1
|
Sun LY, Ke SB, Li BX, Chen FS, Huang ZQ, Li L, Zhang JF, Cai YX, Zhu HJ, Zhang XD, Du RL, Liu Y, Chen YS. ANP32E promotes esophageal cancer progression and paclitaxel resistance via P53/SLC7A11 axis-regulated ferroptosis. Int Immunopharmacol 2025; 144:113436. [PMID: 39566382 DOI: 10.1016/j.intimp.2024.113436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
Esophageal cancer (EC) is associated with high mortality rates and widespread resistance to chemotherapeutic agents, like paclitaxel (PTX), posing a significant global public health challenge. ANP32E is a member of the acidic nuclear phosphoprotein 32 family, its specific biological functions and mechanisms in EC remain unclear. Through bioinformatics analysis and clinical tissue sample studies, we observed a marked upregulation of ANP32E expression in EC tissues. Utilizing ANP32E knock-out EC cell models and xenograft experiments in nude mice, we demonstrated that the absence of ANP32E significantly inhibits tumor progression and migration, whereas its overexpression exacerbates tumor growth. Transcriptomic sequencing (RNA-seq) further revealed activation of the ferroptosis pathway in ANP32E deficient cells, which was confirmed through experiments showing enhanced ferroptosis that could be reversed by the ferroptosis inhibitor ferrostatin-1. At the molecular level, ANP32E regulates EC progression and ferroptosis via the p53/SLC7A11 axis. ANP32E depletion resulted in increased p53 expression level, while inhibition of p53 partially restored the suppressed cell proliferation and increased ferroptosis in ANP32E-depleted cells. Additionally, knocking out ANP32E significantly enhanced EC cell sensitivity to PTX, Combining PTX with the ferroptosis inducer erastin was more effective in inhibiting tumor growth. In vivo, we confirmed the synergistic effect of ANP32E knock-out combined with PTX demonstrating superior tumor suppressing. Overall, our findings suggest that ANP32E regulates EC progression and ferroptosis through the p53/SLC7A11 axis, offering a potential molecular target for overcoming PTX resistance in EC treatment.
Collapse
Affiliation(s)
- Li-Ying Sun
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shao-Bo Ke
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bo-Xin Li
- Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Fei-Shan Chen
- Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Zhi-Qun Huang
- Department of Allergy The 1(st) affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Le Li
- Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Jian-Feng Zhang
- Xuancheng Institutes of Food and Drug Control, Xuancheng 242000, China
| | - Yu-Xin Cai
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hang-Jia Zhu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiao-Dong Zhang
- Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Run-Lei Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Liu
- Hengyang Medical School, University of South China, Hengyang 421000, China.
| | - Yong-Shun Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
2
|
Shi L, Zhang Z, Huang Y, Zheng Y. FOXCUT regulates the malignant phenotype of triple-negative breast Cancer via the miR-337-3p/ANP32E Axis. Genomics 2024; 116:110892. [PMID: 38944356 DOI: 10.1016/j.ygeno.2024.110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND The lack of specific molecular targets and the rapid spread lead to a worse prognosis of triple-negative breast cancer (TNBC). Therefore, identifying new therapeutic and prognostic biomarkers helps to develop effective treatment strategies for TNBC. METHODS Through preliminary bioinformatics analysis, FOXCUT was found to be significantly overexpressed in breast cancer, especially in TNBC. Tissue samples were collected from 15 TNBC patients, and qRT-PCR was employed to validate the expression of FOXCUT in both TNBC patient tissues and TNBC cell lines. We also carried out the GSEA analysis and KEGG enrichment analysis of FOXCUT. Additionally, the effects of FOXCUT knockdown on TNBC cell malignant behaviors, and aerobic glycolysis were assessed by methods including CCK-8, Transwell, western blot, and Seahorse XF 96 analyses. Moreover, utilizing databases predicting interactions between ceRNAs, corresponding lncRNA-miRNA binding relationships, and miRNA-mRNA interactions were predicted. These predictions were subsequently validated through RNA immunoprecipitation and dual-luciferase reporter assays. RESULTS FOXCUT exhibited high expression in both TNBC tissues and cell lines, fostering cell malignant behaviors and glycolysis. FOXCUT was found to sponge miR-337-3p, while miR-337-3p negatively regulated the expression of ANP32E. Consequently, FOXCUT ultimately facilitated the malignant phenotype of TNBC by upregulating ANP32E expression. CONCLUSION This study elucidated the role of FOXCUT in elevating aerobic glycolysis levels in TNBC and driving malignant cancer cell development via the miR-337-3p/ANP32E regulatory axis.
