1
|
Liu J, Zhu J, Yang R, Su C, Wang Z, Meng J, Luan Y. SlLTPg1, a tomato lipid transfer protein, positively regulates in response to biotic stresses. Int J Biol Macromol 2024; 279:135219. [PMID: 39216573 DOI: 10.1016/j.ijbiomac.2024.135219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Late blight, caused by Phytophthora infestans (P. infestans), is among the most devastating diseases affecting tomato and other Solanaceae species. Lipid transfer proteins (LTPs) represent a class of small, basic proteins that play a crucial role in combating biotic stresses. Previous studies have shown that SlLTPg1 most strongly responds after P. infestans infestation among the LTPs family in tomato. However, the function of SlLTPg1 in disease resistance remains unclear. Here, we constructed transient overexpression and VIGS-silenced plants of SlLTPg1. Our results revealed that SlLTPg1 plays a regulatory role in enhancing tomato resistance against P. infestans. This enhancement was attributed to the upregulation of defense-related genes and reactive oxygen species (ROS) scavenging genes, as well as increased enzymatic antioxidant activities. Importantly, we found that the SlLTPg1 protein significantly inhibited the growth of Fusarium oxysporum (F. oxysporum) by observing the zone of inhibition. Interestingly, we found smaller lesion diameters and upregulated expression levels of PR genes in transient overexpression SlLTPg1 of tobacco. Therefore, we further constructed transgenic tobacco lines of SlLTPg1, presenting evidence that overexpression of SlLTPg1 could positively regulate the resistance of tobacco to F. oxysporum. These findings revealed the role of SlLTPg1 in tomato resistance to P. infestans and tobacco resistance to F. oxysporum. Moreover, we propose SlLTPg1 as a potential candidate gene for augmenting broad-spectrum plant resistance against pathogens.
Collapse
Affiliation(s)
- Jie Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jiaxuan Zhu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ruirui Yang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Chenglin Su
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhicheng Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yushi Luan
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
2
|
Palumbo F, Gabelli G, Pasquali E, Vannozzi A, Farinati S, Draga S, Ravi S, Della Lucia MC, Bertoldo G, Barcaccia G. RNA-seq analyses on gametogenic tissues of alfalfa (Medicago sativa) revealed plant reproduction- and ploidy-related genes. BMC PLANT BIOLOGY 2024; 24:826. [PMID: 39227784 PMCID: PMC11370029 DOI: 10.1186/s12870-024-05542-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND In alfalfa (Medicago sativa), the coexistence of interfertile subspecies (i.e. sativa, falcata and coerulea) characterized by different ploidy levels (diploidy and tetraploidy) and the occurrence of meiotic mutants capable of producing unreduced (2n) gametes, have been efficiently combined for the establishment of new polyploids. The wealth of agronomic data concerning forage quality and yield provides a thorough insight into the practical benefits of polyploidization. However, many of the underlying molecular mechanisms regarding gene expression and regulation remained completely unexplored. In this study, we aimed to address this gap by examining the transcriptome profiles of leaves and reproductive tissues, corresponding to anthers and pistils, sampled at different time points from diploid and tetraploid Medicago sativa individuals belonging to progenies produced by bilateral sexual polyploidization (dBSP and tBSP, respectively) and tetraploid individuals stemmed from unilateral sexual polyploidization (tUSP). RESULTS Considering the crucial role played by anthers and pistils in the reduced and unreduced gametes formation, we firstly analyzed the transcriptional profiles of the reproductive tissues at different stages, regardless of the ploidy level and the origin of the samples. By using and combining three different analytical methodologies, namely weighted-gene co-expression network analysis (WGCNA), tau (τ) analysis, and differentially expressed genes (DEGs) analysis, we identified a robust set of genes and transcription factors potentially involved in both male sporogenesis and gametogenesis processes, particularly in crossing-over, callose synthesis, and exine formation. Subsequently, we assessed at the same floral stage, the differences attributable to the ploidy level (tBSP vs. dBSP) or the origin (tBSP vs. tUSP) of the samples, leading to the identification of ploidy and parent-specific genes. In this way, we identified, for example, genes that are specifically upregulated and downregulated in flower buds in the comparison between tBSP and dBSP, which could explain the reduced fertility of the former compared to the latter materials. CONCLUSIONS While this study primarily functions as an extensive investigation at the transcriptomic level, the data provided could represent not only a valuable original asset for the scientific community but also a fully exploitable genomic resource for functional analyses in alfalfa.
