine, 54000, Nancy, France.
| | - Abdur Rahman
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Nazir Ahmad
- Faculty of Life Sciences, Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, Faculty of Sciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Zeeshan Hafeez
- CALBINOTOX, Université de Lorraine, 54000, Nancy, France
| |
Collapse
|
13
|
M. Swamynathan M, Mathew G, Aziz A, Gordon C, Hillowe A, Wang H, Jhaveri A, Kendall J, Cox H, Giarrizzo M, Azabdaftari G, Rizzo RC, Diermeier SD, Ojima I, Bialkowska AB, Kaczocha M, Trotman LC. FABP5 Inhibition against PTEN-Mutant Therapy Resistant Prostate Cancer. Cancers (Basel) 2023; 16:60. [PMID: 38201488 PMCID: PMC10871093 DOI: 10.3390/cancers16010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Resistance to standard of care taxane and androgen deprivation therapy (ADT) causes the vast majority of prostate cancer (PC) deaths worldwide. We have developed RapidCaP, an autochthonous genetically engineered mouse model of PC. It is driven by the loss of PTEN and p53, the most common driver events in PC patients with life-threatening diseases. As in human ADT, surgical castration of RapidCaP animals invariably results in disease relapse and death from the metastatic disease burden. Fatty Acid Binding Proteins (FABPs) are a large family of signaling lipid carriers. They have been suggested as drivers of multiple cancer types. Here we combine analysis of primary cancer cells from RapidCaP (RCaP cells) with large-scale patient datasets to show that among the 10 FABP paralogs, FABP5 is the PC-relevant target. Next, we show that RCaP cells are uniquely insensitive to both ADT and taxane treatment compared to a panel of human PC cell lines. Yet, they share an exquisite sensitivity to the small-molecule FABP5 inhibitor SBFI-103. We show that SBFI-103 is well tolerated and can strongly eliminate RCaP tumor cells in vivo. This provides a pre-clinical platform to fight incurable PC and suggests an important role for FABP5 in PTEN-deficient PC.
Collapse
Affiliation(s)
- Manojit M. Swamynathan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA (A.J.)
- Department of Molecular and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Grinu Mathew
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA (A.J.)
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrei Aziz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA (A.J.)
| | - Chris Gordon
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA; (C.G.); (A.H.)
| | - Andrew Hillowe
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA; (C.G.); (A.H.)
| | - Hehe Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA (I.O.)
| | - Aashna Jhaveri
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA (A.J.)
| | - Jude Kendall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA (A.J.)
| | - Hilary Cox
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA (A.J.)
| | - Michael Giarrizzo
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (M.G.); (A.B.B.)
| | - Gissou Azabdaftari
- Department of Anatomic Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Robert C. Rizzo
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA (I.O.)
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B. Bialkowska
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (M.G.); (A.B.B.)
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA; (C.G.); (A.H.)
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lloyd C. Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA (A.J.)
- Department of Molecular and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
14
|
Cong D, Zhao Y, Zhang W, Li J, Bai Y. Applying machine learning algorithms to develop a survival prediction model for lung adenocarcinoma based on genes related to fatty acid metabolism. Front Pharmacol 2023; 14:1260742. [PMID: 37920207 PMCID: PMC10619909 DOI: 10.3389/fphar.2023.1260742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
Background: The progression of lung adenocarcinoma (LUAD) may be related to abnormal fatty acid metabolism (FAM). The present study investigated the relationship between FAM-related genes and LUAD prognosis. Methods: LUAD samples from The Cancer Genome Atlas were collected. The scores of FAM-associated pathways from the Kyoto Encyclopedia of Genes and Genomes website were calculated using the single sample gene set enrichment analysis. ConsensusClusterPlus and cumulative distribution function were used to classify molecular subtypes for LUAD. Key genes were obtained using limma package, Cox regression analysis, and six machine learning algorithms (GBM, LASSO, XGBoost, SVM, random forest, and decision trees), and a RiskScore model was established. According to the RiskScore model and clinical features, a nomogram was developed and evaluated for its prediction performance using a calibration curve. Differences in immune abnormalities among patients with different subtypes and RiskScores were analyzed by the Estimation of STromal and Immune cells in MAlignant Tumours using Expression data, CIBERSORT, and single sample gene set enrichment analysis. Patients' drug sensitivity was predicted by the pRRophetic package in R language. Results: LUAD samples had lower scores of FAM-related pathways. Three molecular subtypes (C1, C2, and C3) were defined. Analysis on differential prognosis showed that the C1 subtype had the most favorable prognosis, followed by the C2 subtype, and the C3 subtype had the worst prognosis. The C3 subtype had lower immune infiltration. A total of 12 key genes (SLC2A1, PKP2, FAM83A, TCN1, MS4A1, CLIC6, UBE2S, RRM2, CDC45, IGF2BP1, ANGPTL4, and CD109) were screened and used to develop a RiskScore model. Survival chance of patients in the high-RiskScore group was significantly lower. The low-RiskScore group showed higher immune score and higher expression of most immune checkpoint genes. Patients with a high RiskScore were more likely to benefit from the six anticancer drugs we screened in this study. Conclusion: We developed a RiskScore model using FAM-related genes to help predict LUAD prognosis and develop new targeted drugs.
Collapse
Affiliation(s)
- Dan Cong
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yanan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wenlong Zhang
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jun Li
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Qin J, Ye L, Wen X, Zhang X, Di Y, Chen Z, Wang Z. Fatty acids in cancer chemoresistance. Cancer Lett 2023; 572:216352. [PMID: 37597652 DOI: 10.1016/j.canlet.2023.216352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Despite the remarkable clinical success of immunotherapy and molecular targeted therapy in patients with advanced tumors, chemotherapy remains the most commonly used treatment for most tumor patients. Chemotherapy drugs effectively inhibit tumor cell proliferation and survival through their remarkable mechanisms. However, tumor cells often develop severe intrinsic and acquired chemoresistance under chemotherapy stress, limiting the effectiveness of chemotherapy and leading to treatment failure. Growing evidence suggests that alterations in lipid metabolism may be implicated in the development of chemoresistance in tumors. Therefore, in this review, we provide a comprehensive overview of fatty acid metabolism and its impact on chemoresistance mechanisms. Additionally, we discuss the potential of targeting fatty acid metabolism as a therapeutic strategy to overcome drug resistance.
Collapse
Affiliation(s)
- Jiale Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Lvlan Ye
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiangqiong Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yuqin Di
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhihui Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Guangxi, 530025, China.
| | - Ziyang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
16
|
Gong Y, Yang D, Liu J, Barrett H, Sun J, Peng H. Disclosing Environmental Ligands of L-FABP and PPARγ: Should We Re-evaluate the Chemical Safety of Hydrocarbon Surfactants? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11913-11925. [PMID: 37527448 DOI: 10.1021/acs.est.3c02898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Chemical contaminants can cause adverse effects by binding to the liver-fatty acid binding protein (L-FABP) and peroxisome proliferator-activated nuclear receptor γ (PPARγ), which are vital in lipid metabolism. However, the presence of numerous compounds in the environment has hindered the identification of their ligands, and thus only a small portion have been discovered to date. In this study, protein Affinity Purification with Nontargeted Analysis (APNA) was employed to identify the ligands of L-FABP and PPARγ in indoor dust and sewage sludge. A total of 83 nonredundant features were pulled-out by His-tagged L-FABP as putative ligands, among which 13 were assigned as fatty acids and hydrocarbon surfactants. In contrast, only six features were isolated when His-tagged PPARγ LBD was used as the protein bait. The binding of hydrocarbon surfactants to L-FABP and PPARγ was confirmed using both recombinant proteins and reporter cells. These hydrocarbon surfactants, along with >50 homologues and isomers, were detected in dust and sludge at high concentrations. Fatty acids and hydrocarbon surfactants explained the majority of L-FABP (57.7 ± 32.9%) and PPARγ (66.0 ± 27.1%) activities in the sludge. This study revealed hydrocarbon surfactants as the predominant synthetic ligands of L-FABP and PPARγ, highlighting the importance of re-evaluating their chemical safety.
