1
|
Xiang J, Pompetti AJ, Faranda AP, Wang Y, Novo SG, Li DWC, Duncan MK. ATF4 May Be Essential for Adaption of the Ocular Lens to Its Avascular Environment. Cells 2023; 12:2636. [PMID: 37998373 PMCID: PMC10670291 DOI: 10.3390/cells12222636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
The late embryonic mouse lens requires the transcription factor ATF4 for its survival although the underlying mechanisms were unknown. Here, RNAseq analysis revealed that E16.5 Atf4 null mouse lenses downregulate the mRNA levels of lens epithelial markers as well as known markers of late lens fiber cell differentiation. However, a comparison of this list of differentially expressed genes (DEGs) with other known transcriptional regulators of lens development indicated that ATF4 expression is not directly controlled by the previously described lens gene regulatory network. Pathway analysis revealed that the Atf4 DEG list was enriched in numerous genes involved in nutrient transport, amino acid biosynthesis, and tRNA charging. These changes in gene expression likely result in the observed reductions in lens free amino acid and glutathione levels, which would result in the observed low levels of extractable lens protein, finally leading to perinatal lens disintegration. These data demonstrate that ATF4, via its function in the integrated stress response, is likely to play a crucial role in mediating the adaption of the lens to the avascularity needed to maintain lens transparency.
Collapse
Affiliation(s)
- Jiawen Xiang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510230, China
| | - Anthony J. Pompetti
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Adam P. Faranda
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Samuel G. Novo
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510230, China
| | - Melinda K. Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
2
|
Sel1l May Contributes to the Determinants of Neuronal Lineage and Neuronal Maturation Regardless of Hrd1 via Atf6-Sel1l Signaling. Neurochem Res 2023; 48:263-272. [PMID: 36074198 DOI: 10.1007/s11064-022-03750-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/08/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023]
Abstract
The endoplasmic reticulum (ER) is the primary site of intracellular quality control involved in the recognition and degradation of unfolded proteins. A variety of stresses, including hypoxia and glucose starvation, can lead to accumulation of unfolded proteins triggering the ER-associated degradation (ERAD) pathway. Suppressor Enhancer Lin12/Notch1 Like (Sel1l) acts as a "gate keeper" in the quality control of de novo synthesized proteins and complexes with the ubiquitin ligase Hrd1 in the ER membrane. We previously demonstrated that ER stress-induced aberrant neural stem cell (NSC) differentiation and inhibited neurite outgrowth. Inhibition of neurite outgrowth was associated with increased Hrd1 expression; however, the contribution of Sel1l remained unclear. To investigate whether ER stress is induced during normal neuronal differentiation, we semi-quantitatively evaluated mRNA expression levels of unfolded protein response (UPR)-related genes in P19 embryonic carcinoma cells undergoing neuronal differentiation in vitro. Stimulation with all-trans retinoic acid (ATRA) for 4 days induced the upregulation of Nestin and several UPR-related genes (Atf6, Xbp1, Chop, Hrd1, and Sel1l), whereas Atf4 and Grp78/Bip were unchanged. Small-interfering RNA (siRNA)-mediated knockdown of Sel1l uncovered that mRNA levels of the neural progenitor marker Math1 (also known as Atoh1) and the neuronal marker Math3 (also known as Atoh3 and NeuroD4) were significantly suppressed at 4 days after ATRA stimulation. Consistent with this result, Sel1l silencing significantly reduced protein levels of immature neuronal marker βIII-tubulin (also known as Tuj-1) at 8 days after induction of neuronal differentiation, whereas synaptogenic factors, such as cell adhesion molecule 1 (CADM1) and SH3 and multiple ankyrin repeat domain protein 3 (Shank3) were accumulated in Sel1l silenced cells. These results indicate that neuronal differentiation triggers ER stress and suggest that Sel1l may facilitate neuronal lineage through the regulation of Math1 and Math3 expression.
Collapse
|
3
|
Gao L, Jin N, Ye Z, Ma T, Huang Y, Li H, Du J, Li Z. A possible connection between reactive oxygen species and the unfolded protein response in lens development: From insight to foresight. Front Cell Dev Biol 2022; 10:820949. [PMID: 36211466 PMCID: PMC9535091 DOI: 10.3389/fcell.2022.820949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
The lens is a relatively special and simple organ. It has become an ideal model to study the common developmental characteristics among different organic systems. Lens development is a complex process influenced by numerous factors, including signals from the intracellular and extracellular environment. Reactive oxygen species (ROS) are a group of highly reactive and oxygen-containing molecules that can cause endoplasmic reticulum stress in lens cells. As an adaptive response to ER stress, lens cells initiate the unfolded protein response (UPR) to maintain normal protein synthesis by selectively increasing/decreasing protein synthesis and increasing the degradation of misfolded proteins. Generally, the UPR signaling pathways have been well characterized in the context of many pathological conditions. However, recent studies have also confirmed that all three UPR signaling pathways participate in a variety of developmental processes, including those of the lens. In this review, we first briefly summarize the three stages of lens development and present the basic profiles of ROS and the UPR. We then discuss the interconnections between lens development and these two mechanisms. Additionally, the potential adoption of human pluripotent stem-cell-based lentoids in lens development research is proposed to provide a novel perspective on future developmental studies.