Collapse
Affiliation(s)
- Fabio Palumbo
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | - Giovanni Gabelli
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | | | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | - Silvia Farinati
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | - Samela Draga
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | - Samathmika Ravi
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | - Maria Cristina Della Lucia
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | - Giovanni Bertoldo
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy.
| |
Collapse
|
3
|
Ordaz NA, Nagalakshmi U, Boiteux LS, Atamian HS, Ullman DE, Dinesh-Kumar SP. The Sw-5b NLR Immune Receptor Induces Early Transcriptional Changes in Response to Thrips and Mechanical Modes of Inoculation of Tomato spotted wilt orthotospovirus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:705-715. [PMID: 37432156 DOI: 10.1094/mpmi-03-23-0032-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The NLR (nucleotide-binding leucine-rich repeat) class immune receptor Sw-5b confers resistance to Tomato spotted wilt orthotospovirus (TSWV). Although Sw-5b is known to activate immunity upon recognition of the TSWV movement protein NSm, we know very little about the downstream events that lead to resistance. Here, we investigated the Sw-5b-mediated early transcriptomic changes that occur in response to mechanical and thrips-mediated inoculation of TSWV, using near-isogenic tomato lines CNPH-LAM 147 (Sw5b+/+) and Santa Clara (Sw-5b-/-). We observed earlier Sw-5b-mediated transcriptional changes in response to thrips-mediated inoculation compared with that in response to mechanical inoculation of TSWV. With thrips-mediated inoculation, differentially expressed genes (DEGs) were observed at 12, 24, and 72 h postinoculation (hpi). Whereas with mechanical inoculation, DEGs were observed only at 72 hpi. Although some DEGs were shared between the two methods of inoculation, many DEGs were specific to either thrips-mediated or mechanical inoculation of TSWV. In response to thrips-mediated inoculation, an NLR immune receptor, cysteine-rich receptor-like kinase, G-type lectin S-receptor-like kinases, the ethylene response factor 1, and the calmodulin-binding protein 60 were induced. Fatty acid desaturase 2-9, cell death genes, DCL2b, RIPK/PBL14-like, ERF017, and WRKY75 were differentially expressed in response to mechanical inoculation. Our findings reveal Sw-5b responses specific to the method of TSWV inoculation. Although TSWV is transmitted in nature primarily by the thrips, Sw-5b responses to thrips inoculation have not been previously studied. Therefore, the DEGs we have identified in response to thrips-mediated inoculation provide a new foundation for understanding the mechanistic roles of these genes in the Sw-5b-mediated resistance. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Norma A Ordaz
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, U.S.A
| | - Ugrappa Nagalakshmi
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, U.S.A
| | - Leonardo S Boiteux
- National Center for Vegetable Crops Research (CNPH), Embrapa Hortaliças, Brasilia-DF, Brazil
| | - Hagop S Atamian
- Biological Sciences program, Schmid College of Science & Technology, Chapman University, Orange, CA 92866, U.S.A
| | - Diane E Ullman
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, U.S.A
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, U.S.A
- The Genome Center, College of Biological Sciences, University of California, Davis, CA 95616, U.S.A
| |
Collapse
|
4
|
Duan Y, Shang X, He Q, Zhu L, Li W, Song X, Guo W. LIPID TRANSFER PROTEIN4 regulates cotton ceramide content and activates fiber cell elongation. PLANT PHYSIOLOGY 2023; 193:1816-1833. [PMID: 37527491 DOI: 10.1093/plphys/kiad431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/06/2023] [Accepted: 06/29/2023] [Indexed: 08/03/2023]
Abstract
Cell elongation is a fundamental process for plant growth and development. Studies have shown lipid metabolism plays important role in cell elongation; however, the related functional mechanisms remain largely unknown. Here, we report that cotton (Gossypium hirsutum) LIPID TRANSFER PROTEIN4 (GhLTP4) promotes fiber cell elongation via elevating ceramides (Cers) content and activating auxin-responsive pathways. GhLTP4 was preferentially expressed in elongating fibers. Over-expression and down-regulation of GhLTP4 led to longer and shorter fiber cells, respectively. Cers were greatly enriched in GhLTP4-overexpressing lines and decreased dramatically in GhLTP4 down-regulating lines. Moreover, auxin content and transcript levels of indole-3-acetic acid (IAA)-responsive genes were significantly increased in GhLTP4-overexpressing cotton fibers. Exogenous application of Cers promoted fiber elongation, while NPA (N-1-naphthalic acid, a polar auxin transport inhibitor) counteracted the promoting effect, suggesting that IAA functions downstream of Cers in regulating fiber elongation. Furthermore, we identified a basic helix-loop-helix transcription factor, GhbHLH105, that binds to the E-box element in the GhLTP4 promoter region and promotes the expression of GhLTP4. Suppression of GhbHLH105 in cotton reduced the transcripts level of GhLTP4, resulting in smaller cotton bolls and decreased fiber length. These results provide insights into the complex interactions between lipids and auxin-signaling pathways to promote plant cell elongation.