Collapse
Affiliation(s)
- Yufeng Gong
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jiabao Liu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
17
|
Farahzadi R, Hejazi MS, Molavi O, Pishgahzadeh E, Montazersaheb S, Jafari S. Clinical Significance of Carnitine in the Treatment of Cancer: From Traffic to the Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9328344. [PMID: 37600065 PMCID: PMC10435298 DOI: 10.1155/2023/9328344] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/12/2022] [Accepted: 03/23/2023] [Indexed: 08/22/2023]
Abstract
Metabolic reprogramming is a common hallmark of cancer cells. Cancer cells exhibit metabolic flexibility to maintain high proliferation and survival rates. In other words, adaptation of cellular demand is essential for tumorigenesis, since a diverse supply of nutrients is required to accommodate tumor growth and progression. Diversity of carbon substrates fueling cancer cells indicate metabolic heterogeneity, even in tumors sharing the same clinical diagnosis. In addition to the alteration of glucose and amino acid metabolism in cancer cells, there is evidence that cancer cells can alter lipid metabolism. Some tumors rely on fatty acid oxidation (FAO) as the primary energy source; hence, cancer cells overexpress the enzymes involved in FAO. Carnitine is an essential cofactor in the lipid metabolic pathways. It is crucial in facilitating the transport of long-chain fatty acids into the mitochondria for β-oxidation. This role and others played by carnitine, especially its antioxidant function in cellular processes, emphasize the fine regulation of carnitine traffic within tissues and subcellular compartments. The biological activity of carnitine is orchestrated by specific membrane transporters that mediate the transfer of carnitine and its derivatives across the cell membrane. The concerted function of carnitine transporters creates a collaborative network that is relevant to metabolic reprogramming in cancer cells. Here, the molecular mechanisms relevant to the role and expression of carnitine transporters are discussed, providing insights into cancer treatment.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Pishgahzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Chen D, Wirth KM, Kizy S, Muretta JM, Markowski TW, Yong P, Sheka A, Abdelwahab H, Hertzel AV, Ikramuddin S, Yamamoto M, Bernlohr DA. Desmoglein 2 Functions as a Receptor for Fatty Acid Binding Protein 4 in Breast Cancer Epithelial Cells. Mol Cancer Res 2023; 21:836-848. [PMID: 37115197 PMCID: PMC10524127 DOI: 10.1158/1541-7786.mcr-22-0763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/19/2023] [Accepted: 04/26/2023] [Indexed: 04/29/2023]
Abstract
Fatty acid binding protein 4 (FABP4) is a secreted adipokine linked to obesity and progression of a variety of cancers. Obesity increases extracellular FABP4 (eFABP4) levels in animal models and in obese breast cancer patients compared with lean healthy controls. Using MCF-7 and T47D breast cancer epithelial cells, we show herein that eFABP4 stimulates cellular proliferation in a time and concentration dependent manner while the non-fatty acid-binding mutant, R126Q, failed to potentiate growth. When E0771 murine breast cancer cells were injected into mice, FABP4 null animals exhibited delayed tumor growth and enhanced survival compared with injections into control C57Bl/6J animals. eFABP4 treatment of MCF-7 cells resulted in a significant increase in phosphorylation of extracellular signal-regulated kinase 1/2 (pERK), transcriptional activation of nuclear factor E2-related factor 2 (NRF2) and corresponding gene targets ALDH1A1, CYP1A1, HMOX1, SOD1 and decreased oxidative stress, while R126Q treatment did not show any effects. Proximity-labeling employing an APEX2-FABP4 fusion protein revealed several proteins functioning in desmosomes as eFABP4 receptor candidates including desmoglein (DSG), desmocollin, junction plankoglobin, desomoplankin, and cytokeratins. AlphaFold modeling predicted an interaction between eFABP4, and the extracellular cadherin repeats of DSG2 and pull-down and immunoprecipitation assays confirmed complex formation that was potentiated by oleic acid. Silencing of DSG2 in MCF-7 cells attenuated eFABP4 effects on cellular proliferation, pERK levels, and ALDH1A1 expression compared with controls. IMPLICATIONS These results suggest desmosomal proteins, and in particular desmoglein 2, may function as receptors of eFABP4 and provide new insight into the development and progression of obesity-associated cancers.
Collapse
Affiliation(s)
- Dongmei Chen
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Keith M. Wirth
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Scott Kizy
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Joseph M. Muretta
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Todd W Markowski
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Peter Yong
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Adam Sheka
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Hisham Abdelwahab
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Ann V. Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Sayeed Ikramuddin
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Masato Yamamoto
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
- Department of Masonic Cancer Center, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| |
Collapse
|
19
|
Gong Z, Yan Z, Liu W, Luo B. Oncogenic viruses and host lipid metabolism: a new perspective. J Gen Virol 2023; 104. [PMID: 37279154 DOI: 10.1099/jgv.0.001861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
As noncellular organisms, viruses do not have their own metabolism and rely on the metabolism of host cells to provide energy and metabolic substances for their life cycles. Increasing evidence suggests that host cells infected with oncogenic viruses have dramatically altered metabolic requirements and that oncogenic viruses produce substances used for viral replication and virion production by altering host cell metabolism. We focused on the processes by which oncogenic viruses manipulate host lipid metabolism and the lipid metabolism disorders that occur in oncogenic virus-associated diseases. A deeper understanding of viral infections that cause changes in host lipid metabolism could help with the development of new antiviral agents as well as potential new therapeutic targets.
Collapse
Affiliation(s)
- Zhiyuan Gong
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| | - Zhiyong Yan
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
20
|
Aloke C, Iwuchukwu EA, Achilonu I. Exploiting Copaifera salikounda compounds as treatment against diabetes: An insight into their potential targets from a computational perspective. Comput Biol Chem 2023; 104:107851. [DOI: 10.1016/j.compbiolchem.2023.107851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/25/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
|
21
|
Majrashi TA, Sabt A, Abd El Salam HA, Al-Ansary GH, Hamissa MF, Eldehna WM. An updated review of fatty acid residue-tethered heterocyclic compounds: synthetic strategies and biological significance. RSC Adv 2023; 13:13655-13682. [PMID: 37152561 PMCID: PMC10157362 DOI: 10.1039/d3ra01368e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023] Open
Abstract
Heterocyclic compounds have been featured as the key building blocks for the development of biologically active molecules. In addition to being derived from renewable raw materials, fatty acids possess a variety of biological properties. The two bioactive ingredients are being combined by many researchers to produce hybrid molecules that have a number of desirable properties. Biological activities and significance of heterocyclic derivatives of fatty acids have been demonstrated in a new class of heterocyclic compounds called heterocyclic fatty acid hybrid derivatives. The significance of heterocyclic-fatty acid hybrid derivatives has been emphasized in numerous research articles over the past few years. In this review, we emphasize the development of synthetic methods and their biological evaluation for heterocyclic fatty acid derivatives. These reports, combined with the upcoming compilation, are expected to serve as comprehensive foundations and references for synthetic, preparative, and applicable methods in medicinal chemistry.
Collapse
Affiliation(s)
- Taghreed A Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University Asir 61421 Saudi Arabia
| | - Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Cairo Egypt
| | | | - Ghada H Al-Ansary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University Cairo P.O. Box 11566 Egypt
| | - Mohamed Farouk Hamissa
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618) 33 El Bohouth St., P.O. 12622, Dokki Giza Egypt
- Department of Biomolecular Spectroscopy, Institute of Organic Chemistry and Biochemistry, Academy of Sciences Prague Czech Republic
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University Kafrelsheikh P.O. Box 33516 Egypt
- School of Biotechnology, Badr University in Cairo Cairo 11829 Egypt
| |
Collapse
|
22
|
Qiu MQ, Wang HJ, Ju YF, Sun L, Liu Z, Wang T, Kan SF, Yang Z, Cui YY, Ke YQ, He HM, Zhang S. Fatty Acid Binding Protein 5 (FABP5) Promotes Aggressiveness of Gastric Cancer Through Modulation of Tumor Immunity. J Gastric Cancer 2023; 23:340-354. [PMID: 37129157 PMCID: PMC10154133 DOI: 10.5230/jgc.2023.23.e19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/02/2023] [Accepted: 06/28/2022] [Indexed: 05/03/2023] Open
Abstract
PURPOSE Gastric cancer (GC) is the second most lethal cancer globally and is associated with poor prognosis. Fatty acid-binding proteins (FABPs) can regulate biological properties of carcinoma cells. FABP5 is overexpressed in many types of cancers; however, the role and mechanisms of action of FABP5 in GC remain unclear. In this study, we aimed to evaluate the clinical and biological functions of FABP5 in GC. MATERIALS AND METHODS We assessed FABP5 expression using immunohistochemical analysis in 79 patients with GC and evaluated its biological functions following in vitro and in vivo ectopic expression. FABP5 targets relevant to GC progression were determined using RNA sequencing (RNA-seq). RESULTS Elevated FABP5 expression was closely associated with poor outcomes, and ectopic expression of FABP5 promoted proliferation, invasion, migration, and carcinogenicity of GC cells, thus suggesting its potential tumor-promoting role in GC. Additionally, RNA-seq analysis indicated that FABP5 activates immune-related pathways, including cytokine-cytokine receptor interaction pathways, interleukin-17 signaling, and tumor necrosis factor signaling, suggesting an important rationale for the possible development of therapies that combine FABP5-targeted drugs with immunotherapeutics. CONCLUSIONS These findings highlight the biological mechanisms and clinical implications of FABP5 in GC and suggest its potential as an adverse prognostic factor and/or therapeutic target.
