1
|
Schlienger de Alba BN, Espinosa Andrews H. Benefits and Challenges of Encapsulating Bifidobacterium Probiotic Strains with Bifidogenic Prebiotics. Probiotics Antimicrob Proteins 2024; 16:1790-1800. [PMID: 38696093 DOI: 10.1007/s12602-024-10269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 10/02/2024]
Abstract
Bifidobacteria offer remarkable health benefits when added to probiotic formulations, contributing to the burgeoning market driven by increased awareness among consumers and healthcare providers. However, several pivotal challenges must be crossed: strain selection, encapsulation wall materials, compatible food matrices, and the intricate interplay among these factors. An approach to address these challenges involves exploring bifidogenic substrates as potential encapsulation materials. This strategy has the potential to enhance bifidobacteria viability within the demanding gastrointestinal environment, extend shelf life, and promote synergistic interactions that promote bifidobacteria survival. Nonetheless, it is crucial to acknowledge that the relationship between bifidogenic substrates and bifidobacterial metabolism is complex and multifaceted. Consequently, despite the promising outlook, it is important to emphasize that this approach requires in-depth investigation, as the intricate interplay between these elements constitutes a rich area of ongoing research. This pursuit aims to ultimately deliver consumers a product that can genuinely improve their health and well-being.
Collapse
Affiliation(s)
- Brenda Nathalie Schlienger de Alba
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Food Technology, Camino Arenero #1227, El Bajío del Arenal, 45019, Zapopan, Jalisco, A.C. (CIATEJ), Mexico
| | - Hugo Espinosa Andrews
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Food Technology, Camino Arenero #1227, El Bajío del Arenal, 45019, Zapopan, Jalisco, A.C. (CIATEJ), Mexico.
| |
Collapse
|
2
|
Guhanraj R, Dhanasekaran D. Probiotic functional gene explorations in the genome of Limosilactobacillus fermentum GD5MG. Microb Pathog 2024; 192:106686. [PMID: 38750775 DOI: 10.1016/j.micpath.2024.106686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Limosilactobacillus fermentum is an isolate obtained from oral gingival samples of healthy human individuals. The whole genome of Lb. fermentum GD5MG is composed of a circular DNA molecule containing 1,834,134 bp and exhibits a GC content of 52.80 %. The sequencing effort produced 38.6 million reads, each 150 bp in length, resulting in a sequencing depth of 2912.48x. Our examination unveiled a total of 1961 protein-coding genes, 27 rRNA genes, 24 tRNA genes, 3 non-coding RNA genes, and 63 pseudogenes with the use of gene annotations in NCBI Prokaryotic Genome Annotation tool. RAST revealed 1863 coding genes distributed across 209 subsystems, with a predominant involvement in amino acid, carbohydrate, and protein metabolism. Phylogenetic analysis infers that the Lb. fermentum GD5MG shares 281 gene clusters. Furthermore, the genome features showed a single CRISPR locus of 45 bp in length. Three genes associated with adhesion ability (strA, dltD, and dltA) and 26 genes related to acid tolerance, digestive enzyme secretion, and bile salt resistance were identified. Numerous genes associated with oral probiotic properties, comprising adhesion, acid and bile salt tolerance, oxidative stress tolerance, and sugar metabolism, were identified in the genome. Our findings shed light on the genomic characteristics of Lb. fermentum GD5MG, which are probable probiotics with functional benefits in humans.