Collapse
Affiliation(s)
- Yujia Duan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China
| | - Qingfei He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Lijie Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China
| |
Collapse
|
5
|
Jiang S, Pan L, Zhou Q, Xu W, He F, Zhang L, Gao H. Analysis of the apoplast fluid proteome during the induction of systemic acquired resistance in Arabidopsis thaliana. PeerJ 2023; 11:e16324. [PMID: 37876907 PMCID: PMC10592298 DOI: 10.7717/peerj.16324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/30/2023] [Indexed: 10/26/2023] Open
Abstract
Background Plant-pathogen interactions occur in the apoplast comprising the cell wall matrix and the fluid in the extracellular space outside the plasma membrane. However, little is known regarding the contribution of the apoplastic proteome to systemic acquired resistance (SAR). Methods Specifically, SAR was induced by inoculating plants with Pst DC3000 avrRps4. The apoplast washing fluid (AWF) was collected from the systemic leaves of the SAR-induced or mock-treated plants. A label free quantitative proteomic analysis was performed to identified the proteins related to SAR in AWF. Results A total of 117 proteins were designated as differentially accumulated proteins (DAPs), including numerous pathogenesis-related proteins, kinases, glycosyl hydrolases, and redox-related proteins. Functional enrichment analyses shown that these DAPs were mainly enriched in carbohydrate metabolic process, cell wall organization, hydrogen peroxide catabolic process, and positive regulation of catalytic activity. Comparative analysis of proteome data indicated that these DAPs were selectively enriched in the apoplast during the induction of SAR. Conclusions The findings of this study indicate the apoplastic proteome is involved in SAR. The data presented herein may be useful for future investigations on the molecular mechanism mediating the establishment of SAR.
Collapse
Affiliation(s)
- Shuna Jiang
- College of Survey and Planning, Shangqiu Normal University, Shangqiu, China
| | - Liying Pan
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Wenjie Xu
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Fuge He
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Lei Zhang
- Institute of Crops Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hang Gao
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| |
Collapse
|
6
|
Delannoy E, Batardiere B, Pateyron S, Soubigou-Taconnat L, Chiquet J, Colcombet J, Lang J. Cell specialization and coordination in Arabidopsis leaves upon pathogenic attack revealed by scRNA-seq. PLANT COMMUNICATIONS 2023; 4:100676. [PMID: 37644724 PMCID: PMC10504604 DOI: 10.1016/j.xplc.2023.100676] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Plant defense responses involve several biological processes that allow plants to fight against pathogenic attacks. How these different processes are orchestrated within organs and depend on specific cell types is poorly known. Here, using single-cell RNA sequencing (scRNA-seq) technology on three independent biological replicates, we identified several cell populations representing the core transcriptional responses of wild-type Arabidopsis leaves inoculated with the bacterial pathogen Pseudomonas syringae DC3000. Among these populations, we retrieved major cell types of the leaves (mesophyll, guard, epidermal, companion, and vascular S cells) with which we could associate characteristic transcriptional reprogramming and regulators, thereby specifying different cell-type responses to the pathogen. Further analyses of transcriptional dynamics, on the basis of inference of cell trajectories, indicated that the different cell types, in addition to their characteristic defense responses, can also share similar modules of gene reprogramming, uncovering a ubiquitous antagonism between immune and susceptible processes. Moreover, it appears that the defense responses of vascular S cells, epidermal cells, and mesophyll cells can evolve along two separate paths, one converging toward an identical cell fate, characterized mostly by lignification and detoxification functions. As this divergence does not correspond to the differentiation between immune and susceptible cells, we speculate that this might reflect the discrimination between cell-autonomous and non-cell-autonomous responses. Altogether our data provide an upgraded framework to describe, explore, and explain the specialization and the coordination of plant cell responses upon pathogenic challenge.
Collapse
Affiliation(s)
- Etienne Delannoy
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Bastien Batardiere
- UMR MIA Paris-Saclay, Université Paris-Saclay, AgroParisTech, INRAE, 91120 Palaiseau, France
| | - Stéphanie Pateyron
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Ludivine Soubigou-Taconnat
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Julien Chiquet
- UMR MIA Paris-Saclay, Université Paris-Saclay, AgroParisTech, INRAE, 91120 Palaiseau, France
| | - Jean Colcombet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Julien Lang
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France.
