1
|
Gholami-Zanjanbar M, Soleimanian F, Reyhani N, Hajizamani S, Sajadi AE, Ghofrani-Jahromi Z, Vaseghi S. Synaptophysin and GSK-3beta activity in the prefrontal cortex may underlie the effects of REM sleep deprivation and lithium on behavioral functions and memory performance in male rats. Pharmacol Biochem Behav 2024; 245:173894. [PMID: 39413852 DOI: 10.1016/j.pbb.2024.173894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/05/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Rapid-eye movement (REM) stage of sleep serves a critical role in processing cognitive and behavioral functions. Evidence shows that REM sleep deprivation (REM SD) strongly affects the mood state and cognitive abilities. However, there are many inconsistent reports. Although the exact molecular mechanisms underlying REM SD effects have not well been discovered, however, molecular factors including those affected synaptic plasticity and mood state may be involved. There are two important molecular factors that have not been well studied: synaptophysin and glycogen synthase kinase-3 beta (GSK-3beta). The present study aimed to investigate the role of synaptophysin and GSK-3beta in the modulation of memory and behavioral changes induced by REM SD and lithium (as a potent GSK-3beta inhibitor and mood stabilizer). Multiple platform apparatus was used to induce REM SD for 48 h. Lithium was injected at the dose of 50 mg/kg, intraperitoneal (i.p.). Locomotor activity, anxiety-like behavior, pain threshold, novel object recognition memory, and synaptophysin and GSK-3beta level in the prefrontal cortex were evaluated. Results showed REM SD increased locomotor activity, decreased pain threshold, impaired novel object recognition memory, decreased synaptophysin and increased GSK-3beta levels. Lithium reversed these effects. Anxiety-like behavior was unaffected. For the first time, the present study showed that GSK-3beta and synaptophysin may be involved in the modulation of behavior and cognition induced by REM SD and lithium. In conclusion, we suggested that GSK-3beta upregulation and synaptophysin downregulation may underlie the deleterious effects of REM SD, while lithium may counteract REM SD effects via restoring the level of both.
Collapse
Affiliation(s)
| | | | - Niloufar Reyhani
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Shadi Hajizamani
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir-Ehsan Sajadi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Zahra Ghofrani-Jahromi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
2
|
Bakhtazad A, Kabbaj M, Garmabi B, Joghataei MT. The role of CART peptide in learning and memory: A potential therapeutic target in memory-related disorders. Peptides 2024; 181:171298. [PMID: 39317295 DOI: 10.1016/j.peptides.2024.171298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Cocaine and amphetamine-regulated transcript (CART) mRNA and peptide are vastly expressed in both cortical and subcortical brain areas and are involved in critical cognitive functions. CART peptide (CARTp), described in reward-related brain structures, regulates drug-induced learning and memory, and its role appears specific to psychostimulants. However, many other drugs of abuse, such as alcohol, opiates, nicotine, and caffeine, have been shown to alter the expression levels of CART mRNA and peptides in brain structures directly or indirectly associated with learning and memory processes. However, the number of studies demonstrating the contribution of CARTp in learning and memory is still minimal. Notably, the exact cellular and molecular mechanisms underlying CARTp effects are still unknown. The discoveries that CARTp effects are mediated through a putative G-protein coupled receptor and activation of cellular signaling cascades via NMDA receptor-coupled ERK have enhanced our knowledge about the action of this neuropeptide and allowed us to comprehend better CARTp exact cellular/molecular mechanisms that could mediate drug-induced changes in learning and memory functions. Unfortunately, these efforts have been impeded by the lack of suitable and specific CARTp receptor antagonists. In this review, following a short introduction about CARTp, we report on current knowledge about CART's roles in learning and memory processes and its recently described role in memory-related neurological disorders. We will also discuss the importance of further investigating how CARTp interacts with its receptor(s) and other neurotransmitter systems to influence learning and memory functions. This topic is sure to intrigue and motivate further exploration in the field of neuroscience.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Cellular and Molecular Research Center, Deputy of Research and Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, United States; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, United States
| | - Behzad Garmabi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Deputy of Research and Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Samizadeh MA, Abdollahi-Keyvani ST, Fallah H, Beigi B, Motamedi-Manesh A, Adibian S, Vaseghi S. Sex difference alters the behavioral and cognitive performance in a rat model of schizophrenia induced by sub-chronic ketamine. J Psychiatr Res 2024; 178:180-187. [PMID: 39146821 DOI: 10.1016/j.jpsychires.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/22/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Schizophrenia is a complex neuropsychiatric disorder with positive, negative, and cognitive symptoms. In rats, sub-chronic administration of ketamine is used for the induction of schizophrenia model. Increased locomotor activity is one of the most important features of psychotic-like symptoms in rodents. On the other hand, risperidone is a potent antipsychotic medication that is approved for the treatment of schizophrenia and bipolar disorder. In the present research, we aimed to investigate the effect of sub-chronic treatment of ketamine on cognitive and behavioral functions, and brain-derived neurotrophic factor (BDNF) expression level in the prefrontal cortex. Also, we assessed the efficacy of risperidone on cognitive and behavioral impairments induced by ketamine. Possible sex differences were also measured. Ketamine was intraperitoneally injected at the dose of 30 mg/kg for five consecutive days. Risperidone was also intraperitoneally injected at the dose of 2 mg/kg. Novel object recognition memory, pain threshold, locomotor activity, rearing behavior, and BDNF level were evaluated. The results showed that ketamine injection for five consecutive days impaired the acquisition of long-term recognition memory and decreased BDNF level in the prefrontal cortex in both sexes. Also, it decreased pain threshold in females, increased rearing behavior in males, and induced hyperlocomotion with greater effect in females. On the other hand, risperidone restored or attenuated the effect of ketamine on all the behavioral effects and BDNF level. In conclusion, we suggested that there were sex differences in the effects of ketamine on pain perception, locomotion, and rearing behavior in a rat model of schizophrenia.