Collapse
Affiliation(s)
- Lei Shi
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Ziwen Zhang
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Yuan Huang
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Yabing Zheng
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
3
|
Zhang J, Dong Y, Yu S, Hu K, Zhang L, Xiong M, Liu M, Sun X, Li S, Yuan Y, Zhang C, Zhu M, Wei Y, Zhu Y, Yu Y, Zhang P, Liu T. IL-4/IL-4R axis signaling drives resistance to immunotherapy by inducing the upregulation of Fcγ receptor IIB in M2 macrophages. Cell Death Dis 2024; 15:500. [PMID: 39003253 PMCID: PMC11246528 DOI: 10.1038/s41419-024-06875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
In recent years, immunotherapy, particularly PD-1 antibodies, have significantly enhanced the outcome of gastric cancer patients. Despite these advances, some patients do not respond well to treatment, highlighting the need to understand resistance mechanisms and develop predictive markers of treatment effectiveness. This study retrospectively analyzed data from 106 patients with stage IV gastric cancer who were treated with first-line immunotherapy in combination with chemotherapy. By comparing plasma cytokine levels between patients resistant and sensitive to PD-1 antibody therapy, the researchers identified elevated IL-4 expression in the resistant patients. Mechanical investigations revealed that IL-4 induces metabolic changes in macrophages that activate the PI3K/AKT/mTOR pathway. This alteration promotes ATP production, enhances glycolysis, increases lactic acid production, and upregulates FcγRIIB expression in macrophages. Ultimately, these changes lead to CD8+ T cell dysfunction and resistance to PD-1 antibody therapy in gastric cancer. These findings highlight the role of IL-4-induced macrophage polarization and metabolic reprogramming in immune resistance and verify IL-4 as potential targets for improving treatment outcomes in gastric cancer patients.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yu Dong
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shan Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Keshu Hu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingyun Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min Xiong
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mengling Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xun Sun
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suyao Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yitao Yuan
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chi Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengxuan Zhu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yichou Wei
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanjing Zhu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiyi Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Pengfei Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Huang Z, Xie L, Feng H, Lan M, Xu T, Chen D, Pu L, Lu Y. DAZL regulate germline, pluripotency, and proliferation related genes in chicken PGCs and cooperate with DDX4. Theriogenology 2024; 222:22-30. [PMID: 38615433 DOI: 10.1016/j.theriogenology.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
Abstract
Primordial germ cells (PGCs) are the precursors of germ cells and play a crucial role in germline transmission. In chickens, PGCs can be cultured in vitro while maintaining their germline stem cell characteristics. The Deleted in Azoospermia-Like (DAZL) gene, which is highly expressed in PGCs, is essential for germ cell development. Here, through gene knockout experiments, we discovered that the loss of DAZL expression in chicken PGCs led to decreased proliferation and survival. By next employed techniques such as RIP-seq (RNA Binding Protein Immunoprecipitation) and Co-IP-MS/MS (Co-immunoprecipitation Mass Spectrometry), we identified genes directly regulated by DAZL or cooperating with DAZL at the transcriptomic and proteomic levels. DAZL was found to control genes related to germline development, pluripotency, and cell proliferation in PGCs. Additionally, we observed a significant overlap between RNAs and proteins that interact with both DAZL and DDX4, indicating their cooperation in the gene regulation network in chicken PGCs. Our research provides valuable insights into the function of the DAZL gene in germline cells.