Collapse
Affiliation(s)
- Radhamanalan Guhanraj
- Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Dharumadurai Dhanasekaran
- Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India; National Repository for Microalgae and Cyanobacteria, Freshwater (NRMC-F), Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
3
|
Min BH, Devi S, Kwon GH, Gupta H, Jeong JJ, Sharma SP, Won SM, Oh KK, Yoon SJ, Park HJ, Eom JA, Jeong MK, Hyun JY, Stalin N, Park TS, Choi J, Lee DY, Han SH, Kim DJ, Suk KT. Gut microbiota-derived indole compounds attenuate metabolic dysfunction-associated steatotic liver disease by improving fat metabolism and inflammation. Gut Microbes 2024; 16:2307568. [PMID: 38299316 PMCID: PMC10841017 DOI: 10.1080/19490976.2024.2307568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease, and its prevalence has increased worldwide in recent years. Additionally, there is a close relationship between MASLD and gut microbiota-derived metabolites. However, the mechanisms of MASLD and its metabolites are still unclear. We demonstrated decreased indole-3-propionic acid (IPA) and indole-3-acetic acid (IAA) in the feces of patients with hepatic steatosis compared to healthy controls. Here, IPA and IAA administration ameliorated hepatic steatosis and inflammation in an animal model of WD-induced MASLD by suppressing the NF-κB signaling pathway through a reduction in endotoxin levels and inactivation of macrophages. Bifidobacterium bifidum metabolizes tryptophan to produce IAA, and B. bifidum effectively prevents hepatic steatosis and inflammation through the production of IAA. Our study demonstrates that IPA and IAA derived from the gut microbiota have novel preventive or therapeutic potential for MASLD treatment.
Collapse
Affiliation(s)
- Byeong Hyun Min
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Shivani Devi
- Department of Life Science, Gachon University, Sungnam, Republic of Korea
| | - Goo Hyun Kwon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Ju Jeong
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Satya Priya Sharma
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Sung-Min Won
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ki-Kwang Oh
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Hee Jin Park
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Jung A Eom
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Min Kyo Jeong
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ji Ye Hyun
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Nattan Stalin
- Department of Life Science, Gachon University, Sungnam, Republic of Korea
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Sungnam, Republic of Korea
| | - Jieun Choi
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Hak Han
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
4
|
Mendes de Almeida V, Engel DF, Ricci MF, Cruz CS, Lopes ÍS, Alves DA, d’ Auriol M, Magalhães J, Machado EC, Rocha VM, Carvalho TG, Lacerda LSB, Pimenta JC, Aganetti M, Zuccoli GS, Smith BJ, Carregari VC, da Silva Rosa E, Galvão I, Dantas Cassali G, Garcia CC, Teixeira MM, André LC, Ribeiro FM, Martins FS, Saia RS, Costa VV, Martins-de-Souza D, Hansbro PM, Marques JT, Aguiar ERGR, Vieira AT. Gut microbiota from patients with COVID-19 cause alterations in mice that resemble post-COVID symptoms. Gut Microbes 2023; 15:2249146. [PMID: 37668317 PMCID: PMC10481883 DOI: 10.1080/19490976.2023.2249146] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/19/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023] Open
Abstract
Long-term sequelae of coronavirus disease (COVID)-19 are frequent and of major concern. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection affects the host gut microbiota, which is linked to disease severity in patients with COVID-19. Here, we report that the gut microbiota of post-COVID subjects had a remarkable predominance of Enterobacteriaceae strains with an antibiotic-resistant phenotype compared to healthy controls. Additionally, short-chain fatty acid (SCFA) levels were reduced in feces. Fecal transplantation from post-COVID subjects to germ-free mice led to lung inflammation and worse outcomes during pulmonary infection by multidrug-resistant Klebsiella pneumoniae. transplanted mice also exhibited poor cognitive performance. Overall, we show prolonged impacts of SARS-CoV-2 infection on the gut microbiota that persist after subjects have cleared the virus. Together, these data demonstrate that the gut microbiota can directly contribute to post-COVID sequelae, suggesting that it may be a potential therapeutic target.