Collapse
Affiliation(s)
- Lixiong Gao
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ni Jin
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Endocrinology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, The Chinese PLA General Hospital, Beijing, China
| | - Zi Ye
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tianju Ma
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Huang
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongyu Li
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jinlin Du
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaohui Li
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Zhaohui Li,
| |
Collapse
|
4
|
Disatham J, Brennan L, Jiao X, Ma Z, Hejtmancik JF, Kantorow M. Changes in DNA methylation hallmark alterations in chromatin accessibility and gene expression for eye lens differentiation. Epigenetics Chromatin 2022; 15:8. [PMID: 35246225 PMCID: PMC8897925 DOI: 10.1186/s13072-022-00440-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Background Methylation at cytosines (mCG) is a well-known regulator of gene expression, but its requirements for cellular differentiation have yet to be fully elucidated. A well-studied cellular differentiation model system is the eye lens, consisting of a single anterior layer of epithelial cells that migrate laterally and differentiate into a core of fiber cells. Here, we explore the genome-wide relationships between mCG methylation, chromatin accessibility and gene expression during differentiation of eye lens epithelial cells into fiber cells. Results Whole genome bisulfite sequencing identified 7621 genomic loci exhibiting significant differences in mCG levels between lens epithelial and fiber cells. Changes in mCG levels were inversely correlated with the differentiation state-specific expression of 1285 genes preferentially expressed in either lens fiber or lens epithelial cells (Pearson correlation r = − 0.37, p < 1 × 10–42). mCG levels were inversely correlated with chromatin accessibility determined by assay for transposase-accessible sequencing (ATAC-seq) (Pearson correlation r = − 0.86, p < 1 × 10–300). Many of the genes exhibiting altered regions of DNA methylation, chromatin accessibility and gene expression levels in fiber cells relative to epithelial cells are associated with lens fiber cell structure, homeostasis and transparency. These include lens crystallins (CRYBA4, CRYBB1, CRYGN, CRYBB2), lens beaded filament proteins (BFSP1, BFSP2), transcription factors (HSF4, SOX2, HIF1A), and Notch signaling pathway members (NOTCH1, NOTCH2, HEY1, HES5). Analysis of regions exhibiting cell-type specific alterations in DNA methylation revealed an overrepresentation of consensus sequences of multiple transcription factors known to play key roles in lens cell differentiation including HIF1A, SOX2, and the MAF family of transcription factors. Conclusions Collectively, these results link DNA methylation with control of chromatin accessibility and gene expression changes required for eye lens differentiation. The results also point to a role for DNA methylation in the regulation of transcription factors previously identified to be important for lens cell differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00440-z.
Collapse
Affiliation(s)
- Joshua Disatham
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Lisa Brennan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marc Kantorow
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
5
|
Dave A, Craig JE, Alamein M, Skrzypiec K, Beltz J, Pfaff A, Burdon KP, Ercal N, de Iongh RU, Sharma S. Genotype, Age, Genetic Background, and Sex Influence Epha2-Related Cataract Development in Mice. Invest Ophthalmol Vis Sci 2021; 62:3. [PMID: 34495288 PMCID: PMC8431977 DOI: 10.1167/iovs.62.12.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Age-related cataract is the leading cause of blindness worldwide. Variants in the EPHA2 gene increase the disease risk, and its knockout in mice causes cataract. We investigated whether age, sex, and genetic background, risk factors for age-related cataract, and Epha2 genotype influence Epha2-related cataract development in mice. Methods Cataract development was monitored in Epha2+/+, Epha2+/-, and Epha2-/- mice (Epha2Gt(KST085)Byg) on C57BL/6J and FVB:C57BL/6J (50:50) backgrounds. Cellular architecture of lenses, endoplasmic reticulum (ER) stress, and redox state were determined using histological, molecular, and analytical techniques. Results Epha2-/- and Epha2+/- mice on C57BL/6J background developed severe cortical cataracts by 18 and 38 weeks of age, respectively, compared to development of similar cataract significantly later in Epha2-/- mice and no cataract in Epha2+/- mice in this strain on FVB background, which was previously reported. On FVB:C57BL/6J background, Epha2-/- mice developed severe cortical cataract by 38 weeks and Epha2+/- mice exhibited mild cortical cataract up to 64 weeks of age. Progression of cataract in Epha2-/- and Epha2+/- female mice on C57BL/6J and mixed background, respectively, was slower than in matched male mice. N-cadherin and β-catenin immunolabeling showed disorganized lens fiber cells and disruption of lens architecture in Epha2-/- and Epha2+/- lenses, coinciding with development of severe cataracts. EPHA2 immunolabeling showed intracellular accumulation of the mutant EPHA2-β-galactosidase fusion protein that induced a cytoprotective ER stress response and in Epha2+/- lenses was also accompanied by glutathione redox imbalance. Conclusions Both, Epha2-/- and Epha2+/- mice develop age-related cortical cataract; age as a function of Epha2 genotype, sex, and genetic background influence Epha2-related cataractogenesis in mice.