Collapse
Affiliation(s)
- Mohammad-Ali Samizadeh
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | | | - Hamed Fallah
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Bahar Beigi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Atefeh Motamedi-Manesh
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Sogand Adibian
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
4
|
Nasseri S, Hajrasouliha S, Vaseghi S, Ghorbani Yekta B. Interaction effect of crocin and citalopram on memory and locomotor activity in rats: an insight into BDNF and synaptophysin levels in the hippocampus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6879-6888. [PMID: 38568290 DOI: 10.1007/s00210-024-03069-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/23/2024] [Indexed: 09/25/2024]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are widely used drugs for the treatment of depression. Citalopram is one of the most prescribed SSRIs that is useful for the treatment of depression, obsessive-compulsive disorder, and anxiety disorders. On the other hand, crocin (active constitute of saffron) has pro-cognitive and mood enhancer effects. Also, both citalopram and crocin affect the function and expression of brain-derived neurotrophic factor (BDNF) and synaptophysin, two molecular factors that are involved in cognitive functions and mood. In the present study, we aim to investigate the interaction effect of citalopram and crocin on rats' performance in the open field test (locomotor activity and anxiety-like behavior) and the shuttle box (passive avoidance memory). Citalopram was injected at the doses of 10, 30, and 50 mg/kg, and crocin was injected at the dose of 50 mg/kg; all administrations were intraperitoneal. Real-time PCR was used to assess the expression level of BDNF and synaptophysin in the hippocampus. The results showed that citalopram (30 and 50 mg/kg) impaired passive avoidance memory and decreased BDNF and synaptophysin expression in the hippocampus, while crocin reversed memory impairment, and BDNF and synaptophysin expression in the hippocampus of rats received citalopram 30 mg/kg. Also, crocin partially showed these effects in rats that received citalopram 50 mg/kg. The results of the open field test were unchanged. In conclusion, we suggested that BDNF and synaptophysin may be involved in the effects of both citalopram and crocin.
Collapse
Affiliation(s)
- Samineh Nasseri
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shadi Hajrasouliha
- Herbal Pharmacology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Batool Ghorbani Yekta
- Herbal Pharmacology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Abbasi N, Mirabzadeh Y, Khesali G, Ebrahimkhani Z, Karimi H, Vaseghi S. Chronic REM sleep deprivation leads to manic- and OCD-related behaviors, and decreases hippocampal BDNF expression in female rats. Psychopharmacology (Berl) 2024; 241:1345-1363. [PMID: 38430395 DOI: 10.1007/s00213-024-06566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Rapid-eye movement (REM) sleep deprivation (SD) can induce manic-like behaviors in rodents. On the other hand, lithium, as one of the oldest drugs used in neuropsychiatric disorders, is still one of the best drugs for the treatment and control of bipolar disorder. In this study, we aimed to investigate the role of chronic short-term REM SD in the induction of manic-like behaviors in female rats. METHODS The rats were exposed to REM SD for 14 days (6 hours/day). Lithium was intraperitoneally injected at the doses of 10, 50, and 100 mg/kg. RESULTS REM SD induced hyperactivity and OCD-like behavior, and decreased anxiety, depressive-like behavior, and pain subthreshold. REM SD also impaired passive avoidance memory and decreased hippocampal brain-derived neurotrophic factor (BDNF) expression level. Lithium at the doses of 50 and 100 mg/kg partly and completely abolished these effects, respectively. However, lithium (100 mg/kg) increased BDNF expression level in control and sham REM SD rats with no significant changes in behavior. CONCLUSIONS Chronic short-term REM SD may induce a mania-like model and lead to OCD-like behavior and irritability. In the present study, we demonstrated a putative rodent model of mania induced by chronic REM SD in female rats. We suggest that future studies should examine behavioral and mood changes following chronic REM SD in both sexes. Furthermore, the relationship between manic-like behaviors and chronic REM SD should be investigated.