| |
Collapse
|
7
|
Bvindi C, Howe K, Wang Y, Mullen RT, Rogan CJ, Anderson JC, Goyer A. Potato Non-Specific Lipid Transfer Protein StnsLTPI.33 Is Associated with the Production of Reactive Oxygen Species, Plant Growth, and Susceptibility to Alternaria solani. PLANTS (BASEL, SWITZERLAND) 2023; 12:3129. [PMID: 37687375 PMCID: PMC10490331 DOI: 10.3390/plants12173129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are small proteins capable of transferring phospholipids between membranes and binding non-specifically fatty acids in vitro. They constitute large gene families in plants, e.g., 83 in potato (Solanum tuberosum). Despite their recognition decades ago, very few have been functionally characterized. Here, we set out to better understand the function of one of the potato members, StnsLTPI.33. Using quantitative polymerase chain reaction, we show that StnsLTPI.33 is expressed throughout the potato plant, but at relatively higher levels in roots and leaves compared to petals, anthers, and the ovary. We also show that ectopically-expressed StnsLTPI.33 fused to green fluorescent protein colocalized with an apoplastic marker in Nicotiana benthamiana leaves, indicating that StnsLTPI.33 is targeted to the apoplast. Constitutive overexpression of the StnsLTPI.33 gene in potato led to increased levels of superoxide anions and reduced plant growth, particularly under salt stress conditions, and enhanced susceptibility to Alternaria solani. In addition, StnsLTPI.33-overexpressing plants had a depleted leaf pool of pipecolic acid, threonic acid, and glycine, while they accumulated putrescine. To our knowledge, this is the first report of an nsLTP that is associated with enhanced susceptibility to a pathogen in potato.
Collapse
Affiliation(s)
- Carol Bvindi
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (C.B.); (K.H.); (C.J.R.); (J.C.A.)
| | - Kate Howe
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (C.B.); (K.H.); (C.J.R.); (J.C.A.)
| | - You Wang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.W.); (R.T.M.)
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.W.); (R.T.M.)
| | - Conner J. Rogan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (C.B.); (K.H.); (C.J.R.); (J.C.A.)
| | - Jeffrey C. Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (C.B.); (K.H.); (C.J.R.); (J.C.A.)
| | - Aymeric Goyer
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (C.B.); (K.H.); (C.J.R.); (J.C.A.)
| |
Collapse
|
8
|
A Systematic Investigation of Lipid Transfer Proteins Involved in Male Fertility and Other Biological Processes in Maize. Int J Mol Sci 2023; 24:ijms24021660. [PMID: 36675174 PMCID: PMC9864150 DOI: 10.3390/ijms24021660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Plant lipid transfer proteins (LTPs) play essential roles in various biological processes, including anther and pollen development, vegetative organ development, seed development and germination, and stress response, but the research progress varies greatly among Arabidopsis, rice and maize. Here, we presented a preliminary introduction and characterization of the whole 65 LTP genes in maize, and performed a phylogenetic tree and gene ontology analysis of the LTP family members in maize. We compared the research progresses of the reported LTP genes involved in male fertility and other biological processes in Arabidopsis and rice, and thus provided some implications for their maize orthologs, which will provide useful clues for the investigation of LTP transporters in maize. We predicted the functions of LTP genes based on bioinformatic analyses of their spatiotemporal expression patterns by using RNA-seq and qRT-PCR assays. Finally, we discussed the advances and challenges in substrate identification of plant LTPs, and presented the future research directions of LTPs in plants. This study provides a basic framework for functional research and the potential application of LTPs in multiple plants, especially for male sterility research and application in maize.
Collapse
|
9
|
Wang Y, Chen G, Zeng F, Han Z, Qiu CW, Zeng M, Yang Z, Xu F, Wu D, Deng F, Xu S, Chater C, Korol A, Shabala S, Wu F, Franks P, Nevo E, Chen ZH. Molecular evidence for adaptive evolution of drought tolerance in wild cereals. THE NEW PHYTOLOGIST 2023; 237:497-514. [PMID: 36266957 DOI: 10.1111/nph.18560] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The considerable drought tolerance of wild cereal crop progenitors has diminished during domestication in the pursuit of higher productivity. Regaining this trait in cereal crops is essential for global food security but requires novel genetic insight. Here, we assessed the molecular evidence for natural variation of drought tolerance in wild barley (Hordeum spontaneum), wild emmer wheat (Triticum dicoccoides), and Brachypodium species collected from dry and moist habitats at Evolution Canyon, Israel (ECI). We report that prevailing moist vs dry conditions have differentially shaped the stomatal and photosynthetic traits of these wild cereals in their respective habitats. We present the genomic and transcriptomic evidence accounting for differences, including co-expression gene modules, correlated with physiological traits, and selective sweeps, driven by the xeric site conditions on the African Slope (AS) at ECI. Co-expression gene module 'circadian rhythm' was linked to significant drought-induced delay in flowering time in Brachypodium stacei genotypes. African Slope-specific differentially expressed genes are important in barley drought tolerance, verified by silencing Disease-Related Nonspecific Lipid Transfer 1 (DRN1), Nonphotochemical Quenching 4 (NPQ4), and Brassinosteroid-Responsive Ring-H1 (BRH1). Our results provide new genetic information for the breeding of resilient wheat and barley in a changing global climate with increasingly frequent drought events.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fanrong Zeng
- Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Zhigang Han
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Cheng-Wei Qiu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Meng Zeng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Fei Xu
- Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Dezhi Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fenglin Deng
- Central Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shengchun Xu
- Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Caspar Chater
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Abraham Korol
- Institute of Evolution, University of Haifa, Mount Carmel, 34988384, Haifa, Israel
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, 7004, Australia
- School of Biological Science, University of Western Australia, Crawley, WA, 6009, Australia
| | - Feibo Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Peter Franks
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, 34988384, Haifa, Israel
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| |
Collapse
|
10
|
O’Rourke JA, Graham MA. Coupling VIGS with Short- and Long-Term Stress Exposure to Understand the Fiskeby III Iron Deficiency Stress Response. Int J Mol Sci 2022; 24:ijms24010647. [PMID: 36614091 PMCID: PMC9820625 DOI: 10.3390/ijms24010647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Yield loss due to abiotic stress is an increasing problem in agriculture. Soybean is a major crop for the upper Midwestern United States and calcareous soils exacerbate iron deficiency for growers, resulting in substantial yield losses. Fiskeby III is a soybean variety uniquely resistant to a variety of abiotic stresses, including iron deficiency. Previous studies identified a MATE transporter (Glyma.05G001700) associated with iron stress tolerance in Fiskeby III. To understand the function of this gene in the Fiskeby III response to iron deficiency, we coupled its silencing using virus-induced gene silencing with RNAseq analyses at two timepoints. Analyses of these data confirm a role for the MATE transporter in Fiskeby III iron stress responses. Further, they reveal that Fiskeby III induces transcriptional reprogramming within 24 h of iron deficiency stress, confirming that like other soybean varieties, Fiskeby III is able to quickly respond to stress. However, Fiskeby III utilizes novel genes and pathways in its iron deficiency response. Identifying and characterizing these genes and pathways in Fiskeby III provides novel targets for improving abiotic stress tolerance in elite soybean lines.
Collapse
|
11
|
Gao H, Ma K, Ji G, Pan L, Zhou Q. Lipid transfer proteins involved in plant-pathogen interactions and their molecular mechanisms. MOLECULAR PLANT PATHOLOGY 2022; 23:1815-1829. [PMID: 36052490 PMCID: PMC9644281 DOI: 10.1111/mpp.13264] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Nonspecific lipid transfer proteins (LTPs) are small, cysteine-rich proteins that play numerous functional roles in plant growth and development, including cutin wax formation, pollen tube adhesion, cell expansion, seed development, germination, and adaptation to changing environmental conditions. LTPs contain eight conserved cysteine residues and a hydrophobic cavity that provides a wide variety of lipid-binding specificities. As members of the pathogenesis-related protein 14 family (PR14), many LTPs inhibit fungal or bacterial growth, and act as positive regulators in plant disease resistance. Over the past decade, these essential immunity-related roles of LTPs in plant immune processes have been documented in a growing body of literature. In this review, we summarize the roles of LTPs in plant-pathogen interactions, emphasizing the underlying molecular mechanisms in plant immune responses and specific LTP functions.
Collapse
Affiliation(s)
- Hang Gao
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Kang Ma
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Guojie Ji
- Experimental Teaching Center of Biology and Basic MedicineSanquan College of Xinxiang Medical UniversityXinxiangHenanChina
| | - Liying Pan
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Qingfeng Zhou
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| |
Collapse
|
12
|
Obermeyer S, Stöckl R, Schnekenburger T, Moehle C, Schwartz U, Grasser KD. Distinct role of subunits of the Arabidopsis RNA polymerase II elongation factor PAF1C in transcriptional reprogramming. FRONTIERS IN PLANT SCIENCE 2022; 13:974625. [PMID: 36247629 PMCID: PMC9558118 DOI: 10.3389/fpls.2022.974625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Transcript elongation by RNA polymerase II (RNAPII) is dynamic and highly regulated, thereby contributing to the implementation of gene expression programs during plant development or in response to environmental cues. The heterohexameric polymerase-associated factor 1 complex (PAF1C) stabilizes the RNAPII elongation complex promoting efficient transcript synthesis. In addition, PAF1C links transcriptional elongation with various post-translational histone modifications at transcribed loci. We have exposed Arabidopsis mutants deficient in the PAF1C subunits ELF7 or CDC73 to elevated NaCl concentrations to provoke a transcriptional response. The growth of elf7 plants was reduced relative to that of wildtype under these challenging conditions, whereas cdc73 plants exhibited rather enhanced tolerance. Profiling of the transcriptional changes upon NaCl exposure revealed that cdc73 responded similar to wildtype. Relative to wildtype and cdc73, the transcriptional response of elf7 plants was severely reduced in accord with their greater susceptibility to NaCl. The data also imply that CDC73 is more relevant for the transcription of longer genes. Despite the fact that both ELF7 and CDC73 are part of PAF1C the strikingly different transcriptional response of the mutants upon NaCl exposure suggests that the subunits have (partially) specific functions.