Collapse
Affiliation(s)
- Zhenwen Huang
- From the Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Long Xie
- From the Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hu Feng
- From the Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Meiyu Lan
- From the Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Tianpeng Xu
- From the Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Dongyang Chen
- From the Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Liping Pu
- From the Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yangqing Lu
- From the Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
5
|
Dijkwel Y, Hart-Smith G, Kurscheid S, Tremethick DJ. ANP32e Binds Histone H2A.Z in a Cell Cycle-Dependent Manner and Regulates Its Protein Stability in the Cytoplasm. Mol Cell Biol 2024; 44:72-85. [PMID: 38482865 PMCID: PMC10950284 DOI: 10.1080/10985549.2024.2319731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
ANP32e, a chaperone of H2A.Z, is receiving increasing attention because of its association with cancer growth and progression. An unanswered question is whether ANP32e regulates H2A.Z dynamics during the cell cycle; this could have clear implications for the proliferation of cancer cells. We confirmed that ANP32e regulates the growth of human U2OS cancer cells and preferentially interacts with H2A.Z during the G1 phase of the cell cycle. Unexpectedly, ANP32e does not mediate the removal of H2A.Z from chromatin, is not a stable component of the p400 remodeling complex and is not strongly associated with chromatin. Instead, most ANP32e is in the cytoplasm. Here, ANP32e preferentially interacts with H2A.Z in the G1 phase in response to an increase in H2A.Z protein abundance and regulates its protein stability. This G1-specific interaction was also observed in the nucleoplasm but was unrelated to any change in H2A.Z abundance. These results challenge the idea that ANP32e regulates the abundance of H2A.Z in chromatin as part of a chromatin remodeling complex. We propose that ANP32e is a molecular chaperone that maintains the soluble pool of H2A.Z by regulating its protein stability and acting as a buffer in response to cell cycle-dependent changes in H2A.Z abundance.
Collapse
Affiliation(s)
- Yasmin Dijkwel
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Gene Hart-Smith
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Sebastian Kurscheid
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - David J. Tremethick
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
6
|
Liu J, Liu Y, Zhao Q. Knockdown of ANP32E inhibits colorectal cancer cell growth and glycolysis by regulating the AKT/mTOR pathway. Open Life Sci 2024; 19:20220817. [PMID: 38585643 PMCID: PMC10997116 DOI: 10.1515/biol-2022-0817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 04/09/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common tumor, with an increasing number of deaths worldwide each year. Tremendous advances in the diagnosis and treatment of CRC have significantly improved the outcomes for CRC patients. Additionally, accumulating evidence has hinted the relationship between acidic nuclear phosphoprotein 32 family member E (ANP32E) and cancer progression. But the role of ANP32E in CRC remains unclear. In our study, through TCGA database, it was demonstrated that the expression of ANP32E was enhanced in COAD tissues (n = 286). In addition, the mRNA and protein expression of ANP32E was also confirmed to be upregulated in CRC cell lines. Further investigation uncovered that knockdown of ANP32E suppressed cell proliferation and glycolysis, and facilitated cell apoptosis in CRC. Moreover, inhibition of ANP32E inhibited the AKT/mTOR pathway. Through rescue assays, we discovered that the reduced cell proliferation, glycolysis and the enhanced cell apoptosis mediated by ANP32E repression was reversed by SC79 treatment. In summary, ANP32E aggravated the growth and glycolysis of CRC cells by stimulating the AKT/mTOR pathway. This finding suggested that the ANP32E has the potential to be explored as a novel biomarker for CRC treatment.
Collapse
Affiliation(s)
- Jiaojiao Liu
- Department of Clinical Laboratory, Beihua University Affiliated Hospital, No. 12, Jiefang Middle Road, Jilin, Jilin, 132011, China
| | - Yanchao Liu
- Department of Clinical Laboratory, Jilin Gynecology and Obstetrics Hospital, Jilin, Jilin, 130211, China
| | - Qi Zhao
- Department of Clinical Laboratory, Beihua University Affiliated Hospital, No. 12, Jiefang Middle Road, Jilin, Jilin, 132011, China
| |
Collapse
|
7
|
Shi L, Duan R, Sun Z, Jia Q, Wu W, Wang F, Liu J, Zhang H, Xue X. LncRNA GLTC targets LDHA for succinylation and enzymatic activity to promote progression and radioiodine resistance in papillary thyroid cancer. Cell Death Differ 2023; 30:1517-1532. [PMID: 37031273 PMCID: PMC10244348 DOI: 10.1038/s41418-023-01157-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Dysregulation of long noncoding RNAs (lncRNAs) has been associated with the development and progression of many human cancers. Lactate dehydrogenase A (LDHA) enzymatic activity is also crucial for cancer development, including the development of papillary thyroid cancer (PTC). However, whether specific lncRNAs can regulate LDHA activity during cancer progression remains unclear. Through screening, we identified an LDHA-interacting lncRNA, GLTC, which is required for the increased aerobic glycolysis and cell viability in PTC. GLTC was significantly upregulated in PTC tissues compared with nontumour thyroid tissues. High expression of GLTC was correlated with more extensive distant metastasis, a larger tumour size, and poorer prognosis. Mass spectrometry revealed that GLTC, as a binding partner of LDHA, promotes the succinylation of LDHA at lysine 155 (K155) via competitive inhibition of the interaction between SIRT5 and LDHA, thereby promoting LDHA enzymatic activity. Overexpression of the succinylation mimetic LDHAK155E mutant restored glycolytic metabolism and cell viability in cells in which metabolic reprogramming and cell viability were ceased due to GLTC depletion. Interestingly, GLTC inhibition abrogated the effects of K155-succinylated LDHA on radioiodine (RAI) resistance in vitro and in vivo. Taken together, our results indicate that GLTC plays an oncogenic role and is an attractive target for RAI sensitisation in PTC treatment.