Collapse
Affiliation(s)
- Nahal Abbasi
- Department of Health Psychology, Faculty of Medical Sciences, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Yasaman Mirabzadeh
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Golnaz Khesali
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Zahra Ebrahimkhani
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Hanie Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
6
|
Tajabadi Farahani Z, Vaseghi S, Rajabbeigi E, Ghorbani Yekta B. The effect of olanzapine on spatial memory impairment, depressive-like behavior, pain perception, and BDNF and synaptophysin expression following childhood chronic unpredictable mild stress in adult male and female rats. Behav Brain Res 2024; 468:115039. [PMID: 38718877 DOI: 10.1016/j.bbr.2024.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Chronic unpredictable mild stress (CUMS) method has been introduced as a rodent model of depression. On the other hand, olanzapine, as an antipsychotic, can induce antidepressant and antipsychotic effects. Also, olanzapine may improve cognitive functions. Both CUMS and olanzapine can also affect the expression level of brain-derived neurotrophic factor (BDNF) and synaptophysin, the molecular factors involved in synaptic function, and learning and memory. In this study, we investigated the effect of olanzapine on locomotor activity (using open field test), pain threshold (using hot plate), depressive-like behavior (using forced swim test), spatial learning and memory (using Morris water maze), and BDNF and synaptophysin hippocampal expression (using real-time PCR) in both male and female CUMS rats. CUMS was performed for three consecutive weeks. Olanzapine was also injected intraperitoneally at the dose of 5 mg/kg. Our data showed that olanzapine can reverse the effects of CUMS on behavioral functions and BDNF and synaptophysin expression levels in the hippocampus of both males and females. It was also shown that olanzapine effects on spatial memory, pain perception, and BDNF and synaptophysin level were stronger in females than males. In conclusion, we suggested that the therapeutic effects of olanzapine in CUMS rats may be closely related to the function of BDNF and synaptophysin. Also, the therapeutic effects of olanzapine may be stronger in females. Therefore, and for the first time, we showed that there may be a sex difference in the effects of olanzapine on behavioral and molecular changes following CUMS.
Collapse
Affiliation(s)
- Zahra Tajabadi Farahani
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Elham Rajabbeigi
- Department of Developmental Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Batool Ghorbani Yekta
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Kamaei AK, Hosseini SF, Teimourparsaei P, Payamani M, Vaseghi S. The effect of acute crocin on behavioral changes and BDNF expression level in socially isolated rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3929-3944. [PMID: 37987792 DOI: 10.1007/s00210-023-02843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Social isolation is a reliable method used for the induction of depression and psychiatric disorders in rodents. It has been suggested that social isolation can lead to hyperlocomotion, as a schizophrenic-like symptom in rodents. On the other hand, crocin (the major constituent of Crocus sativus) induces a wide-range of neuroprotective and mood enhancer effects. In the present study, we aimed to investigate the effect of acute crocin on social isolation-induced behavioral changes and BDNF expression in the hippocampus. Novelty-suppressed feeding test, open field test, marble burying test, hot plate, forced swim test, and the shuttle box were used to assess anxiety-like behavior, locomotor activity, obsessive-compulsive-like (OCD-like) behavior, pain threshold, depressive-like behavior, and passive avoidance memory, respectively. Real-time PCR was used to assess BDNF hippocampal expression level. The results showed that social isolation decreased anxiety- and depressive-like behavior, pain threshold, and BDNF expression, and induced OCD-like behavior and hyperlocomotion. Crocin dose-dependently restored the effect of social isolation on pain threshold, locomotor activity, depressive-like behavior, OCD-like behavior, and BDNF expression. Passive avoidance memory performance was also unaffected. In conclusion, we showed a hyperlocomotion profile and OCD-like behaviors, and a robust decrease in pain threshold in socially isolated rats. It can be suggested that social isolation from adolescence induces a "hyperlocomotion state" that affects all the behavioral functions of rats. Also, the function of BDNF can be related to a hyperlocomotion state and OCD-like symptom. It seems that BDNF expression level can be related to the therapeutic effect of crocin.
Collapse
Affiliation(s)
- Amir-Kamyar Kamaei
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran
| | - Seyedeh-Fatemeh Hosseini
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran
| | - Parisa Teimourparsaei
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran
| | - Masoumeh Payamani
- Department of Psychology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
8
|
Menbari Oskouie I, Zareian Baghdadabad L, Mashhadi R, Zahmatkesh P, Mirzaei A, Khajavi A, Noori M, Mesbah G, Aghamir SMK. Evaluation of the Effects of Opium on the Expression of SOX2 and OCT4 in Wistar Rat Bladder. Bladder Cancer 2024; 10:47-59. [PMID: 38993529 PMCID: PMC11181810 DOI: 10.3233/blc-230076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/26/2023] [Indexed: 07/13/2024]
Abstract
BACKGROUND Bladder cancer is a malignancy greatly affected by behavioral habits. The aim of this study was to examine the effect of opium on changes in the expression of OCT4 and SOX2 in the bladder tissue of rats. METHOD Thirty six rats were divided into six groups: 24 rats in the addicted group received morphine and opium for 4 months with 12 rats in the control group. Blood testing was done for the evaluation of CBC, MDA, and TAC. The bladder tissue was removed and checked by histopathological examination. All total RNA was extracted, then cDNAs were synthesized and the OCT4 and SOX2 gene expressions were evaluated by Real-time PCR. RESULTS The OCT4 mRNA expression level in the opium group of rats was significantly increased compared to the control group (13.5 and 6.8 fold in males and females respectively). Also, in the morphine group, similar augmentation was detected (3.8 and 6.7 fold in males and females respectively). The SOX2 mRNA over-expression level was seen in the morphine group of both genders as compared to the control group (3.7 and 4.2 fold in male and female respectively) but in the opium group, enhancement of mRNA level was seen only in males (6.6 fold). Opium increases both OCT4 and SOX2 expression more than morphine in male rats, but in female rats, SOX2 is increased more by morphine. CONCLUSION Over expression of OCT4 and SOX2 was observed in rats treated with opium and morphine. Increased OCT4 and SOX2 expression was seen in opium-treated male rats, but in female rats, SOX2 was increased more by morphine.