Collapse
Affiliation(s)
- Alpana Dave
- Department of Ophthalmology, Flinders University, Bedford Park, South Australia, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Bedford Park, South Australia, Australia
| | - Mohammad Alamein
- Department of Ophthalmology, Flinders University, Bedford Park, South Australia, Australia
| | - Karina Skrzypiec
- Department of Ophthalmology, Flinders University, Bedford Park, South Australia, Australia
| | - Justin Beltz
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, United States
| | - Annalise Pfaff
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, United States
| | - Kathryn P Burdon
- Department of Ophthalmology, Flinders University, Bedford Park, South Australia, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Nuran Ercal
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, United States
| | - Robb U de Iongh
- Ocular Development Laboratory, Anatomy & Neuroscience, University of Melbourne, Parkville, Australia
| | - Shiwani Sharma
- Department of Ophthalmology, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
6
|
Ranaei Pirmardan E, Barakat A, Zhang Y, Naseri M, Hafezi-Moghadam A. Diabetic cataract in the Nile grass rat: A longitudinal phenotypic study of pathology formation. FASEB J 2021; 35:e21593. [PMID: 33991133 DOI: 10.1096/fj.202100353r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Diabetes is a major risk factor for cataract, the leading cause of blindness worldwide. There is an unmet need for a realistic model of diabetic cataract for mechanistic and longitudinal studies, as existing models do not reflect key aspects of the complex human disease. Here, we introduce and characterize diabetic cataract in the Nile grass rat (NGR, Arvicanthis niloticus), an established model of metabolic syndrome and type 2 diabetes (T2D). We conducted a longitudinal study of cataract in over 88 NGRs in their non-diabetic, pre-diabetic, and diabetic stages of metabolism. Oral glucose tolerance test (OGTT) results distinguished the metabolic stages. Diverse cataract types were observed in the course of diabetes, including cortical, posterior subcapsular (PSC), and anterior subcapsular (ASC), all of which succeeded a characteristic dotted ring stage in all animals. The onset ages of diabetes and cataract were 44 ± 3 vs 29 ± 1 (P < .001) and 66 ± 5 vs 58 ± 6 (not significant) weeks in females and males, respectively. Histological analysis revealed fiber disorganization, vacuolar structures, and cellular proliferation and migration in cataractous lenses. The lens epithelial cells (LECs) in non-diabetic young NGRs expressed the stress marker GRP78, as did LECs and migrated cells in the lenses of diabetic animals. Elucidating mechanisms underlying LEC proliferation and migration will be clinically valuable in prevention and treatment of posterior capsule opacification, a dreaded complication of cataract surgery. Marked changes in N-cadherin expression emphasized a role for LEC integrity in cataractogenesis. Apoptotic cells were dispersed in the equatorial areas in early cataractogenesis. Our study reveals diverse cataract types that spontaneously develop in the diabetic NGR, and which uniquely mirror the cataract and its chronic course of development in individuals with diabetes. We provide mechanistic insights into early stages of diabetic cataract. These unique characteristics make NGR highly suited for mechanistic studies, especially in the context of metabolism, diabetes, and aging.
Collapse
Affiliation(s)
- Ehsan Ranaei Pirmardan
- Molecular Biomarkers Nano-Imaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aliaa Barakat
- Molecular Biomarkers Nano-Imaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuanlin Zhang
- Molecular Biomarkers Nano-Imaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marzieh Naseri
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hafezi-Moghadam
- Molecular Biomarkers Nano-Imaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Clark EM, Nonarath HJT, Bostrom JR, Link BA. Establishment and validation of an endoplasmic reticulum stress reporter to monitor zebrafish ATF6 activity in development and disease. Dis Model Mech 2020; 13:dmm.041426. [PMID: 31852729 PMCID: PMC6994954 DOI: 10.1242/dmm.041426] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
Induction of endoplasmic reticulum (ER) stress is associated with diverse developmental and degenerative diseases. Modified ER homeostasis causes activation of conserved stress pathways at the ER called the unfolded protein response (UPR). ATF6 is a transcription factor activated during ER stress as part of a coordinated UPR. ATF6 resides at the ER and, upon activation, is transported to the Golgi apparatus, where it is cleaved by proteases to create an amino-terminal cytoplasmic fragment (ATF6f). ATF6f translocates to the nucleus to activate transcriptional targets. Here, we describe the establishment and validation of zebrafish reporter lines for ATF6 activity. These transgenic lines are based on a defined and multimerized ATF6 consensus site, which drives either eGFP or destabilized eGFP, enabling dynamic study of ATF6 activity during development and disease. The results show that the reporter is specific for the ATF6 pathway, active during development and induced in disease models known to engage UPR. Specifically, during development, ATF6 activity is highest in the lens, skeletal muscle, fins and gills. The reporter is also activated by common chemical inducers of ER stress, including tunicamycin, thapsigargin and brefeldin A, as well as by heat shock. In models for amyotrophic lateral sclerosis and cone dystrophy, ATF6 reporter expression is induced in spinal cord interneurons or photoreceptors, respectively, suggesting a role for ATF6 response in multiple neurodegenerative diseases. Collectively our results show that these ATF6 reporters can be used to monitor ATF6 activity changes throughout development and in zebrafish models of disease. This article has an associated First Person interview with the first author of the paper. Summary: In this study, we validate transgenic zebrafish generated to specifically report the activity of ATF6, representing a major branch of the endoplasmic reticulum stress pathway with functions in development and disease.