Collapse
Affiliation(s)
- Mei-Qing Qiu
- Shandong University Cancer Center, Jinan, China
- Department of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Oncology, Zaozhuang Municipal Hospital, Zaozhuang, China
| | - Hui-Jun Wang
- Department of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ya-Fei Ju
- Department of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Li Sun
- Department of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhen Liu
- Department of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Tao Wang
- Department of Oncology, Zaozhuang Cancer Hospital, Zaozhuang, China
| | - Shi-Feng Kan
- Department of Oncology, Zaozhuang Municipal Hospital, Zaozhuang, China
| | - Zhen Yang
- Department of Oncology, Zaozhuang Municipal Hospital, Zaozhuang, China
| | - Ya-Yun Cui
- Department of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - You-Qiang Ke
- Molecular Pathology Laboratory, Department of Molecular and Clinical Cancer Medicine, Liverpool University, Liverpool, United Kingdom
| | - Hong-Min He
- Department of Oncology, Zaozhuang Municipal Hospital, Zaozhuang, China
| | - Shu Zhang
- Shandong University Cancer Center, Jinan, China
- Department of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
23
|
Chen L, Dong W, Zhou M, Yang C, Xiong M, Kazobinka G, Chen Z, Xing Y, Hou T. PABPN1 regulates mRNA alternative polyadenylation to inhibit bladder cancer progression. Cell Biosci 2023; 13:45. [PMID: 36879298 PMCID: PMC9987104 DOI: 10.1186/s13578-023-00997-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND About 10-20% of patients with bladder cancer (BC) progress to muscle-invasive diseases, of which the underlying key molecular events have yet to be addressed. RESULTS Here, we identified poly(A) binding protein nuclear 1 (PABPN1), a general factor of alternative polyadenylation (APA), was downregulated in BC. Overexpression and knockdown of PABPN1 significantly decreased and increased BC aggressiveness, respectively. Mechanistically, we provide evidence that the preference of PABPN1-bound polyadenylation signals (PASs) depends on the relative location between canonical and non-canonical PASs. PABPN1 shapes inputs converging on Wnt signaling, cell cycle, and lipid biosynthesis. CONCLUSIONS Together, these findings provide insights into how PABPN1-mediated APA regulation contributes to BC progression, and suggest that pharmacological targeting PABPN1 might have therapeutic potential in patients with BC.
Collapse
Affiliation(s)
- Liang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Dong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Menghao Zhou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chenlu Yang
- Department of Gynecology and Obstetrics, Women and Children Hospital of Guangdong Province, Guangzhou, 510080, China
| | - Ming Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gallina Kazobinka
- Urology Unit, La Nouvelle Polyclinique Centrale de Bujumbura, Bujumbura, 378, Burundi
| | - Zhaohui Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yifei Xing
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Teng Hou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, China.
| |
Collapse
|
24
|
Soyler D, Korucu EN, Menevse E, Azzawri AA, Kaya DE. Effects of Juglone and Curcumin Administration on Expression of FABP5 and FABP9 in MCF-7 and MDA-MB-231 Breast Cancer Cell Lines. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2023. [DOI: 10.1134/s199074782310001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
25
|
Wang C, Mu T, Feng X, Zhang J, Gu Y. Study on fatty acid binding protein in lipid metabolism of livestock and poultry. Res Vet Sci 2023; 158:185-195. [PMID: 37030094 DOI: 10.1016/j.rvsc.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Fatty acid binding proteins (FABPs) are key proteins in lipid transport, and 12 family members have been documented in the literature. In recent years, new insights have been gained into the structure and function of FABPs, which are important regulators of lipid metabolic processes in the body and play a central role in coordinating lipid transport and metabolism in various tissues and organs across species. This paper provides a brief overview of the structure and biological functions of FABPs and reviews related studies on lipid metabolism in livestock and poultry to lay the foundation for research on the mechanism underlying the regulatory effect of FABPs on lipid metabolism in livestock and poultry and for the genetic improvement of livestock and poultry.
Collapse
Affiliation(s)
- Chuanchuan Wang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Tong Mu
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Xiaofang Feng
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Juan Zhang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Yaling Gu
- School of Agriculture, Ningxia University, 750021, Yinchuan, China.
| |
Collapse
|
26
|
Lenz S, Bodnariuc I, Renaud-Young M, Butler TM, MacCallum JL. Understanding FABP7 binding to fatty acid micelles and membranes. Biophys J 2023; 122:603-615. [PMID: 36698315 PMCID: PMC9989940 DOI: 10.1016/j.bpj.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/08/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Fatty acid-binding proteins (FABPs) are chaperones that facilitate the transport of long-chain fatty acids within the cell and can provide cargo-dependent localization to specific cellular compartments. Understanding the nature of this transport is important because lipid signaling functions are associated with metabolic pathways impacting disease pathologies including cancer, autism, and schizophrenia. FABPs often associate with cell membranes to acquire and deliver their bound cargo as part of transport. We focus on brain FABP (FABP7), which demonstrates localization to the cytoplasm and nucleus, influencing transcription and fatty acid metabolism. We use a combined biophysical-computational approach to elucidate the interaction between FABP7 and model membranes. Specifically, we use multiple experiments to demonstrate that FABP7 can bind oleic acid and docosahexaenoic acid micelles. Data from NMR and multiscale molecular dynamics simulations reveal that the interaction with micelles is through FABP7's portal region residues. Simulations suggest that binding to membranes occurs through the same residues as micelles. Simulations also capture binding events where fatty acids dissociate from the membrane and enter FABP7's binding pocket. Overall, our data shed light on the interactions between FABP7 and OA or DHA micelles and provide insight into the transport of long-chain fatty acids.
Collapse
Affiliation(s)
- Stefan Lenz
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Iulia Bodnariuc
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | | | - Tanille M Butler
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Justin L MacCallum
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
27
|
Pejčić T, Todorović Z, Đurašević S, Popović L. Mechanisms of Prostate Cancer Cells Survival and Their Therapeutic Targeting. Int J Mol Sci 2023; 24:ijms24032939. [PMID: 36769263 PMCID: PMC9917912 DOI: 10.3390/ijms24032939] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer (PCa) is today the second most common cancer in the world, with almost 400,000 deaths annually. Multiple factors are involved in the etiology of PCa, such as older age, genetic mutations, ethnicity, diet, or inflammation. Modern treatment of PCa involves radical surgical treatment or radiation therapy in the stages when the tumor is limited to the prostate. When metastases develop, the standard procedure is androgen deprivation therapy, which aims to reduce the level of circulating testosterone, which is achieved by surgical or medical castration. However, when the level of testosterone decreases to the castration level, the tumor cells adapt to the new conditions through different mechanisms, which enable their unhindered growth and survival, despite the therapy. New knowledge about the biology of the so-called of castration-resistant PCa and the way it adapts to therapy will enable the development of new drugs, whose goal is to prolong the survival of patients with this stage of the disease, which will be discussed in this review.
Collapse
Affiliation(s)
- Tomislav Pejčić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinic of Urology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-641281844
| | - Zoran Todorović
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- University Medical Centre “Bežanijska kosa”, University of Belgrade, 11000 Belgrade, Serbia
| | - Siniša Đurašević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Lazar Popović
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
- Medical Oncology Department, Oncology Institute of Vojvodina, 21000 Novi Sad, Serbia
| |
Collapse
|
28
|
Lasorsa F, di Meo NA, Rutigliano M, Ferro M, Terracciano D, Tataru OS, Battaglia M, Ditonno P, Lucarelli G. Emerging Hallmarks of Metabolic Reprogramming in Prostate Cancer. Int J Mol Sci 2023; 24:ijms24020910. [PMID: 36674430 PMCID: PMC9863674 DOI: 10.3390/ijms24020910] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer (PCa) is the most common male malignancy and the fifth leading cause of cancer death in men worldwide. Prostate cancer cells are characterized by a hybrid glycolytic/oxidative phosphorylation phenotype determined by androgen receptor signaling. An increased lipogenesis and cholesterogenesis have been described in PCa cells. Many studies have shown that enzymes involved in these pathways are overexpressed in PCa. Glutamine becomes an essential amino acid for PCa cells, and its metabolism is thought to become an attractive therapeutic target. A crosstalk between cancer and stromal cells occurs in the tumor microenvironment because of the release of different cytokines and growth factors and due to changes in the extracellular matrix. A deeper insight into the metabolic changes may be obtained by a multi-omic approach integrating genomics, transcriptomics, metabolomics, lipidomics, and radiomics data.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Nicola Antonio di Meo
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Octavian Sabin Tataru
- The Institution Organizing University Doctoral Studies (I.O.S.U.D.), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540142 Târgu Mureș, Romania
| | - Michele Battaglia
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: or
| |
Collapse
|
29
|
Pharmacological Inhibition of Lipid Import and Transport Proteins in Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14236004. [PMID: 36497485 PMCID: PMC9737127 DOI: 10.3390/cancers14236004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy with a 5-year survival rate of 49%. This is caused by late diagnosis when cells have already metastasized into the peritoneal cavity and to the omentum. OC progression is dependent on the availability of high-energy lipids/fatty acids (FA) provided by endogenous de novo biosynthesis and/or through import from the microenvironment. The blockade of these processes may thus represent powerful strategies against OC. While this has already been shown for inhibition of FA/lipid biosynthesis, evidence of the role of FA/lipid import/transport is still sparse. Therefore, we treated A2780 and SKOV3 OC cells with inhibitors of the lipid uptake proteins fatty acid translocase/cluster of differentiation 36 (FAT/CD36) and low-density lipoprotein (LDL) receptor (LDLR), as well as intracellular lipid transporters of the fatty acid-binding protein (FABP) family, fatty acid transport protein-2 (FATP2/SLC27A2), and ADP-ribosylation factor 6 (ARF6), which are overexpressed in OC. Proliferation was determined by formazan dye labeling/photometry and cell counting. Cell cycle analysis was performed by propidium iodide (PI) staining, and apoptosis was examined by annexin V/PI and active caspase 3 labeling and flow cytometry. RNA-seq data revealed altered stress and metabolism pathways. Overall, the small molecule inhibitors of lipid handling proteins BMS309403, HTS01037, NAV2729, SB-FI-26, and sulfosuccinimidyl oleate (SSO) caused a drug-specific, dose-/time-dependent inhibition of FA/LDL uptake, associated with reduced proliferation, cell cycle arrest, and apoptosis. Our findings indicate that OC cells are very sensitive to lipid deficiency. This dependency should be exploited for development of novel strategies against OC.