Collapse
Affiliation(s)
| | | | - Rahil Mashhadi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Zahmatkesh
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Mirzaei
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Khajavi
- Student Research Committee, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Mesbah
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
9
|
Rahimi-Danesh M, Samizadeh MA, Sajadi AE, Rezvankhah T, Vaseghi S. Sex difference affects fear extinction but not lithium efficacy in rats following fear-conditioning with respect to the hippocampal level of BDNF. Pharmacol Biochem Behav 2024; 234:173675. [PMID: 37972713 DOI: 10.1016/j.pbb.2023.173675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
In rodents, exposure to electrical shock and creating a strong fear memory using fear-conditioning model can induce PTSD-like behavior. In this study, we induced a fear-conditioning model in rats and investigated freezing (PTSD-like) behavior, 21 days after three shocks exposure (0.6 mA, 3 s, 30 seconds interval) in both male and female rats. Lithium was injected intraperitoneally (100 mg/kg) in three protocols: (1) 1 h after fear-conditioning (2) 1 h, 24 h, and 48 h after fear-conditioning (3), 1 h, 24 h, 48 h, 72 h, and 96 h after fear-conditioning. Extinction training (20 sounds without shocks, 75 dB, 3 s, 30 seconds interval) was performed in three protocols: (1) 1 h after fear-conditioning (one session), (2) 1 h, 24 h, and 48 h after fear-conditioning (three sessions), (3), 1 h, 24 h, 48 h, 72 h, and 96 h after fear-conditioning (five sessions). Forced swim test (FST) and hot plate were used to assess behavior. Results showed that lithium in all protocols had no effect on freezing behavior, FST, and pain subthreshold in all rats. Extinction training decreased freezing behavior, with more efficacy in females. In males, only 5-session training was effective, while in females all protocols were effective. Extinction training also altered pain perception and the results of FST, depending on the sessions and was different in males and females. Brain-derived neurotrophic factor (BDNF) mRNA level was increased in females following 3 and 5 sessions, and in males following 5 sessions extinction training. In conclusion, we suggested that there is a sex difference for the effect of extinction training on freezing behavior and BDNF mRNA level in a rat model of fear-conditioning.
Collapse
Affiliation(s)
- Mehrsa Rahimi-Danesh
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Mohammad-Ali Samizadeh
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Amir-Ehsan Sajadi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Tara Rezvankhah
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
10
|
Gasparyan A, Maldonado Sanchez D, Navarrete F, Sion A, Navarro D, García-Gutiérrez MS, Rubio Valladolid G, Jurado Barba R, Manzanares J. Cognitive Alterations in Addictive Disorders: A Translational Approach. Biomedicines 2023; 11:1796. [PMID: 37509436 PMCID: PMC10376598 DOI: 10.3390/biomedicines11071796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/30/2023] Open
Abstract
The cognitive decline in people with substance use disorders is well known and can be found during both the dependence and drug abstinence phases. At the clinical level, cognitive decline impairs the response to addiction treatment and increases dropout rates. It can be irreversible, even after the end of drug abuse consumption. Improving our understanding of the molecular and cellular alterations associated with cognitive decline could be essential to developing specific therapeutic strategies for its treatment. Developing animal models to simulate drug abuse-induced learning and memory alterations is critical to continue exploring this clinical situation. The main aim of this review is to summarize the most recent evidence on cognitive impairment and the associated biological markers in patients addicted to some of the most consumed drugs of abuse and in animal models simulating this clinical situation. The available information suggests the need to develop more studies to further explore the molecular alterations associated with cognitive impairment, with the ultimate goal of developing new potential therapeutic strategies.
Collapse
Affiliation(s)
- Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | | | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Ana Sion
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Faculty of Psychology, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Gabriel Rubio Valladolid
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Department of Psychiatry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Rosa Jurado Barba
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Faculty of Health, Universidad Camilo José Cela, 28001 Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
11
|
Mehrabanifar S, Hesami-Tackallou S, Vaseghi S, Nasehi M. The effect of crocin on cholestasis-induced spatial memory impairment with respect to the expression level of TFAM and PGC-1α and activity of catalase and superoxide dismutase in the hippocampus. Metab Brain Dis 2023; 38:1167-1176. [PMID: 36807082 DOI: 10.1007/s11011-023-01176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023]
Abstract
Large evidence has shown that cholestasis has a wide-range of deleterious effects on brain function, and also, on neurocognitive functions including learning and memory. On the other hand, crocin (derived from Crocus sativus) is a medicinal natural compound that induces neuroprotective and precognitive effects. In this study, we aimed to evaluate the effect of crocin on spatial learning and memory in cholestatic rats with respect to the level of mitochondrial transcriptional factor A (TFAM), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), catalase (CAT), and superoxide dismutase (SOD) in the hippocampus of male Wistar rats. Bile duct ligation (BDL) was used to induce cholestasis. Y-maze apparatus was used to assess spatial memory performance and real-time PCR was used to assess TFAM and PGC-1α gene expression. Also, crocin was injected intraperitoneal at the doses of 15, 20, and 30 mg/kg for thirty days. The results showed that BDL impaired spatial memory in rats. BDL also decreased SOD, TFAM, and PGC-1α level. In addition, crocin partially reversed the impairment effect of BDL on spatial memory. Crocin (30 mg/kg) also reversed the effect of BDL on SOD, TFAM, and PGC-1α. Of note, the effect of BDL on CAT activity was controversial. It seems that BDL can increase CAT activity. In addition, crocin (30 mg/kg) reversed the enhancement of CAT following BDL to its control level. In conclusion, crocin may induce a significant neuroprotective effect on cholestasis-induced memory impairment.