Collapse
Affiliation(s)
- Simon Obermeyer
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Regensburg, Germany
| | - Richard Stöckl
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Regensburg, Germany
| | - Tobias Schnekenburger
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Regensburg, Germany
| | - Christoph Moehle
- Center of Excellence for Fluorescent Bioanalytics (KFB), University of Regensburg, Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Centre, Biology and Pre-Clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Klaus D. Grasser
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
Banday ZZ, Cecchini NM, Speed DJ, Scott AT, Parent C, Hu CT, Filzen RC, Agbo E, Greenberg JT. Friend or foe: Hybrid proline-rich proteins determine how plants respond to beneficial and pathogenic microbes. PLANT PHYSIOLOGY 2022; 190:860-881. [PMID: 35642916 PMCID: PMC9434206 DOI: 10.1093/plphys/kiac263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/08/2022] [Indexed: 05/21/2023]
Abstract
Plant plastids generate signals, including some derived from lipids, that need to be mobilized to effect signaling. We used informatics to discover potential plastid membrane proteins involved in microbial responses in Arabidopsis (Arabidopsis thaliana). Among these are proteins co-regulated with the systemic immunity component AZELAIC ACID INDUCED 1, a hybrid proline-rich protein (HyPRP), and HyPRP superfamily members. HyPRPs have a transmembrane domain, a proline-rich region (PRR), and a lipid transfer protein domain. The precise subcellular location(s) and function(s) are unknown for most HyPRP family members. As predicted by informatics, a subset of HyPRPs has a pool of proteins that target plastid outer envelope membranes via a mechanism that requires the PRR. Additionally, two HyPRPs may be associated with thylakoid membranes. Most of the plastid- and nonplastid-localized family members also have pools that localize to the endoplasmic reticulum, plasma membrane, or plasmodesmata. HyPRPs with plastid pools regulate, positively or negatively, systemic immunity against the pathogen Pseudomonas syringae. HyPRPs also regulate the interaction with the plant growth-promoting rhizobacteria Pseudomonas simiae WCS417 in the roots to influence colonization, root system architecture, and/or biomass. Thus, HyPRPs have broad and distinct roles in immunity, development, and growth responses to microbes and reside at sites that may facilitate signal molecule transport.
Collapse
Affiliation(s)
- Zeeshan Z Banday
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | - DeQuantarius J Speed
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Allison T Scott
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | - Ciara T Hu
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Rachael C Filzen
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Elinam Agbo
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
14
|
Zhang X, Lin X, Chen S, Chen S. Overexpression of BpERF1.1 in Betula Platyphylla enhanced tolerance to multiple abiotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1159-1172. [PMID: 35910438 PMCID: PMC9334504 DOI: 10.1007/s12298-022-01206-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 06/03/2023]
Abstract
Cold, salt and drought are the main environmental stresses affecting plant growth and crop yield. ERF1, a member of the well-studied ERF gene family, has been proven to play an important role in abiotic stress in plants. In this study, an ERF1, BpERF1.1, was overexpressed in birch (Betula Platyphylla Suk.) and 11 transgenic lines were obtained. Effects of cold, salt and drought treatments were checked on the BpERF1.1 overexpressing lines and the corresponding WT line. The transgenic lines showed improved tolerance against these abiotic stresses than the WT line. Further RNA-seq analysis identified 689 differentially expressed genes (DEGs) in the transgenic birch compared with WT, including 228 up-regulated genes and 461 down-regulated genes. The result of gene ontology enrichment analysis showed that among these DEGs, 273 genes were involved in various plant biological process, and 83% of them were involved in cellular process, metabolic process, biological regulation and response to stimulus (11%). All these results demonstrate that BpERF1.1 gene improves the tolerance and resistance of birch against cold, salt and drought stress, probably by interconnecting with other genes involved in plant response to abiotic stresses. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01206-3.
Collapse
Affiliation(s)
- Xiang Zhang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| | - Xin Lin
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| |
Collapse
|
15
|
Yang Y, Li P, Liu C, Wang P, Cao P, Ye X, Li Q. Systematic analysis of the non-specific lipid transfer protein gene family in Nicotiana tabacum reveal its potential roles in stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:33-47. [PMID: 35016104 DOI: 10.1016/j.plaphy.2022.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are characterized by an eight-cysteine motif backbone stabilized by four disulfide bonds; these proteins can bind or transfer lipids. NsLTPs play important roles in plant growth and development, and in the responses to abiotic and biotic stresses. In this study, 50, 51, and 100 nsLTPs from Nicotiana sylvestris, N. tomentosiformis, and their descendant N. tabacum, respectively, were identified and classified into six types (I, II, IV, V, VII, and VIII). The phylogeny, gene structures, motifs, tertiary structures, gene duplications and expression patterns were systematically analyzed. The intron/exon patterns and the conserved motifs were highly similar among the same types of nsLTP genes. Purifying selection and segmental duplication dominated the expansion of the nsLTPs family during evolution. Cis-regulatory elements of the NtLTP promoters were involved in light responsiveness, abiotic stress, and phytohormone responsiveness. Expression pattern analysis using RNA-seq and qPCR revealed that NtLTP family genes exhibited tissue-specific expression patterns and they have potential roles in response to abiotic and biotic stresses, especially drought stress, and resistance to black shank and bacterial wilt. Furthermore, overexpression of NtLTPI.38 in tobacco increased drought tolerance by improving the antioxidant defense ability, through reducing O2•- and H2O2 accumulation and increasing the number of lateral roots. These results provide a comprehensive overview of this gene family and provide valuable insights for the functional characterization of nsLTP family genes.