Collapse
Affiliation(s)
- Liang Shi
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rui Duan
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhenhua Sun
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qiong Jia
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wenyu Wu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, Shanghai, China.
| | - Hao Zhang
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Xue Xue
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
Sabbir Ahmed CM, Canchola A, Paul B, Alam MRN, Lin YH. Altered long non-coding RNAs expression in normal and diseased primary human airway epithelial cells exposed to diesel exhaust particles. Inhal Toxicol 2023; 35:157-168. [PMID: 36877189 PMCID: PMC10424575 DOI: 10.1080/08958378.2023.2185703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/24/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Exposure to diesel exhaust particles (DEP) has been linked to a variety of adverse health effects, including increased morbidity and mortality from cardiovascular diseases, chronic obstructive pulmonary disease (COPD), metabolic syndrome, and lung cancer. The epigenetic changes caused by air pollution have been associated with increased health risks. However, the exact molecular mechanisms underlying the lncRNA-mediated pathogenesis induced by DEP exposure have not been revealed. METHODS Through RNA-sequencing and integrative analysis of both mRNA and lncRNA profiles, this study investigated the role of lncRNAs in altered gene expression in healthy and diseased human primary epithelial cells (NHBE and DHBE-COPD) exposed to DEP at a dose of 30 μg/cm2. RESULTS We identified 503 and 563 differentially expressed (DE) mRNAs and a total of 10 and 14 DE lncRNAs in NHBE and DHBE-COPD cells exposed to DEP, respectively. In both NHBE and DHBE-COPD cells, enriched cancer-related pathways were identified at mRNA level, and 3 common lncRNAs OLMALINC, AC069234.2, and LINC00665 were found to be associated with cancer initiation and progression. In addition, we identified two cis-acting (TMEM51-AS1 and TTN-AS1) and several trans-acting lncRNAs (e.g. LINC01278, SNHG29, AC006064.4, TMEM51-AS1) only differentially expressed in COPD cells, which could potentially play a role in carcinogenesis and determine their susceptibility to DEP exposure. CONCLUSIONS Overall, our work highlights the potential importance of lncRNAs in regulating DEP-induced gene expression changes associated with carcinogenesis, and individuals suffering from COPD are likely to be more vulnerable to these environmental triggers.