Collapse
Affiliation(s)
- Saba Mehrabanifar
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, P.O. Box: 13145-784, Tehran, Iran.
| |
Collapse
|
12
|
Kharazmi K, Alani B, Heydari A, Ardjmand A. Protection against Morphine-Induced Inhibitory Avoidance Memory Impairment in Rat by Curcumin: Possible Role of Nitric Oxide/ cAMP-Response Element Binding Protein Pathway. IRANIAN JOURNAL OF MEDICAL SCIENCES 2022; 47:594-602. [PMID: 36380970 PMCID: PMC9652497 DOI: 10.30476/ijms.2022.92131.2339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/21/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Although a substantial body of research suggests curcumin (CUR) has the preventive potential in memory impairment, the mechanism by which CUR prevents memory loss is still being investigated. This study employs an inhibitory avoidance (IA) model to investigate whether CUR can prevent morphine (Mor)-induced memory impairment as well as the possible role of cAMP-response element binding (CREB) protein, and nitric oxide (NO) signaling in this mechanism. METHODS This experimental study was conducted at the Animal Lab of the Physiology Research Center, Kashan University of Medical Sciences (Kashan, Iran) in 2018. Forty rats were randomly divided into four groups: control, CUR (pretreatment gavage of CUR [10 mg/Kg] for 35 days), Mor (7.5 mg/Kg, i.p.), and CUR+Mor (n=10 per group). Following the evaluation of the IA memory and locomotor activity of the animals, the CREB protein expression in the hippocampus and NO metabolites (NOx) level in the brain tissue were also investigated. The data were analyzed using Sigmaplot software (version 14.0) by using the ANOVA, Kruskal-Wallis, Holm-Sidak, and Dunn's post hoc tests. P<0.05 was considered to be statistically significant. RESULTS In the Mor group, the IA memory of the rats was significantly impaired (P=0.001). CUR prevented the Mor-induced IA memory impairment (P=0.075). While the Mor treatment decreased the phosphorylated CREB (p-CREB) expression, the CUR+Mor cotreatment increased p-CREB expression (P=0.010). Nevertheless, the Mor treatment increased the total CREB expression (P=0.010). The NOx concentration in the brain tissue was decreased following the Mor treatment (P=0.500) but increased after the CUR+Mor cotreatment (P=0.001). CONCLUSION The present findings suggest that CUR prevents the memory impairment of rats, possibly through NO and its downstream CREB signaling.
Collapse
Affiliation(s)
- Khatereh Kharazmi
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Behrang Alani
- Department of Applied Cell Sciences, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Azhdar Heydari
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,
Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Ardjmand
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,
Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
13
|
Shang Q, Wang J, Xi Z, Gao B, Qian H, An R, Shao G, Liu H, Li T, Liu X. Mechanisms underlying microRNA-222-3p modulation of methamphetamine-induced conditioned place preference in the nucleus accumbens in mice. Psychopharmacology (Berl) 2022; 239:2997-3008. [PMID: 35881147 DOI: 10.1007/s00213-022-06183-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
RATIONALE MicroRNA (miRNA) control of post-transcription gene expression in the nucleus accumbens (NAc) has been implicated in methamphetamine (METH) dependence. Conditioned place preference (CPP) is a classical animal procedure that reflects the rewarding effects of addictive drugs. miR-222-3p has been reported to play a key role in various neurological diseases and is strongly associated with alcohol dependence. Nevertheless, the role of miR-222-3p in METH dependence remains unclear. OBJECTIVE To explore the molecular mechanisms underlying the role of miR-222-3p in the NAc in METH-induced CPP. METHODS miR-222-3p expression in the NAc of METH-induced CPP mice was detected by quantitative real-time (qPCR). Following adeno-associated virus (AAV)-mediated overexpression or knockdown of miR-222-3p in the NAc, mice were subjected to CPP to investigate the effects of miR-222-3p on METH-induced CPP. Target genes of mir-222-3p were predicted using bioinformatics analysis. Candidate target genes for METH-induced CPP were validated by qPCR. RESULTS miR-222-3p expression in the NAc was decreased in CPP mice. Overexpression of miR-222-3p in the NAc blunted METH-induced CPP. Ppp3r1, Cdkn1c, Fmr1, and PPARGC1A were identified as target gene transcripts potentially mediating the effects of miR-222-3p on METH-induced CPP. CONCLUSION Our results highlight miR-222-3p as a key epigenetic regulator in METH-induced CPP and suggest a potential role for miR-222-3p in the regulation of METH-induced reward-related changes in the brain.