Collapse
Affiliation(s)
- Yongxia Yang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Peng Li
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China; Nanyang Municipal Tobacco Company, Nanyang, 473000, China
| | - Che Liu
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Peng Wang
- China Tobacco Hubei Industrial LLC, Wuhan, 430000, China
| | - Peijian Cao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450002, China
| | - Xiefeng Ye
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Qingchang Li
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450002, China.
| |
Collapse
|
16
|
Liang Y, Huang Y, Chen K, Kong X, Li M. Characterization of non-specific lipid transfer protein (nsLtp) gene families in the Brassica napus pangenome reveals abundance variation. BMC PLANT BIOLOGY 2022; 22:21. [PMID: 34996379 PMCID: PMC8740461 DOI: 10.1186/s12870-021-03408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/15/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Brassica napus is an important agricultural species, improving stress resistance was one of the main breeding goals at present. Non-specific lipid transfer proteins (nsLTPs) are small, basic proteins which are involved in some biotic or abiotic stress responses. B. napus is susceptible to a variety of fungal diseases, so identify the BnLTPs and their expression in disease responses is very important. The common reference genome of B. napus does not contain all B. napus genes because of gene presence/absence variations between individuals. Therefore, it was necessary to search for candidate BnLTP genes in the B. napus pangenome. RESULTS In the present study, the BnLTP genes were identified throughout the pangenome, and different BnLTP genes were presented among varieties. Totally, 246 BnLTP genes were identified and could be divided into five types (1, 2, C, D, and G). The classification, phylogenetic reconstruction, chromosome distribution, functional annotation, and gene expression were analyzed. We also identified potential cis-elements that respond to biotic and abiotic stresses in the 2 kb upstream regions of all BnLTP genes. RNA sequencing analysis showed that the BnLTP genes were involved in the response to Sclerotinia sclerotiorum infection. We identified 32 BnLTPs linked to blackleg resistance quantitative trait locus (QTL). CONCLUSION The identification and analysis of LTP genes in the B. napus pangenome could help to elucidate the function of BnLTP family members and provide new information for future molecular breeding in B. napus.
Collapse
Affiliation(s)
- Yu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China.
| | - Yang Huang
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Kong
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
17
|
Zhang M, Wei H, Hao P, Wu A, Ma Q, Zhang J, Wang H, Fu X, Ma L, Lu J, Yu S. GhGPAT12/ 25 Are Essential for the Formation of Anther Cuticle and Pollen Exine in Cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:667739. [PMID: 34054906 PMCID: PMC8155372 DOI: 10.3389/fpls.2021.667739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/31/2021] [Indexed: 05/28/2023]
Abstract
Glycerol-3-phosphate acyltransferases (GPATs), critical for multiple biological processes like male fertility, have been extensively characterized. However, their precise functions and underlying regulatory mechanism in cotton anther development are unclear. This research demonstrated the importance of GhGPAT12/25 (a paralogs pair on A12/D12 sub-chromosome of cotton) to regulate the degradation of tapetum, anther cuticle formation, and pollen exine development. GhGPAT12 and GhGPAT25 exhibited specifically detected transcripts in tapetum and pollen exine during the early anther developmental stages. GhGPAT12/25 are sn-2 glycerol-3-phosphate acyltransferases and can transfer the acyl group of palmitoyl-CoA to glycerol-3-phosphate (G3P). CRISPR/Cas9-mediated knockout identified the functional redundancy of GhGPAT12 and GhGPAT25. Knockout of both genes caused completely male sterility associated with abnormal anther cuticle, swollen tapetum, and inviable microspores with defective exine and irregular unrestricted shape. RNA-seq analysis showed that the loss of function of GhGPAT12/25 affects the processes of wax metabolic, glycerol monomer biosynthesis, and transport. Consistently, cuticular waxes were dramatically reduced in mutant anthers. Yeast one-hybrid system (Y1H), virus-induced gene silencing (VIGS), and dual-luciferase (LUC) assays illustrated that GhMYB80s are likely to directly activate the expression of GhGPAT12/25. This study provides important insights for revealing the regulatory mechanism underlying anther development in cotton.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Pengbo Hao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qiang Ma
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Jingjing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaokang Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
18
|
Qin X, Zhang Z, Lou Q, Xia L, Li J, Li M, Zhou J, Zhao X, Xu Y, Li Q, Yang S, Yu X, Cheng C, Huang S, Chen J. Chromosome-scale genome assembly of Cucumis hystrix-a wild species interspecifically cross-compatible with cultivated cucumber. HORTICULTURE RESEARCH 2021; 8:40. [PMID: 33642577 PMCID: PMC7917098 DOI: 10.1038/s41438-021-00475-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 05/06/2023]