Collapse
Affiliation(s)
- Eric M Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53214, USA
| | - Hannah J T Nonarath
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53214, USA
| | - Jonathan R Bostrom
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53214, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53214, USA
| |
Collapse
|
8
|
He Q, Gao Y, Wang T, Zhou L, Zhou W, Yuan Z. Deficiency of Yes-Associated Protein Induces Cataract in Mice. Aging Dis 2019; 10:293-306. [PMID: 31011480 PMCID: PMC6457047 DOI: 10.14336/ad.2018.0910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/10/2018] [Indexed: 12/25/2022] Open
Abstract
Cataract is a major cause of blindness worldwide, its complicated and unclear etiopathogenesis limit effective therapy. Here, we found that Yap, a downstream effector of the Hippo pathway, is specifically expressed in lens epithelial cells and Yap conditional knockout (cKO) in the lens leads to cataract. Histologically, Yap deficient lens show fewer epithelial cells, retention of nuclei and accumulation of morgagnian globules in the transitional zone and the posterior area. Mechanistically, GFAP-mediated Yap cKO leads to the reduced proliferation of epithelial cells, delayed fiber cell denucleation and increased cellular senescence in lens. Further RNA profiling analysis reveals Yap cKO results in a significant alteration in gene transcription that is involved in eye development, lens structure, inflammation, cellular proliferation and polarity. Collectively, our data reveal a novel function of Yap in the lens and links Yap deficiency with the development of cataract, making Yap a promising target for cataract therapy.
Collapse
Affiliation(s)
- Qing He
- 1State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,2The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China.,3College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhao Gao
- 1State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,2The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China.,3College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongxing Wang
- 4Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,5State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Lujun Zhou
- 2The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China.,3College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxia Zhou
- 4Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,5State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Zengqiang Yuan
- 2The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
9
|
Uzquiano A, Gladwyn-Ng I, Nguyen L, Reiner O, Götz M, Matsuzaki F, Francis F. Cortical progenitor biology: key features mediating proliferation versus differentiation. J Neurochem 2018; 146:500-525. [PMID: 29570795 DOI: 10.1111/jnc.14338] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/26/2018] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
Abstract
The cerebral cortex is a highly organized structure whose development depends on diverse progenitor cell types, namely apical radial glia, intermediate progenitors, and basal radial glia cells, which are responsible for the production of the correct neuronal output. In recent years, these progenitor cell types have been deeply studied, particularly basal radial glia and their role in cortical expansion and gyrification. We review here a broad series of factors that regulate progenitor behavior and daughter cell fate. We first describe the different neuronal progenitor types, emphasizing the differences between lissencephalic and gyrencephalic species. We then review key factors shown to influence progenitor proliferation versus differentiation, discussing their roles in progenitor dynamics, neuronal production, and potentially brain size and complexity. Although spindle orientation has been considered a critical factor for mode of division and daughter cell output, we discuss other features that are emerging as crucial for these processes such as organelle and cell cycle dynamics. Additionally, we highlight the importance of adhesion molecules and the polarity complex for correct cortical development. Finally, we briefly discuss studies assessing progenitor multipotency and its possible contribution to the production of specific neuronal populations. This review hence summarizes recent aspects of cortical progenitor cell biology, and pinpoints emerging features critical for their behavior.