Collapse
|
30
|
Pan YQ, Xiao Y, Long T, Liu C, Gao WH, Sun YY, Liu C, Shi YJ, Li S, Shao AZ. Prognostic value of lncRNAs related to fatty acid metabolism in lung adenocarcinoma and their correlation with tumor microenvironment based on bioinformatics analysis. Front Oncol 2022; 12:1022097. [DOI: 10.3389/fonc.2022.1022097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAs a key regulator of metabolic pathways, long non-coding RNA (lncRNA) has received much attention for its relationship with reprogrammed fatty acid metabolism (FAM). This study aimed to investigate the role of the FAM-related lncRNAs in the prognostic management of patients with lung adenocarcinoma (LUAD) using bioinformatics analysis techniques.MethodsWe obtained LUAD-related transcriptomic data and clinical information from The Cancer Genome Atlas (TCGA) database. The lncRNA risk models associated with FMA were constructed by single-sample gene set enrichment analysis (ssGSEA), weighted gene co-expression network (WGCNA), differential expression analysis, overlap analysis, and Cox regression analysis. Kaplan-Meier (K-M) and receiver operating characteristic (ROC) curves were utilized to assess the predictive validity of the risk model. Gene set variation analysis (GSVA) revealed molecular mechanisms associated with the risk model. ssGSEA and microenvironment cell populations-counter (MCP-counter) demonstrated the immune landscape of LUAD patients. The relationships between lncRNAs, miRNAs, and mRNAs were predicted by using LncBase v.2 and miRTarBase. The lncRNA-miRNA-mRNA regulatory network was visualized with Cytoscape v3.4.0. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed using DAVID v6.8. Quantitative real-time fluorescence PCR (qRT-PCR) was performed to verify the expression levels of the prognostic lncRNAs.ResultsWe identified 249 differentially expressed FMA-related lncRNAs in TCGA-LUAD, six of which were used to construct a risk model with appreciable predictive power. GSVA results suggested that the risk model may be involved in regulating fatty acid synthesis/metabolism, gene repair, and immune/inflammatory responses in the LUAD process. Immune landscape analysis demonstrated a lower abundance of immune cells in the high-risk group of patients associated with poor prognosis. Moreover, we predicted 279 competing endogenous RNA (ceRNA) mechanisms for 6 prognostic lncRNAs with 39 miRNAs and 201 mRNAs. Functional enrichment analysis indicated that the ceRNA network may be involved in the process of LUAD by participating in genomic transcription, influencing the cell cycle, and regulating tissue and organogenesis. In vitro experiments showed that prognostic lncRNA CTA-384D8.35, lncRNA RP5-1059L7.1, and lncRNA Z83851.4 were significantly upregulated in LUAD primary tumor tissues, while lncRNA RP11-401P9.4, lncRNA CTA-384D8.35, and lncRNA RP11-259K15.2 were expressed at higher levels in paraneoplastic tissues.ConclusionIn summary, the prognostic factors identified in this study can be used as potential biomarkers for clinical applications. ceRNA network construction provides a new vision for the study of LUAD pathogenesis.
Collapse
|
31
|
Liu C, Tao Y, Lin H, Lou X, Wu S, Chen L. Classification of stomach adenocarcinoma based on fatty acid metabolism-related genes frofiling. Front Mol Biosci 2022; 9:962435. [PMID: 36090054 PMCID: PMC9461144 DOI: 10.3389/fmolb.2022.962435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Fatty acid metabolism (FAM)-related genes play a key role in the development of stomach adenocarcinoma (STAD). Although immunotherapy has led to a paradigm shift in STAD treatment, the overall response rate of immunotherapy for STAD is low due to heterogeneity of the tumor immune microenvironment (TIME). How FAM-related genes affect TIME in STAD remains unclear.Methods: The univariate Cox regression analysis was performed to screen prognostic FAM-related genes using transcriptomic profiles of the Cancer Genome Atlas (TCGA)-STAD cohort. Next, the consensus clustering analysis was performed to divide the STAD cohort into two groups based on the 13 identified prognostic genes. Then, gene set enrichment analysis (GSEA) was carried out to identify enriched pathways in the two groups. Furthermore, we developed a prognostic signature model based on 7 selected prognostic genes, which was validated to be capable in predicting the overall survival (OS) of STAD patients using the univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression, and multivariate Cox regression analyses. Finally, the “Estimation of STromal and Immune cells in MAlignant Tumours using Expression data” (ESTIMATE) algorithm was used to evaluate the stromal, immune, and ESTIMATE scores, and tumor purity of each STAD sample.Results: A total of 13 FAM-related genes were identified to be significantly associated with OS in STAD patients. Two molecular subtypes, which we named Group 1 and Group 2, were identified based on these FAM-related prognostic genes using the consensus clustering analysis. We showed that Group 2 was significantly correlated with poor prognosis and displayed higher programmed cell death ligand 1 (PD-L1) expressions and distinct immune cell infiltration patterns. Furthermore, using GSEA, we showed that apoptosis and HCM signaling pathways were significantly enriched in Group 2. We constructed a prognostic signature model using 7 selected FAM-related prognostic genes, which was proven to be effective for prediction of STAD (HR = 1.717, 95% CI = 1.105–1.240, p < 0.001). After classifying the patients into the high- and low-risk groups based on our model, we found that patients in the high-risk group tend to have more advanced T stages and higher tumor grades, as well as higher immune scores. We also found that the risk scores were positively correlated with the infiltration of certain immune cells, including resting dendritic cells (DCs), and M2 macrophages. We also demonstrated that elevated expression of gamma-glutamyltransferase 5 (GGT5) is significantly associated with worse OS and disease-free survival (DFS), more advanced T stage and higher tumor grade, and increased immune cell infiltration, suggesting that STAD patients with high GGT5 expression in the tumor tissues might have a better response to immunotherapy.Conclusion: FAM-related genes play critical roles in STAD prognosis by shaping the TIME. These genes can regulate the infiltration of various immune cells and thus are potential therapeutic targets worthy of further investigation. Furthermore, GGT5 was a promising marker for predicting immunotherapeutic response in STAD patients.
Collapse
Affiliation(s)
- Chunhua Liu
- Department of Tumor Rehabilitation Center, Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
| | - Yongjun Tao
- Department of Tumor Rehabilitation Center, Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
| | - Huajian Lin
- Department of Tumor Rehabilitation Center, Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
| | - Xiqiang Lou
- Department of Tumor Rehabilitation Center, Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
| | - Simin Wu
- Department of Tumor Rehabilitation Center, Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
| | - Liping Chen
- Research Center of Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
- *Correspondence: Liping Chen,
| |
Collapse
|
32
|
Liu S, Wu D, Fan Z, Yang J, Li Y, Meng Y, Gao C, Zhan H. FABP4 in obesity-associated carcinogenesis: Novel insights into mechanisms and therapeutic implications. Front Mol Biosci 2022; 9:973955. [PMID: 36060264 PMCID: PMC9438896 DOI: 10.3389/fmolb.2022.973955] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
The increasing prevalence of obesity worldwide is associated with an increased risk of various diseases, including multiple metabolic diseases, cardiovascular diseases, and malignant tumors. Fatty acid binding proteins (FABPs) are members of the adipokine family of multifunctional proteins that are related to fatty acid metabolism and are divided into 12 types according to their tissue origin. FABP4 is mainly secreted by adipocytes and macrophages. Under obesity, the synthesis of FABP4 increases, and the FABP4 content is higher not only in tissues but also in the blood, which promotes the occurrence and development of various cancers. Here, we comprehensively investigated obesity epidemiology and the biological mechanisms associated with the functions of FABP4 that may explain this effect. In this review, we explore the molecular mechanisms by which FABP4 promotes carcinoma development and the interaction between fat and cancer cells in obese circumstances here. This review leads us to understand how FABP4 signaling is involved in obesity-associated tumors, which could increase the potential for advancing novel therapeutic strategies and molecular targets for the systematic treatment of malignant tumors.