Collapse
Affiliation(s)
- Qing Shang
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jing Wang
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Zhijia Xi
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Baoyao Gao
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Hongyan Qian
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Ran An
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Gaojie Shao
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Hua Liu
- Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing, People's Republic of China
| | - Tao Li
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China. .,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Xinshe Liu
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China. .,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
14
|
Effects of Treadmill Exercise on Social Behavior in Rats Exposed to Thimerosal with Respect to the Hippocampal Level of GluN1, GluN2A, and GluN2B. J Mol Neurosci 2022; 72:1345-1357. [PMID: 35597884 DOI: 10.1007/s12031-022-02027-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
Thimerosal (THIM) kills brain neurons via induction of apoptosis and necrosis and induces the pathological features of autism spectrum disorder (ASD) in rats. THIM also affects the function of glutamatergic receptors. On the other hand, exercise induces both improvement and impairment effects on memory, depending on intensity, type, and duration. Treadmill exercise can also alter the expression of glutamatergic receptors. In this study, we aimed to investigate the effect of THIM and three protocols of treadmill exercise on social interaction memory and hippocampal expression of GluN1, GluN2A, and GluN2B in rats. THIM was injected intramuscularly at the dose of 300 µg/kg. The three-chamber apparatus was used to evaluate social interaction memory, and western blotting was used to assess protein expression. The results showed that THIM impaired social memory. Exercise 1 impaired social affiliation in controls. Social memory was impaired in all exercise groups of controls. Exercise 1 + 2 impaired social affiliation in THIM rats. Social memory was impaired in all groups of THIM rats. Exercises 2 and 1 + 2 decreased the expression of GluN1, and exercise 1 increased the expression of GluN2A and GluN2B in controls. THIM increased the expression of GluN2B, while exercise 1 reversed this effect. All exercise protocols increased the expression of GluN2A, and exercises 2 and 1 + 2 increased the expression of GluN1 in THIM rats. In conclusion, both THIM and exercise impaired social memory. Of note, the results did not show a separate and influential role for glutamatergic subunits in modulating memory processes following THIM injection or exercise.
Collapse
|
15
|
Interaction of lithium and sleep deprivation on memory performance and anxiety-like behavior in male Wistar rats. Behav Brain Res 2022; 428:113890. [DOI: 10.1016/j.bbr.2022.113890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/12/2022] [Accepted: 04/07/2022] [Indexed: 12/28/2022]
|
16
|
Tian H, Chen X, Liao J, Yang T, Cheng S, Mei Z, Ge J. Mitochondrial quality control in stroke: From the mechanisms to therapeutic potentials. J Cell Mol Med 2022; 26:1000-1012. [PMID: 35040556 PMCID: PMC8831937 DOI: 10.1111/jcmm.17189] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/17/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial damage is a critical contributor to stroke‐induced injury, and mitochondrial quality control (MQC) is the cornerstone of restoring mitochondrial homeostasis and plays an indispensable role in alleviating pathological process of stroke. Mitochondria quality control promotes neuronal survival via various adaptive responses for preserving mitochondria structure, morphology, quantity and function. The processes of mitochondrial fission and fusion allow for damaged mitochondria to be segregated and facilitate the equilibration of mitochondrial components such as DNA, proteins and metabolites. The process of mitophagy is responsible for the degradation and recycling of damaged mitochondria. This review aims to offer a synopsis of the molecular mechanisms involved in MQC for recapitulating our current understanding of the complex role that MQC plays in the progression of stroke. Speculating on the prospect that targeted manipulation of MQC mechanisms may be exploited for the rationale design of novel therapeutic interventions in the ischaemic stroke and haemorrhagic stroke. In the review, we highlight the potential of MQC as therapeutic targets for stroke treatment and provide valuable insights for clinical strategies.
Collapse
Affiliation(s)
- Heyan Tian
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Xiangyu Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Jun Liao
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Shaowu Cheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
17
|
Eteghadi MR, Nasehi M, Vaseghi S, Hesami-Tackallou S. The effect of Crocin on TFAM and PGC-1α expression and Catalase and Superoxide dismutase activities following cholestasis-induced neuroinflammation in the striatum of male Wistar rats. Metab Brain Dis 2021; 36:1791-1801. [PMID: 34019207 DOI: 10.1007/s11011-021-00748-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/29/2021] [Indexed: 12/26/2022]
Abstract
Bile secretion is a physiological function that is disrupted following Bile Duct Ligation (BDL) and induces cholestasis. Cholestasis is a bile flow reduction that induces apoptosis, oxidative stress, and inflammation, and alters the expression of genes. Evidence shows the relationship between cholestasis and neuroinflammation. Cholestasis via attenuating mitochondrial biogenesis and anti-oxidant activity can induce neuroinflammation and apoptosis. Mitochondrial transcriptional factor A (TFAM) and Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) are involved in mitochondrial biogenesis, and TFAM, PGC-1α, Catalase (CAT), and Superoxide dismutase (SOD) have a role in upregulating antioxidant pathways. On the other hand, many studies have shown the neuroprotective effects of Crocin, the water-soluble carotenoid of Saffron (Crocus sativus L.). In this study, we aimed to investigate the effect of Crocin on the level of TFAM, PGC-1α, CAT, and SOD following cholestasis-induced neuroinflammation in the rat's striatum. Cholestasis was induced by BDL surgery and administration of Crocin was intraperitoneal, at the dose of 30 mg/kg every day, 24 h after BDL surgery up to thirty days. The results showed that TFAM, PGC-1α, and SOD were decreased following cholestasis; while, CAT was increased. In addition, Crocin restored the effects of cholestasis on the level of TFAM, PGC-1α, and SOD. In conclusion, Crocin may have improvement effects on cholestasis-induced neuroinflammation in the rat's striatum.