Collapse
Affiliation(s)
- Viviani Mendes de Almeida
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Daiane F. Engel
- Department of Clinical Analysis, School of Pharmacy, Universidade Federal de Ouro Preto - UFOP, Ouro Preto, Brazil
| | - Mayra F. Ricci
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Clênio Silva Cruz
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Ícaro Santos Lopes
- Laboratory of Virus Bioinformatics - Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz - UESC, Ilhéus, Brazil
| | - Daniele Almeida Alves
- Laboratory of RNA Interference and Antiviral Immunity - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Mirna d’ Auriol
- Laboratory of Toxicology - Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - João Magalhães
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Elayne C. Machado
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Victor M. Rocha
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Toniana G. Carvalho
- Laboratory of Neurobiochemistry - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Larisse S. B. Lacerda
- Center for Research and Development of Drugs - Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Jordane C. Pimenta
- Center for Research and Development of Drugs - Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Mariana Aganetti
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Giuliana S. Zuccoli
- Laboratory of Neuroproteomics - Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade do Estado de Campinas - UNICAMP, Campinas, Brazil
| | - Bradley J. Smith
- Laboratory of Neuroproteomics - Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade do Estado de Campinas - UNICAMP, Campinas, Brazil
| | - Victor C. Carregari
- Laboratory of Neuroproteomics - Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade do Estado de Campinas - UNICAMP, Campinas, Brazil
| | - Erika da Silva Rosa
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Izabela Galvão
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Geovanni Dantas Cassali
- Laboratory of Comparative Pathology - Department of Pathology, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Cristiana C. Garcia
- Laboratory of Respiratory Viruses and Measles, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | - Mauro Martins Teixeira
- Center for Research and Development of Drugs - Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Leiliane C. André
- Laboratory of Toxicology - Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Fabiola Mara Ribeiro
- Laboratory of Neurobiochemistry - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Flaviano S. Martins
- Laboratory of Biotherapeutic Agents - Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Rafael Simone Saia
- Laboratory of Intestinal Physiology - Department of Physiology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vivian Vasconcelos Costa
- Center for Research and Development of Drugs - Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics - Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade do Estado de Campinas - UNICAMP, Campinas, Brazil
- D’Or Institute for Research and Education, São Paulo, Brazil
- Experimental Medicine Research Cluster, Universidade do Estado de Campinas - UNICAMP, Campinas, Brazil
- National Institute of Biomarkers in Neuropsychiatry, National Council for Scientific and Technological Development, São Paulo, Brazil
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - João Trindade Marques
- Laboratory of RNA Interference and Antiviral Immunity - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
- CNRS UPR9022, University of Strasbourg, Strasbourg, France
| | - Eric R. G. R. Aguiar
- Laboratory of Virus Bioinformatics - Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz - UESC, Ilhéus, Brazil
| | - Angélica T. Vieira
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| |
Collapse
|
5
|
Modesto M, Ngom-Bru C, Scarafile D, Bruttin A, Pruvost S, Sarker SA, Ahmed T, Sakwinska O, Mattarelli P, Duboux S. Bifidobacterium longum subsp. iuvenis subsp. nov., a novel subspecies isolated from the faeces of weaning infants. Int J Syst Evol Microbiol 2023; 73. [PMID: 37851001 DOI: 10.1099/ijsem.0.006013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
The species
Bifidobacterium longum
currently comprises four subspecies:
B. longum
subsp.
longum
,
B. longum
subsp.
infantis
,
B. longum
subsp.
suis
and
B. longum
subsp.
suillum
. Recently, several studies on
B. longum
suggested the presence of a separate clade containing four strains isolated from infants and one from rhesus macaque. These strains shared a phylogenetic similarity to
B. longum
subsp.
suis
DSM 20210T and
B. longum
subsp.
suillum
JCM1995T [average nucleotide identity (ANI) of 98.1 %) while showed an ANI of 96.5 % with both
B. longum
subsp.
infantis
and
B. longum
subsp.
longum
. The current work describes five novel additional
B. longum
strains isolated from Bangladeshi weaning infants and demonstrates their common phylogenetic origin with those of the previously proposed separated clade. Based on polyphasic taxonomic approach comprising loci multilocus sequence analysis and whole genome multilocus sequence typing, all ten examined strains have been confirmed as a distinct lineage within the species
B. longum
with
B. longum
subsp.
suis
and
B. longum
subsp.
suillum
as closest subspecies. Interestingly, these strains are present in weaning infants and primates as opposed to their closest relatives which have been typically isolated from pig and calves. These strains, similarly to
B. longum
subsp.
infantis
, show a common capacity to metabolize the human milk oligosaccharide 3-fucosyllactose. Moreover, they harbour a riboflavin synthesis operon, which differentiate them from their closest subspecies,
B. longum
subsp.
suis
and
B. longum
subsp.
suillum
. Based on the consistent results from genotypical, ecological and phenotypical analyses, a novel subspecies with the name
Bifidobacterium longum
subsp. iuvenis, with type strain NCC 5000T (=LMG 32752T=CCOS 2034T), is proposed.