Collapse
|
33
|
Flaxseed Polysaccharide Alters Colonic Gene Expression of Lipid Metabolism and Energy Metabolism in Obese Rats. Foods 2022; 11:foods11131991. [PMID: 35804806 PMCID: PMC9265598 DOI: 10.3390/foods11131991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Obesity is one of the most serious public health challenges. Recently, we found that flaxseed polysaccharides (FPs) had an anti-obesity effect through promoting lipid metabolism, but the obesity-inhibiting pathway of FP is still unclear. In this study, after FP intervention in an obese rat model, a transcriptome study was performed to further investigate how FP intervention alters the gene expression of colonic epithelial tissues (CETs). The results showed that there were 3785 genes differentially expressed due to the FP intervention, namely 374 downregulated and 3411 upregulated genes. After analyzing all the differentially expressed genes, two classical KEGG pathways were found to be related to obesity, namely the PPAR-signaling pathway and energy metabolism, involving genes Fabp1–5, Lpl, Gyk, Qqp7, Pparg, Rxrg, Acsl1, Acsl4, Acsl6, Cpt1c, Car1–4, Ca5b, Car8, Car12–14, Cps1, Ndufa4l2, Cox6b2, Atp6v1g2, Ndufa4l2 and Cox4i2. QRT-PCR results showed a consistent expression trend. Our results indicate that FP promotes lipid metabolism by changing the expression of some key genes of CETs, thus inhibiting obesity.
Collapse
|
34
|
Shinoda S, Nakamura N, Roach B, Bernlohr DA, Ikramuddin S, Yamamoto M. Obesity and Pancreatic Cancer: Recent Progress in Epidemiology, Mechanisms and Bariatric Surgery. Biomedicines 2022; 10:1284. [PMID: 35740306 PMCID: PMC9220099 DOI: 10.3390/biomedicines10061284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 12/24/2022] Open
Abstract
More than 30% of people in the United States (US) are classified as obese, and over 50% are considered significantly overweight. Importantly, obesity is a risk factor not only for the development of metabolic syndrome but also for many cancers, including pancreatic ductal adenocarcinoma (PDAC). PDAC is the third leading cause of cancer-related death, and 5-year survival of PDAC remains around 9% in the U.S. Obesity is a known risk factor for PDAC. Metabolic control and bariatric surgery, which is an effective treatment for severe obesity and allows massive weight loss, have been shown to reduce the risk of PDAC. It is therefore clear that elucidating the connection between obesity and PDAC is important for the identification of a novel marker and/or intervention point for obesity-related PDAC risk. In this review, we discussed recent progress in obesity-related PDAC in epidemiology, mechanisms, and potential cancer prevention effects of interventions, including bariatric surgery with preclinical and clinical studies.
Collapse
Affiliation(s)
- Shuhei Shinoda
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (N.N.); (B.R.); (S.I.)
| | - Naohiko Nakamura
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (N.N.); (B.R.); (S.I.)
| | - Brett Roach
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (N.N.); (B.R.); (S.I.)
| | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Sayeed Ikramuddin
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (N.N.); (B.R.); (S.I.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (N.N.); (B.R.); (S.I.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
35
|
Wang H, Cui J, Yu J, Huang J, Li M. Identification of Fatty Acid Metabolism-Related lncRNAs as Biomarkers for Clinical Prognosis and Immunotherapy Response in Patients With Lung Adenocarcinoma. Front Genet 2022; 13:855940. [PMID: 35464865 PMCID: PMC9023759 DOI: 10.3389/fgene.2022.855940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most common malignant tumors with poor prognosis. Fatty acid metabolism is associated with cancer progression and a poor prognosis. We searched for long noncoding RNAs (lncRNAs) associated with fatty acid metabolism to predict the overall survival (OS) of patients with LUAD. We obtained lncRNA expression profiles and clinical follow-up data related to fatty acid metabolism in patients with LUAD from The Cancer Genome Atlas and Molecular Signatures database. Patients were randomly divided into training, experimental, and combination groups. Least absolute shrinkage and selection operator (LASSO) regression and Cox regression models were used to construct fatty acid metabolism-related prognostic markers, Kaplan-Meier analysis was used to compare the prognosis of each group, and receiver operating characteristic (ROC) analysis was used to evaluate the accuracy of the prognostic model. We used the pRRophetic algorithm to assess the treatment response based on the half-maximal inhibitory concentration (IC50) of each sample in the Genomics of Cancer Drug Sensitivity (GDSC) database. A fatty acid metabolism-related prognostic marker containing seven lncRNAs was constructed to predict OS in LUAD. In the training, test and combination groups, the patients were divided into high- and low-risk groups according to a formula. K–M analysis showed that patients in the high-risk group had poorer prognosis, with significant differences in the subgroup analysis. ROC analysis showed that the predictive ability of the model was more accurate. A clinical prediction nomogram combining lncRNA and clinical features was constructed to accurately predict OS and had high clinical application value. Therapeutics were screened based on the IC50 values of each sample in the GDSC database. We found that A.443654, AUY922, AZ628, A.770041, AZD.0530, AMG.706, and AG.014699 were more effective in high-risk patients. We constructed a 7-lncRNA prognostic model to predict the OS of patients with LUAD. In addition, the predictive nomogram model based on our established seven fatty acid metabolism-related lncRNA signatures provides better clinical value than that of the traditional TNM staging system in predicting the prognosis of patients with LUAD and presents new insights for personalized treatment.
Collapse
Affiliation(s)
- Helin Wang
- Departments of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Henan, China
| | - Junwei Cui
- Departments of Tuberculosis, The First Affiliated Hospital of Xinxiang Medical University, Henan, China
| | - Jian Yu
- Departments of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Henan, China
| | - Jian Huang
- Departments of Tuberculosis, The First Affiliated Hospital of Xinxiang Medical University, Henan, China
| | - Mingying Li
- Departments of Tuberculosis, The First Affiliated Hospital of Xinxiang Medical University, Henan, China
- *Correspondence: Mingying Li,
| |
Collapse
|
36
|
Sadeghi M, Miroliaei M, Taslimi P, Moradi M. In silico analysis of the molecular interaction and bioavailability properties between some alkaloids and human serum albumin. Struct Chem 2022. [DOI: 10.1007/s11224-022-01925-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Lin CH, Chang HH, Lai CR, Wang HH, Tsai WC, Tsai YL, Changchien CY, Cheng YC, Wu ST, Chen Y. Fatty Acid Binding Protein 6 Inhibition Decreases Cell Cycle Progression, Migration and Autophagy in Bladder Cancers. Int J Mol Sci 2022; 23:ijms23042154. [PMID: 35216267 PMCID: PMC8878685 DOI: 10.3390/ijms23042154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Bladder cancer (BC) has a high recurrence rate worldwide. The aim of this study was to evaluate the role of fatty acid binding protein 6 (FABP6) in proliferation and migration in human bladder cancer cells. Cell growth was confirmed by MTT and colony formation assay. Western blotting was used to explore protein expressions. Wound healing and Transwell assays were performed to evaluate the migration ability. A xenograft animal model with subcutaneous implantation of BC cells was generated to confirm the tumor progression. Knockdown of FABP6 reduced cell growth in low-grade TSGH-8301 and high-grade T24 cells. Cell cycle blockade was observed with the decrease of CDK2, CDK4, and Ki67 levels in FABP6-knockdown BC cells. Interestingly, knockdown of FBAP6 led to downregulation of autophagic markers and activation of AKT-mTOR signaling. The application of PI3K/AKT inhibitor decreased cell viability mediated by FABP6-knockdown additionally. Moreover, FABP6-knockdown reduced peroxisome proliferator-activated receptor γ and retinoid X receptor α levels but increased p-p65 expression. Knockdown of FABP6 also inhibited BC cell motility with focal adhesive complex reduction. Finally, shFABP6 combined with cisplatin suppressed tumor growth in vivo. These results provide evidence that FABP6 may be a potential target in BC cells progression.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- National Defense Medical Center, Department of Biology and Anatomy, Taipei 11490, Taiwan; (C.-H.L.); (H.-H.C.); (C.-R.L.); (C.-Y.C.); (Y.-C.C.)