Collapse
Affiliation(s)
- Mohammad-Reza Eteghadi
- Department of Biology, Central Tehran Branch, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Saeed Hesami-Tackallou
- Department of Biology, Central Tehran Branch, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
18
|
Molaei P, Vaseghi S, Entezari M, Hashemi M, Nasehi M. The Effect of NeuroAid (MLC901) on Cholestasis-Induced Spatial Memory Impairment with Respect to the Expression of BAX, BCL-2, BAD, PGC-1α and TFAM Genes in the Hippocampus of Male Wistar Rats. Neurochem Res 2021; 46:2154-2166. [PMID: 34031842 DOI: 10.1007/s11064-021-03353-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022]
Abstract
Cholestasis is a bile flow reduction that is induced following Bile Duct Ligation (BDL). Cholestasis impairs memory and induces apoptosis. Apoptosis consists of two pathways: intrinsic and extrinsic. The intrinsic pathway is modulated by BCL-2 (B cell lymphoma-2) family proteins. BCL-2 (a pro-survival BCL-2 protein) has anti-apoptotic effect, while BAD (BCL-2-associated death) and BAX (BCL-2-associated X), the other members of BCL-2 family have pro-apoptotic effect. Furthermore, TFAM (mitochondrial transcriptional factor A) is involved in transcription and maintenance of mitochondrial DNA and PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α) is a master regulator of mitochondrial biogenesis. On the other hand, NeuroAid is a Traditional Chinese Medicine with neuroprotective and anti-apoptosis effects. In this study, we evaluated the effect of cholestasis on spatial memory and expression of BCL-2, BAD, BAX, TFAM, and PGC-1α in the hippocampus of rats. Additionally, we assessed the effect of NeuroAid on cholestasis-induced cognitive and genetic alterations. Cholestasis was induced by BDL surgery and NeuroAid was injected intraperitoneal at the dose of 0.4 mg/kg. Furthermore, spatial memory was evaluated using Morris Water Maze (MWM) apparatus. The results showed cholestasis impaired spatial memory, increased the expression of BAD and BAX, decreased the expression of TFAM and PGC-1α, and did not alter the expression of BCL-2. Also, NeuroAid decreased the expression of BAD and BAX and increased the expression of TFAM, PGC-1α, and BCL-2. In conclusion, cholestasis impaired spatial memory and increased the expression of pro-apoptotic genes. Also, cholestasis decreased the expression of TFAM and PGC-1α. Interestingly, NeuroAid restored the effects of cholestasis.
Collapse
Affiliation(s)
- Pejman Molaei
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, P.O. Box: 13145-784, Tehran, Iran
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, P.O. Box: 13145-784, Tehran, Iran.
| |
Collapse
|
19
|
Navazani P, Vaseghi S, Hashemi M, Shafaati MR, Nasehi M. Effects of Treadmill Exercise on the Expression Level of BAX, BAD, BCL-2, BCL-XL, TFAM, and PGC-1α in the Hippocampus of Thimerosal-Treated Rats. Neurotox Res 2021; 39:1274-1284. [PMID: 33939098 DOI: 10.1007/s12640-021-00370-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/10/2021] [Accepted: 04/26/2021] [Indexed: 01/11/2023]
Abstract
Thimerosal (THIM) induces neurotoxic changes including neuronal death and releases apoptosis inducing factors from mitochondria to cytosol. THIM alters the expression level of factors involved in apoptosis. On the other hand, the anti-apoptotic effects of exercise have been reported. In this study, we aimed to discover the effect of three protocols of treadmill exercise on the expression level of mitochondrial transcription factor A (TFAM), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), BCL-2-associated death (BAD), BCL-2-associated X (BAX), BCL-XL, and BCL-2 (a pro-survival BCL-2 protein) in the hippocampus of control and THIM-exposed rats. Male Wistar rats were used in this research. Real-time PCR was applied to assess genes expression. The results showed that THIM increased the expression of pro-apoptotic factors (BAD and BAX), decreased the expression of anti-apoptotic factors (BCL-2 and BCL-XL), and decreased the expression of factors involved in mitochondrial biogenesis (TFAM and PGC-1α). Treadmill exercise protocols reversed the effect of THIM on all genes. In addition, treadmill exercise protocols decreased the expression of BAD and BAX, increased the expression of BCL-2, and increased the expression of TFAM and PGC-1α in control rats. In conclusion, THIM induced a pro-apoptotic effect and disturbed mitochondrial biogenesis and stability, whereas treadmill exercise reversed these effects.