Collapse
Affiliation(s)
- C. M. Sabbir Ahmed
- Environmental Toxicology Graduate Program, University of California, Riverside, United States
| | - Alexa Canchola
- Environmental Toxicology Graduate Program, University of California, Riverside, United States
| | - Biplab Paul
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Md Rubaiat Nurul Alam
- Environmental Toxicology Graduate Program, University of California, Riverside, United States
| | - Ying-Hsuan Lin
- Environmental Toxicology Graduate Program, University of California, Riverside, United States
- Department of Environmental Sciences, University of California, Riverside, United States
| |
Collapse
|
9
|
Zhu X, Zou Y, Wu T, Ni J, Tan Q, Wang Q, Zhang M. ANP32E contributes to gastric cancer progression via NUF2 upregulation. Mol Med Rep 2022; 26:275. [PMID: 35795988 PMCID: PMC9364136 DOI: 10.3892/mmr.2022.12791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 06/09/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Xiaowen Zhu
- Department of Proctology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Yumin Zou
- Department of Central Sterile Supply, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Tong Wu
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Jian Ni
- Department of Proctology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Qingyun Tan
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Qingdong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Meijia Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| |
Collapse
|
10
|
ANP32 Family as Diagnostic, Prognostic, and Therapeutic Biomarker Related to Immune Infiltrates in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:5791471. [PMID: 35280441 PMCID: PMC8913125 DOI: 10.1155/2022/5791471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide, with high incidence and mortality rate. There is an urgent need to identify effective diagnostic and prognostic biomarkers for HCC. Members of the acidic leucine-rich nucleophosphoprotein 32 (ANP32) family, which mainly includes ANP32A, ANP32B, and ANP32E, are abnormally expressed and have prognostic value in certain cancers. However, the diagnostic, prognostic, and therapeutic value of ANP32 family members in HCC has not yet been fully studied. In this study, we identified the diagnostic and prognostic value of ANP32 family members in HCC. Transcriptome data from public databases, such as the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, suggested that ANP32A, ANP32B, and ANP32E were upregulated in HCC tissues, and high expression of ANP32 family members was associated with advanced pathologic stage and histologic grade. Our immunohistochemistry and western blot results further verified the differential expression of ANP32 family members. ANP32A, ANP32B, and ANP32E had an outstanding diagnostic potential. Survival analysis of HCC patients in TCGA databases demonstrated that ANP32A, ANP32B, and ANP32E were associated with poor overall survival (OS) and disease-specific survival (DSS). Univariate and multivariate Cox analyses suggested the capability of ANP32B and ANP32E to independently predict the OS and DSS of HCC patients. Gene set enrichment analysis (GSEA) showed that ANP32 family members were associated with immune response, epidermal cell differentiation, and stem cell proliferation. Expression of ANP32 family members was associated with immune cell infiltration and immune status in the tumor microenvironment of HCC, and patients with high ANP32 family expression had poor sensitivity to immunotherapy. Finally, we identified potential chemotherapy drugs for HCC patients with high ANP32 family expression by CellMiner database. This study suggested the diagnostic, prognostic, and therapeutic roles of the ANP32 family in HCC patients, providing potential therapeutic targets for HCC.
Collapse
|
11
|
Khatun A, Hasan M, Abd El-Emam MM, Fukuta T, Mimura M, Tashima R, Yoneda S, Yoshimi S, Kogure K. Effective Anticancer Therapy by Combination of Nanoparticles Encapsulating Chemotherapeutic Agents and Weak Electric Current. Biol Pharm Bull 2022; 45:194-199. [PMID: 35110506 DOI: 10.1248/bpb.b21-00714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Delivery of medicines using nanoparticles via the enhanced permeability and retention (EPR) effect is a common strategy for anticancer chemotherapy. However, the extensive heterogeneity of tumors affects the applicability of the EPR effect, which needs to overcome for effective anticancer therapy. Previously, we succeeded in the noninvasive transdermal delivery of nanoparticles by weak electric current (WEC) and confirmed that WEC regulates the intercellular junctions in the skin by activating cell signaling pathways (J. Biol. Chem., 289, 2014, Hama et al.). In this study, we applied WEC to tumors and investigated the EPR effect with polyethylene glycol (PEG)-modified doxorubicin (DOX) encapsulated nanoparticles (DOX-NP) administered via intravenous injection into melanoma-bearing mice. The application of WEC resulted in a 2.3-fold higher intratumor accumulation of nanoparticles. WEC decreased the amount of connexin 43 in tumors while increasing its phosphorylation; therefore, the enhancing of intratumor delivery of DOX-NP is likely due to the opening of gap junctions. Furthermore, WEC combined with DOX-NP induced a significant suppression of tumor growth, which was stronger than with DOX-NP alone. In addition, WEC alone showed tumor growth inhibition, although it was not significant compared with non-treated group. These results are the first to demonstrate that effective anticancer therapy by combination of nanoparticles encapsulating chemotherapeutic agents and WEC.