Abstract
Cucumis hystrix Chakr. (2n = 2x = 24) is a wild species that can hybridize with cultivated cucumber (C. sativus L., 2n = 2x = 14), a globally important vegetable crop. However, cucumber breeding is hindered by its narrow genetic base. Therefore, introgression from C. hystrix has been anticipated to bring a breakthrough in cucumber improvement. Here, we report the chromosome-scale assembly of C. hystrix genome (289 Mb). Scaffold N50 reached 14.1 Mb. Over 90% of the sequences were anchored onto 12 chromosomes. A total of 23,864 genes were annotated using a hybrid method. Further, we conducted a comprehensive comparative genomic analysis of cucumber, C. hystrix, and melon (C. melo L., 2n = 2x = 24). Whole-genome comparisons revealed that C. hystrix is phylogenetically closer to cucumber than to melon, providing a molecular basis for the success of its hybridization with cucumber. Moreover, expanded gene families of C. hystrix were significantly enriched in "defense response," and C. hystrix harbored 104 nucleotide-binding site-encoding disease resistance gene analogs. Furthermore, 121 genes were positively selected, and 12 (9.9%) of these were involved in responses to biotic stimuli, which might explain the high disease resistance of C. hystrix. The alignment of whole C. hystrix genome with cucumber genome and self-alignment revealed 45,417 chromosome-specific sequences evenly distributed on C. hystrix chromosomes. Finally, we developed four cucumber-C. hystrix alien addition lines and identified the exact introgressed chromosome using molecular and cytological methods. The assembled C. hystrix genome can serve as a valuable resource for studies on Cucumis evolution and interspecific introgression breeding of cucumber.
Collapse
Affiliation(s)
- Xiaodong Qin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhonghua Zhang
- College of Horticulture, Qingdao Agricultural University, 266109, Qingdao, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lei Xia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Mengxue Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Junguo Zhou
- College of Horticulture and Landscape, Henan Institute of Science and Technology, 453003, Xinxiang, China
| | - Xiaokun Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yuanchao Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Qing Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Shuqiong Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sanwen Huang
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China.
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
19
|
The concurrent mutations of C26 N/N53F can reduce the antigenic propensity of nsLTP2 as an anti-tumor or viral drug carrier. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2020.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Caruana JC, Dhar N, Raina R. Overexpression of Arabidopsis microRNA167 induces salicylic acid-dependent defense against Pseudomonas syringae through the regulation of its targets ARF6 and ARF8. PLANT DIRECT 2020; 4:e00270. [PMID: 33005858 PMCID: PMC7510475 DOI: 10.1002/pld3.270] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/17/2020] [Accepted: 08/31/2020] [Indexed: 05/13/2023]
Abstract
microRNAs are powerful regulators of growth, development, and stress responses in plants. The Arabidopsis thaliana microRNA miR167 was previously found to regulate diverse processes including flower development, root development, and response to osmotic stress by controlling the patterns of expression of its target genes AUXIN RESPONSE FACTOR 6 (ARF6), ARF8, and IAA-Ala RESISTANT 3. Here, we report that miR167 also modulates defense against pathogens through ARF6 and ARF8. miR167 is differentially expressed in response to the bacterial pathogen Pseudomonas syringae, and overexpression of miR167 confers very high levels of resistance. This resistance appears to be due to suppression of auxin responses and is partially dependent upon salicylic acid signaling, and also depends upon altered stomatal behavior in these plants. Closure of stomata upon the detection of P. syringae is an important aspect of the basal defense response, as it prevents bacterial cells from entering the leaf interior and causing infection. Plants overexpressing miR167 constitutively maintain small stomatal apertures, resulting in very high resistance when the pathogen is inoculated onto the leaf surface. Additionally, the systemic acquired resistance (SAR) response is severely compromised in plants overexpressing miR167, in agreement with previous work showing that the activation of SAR requires intact auxin signaling responses. This work highlights a new role for miR167, and also emphasizes the importance of hormonal balance in short- and long-term defense and of stomata as an initial barrier to pathogen entry.
Collapse
Affiliation(s)
- Julie C. Caruana
- Department of BiologySyracuse UniversitySyracuseNYUSA
- Naval Research LaboratoryWashingtonDCUSA
| | - Nikhilesh Dhar
- Department of BiologySyracuse UniversitySyracuseNYUSA
- Department of Plant PathologyUniversity of CaliforniaDavis, SalinasCAUSA
| | - Ramesh Raina
- Department of BiologySyracuse UniversitySyracuseNYUSA
| |
Collapse
|