| | - Hsin-Han Chang
- National Defense Medical Center, Department of Biology and Anatomy, Taipei 11490, Taiwan; (C.-H.L.); (H.-H.C.); (C.-R.L.); (C.-Y.C.); (Y.-C.C.)
| | - Chien-Rui Lai
- National Defense Medical Center, Department of Biology and Anatomy, Taipei 11490, Taiwan; (C.-H.L.); (H.-H.C.); (C.-R.L.); (C.-Y.C.); (Y.-C.C.)
| | - Hisao-Hsien Wang
- Department of Urology, Cheng Hsin General Hospital, Taipei 11490, Taiwan;
| | - Wen-Chiuan Tsai
- National Defense Medical Center, Department of Pathology, Tri-Service General Hospital, Taipei 11490, Taiwan; (W.-C.T.); (Y.-L.T.)
| | - Yu-Ling Tsai
- National Defense Medical Center, Department of Pathology, Tri-Service General Hospital, Taipei 11490, Taiwan; (W.-C.T.); (Y.-L.T.)
| | - Chih-Ying Changchien
- National Defense Medical Center, Department of Biology and Anatomy, Taipei 11490, Taiwan; (C.-H.L.); (H.-H.C.); (C.-R.L.); (C.-Y.C.); (Y.-C.C.)
- National Defense Medical Center, Department of Internal Medicine, Tri-Service General Hospital, Taipei 11490, Taiwan
| | - Yu-Chen Cheng
- National Defense Medical Center, Department of Biology and Anatomy, Taipei 11490, Taiwan; (C.-H.L.); (H.-H.C.); (C.-R.L.); (C.-Y.C.); (Y.-C.C.)
| | - Sheng-Tang Wu
- National Defense Medical Center, Division of Urology, Department of Surgery, Tri-Service General Hospital, Taipei 11490, Taiwan
- Correspondence: (S.-T.W.); (Y.C.); Tel.: +886-2-8792-3100 (ext. 18739) (Y.C.)
| | - Ying Chen
- National Defense Medical Center, Department of Biology and Anatomy, Taipei 11490, Taiwan; (C.-H.L.); (H.-H.C.); (C.-R.L.); (C.-Y.C.); (Y.-C.C.)
- Correspondence: (S.-T.W.); (Y.C.); Tel.: +886-2-8792-3100 (ext. 18739) (Y.C.)
| |
Collapse
|
38
|
Ceafalan LC, Niculae AM, Ioghen O, Gherghiceanu M, Hinescu ME. Metastatic potential. UNRAVELING THE COMPLEXITIES OF METASTASIS 2022:153-173. [DOI: 10.1016/b978-0-12-821789-4.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
39
|
FABP1 expression in human tumors: a tissue microarray study on 17,071 tumors. Virchows Arch 2022; 481:945-961. [PMID: 35951102 PMCID: PMC9734244 DOI: 10.1007/s00428-022-03394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 01/22/2023]
Abstract
Fatty acid-binding proteins (FABPs) play a pivotal role in the metabolism of fatty acids and are expressed in a tissue-specific manner. FABP1 is most abundantly expressed in the liver where it accounts for about 10% of the total cytosolic protein and is thought to have diagnostic utility. To comprehensively determine FABP1 expression in normal and neoplastic tissues, a tissue microarray containing 17,071 samples from 150 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. Among normal tissues, a strong FABP1 immunostaining was observed in hepatocytes, proximal tubuli of the kidney and epithelium of small intestine, appendix, and the colorectum. FABP1 positivity was found in 24 of 150 tumor categories, including 17 tumor categories with at least 1 strongly positive case. The highest FABP1 positivity rates were seen in colorectal adenomas (86%), in colorectal adenocarcinomas (71.1%), and in hepatocellular carcinomas (65.3%), followed by mucinous carcinoma of the ovary (34.6%), cholangiocarcinoma (21.6%), and various adenocarcinomas from the digestive tract (10-23%). Eleven additional entities had positivity rates between 0.2 and 6.5%. FABP1 staining was not seen in 169 primary adenocarcinomas of the lung. In colorectal cancer, reduced FABP1 expression was linked to poor-grade, right-sided tumor location, microsatellite instability (p < 0.0001 each), and absence of BRAF V600E mutations (p = 0.001), but unrelated to pT and pN status. FABP1 expression has considerably high tumor specificity. As FABP1 expression was virtually absent in adenocarcinomas of the lung, FABP1 immunohistochemistry might be particularly helpful to assist in the identification of metastatic colorectal or gastrointestinal adenocarcinoma to the lung.
Collapse
|
40
|
Lin HY, Pang MY, Feng MG, Ying SH. A peroxisomal sterol carrier protein 2 (Scp2) contributes to lipid trafficking in differentiation and virulence of the insect pathogenic fungus Beauveria bassiana. Fungal Genet Biol 2021; 158:103651. [PMID: 34906632 DOI: 10.1016/j.fgb.2021.103651] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023]
Abstract
Sterol carrier protein 2 (SCP2) represents a family of proteins binding a variety of lipids and plays essential roles in cellular physiology. However, its physiological roles are largely unknown in filamentous fungi. In this study, we functionally characterized an orthologous Scp2 gene in the filamentous insect pathogenic fungus Beauveria bassiana (BbScp2). BbScp2 was verified to be a peroxisomal protein and displayed different affinities to various lipids, with strong affinity to palmitic acid (PA) and ergosterol (ES). No significant binding activity was detected between protein and oleic acid (OA) or linoleic acid (LA). Ablation of BbScp2 did not cause significant effects on fungal growth on various carbon sources, but resulted in a modest reduction in conidial (49%) and blastospore yield (45%). In addition, exogenous lipids could recover the defectives in conidiation of ΔBbScp2 mutant strain. BbScp2 was required for the cytomembrane functionality in germlings, and its loss resulted in a more significant decrease in virulence indicated by cuticle infection assay than intrahemocoel injection assay. Our findings indicate that Scp2 links the lipid trafficking to the asexual differentiation and virulence of B. bassiana.
Collapse
Affiliation(s)
- Hai-Yan Lin
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meei-Yuan Pang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
41
|
Wirth K, Shinoda S, Sato-Dahlman M, Dickey DM, Bernlohr DA, Ikramuddin S, Yamamoto M. Fatty acid binding protein 4 regulates pancreatic cancer cell proliferation via activation of nuclear factor E2-related factor 2. Surg Obes Relat Dis 2021; 18:485-493. [PMID: 34998697 DOI: 10.1016/j.soard.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Obesity and diabetes are associated with an increased incidence of pancreatic cancer. Fatty acid binding protein 4 (FABP4), noted to be higher in patients with severe obesity, is linked to the development and progression of several cancers, and its level in the circulation decreases after bariatric surgery. OBJECTIVE In this paper, we evaluate the role of FABP4 in pancreatic cancer progression. SETTING University Hospital and Laboratories, United States. METHODS AND RESULTS When Panc-1 (human) and Pan02 (mouse) pancreatic cancer cells were treated with FABP4 or the-single-point mutant FABP4 (R126Q, fatty acid binding site mutant), only FABP4 stimulated cellular proliferation. The transcriptional activity of nuclear factor E2-related factor 2 (NRF2) was increased in response to FABP4 but not the R126Q. FABP4 treatment also led to downregulation of reactive oxygen species (ROS) activity. Consistent with induced cell propagation by FABP4, the growth of Pan02 tumor was decreased in FABP4-null animals compared with C57BL/6J controls. CONCLUSION These results suggest that FABP4 increases pancreatic cancer proliferation via activation of NRF2 and downregulation of ROS activity.
Collapse
Affiliation(s)
- Keith Wirth
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Shuhei Shinoda
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Mizuho Sato-Dahlman
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Deborah M Dickey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Sayeed Ikramuddin
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
42
|
Lipids in Pathophysiology and Development of the Membrane Lipid Therapy: New Bioactive Lipids. MEMBRANES 2021; 11:membranes11120919. [PMID: 34940418 PMCID: PMC8708953 DOI: 10.3390/membranes11120919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Membranes are mainly composed of a lipid bilayer and proteins, constituting a checkpoint for the entry and passage of signals and other molecules. Their composition can be modulated by diet, pathophysiological processes, and nutritional/pharmaceutical interventions. In addition to their use as an energy source, lipids have important structural and functional roles, e.g., fatty acyl moieties in phospholipids have distinct impacts on human health depending on their saturation, carbon length, and isometry. These and other membrane lipids have quite specific effects on the lipid bilayer structure, which regulates the interaction with signaling proteins. Alterations to lipids have been associated with important diseases, and, consequently, normalization of these alterations or regulatory interventions that control membrane lipid composition have therapeutic potential. This approach, termed membrane lipid therapy or membrane lipid replacement, has emerged as a novel technology platform for nutraceutical interventions and drug discovery. Several clinical trials and therapeutic products have validated this technology based on the understanding of membrane structure and function. The present review analyzes the molecular basis of this innovative approach, describing how membrane lipid composition and structure affects protein-lipid interactions, cell signaling, disease, and therapy (e.g., fatigue and cardiovascular, neurodegenerative, tumor, infectious diseases).