Collapse
Affiliation(s)
- Anowara Khatun
- Graduate School of Biomedical Sciences, Tokushima University
| | - Mahadi Hasan
- Graduate School of Biomedical Sciences, Tokushima University.,Tokyo Biochemical Research Foundation
| | - Mahran Mohamed Abd El-Emam
- Graduate School of Pharmaceutical Sciences, Tokushima University.,Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University
| | - Tatsuya Fukuta
- Graduate School of Biomedical Sciences, Tokushima University.,School of Pharmaceutical Sciences, Wakayama Medical University
| | - Miyuki Mimura
- Faculty of Pharmaceutical Sciences, Tokushima University
| | - Riho Tashima
- Faculty of Pharmaceutical Sciences, Tokushima University
| | - Shintaro Yoneda
- Graduate School of Pharmaceutical Sciences, Tokushima University
| | | | - Kentaro Kogure
- Graduate School of Biomedical Sciences, Tokushima University
| |
Collapse
|
12
|
Bao L, Xu T, Lu X, Huang P, Pan Z, Ge M. Metabolic Reprogramming of Thyroid Cancer Cells and Crosstalk in Their Microenvironment. Front Oncol 2021; 11:773028. [PMID: 34926283 PMCID: PMC8674491 DOI: 10.3389/fonc.2021.773028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolism differs significantly between tumor and normal cells. Metabolic reprogramming in cancer cells and metabolic interplay in the tumor microenvironment (TME) are important for tumor formation and progression. Tumor cells show changes in both catabolism and anabolism. Altered aerobic glycolysis, known as the Warburg effect, is a well-recognized characteristic of tumor cell energy metabolism. Compared with normal cells, tumor cells consume more glucose and glutamine. The enhanced anabolism in tumor cells includes de novo lipid synthesis as well as protein and nucleic acid synthesis. Although these forms of energy supply are uneconomical, they are required for the functioning of cancer cells, including those in thyroid cancer (TC). Increasing attention has recently focused on alterations of the TME. Understanding the metabolic changes governing the intricate relationship between TC cells and the TME may provide novel ideas for the treatment of TC.
Collapse
Affiliation(s)
- Lisha Bao
- Second Clinical College, Zhejiang Chinese Medical School, Hangzhou, China
- ENT-Head & Neck Surgery Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Tong Xu
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xixuan Lu
- ENT-Head & Neck Surgery Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Ping Huang
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zongfu Pan
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Minghua Ge
- ENT-Head & Neck Surgery Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
13
|
Lin C, Chen H, Han R, Li L, Lu C, Hao S, Wang Y, He Y. Hexokinases II-mediated glycolysis governs susceptibility to crizotinib in ALK-positive non-small cell lung cancer. Thorac Cancer 2021; 12:3184-3193. [PMID: 34729938 PMCID: PMC8636216 DOI: 10.1111/1759-7714.14184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022] Open
Abstract
Background Activation of ALK leads to a high level of aerobic glycolysis related to crizotinib insensitivity in anaplastic lymphoma kinase‐positive non‐small cell lung cancer (ALK+ NSCLC). The strategy and mechanism of glycolysis inhibition in sensitizing ALK+ NSCLC cells to crizotinib requires further investigation. Methods The levels of glycolysis in H3122 and H2228 cells were evaluated through detection of glucose consumption and lactate production. MTT assay was used to explore the effects of glycolytic inhibitors on crizotinib sensitivity, and the potential mechanism of action were detected by colony formation, Ki67 incorporation assay, transwell assay, small interfering RNA technology and western blot analysis. Results ALK+ NSCLC cells exhibited significantly higher levels of glycolysis compared to ALK− NSCLC cells. Long‐term exposure to crizotinib could decrease the sensitivity of ALK+ NSCLC cells to crizotinib via increasing the levels of glycolysis related to hexokinases II (HK2). Crizotinib in combination with glycolysis inhibitor 2‐deoxy‐D‐glucose (2DG) synergistically inhibited proliferation, glycolysis, colony formation and invasion ability of ALK+ NSCLC cells. 2DG sensitization crizotinib might be associated with the inhibition of HK2‐mediated glycolysis and P‐ALK/AKT/mTOR signaling pathway in H3122 and H2228 cells. Conclusions These results indicate that HK2‐mediated glycolysis plays a crucial role in the increased tolerance of ALK+ NSCLC cells to crizotinib. 2DG may sensitize ALK+ NSCLC to crizotinib via suppression of HK2‐mediated glycolysis and the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Hengyi Chen
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Rui Han
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Li