Collapse
Affiliation(s)
- Monica Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - Catherine Ngom-Bru
- Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Donatella Scarafile
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - Anne Bruttin
- Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Solenn Pruvost
- Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Shafiqul Alam Sarker
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Olga Sakwinska
- Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - Stéphane Duboux
- Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| |
Collapse
|
6
|
Bifidobacterium longum subsp. longum 5 1A Attenuates Signs of Inflammation in a Murine Model of Food Allergy. Probiotics Antimicrob Proteins 2023; 15:63-73. [PMID: 34558015 DOI: 10.1007/s12602-021-09846-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 01/18/2023]
Abstract
Food allergy is a pathological condition that can lead to hives, swelling, gastrointestinal distress, cardiovascular and respiratory compromise, and even anaphylaxis. The lack of treatment resources emphasizes the necessity for new therapeutic strategies, and in this way, probiotics has been pointed out as an alternative, especially because of its immunomodulatory properties. The goal of this study was to evaluate the probiotic effect of Bifidobacterium longum subsp. longum 51A (BL51A) in a murine model of ovalbumin (OVA) food allergy, as well as to investigate the effect of the dose and viability of the bacteria on the proposed model. For this purpose, the probiotic effect was assessed by clinical, immunological, and histological parameters in mice treated or not with the BL51A and sensitized or not with OVA. Oral administration of BL51A prevented weight loss and reduced serum levels of IgE anti-OVA and of sIgA in the intestinal fluid. Also, it reduced the intestinal permeability, proximal jejunum damage, recruitment of eosinophils and neutrophils, and levels of eotaxin-1, CXCL1/KC, IL4, IL5, IL6, IL13, and TNF. Furthermore, the treatment was able to increase the levels of IL10. Investigating different doses administered, the level of 108 CFU showed the best results in terms of protective effect. In addition, the administration of the inactivated bacteria did not present any beneficial effect. Results demonstrate that BL51A promotes a systemic immunomodulatory protective effect in a murine model of food allergy that depends on the dose and viability of the bacteria, suggesting its use as probiotic in such disease.
Collapse
|
7
|
Chen Z, Luo J, Jia M, Chai Y, Bao Y. Polygonatum sibiricum saponin Exerts Beneficial Hypoglycemic Effects in Type 2 Diabetes Mice by Improving Hepatic Insulin Resistance and Glycogen Synthesis-Related Proteins. Nutrients 2022; 14:5222. [PMID: 36558381 PMCID: PMC9786127 DOI: 10.3390/nu14245222] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a systemic metabolic disorder characterized by insulin deficiency and insulin resistance. Recently, it has become a significant threat to public health. Polygonatum sibiricum saponin (PSS) has potential hypoglycemic effects, but its specific mechanism needs further study. In this study, PSS significantly decreased the level of blood glucose, water intake, and the organ index in diabetic mice. Meanwhile, PSS effectively reduced the content of total triglyceride (TG), total cholesterol (TCHO), low-density lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in the blood, and increased the content of high-density lipoprotein cholesterol (HDL-C). This suggests that PSS could reduce the content of blood lipids and initially improve the damage of hepatocytes. We found that PSS alleviated hepatic insulin resistance, repaired islet beta cells, and enabled insulin to play its biological role normally. It also improved oral glucose tolerance and abated serum lipopolysaccharide (LPS) and glycosylated hemoglobin (HbA1c) levels in T2DM mice. Furthermore, studies have found that PSS increased the content of phosphorylated protein kinase B (AKT), thereby promoting the effect of glucose transporter 4 (GLUT-4), and activating glycogen synthase kinase 3beta (GSK-3β) and glycogen synthase (GS) proteins to promote hepatic glycogen synthesis. Finally, we found that PSS could promote the growth of beneficial bacteria such as Bifidobacterium and Lactobacillus, reduce the growth of harmful bacteria such as Enterococcus and Enterobacter, and preliminarily improve the composition of important bacteria in the intestine. These studies indicate that PSS has an excellent hypoglycemic effect, which provides a potential new treatment for T2DM and guidance for more in-depth research.