Collapse
Affiliation(s)
- Pouria Navazani
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Shafaati
- Department of Cellular and Molecular Biology, Faculty of Basic Sciences, Hamadan Branch, Islamic Azad University, Hamadan, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
20
|
Norozpour Y, Nasehi M, Sabouri-Khanghah V, Nami M, Vaseghi S, Zarrindast MR. The effect of alpha-2 adrenergic receptors on memory retention deficit induced by rapid eye movement sleep deprivation. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 23:1571-1575. [PMID: 33489031 PMCID: PMC7811809 DOI: 10.22038/ijbms.2020.44891.10468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Objective(s): Evidence shows that sleep deprivation (SD) disrupts the formation of hippocampus-related memories. Moreover, α2 adrenergic receptors that are wildly expressed in the CA1 hippocampal region have a significant role in modulating both sleep and memory formation. In the present research, we wanted to investigate the effect of stimulation and blockage of CA1 α2 adrenergic receptors by clonidine (an agonist of α2 adrenergic receptor) and yohimbine (an antagonist of α2 adrenergic receptor), respectively, on memory retention impairment induced by REM SD (RSD) in rats. Materials and Methods: Multiple platform apparatus were used to induce RSD, and the passive avoidance task was used to assess memory consolidation. Clonidine and yohimbine were injected intra-CA1. Results: The results showed that RSD (for 24 and 36, but not 12 hr) decreased memory retention, with no effect on locomotion. Post-training intra-CA1 infusion of a subthreshold dose of yohimbine (0.001 μg/rat) did not alter, while clonidine (0.1 μg/rat) restored memory retention impairment induced by RSD (24 and 36 hr). Also, none of the interventions did not influence locomotor activity. Conclusion: Our data strongly showed that CA1 α2 adrenergic receptors have a critical role in RSD-induced memory retention impairment.
Collapse
Affiliation(s)
- Yaser Norozpour
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Vahid Sabouri-Khanghah
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Salar Vaseghi
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Nasehi M, Zadeh-Tehrani SN, Khakpai F, Zarrindast MR. A possible neuroprotective property of ethanol and/or NeuroAiD on the modulation of cognitive function. Neurotoxicol Teratol 2020; 82:106927. [PMID: 32861843 DOI: 10.1016/j.ntt.2020.106927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 11/19/2022]
Abstract
Cognitive impairments and poor performance on tasks needing behavioral flexibility are observable in chronic alcohol exposure. NeuroAid decreases cognitive deficits and improves functional outcomes by restoring neuronal circuits. The aim of the current study was to assess the hypothesis that ethanol exposure would induce neurobehavioral defects which may be reversed by the neuroprotective property of NeuroAid. Adult male Wistar rats were treated with saline, ethanol (0.2 g/kg), NeuroAid (0.8 g/kg) and ethanol (0.2 g/kg) + NeuroAid (0.8 g/kg). Then, behavioral tests were performed using the Y-maze apparatus, hot-plate and tail-flick apparatuses, locomotion apparatus as well as the loss of righting reflex (LORR) and hanging protocols (performance in a wire hanging test). Our results indicated that intraperitoneal (i.p.) administration of ethanol alone and administration of ethanol along with NeuroAid for one week reversed ethanol-induced spatial memory deficits in rats (P < 0.01). Interestingly, treatment with ethanol (0.2 g/kg) for one week induced nociception (P < 0.01). Moreover, one week administration of ethanol (0.2 g/kg) along with NeuroAid (0.8 g/kg) increased latency to LORR (P < 0.001) while four weeks administration of ethanol (0.2 g/kg) along with NeuroAid (0.8 g/kg) decreased sleep time (P < 0.01). In addition, a single administration of all drugs did not alter locomotor activity (P > 0.05) and hanging (P > 0.05). Improvement of behavioral tasks after one-week i.p. administration of ethanol and/or NeuroAid in comparison with a single administration of ethanol and/or NeuroAid may be due to the neuroprotective property of ethanol and/or NeuroAiD.
Collapse
Affiliation(s)
- Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Divanbeigi A, Nasehi M, Vaseghi S, Amiri S, Zarrindast MR. Tropisetron But Not Granisetron Ameliorates Spatial Memory Impairment Induced by Chronic Cerebral Hypoperfusion. Neurochem Res 2020; 45:2631-2640. [PMID: 32797381 DOI: 10.1007/s11064-020-03110-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022]
Abstract
Tropisetron and Granisetorn are 5-HT3 antagonists with antiemetic effects. Tropisetron also has a partial agonistic effect on alpha-7 nicotinic acetylcholine receptors (α7 nAChRs). On the other hand, chronic cerebral hypoperfusion (CCH) attenuates cerebral blood flow and impairs cognitive functions. The goal of this study was to investigate the effect of Tropisetron and Granisetron on CCH-induced spatial memory impairment in rats. Forty-eight male Wistar rats were used in this study. 2-VO surgery was done to induce CCH and Radial Eight Arm Maz apparatus was used to evaluate spatial memory (working and reference memory). Tropisetron was injected intraperitoneally at the doses of 1 and 5 mg/kg, and Granisetron was injected intraperitoneally at the dose of 3 mg/kg. Dorsal hippocampal (CA1) neurons count, Interleukin 6 (IL-6) serum level, and serotonin-reuptake transporter (SERT) gene expression were also evaluated. The results showed, CCH impaired working and reference memory, increased IL-6 serum level, and decreased CA1 neurons and SERT expression. Tropisetron at the dose of 5 mg/kg restored all the effects of CCH. However, Granisetron did not restore CCH-induced memory impairment. Furthermore, Granisetron had no effect on IL-6. While, it increased SERT expression and CA1 neurons. In conclusion, Tropisetron but not Granisetron, ameliorated spatial memory impairment induced by CCH. We suggested conducting more detailed studies investigating the role of serotonergic system (5-HT3 receptors and serotonin transporters) and also α7 nAChRs in the effects of Tropisetron.
Collapse
Affiliation(s)
- Ashkan Divanbeigi
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Scientific Research Committee, Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran.
| | - Salar Vaseghi
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran
| | - Sepideh Amiri
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|