Collapse
Affiliation(s)
- Ana Uzquiano
- INSERM, UMR-S 839, Paris, France.,Sorbonne Université, Université Pierre et Marie Curie, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Ivan Gladwyn-Ng
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig Maximilians University Munich, Planegg/Munich, Germany.,Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilian University Munich, Planegg/Munich, Germany
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, Center for Developmental Biology, RIKEN Kobe Institute, Kobe, Hyogo, Japan
| | - Fiona Francis
- INSERM, UMR-S 839, Paris, France.,Sorbonne Université, Université Pierre et Marie Curie, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
10
|
Hillary RF, FitzGerald U. A lifetime of stress: ATF6 in development and homeostasis. J Biomed Sci 2018; 25:48. [PMID: 29801500 PMCID: PMC5968583 DOI: 10.1186/s12929-018-0453-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Activating transcription factor 6 (ATF6) is an endoplasmic reticulum (ER)-localised protein and member of the leucine zipper family of transcription factors. Best known for its role in transducing signals linked to stress to the endoplasmic reticulum, the 50 kDa activated form of ATF6 is now emerging as a major regulator of organogenesis and tissue homeostasis. Responsible for the correct folding, secretion and membrane insertion of a third of the proteome in eukaryotic cells, the ER encompasses a dynamic, labyrinthine network of regulators, chaperones, foldases and cofactors. Such structures are crucial to the extensive protein synthesis required to undergo normal development and maintenance of tissue homeostasis. When an additional protein synthesis burden is placed on the ER, ATF6, in tandem with ER stress transducers inositol requiring enzyme 1 (IRE1) and PKR-like endoplasmic reticulum kinase (PERK), slows the pace of protein translation and induces the production of stress-reducing chaperones and foldases. MAIN TEXT In the context of development and tissue homeostasis, however, distinct cellular impacts have been attributed to ATF6. Drawing on data published from human, rodent, fish, goat and bovine research, this review first focuses on ATF6-mediated regulation of osteo- and chondrogenesis, ocular development as well as neuro- and myelinogenesis. The purported role of ATF6 in development of the muscular and reproductive systems as well as adipo- and lipogenesis is then described. With relevance to cardiac disease, cancer and brain disorders, the importance of ATF6 in maintaining tissue homeostasis is the subject of the final section. CONCLUSION In conclusion, the review encourages further elucidation of ATF6 regulatory operations during organogenesis and tissue homeostasis, to spawn the development of ATF6-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Robert F Hillary
- Galway Neuroscience Centre, Cúram Centre for Research in Medical Devices, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Una FitzGerald
- Galway Neuroscience Centre, Cúram Centre for Research in Medical Devices, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| |
Collapse
|
11
|
Periyasamy P, Shinohara T. Age-related cataracts: Role of unfolded protein response, Ca 2+ mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection. Prog Retin Eye Res 2017; 60:1-19. [PMID: 28864287 PMCID: PMC5600869 DOI: 10.1016/j.preteyeres.2017.08.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
Abstract
Age-related cataracts are closely associated with lens chronological aging, oxidation, calcium imbalance, hydration and crystallin modifications. Accumulating evidence indicates that misfolded proteins are generated in the endoplasmic reticulum (ER) by most cataractogenic stresses. To eliminate misfolded proteins from cells before they can induce senescence, the cells activate a clean-up machinery called the ER stress/unfolded protein response (UPR). The UPR also activates the nuclear factor-erythroid-2-related factor 2 (Nrf2), a central transcriptional factor for cytoprotection against stress. Nrf2 activates nearly 600 cytoprotective target genes. However, if ER stress reaches critically high levels, the UPR activates destructive outputs to trigger programmed cell death. The UPR activates mobilization of ER-Ca2+ to the cytoplasm and results in activation of Ca2+-dependent proteases to cleave various enzymes and proteins which cause the loss of normal lens function. The UPR also enhances the overproduction of reactive oxygen species (ROS), which damage lens constituents and induce failure of the Nrf2 dependent cytoprotection. Kelch-like ECH-associated protein 1 (Keap1) is an oxygen sensor protein and regulates the levels of Nrf2 by the proteasomal degradation. A significant loss of DNA methylation in diabetic cataracts was found in the Keap1 promoter, which overexpresses the Keap1 protein. Overexpressed Keap1 significantly decreases the levels of Nrf2. Lower levels of Nrf2 induces loss of the redox balance toward to oxidative stress thereby leading to failure of lens cytoprotection. Here, this review summarizes the overall view of ER stress, increases in Ca2+ levels, protein cleavage, and loss of the well-established stress protection in somatic lens cells.