Collapse
Affiliation(s)
- Zefu Chen
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jiayuan Luo
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Mingjie Jia
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yangyang Chai
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China
| | - Yihong Bao
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China
| |
Collapse
|
8
|
Costa K, Silva LS, Kobori CN, Silva AM, Nicoli JR. Microencapsulation of
Bifidobacterium longum
5
1A
cells by spray drying and its incorporation in acerola (
Malpighia emarginata
) pulp powder. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Karen Costa
- Departamento de Engenharia de Alimentos Universidade Federal de São João del Rei, Campus Sete Lagoas Rodovia MG 424, Km 47, CX 56 Sete Lagoas MG 35701‐970 Brazil
- Departamento de Microbiologia Instituto de Ciências Biológicas Universidade Federal de Minas Gerais Avenida Antônio Carlos 6627 Belo Horizonte MG 31270‐901 Brazil
| | - Luana S. Silva
- Departamento de Engenharia de Alimentos Universidade Federal de São João del Rei, Campus Sete Lagoas Rodovia MG 424, Km 47, CX 56 Sete Lagoas MG 35701‐970 Brazil
| | - Cintia N. Kobori
- Departamento de Engenharia de Alimentos Universidade Federal de São João del Rei, Campus Sete Lagoas Rodovia MG 424, Km 47, CX 56 Sete Lagoas MG 35701‐970 Brazil
| | - Andreia M. Silva
- Departamento de Engenharia de Alimentos Universidade Federal de São João del Rei, Campus Sete Lagoas Rodovia MG 424, Km 47, CX 56 Sete Lagoas MG 35701‐970 Brazil
| | - Jacques R. Nicoli
- Departamento de Microbiologia Instituto de Ciências Biológicas Universidade Federal de Minas Gerais Avenida Antônio Carlos 6627 Belo Horizonte MG 31270‐901 Brazil
| |
Collapse
|
9
|
Díaz R, Torres-Miranda A, Orellana G, Garrido D. Comparative Genomic Analysis of Novel Bifidobacterium longum subsp. longum Strains Reveals Functional Divergence in the Human Gut Microbiota. Microorganisms 2021; 9:microorganisms9091906. [PMID: 34576801 PMCID: PMC8470182 DOI: 10.3390/microorganisms9091906] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/03/2022] Open
Abstract
Bifidobacterium longum subsp. longum is a prevalent group in the human gut microbiome. Its persistence in the intestinal microbial community suggests a close host-microbe relationship according to age. The subspecies adaptations are related to metabolic capabilities and genomic and functional diversity. In this study, 154 genomes from public databases and four new Chilean isolates were genomically compared through an in silico approach to identify genomic divergence in genes associated with carbohydrate consumption and their possible adaptations to different human intestinal niches. The pangenome of the subspecies was open, which correlates with its remarkable ability to colonize several niches. The new genomes homogenously clustered within subspecies longum, as observed in phylogenetic analysis. B. longum SC664 was different at the sequence level but not in its functions. COG analysis revealed that carbohydrate use is variable among longum subspecies. Glycosyl hydrolases participating in human milk oligosaccharide use were found in certain infant and adult genomes. Predictive genomic analysis revealed that B. longum M12 contained an HMO cluster associated with the use of fucosylated HMOs but only endowed with a GH95, being able to grow in 2-fucosyllactose as the sole carbon source. This study identifies novel genomes with distinct adaptations to HMOs and highlights the plasticity of B. longum subsp. longum to colonize the human gut microbiota.
Collapse
|