Collapse
|
43
|
Fan L, Lin Q, Huang X, Fu D, Huang H. Prognostic significance of pretreatment serum free fatty acid in patients with diffuse large B-cell lymphoma in the rituximab era: a retrospective analysis. BMC Cancer 2021; 21:1255. [PMID: 34802440 PMCID: PMC8607655 DOI: 10.1186/s12885-021-08963-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/04/2021] [Indexed: 01/07/2023] Open
Abstract
Background Fatty acid metabolism is reportedly associated with various cancers. However, the role of pretreatment serum free fatty acid (FFA) levels in diffuse large B-cell lymphoma (DLBCL) prognosis is still unclear, and our study aimed to better elucidate its influence on clinical outcomes. Methods The medical records of 221 newly diagnosed DLBCL patients admitted to Fujian Medical University Union Hospital from January 2011 to December 2016 were analysed retrospectively. Receiver operating characteristic curve analysis was used to determine a cut-off value for pretreatment serum FFA levels for prognostic prediction in DLBCL patients. The relationship between pretreatment serum FFA levels and clinical and laboratory parameters was analysed. Univariate and multivariate analyses were used to assess prognostic factors for overall survival (OS) and progression-free survival (PFS). Results Newly diagnosed DLBCL patients with high pretreatment serum FFA levels (≥0.495 mmol/l) had more B symptoms, higher serum lactate dehydrogenase levels (> upper limit of normal), >1 extranodal site, and higher International Prognostic Index score (3–5) compared to those with low pretreatment serum FFA levels (<0.495 mmol/l). Higher serum FFA levels were independent prognostic factors for poor OS, but not PFS. Conclusions High pretreatment serum FFA levels are associated with lower survival in untreated DLBCL patients.
Collapse
Affiliation(s)
- Liping Fan
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Qiuyan Lin
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Xiaoling Huang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Danhui Fu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| | - Haobo Huang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| |
Collapse
|
44
|
Pai FC, Huang HW, Tsai YL, Tsai WC, Cheng YC, Chang HH, Chen Y. Inhibition of FABP6 Reduces Tumor Cell Invasion and Angiogenesis through the Decrease in MMP-2 and VEGF in Human Glioblastoma Cells. Cells 2021; 10:2782. [PMID: 34685761 PMCID: PMC8534568 DOI: 10.3390/cells10102782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 12/05/2022] Open
Abstract
Malignant glioma is one of the most lethal cancers with rapid progression, high recurrence, and poor prognosis in the central nervous system. Fatty acid-binding protein 6 (FABP6) is a bile acid carrier protein that is overexpressed in colorectal cancer. This study aimed to assess the involvement of FABP6 expression in the progression of malignant glioma. Immunohistochemical analysis revealed that FABP6 expression was higher in glioma than in normal brain tissue. After the knockdown of FABP6, a decrease in the migration and invasion abilities of glioma cells was observed. The phosphorylation of the myosin light chain was inhibited, which may be associated with migration ability. Moreover, expression levels of invasion-related proteins, matrix metalloproteinase-2 (MMP-2) and cathepsin B, were reduced. Furthermore, tube formation was inhibited in the human umbilical vein endothelial cells with a decreased concentration of vascular endothelial growth factor (VEGF) in the conditioned medium after the knockdown of FABP6. The phosphorylation of the extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p65 were also decreased after FABP6 reduction. Finally, the bioluminescent images and immunostaining of MMP-2, cluster of differentiation 31 (CD31), and the VEGF receptor 1 (VEGFR1) revealed attenuated tumor progression in the combination of the FABP6-knocked-down and temozolomide (TMZ)-treated group in an orthotopic xenograft mouse tumor model. This is the first study that revealed the impact of FABP6 on the invasion, angiogenesis, and progression of glioma. The results of this study show that FABP6 may be a potential therapeutic target combined with TMZ for malignant gliomas.
Collapse
Affiliation(s)
- Feng-Cheng Pai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Hsiang-Wei Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (H.-W.H.); (Y.-C.C.)
| | - Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-L.T.); (W.-C.T.)
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-L.T.); (W.-C.T.)
| | - Yu-Chen Cheng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (H.-W.H.); (Y.-C.C.)
| | - Hsin-Han Chang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (H.-W.H.); (Y.-C.C.)
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (H.-W.H.); (Y.-C.C.)
| |
Collapse
|
45
|
Zang WJ, Wang ZN, Hu YL, Huang H, Ma P. Expression of fatty acid-binding protein-4 in gastrointestinal stromal tumors and its significance for prognosis. J Clin Lab Anal 2021; 35:e24017. [PMID: 34558731 PMCID: PMC8605140 DOI: 10.1002/jcla.24017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/27/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022] Open
Abstract
Background Fatty acid‐binding proteins (FABPs) have been found to be involved in tumorigenesis and development. However, the role of FABP4, a member of the FABPs, in GISTs (Gastrointestinal stromal tumors) remains unclear. This study aimed to investigate the expression of FABP4 and its prognostic value in GISTs. Methods FABP4 expression in 125 patients with GISTs was evaluated by immunohistochemical analysis of tissue microarrays. The relationship between FABP4 expression and clinicopathological features and prognosis of GISTs was analyzed. Results Multiple logistic regression analysis showed that expression of FABP4 correlated with tumor size and mitotic index. Furthermore, FABP4 level, tumor size, mitotic index, and high AFIP‐Miettinen risk were independent prognostic factors in GISTs. The Kaplan‐Meier survival curve showed that the 5‐year survival rate of patients with high‐FABP4 expression GISTs was lower. Conclusions These results suggested that high‐FABP4 expression might be a marker of malignant phenotype of GISTs and poor prognosis.
Collapse
Affiliation(s)
- Wei-Jie Zang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Department of Clinical Biobank, Nantong University, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nan Tong, China
| | - Zi-Niu Wang
- Medical School of Nantong University, Nan Tong, China
| | - Yi-Lin Hu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Peng Ma
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
46
|
Cholico GN, Fling RR, Zacharewski NA, Fader KA, Nault R, Zacharewski TR. Thioesterase induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin results in a futile cycle that inhibits hepatic β-oxidation. Sci Rep 2021; 11:15689. [PMID: 34344994 PMCID: PMC8333094 DOI: 10.1038/s41598-021-95214-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental contaminant, induces steatosis by increasing hepatic uptake of dietary and mobilized peripheral fats, inhibiting lipoprotein export, and repressing β-oxidation. In this study, the mechanism of β-oxidation inhibition was investigated by testing the hypothesis that TCDD dose-dependently repressed straight-chain fatty acid oxidation gene expression in mice following oral gavage every 4 days for 28 days. Untargeted metabolomic analysis revealed a dose-dependent decrease in hepatic acyl-CoA levels, while octenoyl-CoA and dicarboxylic acid levels increased. TCDD also dose-dependently repressed the hepatic gene expression associated with triacylglycerol and cholesterol ester hydrolysis, fatty acid binding proteins, fatty acid activation, and 3-ketoacyl-CoA thiolysis while inducing acyl-CoA hydrolysis. Moreover, octenoyl-CoA blocked the hydration of crotonyl-CoA suggesting short chain enoyl-CoA hydratase (ECHS1) activity was inhibited. Collectively, the integration of metabolomics and RNA-seq data suggested TCDD induced a futile cycle of fatty acid activation and acyl-CoA hydrolysis resulting in incomplete β-oxidation, and the accumulation octenoyl-CoA levels that inhibited the activity of short chain enoyl-CoA hydratase (ECHS1).
Collapse
Affiliation(s)
- Giovan N Cholico
- Department of Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Russell R Fling
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Nicholas A Zacharewski
- Department of Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
| | - Kelly A Fader
- Department of Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Rance Nault
- Department of Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Timothy R Zacharewski
- Department of Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
47
|
Choi WS, Xu X, Goruk S, Wang Y, Patel S, Chow M, Field CJ, Godbout R. FABP7 Facilitates Uptake of Docosahexaenoic Acid in Glioblastoma Neural Stem-like Cells. Nutrients 2021; 13:2664. [PMID: 34444824 PMCID: PMC8402214 DOI: 10.3390/nu13082664] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive tumor with a dismal prognosis. Neural stem-like cells contribute to GBM's poor prognosis by driving drug resistance and maintaining cellular heterogeneity. GBM neural stem-like cells express high levels of brain fatty acid-binding protein (FABP7), which binds to polyunsaturated fatty acids (PUFAs) ω-6 arachidonic acid (AA) and ω-3 docosahexaenoic acid (DHA). Similar to brain, GBM tissue is enriched in AA and DHA. However, DHA levels are considerably lower in GBM tissue compared to adult brain. Therefore, it is possible that increasing DHA content in GBM, particularly in neural stem-like cells, might have therapeutic value. Here, we examine the fatty acid composition of patient-derived GBM neural stem-like cells grown as neurosphere cultures. We also investigate the effect of AA and DHA treatment on the fatty acid profiles of GBM neural stem-like cells with or without FABP7 knockdown. We show that DHA treatment increases DHA levels and the DHA:AA ratio in GBM neural stem-like cells, with FABP7 facilitating the DHA uptake. We also found that an increased uptake of DHA inhibits the migration of GBM neural stem-like cells. Our results suggest that increasing DHA content in the GBM microenvironment may reduce the migration/infiltration of FABP7-expressing neural stem-like cancer cells.