Collapse
Affiliation(s)
- Palsamy Periyasamy
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Toshimichi Shinohara
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
12
|
Cvekl A, Zhang X. Signaling and Gene Regulatory Networks in Mammalian Lens Development. Trends Genet 2017; 33:677-702. [PMID: 28867048 DOI: 10.1016/j.tig.2017.08.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022]
Abstract
Ocular lens development represents an advantageous system in which to study regulatory mechanisms governing cell fate decisions, extracellular signaling, cell and tissue organization, and the underlying gene regulatory networks. Spatiotemporally regulated domains of BMP, FGF, and other signaling molecules in late gastrula-early neurula stage embryos generate the border region between the neural plate and non-neural ectoderm from which multiple cell types, including lens progenitor cells, emerge and undergo initial tissue formation. Extracellular signaling and DNA-binding transcription factors govern lens and optic cup morphogenesis. Pax6, c-Maf, Hsf4, Prox1, Sox1, and a few additional factors regulate the expression of the lens structural proteins, the crystallins. Extensive crosstalk between a diverse array of signaling pathways controls the complexity and order of lens morphogenetic processes and lens transparency.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
13
|
Berthoud VM, Minogue PJ, Lambert PA, Snabb JI, Beyer EC. The Cataract-linked Mutant Connexin50D47A Causes Endoplasmic Reticulum Stress in Mouse Lenses. J Biol Chem 2016; 291:17569-78. [PMID: 27317663 DOI: 10.1074/jbc.m115.707950] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 11/06/2022] Open
Abstract
Mice expressing connexin50D47A (Cx50D47A) exhibit nuclear cataracts and impaired differentiation. Cx50D47A does not traffic properly, and homozygous mutant lenses show increased levels of the stress-responsive αB-crystallins. Therefore, we assessed whether expression of Cx50D47A led to endoplasmic reticulum (ER) stress in the lens in vivo Although pharmacologic induction of ER stress can be transduced by three different pathways, we found no evidence for activation of the IRE1α or ATF6 pathways in Cx50D47A-expressing lenses. In contrast, heterozygous and homozygous Cx50D47A lenses showed an increase in phosphorylated PERK immunoreactivity and in the ratio of phosphorylated to total EIF2α (2.4- and 3.3-fold, respectively) compared with wild type. Levels of ATF4 were similar in wild type and heterozygous lenses but elevated in homozygotes (391%). In both heterozygotes and homozygotes, levels of calreticulin protein were increased (184 and 262%, respectively), as was Chop mRNA (1.9- and 12.4-fold, respectively). CHOP protein was increased in homozygotes (384%). TUNEL staining was increased in Cx50D47A lenses, especially in homozygous mice. Levels of two factors that may be pro-survival, Irs2 and Trib3, were greatly increased in homozygous lenses. These results suggest that expression of Cx50D47A induces ER stress, triggering activation of the PERK-ATF4 pathway, which potentially contributes to the lens pathology and leads to increased expression of anti-apoptotic factors, allowing cell survival.
Collapse
Affiliation(s)
| | | | - Paul A Lambert
- the Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637
| | | | | |
Collapse
|
14
|
Zhou Y, Bennett TM, Shiels A. Lens ER-stress response during cataract development in Mip-mutant mice. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1433-42. [PMID: 27155571 DOI: 10.1016/j.bbadis.2016.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/25/2016] [Accepted: 05/03/2016] [Indexed: 12/22/2022]
Abstract
Major intrinsic protein (MIP) is a functional water-channel (AQP0) that also plays a key role in establishing lens fiber cell architecture. Genetic variants of MIP have been associated with inherited and age-related forms of cataract; however, the underlying pathogenic mechanisms are unclear. Here we have used lens transcriptome profiling by microarray-hybridization and qPCR to identify pathogenic changes during cataract development in Mip-mutant (Lop/+) mice. In postnatal Lop/+ lenses (P7) 99 genes were up-regulated and 75 were down-regulated (>2-fold, p=<0.05) when compared with wild-type. A pathway analysis of up-regulated genes in the Lop/+ lens (P7) was consistent with endoplasmic reticulum (ER)-stress and activation of the unfolded protein response (UPR). The most up-regulated UPR genes (>4-fold) in the Lop/+ lens included Chac1>Ddit3>Atf3>Trib3>Xbp1 and the most down-regulated genes (>5-fold) included two anti-oxidant genes, Hspb1 and Hmox1. Lop/+ lenses were further characterized by abundant TUNEL-positive nuclei within central degenerating fiber cells, glutathione depletion, free-radical overproduction, and calpain hyper-activation. These data suggest that Lop/+ lenses undergo proteotoxic ER-stress induced cell-death resulting from prolonged activation of the Eif2ak3/Perk-Atf4-Ddit3-Chac1 branch of the UPR coupled with severe oxidative-stress.
Collapse
Affiliation(s)
- Yuefang Zhou
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas M Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
Godin JD, Creppe C, Laguesse S, Nguyen L. Emerging Roles for the Unfolded Protein Response in the Developing Nervous System. Trends Neurosci 2016; 39:394-404. [PMID: 27130659 DOI: 10.1016/j.tins.2016.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/23/2016] [Accepted: 04/04/2016] [Indexed: 01/04/2023]
Abstract
The unfolded protein response (UPR) is a homeostatic signaling pathway triggered by protein misfolding in the endoplasmic reticulum (ER). Beyond its protective role, it plays important functions during normal development in response to elevated demand for protein folding. Several UPR effectors show dynamic temporal and spatial expression patterns that correlate with milestones of the central nervous system (CNS) development. Here, we discuss recent studies suggesting that a dynamic regulation of UPR supports generation, maturation, and maintenance of differentiated neurons in the CNS. We further highlight studies supporting a developmental vulnerability of CNS to UPR dysregulation, which underlies neurodevelopmental disorders. We believe that a better understanding of UPR functions may provide novel opportunities for therapeutic strategies to fight ER/UPR-associated human neurological disorders.