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuai Hao
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yubo Wang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
14
|
Hanamura I. Gain/Amplification of Chromosome Arm 1q21 in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13020256. [PMID: 33445467 PMCID: PMC7827173 DOI: 10.3390/cancers13020256] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Multiple myeloma (MM), a plasma cell neoplasm, is an incurable hematological malignancy. Gain/amplification of chromosome arm 1q21 (1q21+) is the most common adverse genomic abnormality associated with disease progression and drug resistance. While possible mechanisms of 1q21+ occurrence and candidate genes in the 1q21 amplicon have been suggested, the precise pathogenesis of MM with 1q21+ is unknown. Herein, we review the current knowledge about the clinicopathological features of 1q21+ MM, which can assist in effective therapeutic approaches for MM patients with 1q21+. Abstract Multiple myeloma (MM), a plasma cell neoplasm, is an incurable hematological malignancy characterized by complex genetic and prognostic heterogeneity. Gain or amplification of chromosome arm 1q21 (1q21+) is the most frequent adverse chromosomal aberration in MM, occurring in 40% of patients at diagnosis. It occurs in a subclone of the tumor as a secondary genomic event and is more amplified as the tumor progresses and a risk factor for the progression from smoldering multiple myeloma to MM. It can be divided into either 1q21 gain (3 copies) or 1q21 amplification (≥4 copies), and it has been suggested that the prognosis is worse in cases of amplification than gain. Trisomy of chromosome 1, jumping whole-arm translocations of chromosome1q, and tandem duplications lead to 1q21+ suggesting that its occurrence is not consistent at the genomic level. Many studies have reported that genes associated with the malignant phenotype of MM are situated on the 1q21 amplicon, including CKS1B, PSMD4, MCL1, ANP32E, and others. In this paper, we review the current knowledge regarding the clinical features, prognostic implications, and the speculated pathology of 1q21+ in MM, which can provide clues for an effective treatment approach to MM patients with 1q21+.
Collapse
Affiliation(s)
- Ichiro Hanamura
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1, Karimata, Yazako, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
15
|
Ferrand J, Rondinelli B, Polo SE. Histone Variants: Guardians of Genome Integrity. Cells 2020; 9:E2424. [PMID: 33167489 PMCID: PMC7694513 DOI: 10.3390/cells9112424] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Chromatin integrity is key for cell homeostasis and for preventing pathological development. Alterations in core chromatin components, histone proteins, recently came into the spotlight through the discovery of their driving role in cancer. Building on these findings, in this review, we discuss how histone variants and their associated chaperones safeguard genome stability and protect against tumorigenesis. Accumulating evidence supports the contribution of histone variants and their chaperones to the maintenance of chromosomal integrity and to various steps of the DNA damage response, including damaged chromatin dynamics, DNA damage repair, and damage-dependent transcription regulation. We present our current knowledge on these topics and review recent advances in deciphering how alterations in histone variant sequence, expression, and deposition into chromatin fuel oncogenic transformation by impacting cell proliferation and cell fate transitions. We also highlight open questions and upcoming challenges in this rapidly growing field.
Collapse
Affiliation(s)
| | | | - Sophie E. Polo
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, 75013 Paris, France; (J.F.); (B.R.)
| |
Collapse
|
16
|
Li L, Lin X, Xu P, Jiao Y, Fu P. LncRNA GAS5
sponges
miR
‐362‐5p to promote sensitivity of thyroid cancer cells to
131
I
by upregulating
SMG1. IUBMB Life 2020; 72:2420-2431. [PMID: 32856394 DOI: 10.1002/iub.2365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Li Li
- Department of Nuclear Medicine the First Affiliated Hospital of Harbin Medical University Harbin Heilongjiang China
| | - Xiaozong Lin
- Department of Orthopedics the Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang China
| | - Peng Xu
- Department of Nuclear Medicine the First Affiliated Hospital of Harbin Medical University Harbin Heilongjiang China
| | - Yuying Jiao
- Department of Nuclear Medicine the First Affiliated Hospital of Harbin Medical University Harbin Heilongjiang China
| | - Peng Fu
- Department of Nuclear Medicine the First Affiliated Hospital of Harbin Medical University Harbin Heilongjiang China
| |
Collapse
|