Collapse
Affiliation(s)
- Won-Shik Choi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Xia Xu
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.G.); (C.J.F.)
| | - Yixiong Wang
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Samir Patel
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Michael Chow
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2B7, Canada;
| | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.G.); (C.J.F.)
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| |
Collapse
|
48
|
Chitneedi PK, Weikard R, Arranz JJ, Martínez-Valladares M, Kuehn C, Gutiérrez-Gil B. Identification of Regulatory Functions of LncRNAs Associated With T. circumcincta Infection in Adult Sheep. Front Genet 2021; 12:685341. [PMID: 34194481 PMCID: PMC8236958 DOI: 10.3389/fgene.2021.685341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Several recent studies have demonstrated the role of long non-coding RNAs (lncRNAs) in regulating the defense mechanism against parasite infections, but no studies are available that investigated their relevance for immune response to nematode infection in sheep. Thus, the aim of the current study was to (i) detect putative lncRNAs that are expressed in the abomasal lymph node of adult sheep after an experimental infection with the gastrointestinal nematode (GIN) Teladorsagia circumcincta and (ii) to elucidate their potential functional role associated with the differential host immune response. We hypothesized that putative lncRNAs differentially expressed (DE) between samples from animals that differ in resistance to infection may play a significant regulatory role in response to nematode infection in adult sheep. To obtain further support for our hypothesis, we performed co-expression and functional gene enrichment analyses with the differentially expressed lncRNAs (DE lncRNAs). In a conservative approach, we included for this predictive analysis only those lncRNAs that are confirmed and supported by documentation of expression in gastrointestinal tissues in the current sheep gene atlas. We identified 9,105 putative lncRNA transcripts corresponding to 7,124 gene loci. Of these, 457 were differentially expressed lncRNA loci (DELs) with 683 lncRNA transcripts. Based on a gene co-expression analysis via weighted gene co-expression network analysis, 12 gene network modules (GNMs) were found significantly correlated with at least one of 10 selected target DE lncRNAs. Based on the principle of “guilt-by-association,” the DE genes from each of the three most significantly correlated GNMs were subjected to a gene enrichment analysis. The significant pathways associated with DE lncRNAs included ERK5 Signaling, SAPK/JNK Signaling, RhoGDI Signaling, EIF2 Signaling, Regulation of eIF4 and p70S6K Signaling and Oxidative Phosphorylation pathways. They belong to signaling pathway categories like Cellular Growth, Proliferation and Development, Cellular Stress and Injury, Intracellular and Second Messenger Signaling and Apoptosis. Overall, this lncRNA study conducted in adult sheep after GIN infection provided first insights into the potential functional role of lncRNAs in the differential host response to nematode infection.
Collapse
Affiliation(s)
| | - Rosemarie Weikard
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Juan J Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - María Martínez-Valladares
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain.,Instituto de Ganadería de Montaña, CSIC-Universidad de León, León, Spain
| | - Christa Kuehn
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
49
|
Mechanistic Investigation on the Regulation of FABP1 by the IL-6/miR-603 Signaling in the Pathogenesis of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8579658. [PMID: 34056002 PMCID: PMC8147539 DOI: 10.1155/2021/8579658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
Background Abnormal lipid metabolism is closely associated with the invasiveness and metastasis of cancer. Fatty acid-binding proteins (FABPs) play essential roles in lipid metabolism, and miRNAs can affect lipid metabolism by targeting FABPs. However, the exact mechanism is unknown. Methods FABP1 expression in HCC tissues was analyzed by immunochemistry with tissue microarrays. The lipid content was detected by Oil Red O staining, and the interaction between FABP1 and free fatty acid (FFA) was studied by a labeling and tracking method. miRNA arrays were used to detect the expression of miRNAs in IL-6-stimulated HCC cells. miR-603 expression was verified by qPCR. The proteins were checked by Western blot analysis. Gain and loss function evaluation was assessed by lentivirus and miRNA mimic transfection in Huh-7 cells, while reactive oxygen species (ROS) were detected by fluorescence. Results FABP1 expression was significantly decreased in approximately 90% (81/90) of HCC patients. FABP1 expression in adjacent tissues was closely associated with overall survival. Meanwhile, lipid was abundant in the adjacent tissues, yet significantly reduced in HCC tissues. FABP1 and FFA can promote each other for being uptaken by Huh-7 cells. FABP1 overexpression induced apoptosis and inhibited the proliferation, migration, invasion, and metastasis of Huh-7 cells. IL-6 treatment affected the expression of miRNAs, and miR-603 was overexpressed in HCC tissues. Also, miR-603 overexpression promoted the proliferation, migration, invasion, and metastasis of Huh-7 cells. Bioinformatic analysis predicted that miR-603 targets the 3′-UTR region of FABP1. However, miR-603 overexpression inhibited the expression of the FABP1 but increased the CPT1A, PPAR-α, and SREBP1 expressions. FABP1 overexpression reduced ROS in HCC cells, while miR-603 can reverse these effects. Conclusion Our results indicate that in the pathogenesis of HCC, IL-6 induces miR-603 expression, which subsequently inhibits FABP1 expression, promotes the lipid metabolism- and synthesis-related proteins, and finally increases the cellular oxidative stress level and leads to the metastasis of HCC.
Collapse
|
50
|
Guo Q, Kawahata I, Degawa T, Ikeda-Matsuo Y, Sun M, Han F, Fukunaga K. Fatty Acid-Binding Proteins Aggravate Cerebral Ischemia-Reperfusion Injury in Mice. Biomedicines 2021; 9:529. [PMID: 34068550 PMCID: PMC8150391 DOI: 10.3390/biomedicines9050529] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
Fatty acid-binding proteins (FABPs) regulate the intracellular dynamics of fatty acids, mediate lipid metabolism and participate in signaling processes. However, the therapeutic efficacy of targeting FABPs as novel therapeutic targets for cerebral ischemia is not well established. Previously, we synthesized a novel FABP inhibitor, i.e., FABP ligand 6 [4-(2-(5-(2-chlorophenyl)-1-(4-isopropylphenyl)-1H-pyrazol-3-yl)-4-fluorophenoxy)butanoic acid] (referred to here as MF6). In this study, we analyzed the ability of MF6 to ameliorate transient middle cerebral artery occlusion (tMCAO) and reperfusion-induced injury in mice. A single MF6 administration (3.0 mg/kg, per os) at 0.5 h post-reperfusion effectively reduced brain infarct volumes and neurological deficits. The protein-expression levels of FABP3, FABP5 and FABP7 in the brain gradually increased after tMCAO. Importantly, MF6 significantly suppressed infarct volumes and the elevation of FABP-expression levels at 12 h post-reperfusion. MF6 also inhibited the promotor activity of FABP5 in human neuroblastoma cells (SH-SY5Y). These data suggest that FABPs elevated infarct volumes after ischemic stroke and that inhibiting FABPs ameliorated the ischemic injury. Moreover, MF6 suppressed the inflammation-associated prostaglandin E2 levels through microsomal prostaglandin E synthase-1 expression in the ischemic hemispheres. Taken together, the results imply that the FABP inhibitor MF6 can potentially serve as a neuroprotective therapeutic for ischemic stroke.
Collapse
Affiliation(s)
- Qingyun Guo
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; (Q.G.); (I.K.); (T.D.); (M.S.)
| | - Ichiro Kawahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; (Q.G.); (I.K.); (T.D.); (M.S.)
| | - Tomohide Degawa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; (Q.G.); (I.K.); (T.D.); (M.S.)
| | - Yuri Ikeda-Matsuo
- Laboratory of Pharmacology, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanagawa-Machi, Kanazawa 920-1181, Japan;
| | - Meiling Sun
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; (Q.G.); (I.K.); (T.D.); (M.S.)
| | - Feng Han
- School of Pharmacy, Nanjing Medical School, Nanjing 211166, China;
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; (Q.G.); (I.K.); (T.D.); (M.S.)
| |
Collapse
|