Collapse
Affiliation(s)
- Juliette D Godin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, Illkirch, France.
| | - Catherine Creppe
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Sophie Laguesse
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium.
| |
Collapse
|
16
|
Huggins CJ, Mayekar MK, Martin N, Saylor KL, Gonit M, Jailwala P, Kasoji M, Haines DC, Quiñones OA, Johnson PF. C/EBPγ Is a Critical Regulator of Cellular Stress Response Networks through Heterodimerization with ATF4. Mol Cell Biol 2015; 36:693-713. [PMID: 26667036 PMCID: PMC4760225 DOI: 10.1128/mcb.00911-15] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 10/30/2015] [Accepted: 12/07/2015] [Indexed: 12/24/2022] Open
Abstract
The integrated stress response (ISR) controls cellular adaptations to nutrient deprivation, redox imbalances, and endoplasmic reticulum (ER) stress. ISR genes are upregulated in stressed cells, primarily by the bZIP transcription factor ATF4 through its recruitment to cis-regulatory C/EBP:ATF response elements (CAREs) together with a dimeric partner of uncertain identity. Here, we show that C/EBPγ:ATF4 heterodimers, but not C/EBPβ:ATF4 dimers, are the predominant CARE-binding species in stressed cells. C/EBPγ and ATF4 associate with genomic CAREs in a mutually dependent manner and coregulate many ISR genes. In contrast, the C/EBP family members C/EBPβ and C/EBP homologous protein (CHOP) were largely dispensable for induction of stress genes. Cebpg(-/-) mouse embryonic fibroblasts (MEFs) proliferate poorly and exhibit oxidative stress due to reduced glutathione levels and impaired expression of several glutathione biosynthesis pathway genes. Cebpg(-/-) mice (C57BL/6 background) display reduced body size and microphthalmia, similar to ATF4-null animals. In addition, C/EBPγ-deficient newborns die from atelectasis and respiratory failure, which can be mitigated by in utero exposure to the antioxidant, N-acetyl-cysteine. Cebpg(-/-) mice on a mixed strain background showed improved viability but, upon aging, developed significantly fewer malignant solid tumors than WT animals. Our findings identify C/EBPγ as a novel antioxidant regulator and an obligatory ATF4 partner that controls redox homeostasis in normal and cancerous cells.
Collapse
Affiliation(s)
- Christopher J Huggins
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Manasi K Mayekar
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Nancy Martin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Karen L Saylor
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Mesfin Gonit
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Parthav Jailwala
- Advanced Biomedical Computing Center, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Manjula Kasoji
- Advanced Biomedical Computing Center, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Diana C Haines
- Pathology/Histotechnology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Octavio A Quiñones
- DMS, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Peter F Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
17
|
Lyu L, Whitcomb EA, Jiang S, Chang ML, Gu Y, Duncan MK, Cvekl A, Wang WL, Limi S, Reneker LW, Shang F, Du L, Taylor A. Unfolded-protein response-associated stabilization of p27(Cdkn1b) interferes with lens fiber cell denucleation, leading to cataract. FASEB J 2015; 30:1087-95. [PMID: 26590164 DOI: 10.1096/fj.15-278036] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/02/2015] [Indexed: 12/21/2022]
Abstract
Failure of lens fiber cell denucleation (LFCD) is associated with congenital cataracts, but the pathobiology awaits elucidation. Recent work has suggested that mechanisms that direct the unidirectional process of LFCD are analogous to the cyclic processes associated with mitosis. We found that lens-specific mutations that elicit an unfolded-protein response (UPR) in vivo accumulate p27(Cdkn1b), show cyclin-dependent kinase (Cdk)-1 inhibition, retain their LFC nuclei, and are cataractous. Although a UPR was not detected in lenses expressing K6W-Ub, they also accumulated p27 and showed failed LFCD. Induction of a UPR in human lens epithelial cells (HLECs) also induced accumulation of p27 associated with decreased levels of S-phase kinase-associated protein (Skp)-2, a ubiquitin ligase that regulates mitosis. These cells also showed decreased lamin A/C phosphorylation and metaphase arrest. The suppression of lamin A/C phosphorylation and metaphase transition induced by the UPR was rescued by knockdown of p27. Taken together, these data indicate that accumulation of p27, whether related to the UPR or not, prevents the phosphorylation of lamin A/C and LFCD in maturing LFCs in vivo, as well as in dividing HLECs. The former leads to cataract and the latter to metaphase arrest. These results suggest that accumulation of p27 is a common mechanism underlying retention of LFC nuclei.
Collapse
Affiliation(s)
- Lei Lyu
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Elizabeth A Whitcomb
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Shuhong Jiang
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Min-Lee Chang
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Yumei Gu
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Melinda K Duncan
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Ales Cvekl
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Wei-Lin Wang
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Saima Limi
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Lixing W Reneker
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Fu Shang
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Linfang Du
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Allen Taylor
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
18
|
Fernández A, Ordóñez R, Reiter RJ, González-Gallego J, Mauriz JL. Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. J Pineal Res 2015. [PMID: 26201382 DOI: 10.1111/jpi.12264] [Citation(s) in RCA: 362] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER) is a dynamic organelle that participates in a number of cellular functions by controlling lipid metabolism, calcium stores, and proteostasis. Under stressful situations, the ER environment is compromised, and protein maturation is impaired; this causes misfolded proteins to accumulate and a characteristic stress response named unfolded protein response (UPR). UPR protects cells from stress and contributes to cellular homeostasis re-establishment; however, during prolonged ER stress, UPR activation promotes cell death. ER stressors can modulate autophagy which in turn, depending of the situation, induces cell survival or death. Interactions of different autophagy- and apoptosis-related proteins and also common signaling pathways have been found, suggesting an interplay between these cellular processes, although their dynamic features are still unknown. A number of pathologies including metabolic, neurodegenerative and cardiovascular diseases, cancer, inflammation, and viral infections are associated with ER stress, leading to a growing interest in targeting components of the UPR as a therapeutic strategy. Melatonin has a variety of antioxidant, anti-inflammatory, and antitumor effects. As such, it modulates apoptosis and autophagy in cancer cells, neurodegeneration and the development of liver diseases as well as other pathologies. Here, we review the effects of melatonin on the main ER stress mechanisms, focusing on its ability to regulate the autophagic and apoptotic processes. As the number of studies that have analyzed ER stress modulation by this indole remains limited, further research is necessary for a better understanding of the crosstalk between ER stress, autophagy, and apoptosis and to clearly delineate the mechanisms by which melatonin modulates these responses.
Collapse
Affiliation(s)
- Anna Fernández
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Raquel Ordóñez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - José L Mauriz
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| |
Collapse
|
19
|
Sun J, Rockowitz S, Chauss D, Wang P, Kantorow M, Zheng D, Cvekl A. Chromatin features, RNA polymerase II and the comparative expression of lens genes encoding crystallins, transcription factors, and autophagy mediators. Mol Vis 2015; 21:955-73. [PMID: 26330747 PMCID: PMC4551281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/26/2015] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Gene expression correlates with local chromatin structure. Our studies have mapped histone post-translational modifications, RNA polymerase II (pol II), and transcription factor Pax6 in lens chromatin. These data represent the first genome-wide insights into the relationship between lens chromatin structure and lens transcriptomes and serve as an excellent source for additional data analysis and refinement. The principal lens proteins, the crystallins, are encoded by predominantly expressed mRNAs; however, the regulatory mechanisms underlying their high expression in the lens remain poorly understood. METHODS The formaldehyde-assisted identification of regulatory regions (FAIRE-Seq) was employed to analyze newborn lens chromatin. ChIP-seq and RNA-seq data published earlier (GSE66961) have been used to assist in FAIRE-seq data interpretation. RNA transcriptomes from murine lens epithelium, lens fibers, erythrocytes, forebrain, liver, neurons, and pancreas were compared to establish the gene expression levels of the most abundant mRNAs versus median gene expression across other differentiated cells. RESULTS Normalized RNA expression data from multiple tissues show that crystallins rank among the most highly expressed genes in mammalian cells. These findings correlate with the extremely high abundance of pol II all across the crystallin loci, including crystallin genes clustered on chromosomes 1 and 5, as well as within regions of "open" chromatin, as identified by FAIRE-seq. The expression levels of mRNAs encoding DNA-binding transcription factors (e.g., Foxe3, Hsf4, Maf, Pax6, Prox1, Sox1, and Tfap2a) revealed that their transcripts form "clusters" of abundant mRNAs in either lens fibers or lens epithelium. The expression of three autophagy regulatory mRNAs, encoding Tfeb, FoxO1, and Hif1α, was found within a group of lens preferentially expressed transcription factors compared to the E12.5 forebrain. CONCLUSIONS This study reveals novel features of lens chromatin, including the remarkably high abundance of pol II at the crystallin loci that exhibit features of "open" chromatin. Hsf4 ranks among the most abundant fiber cell-preferred DNA-binding transcription factors. Notable transcripts, including Atf4, Ctcf, E2F4, Hey1, Hmgb1, Mycn, RXRβ, Smad4, Sp1, and Taf1 (transcription factors) and Ctsd, Gabarapl1, and Park7 (autophagy regulators) have been identified with high levels of expression in lens fibers, which suggests specific roles in lens fiber cell terminal differentiation.
Collapse
Affiliation(s)
- Jian Sun
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY,Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| | - Shira Rockowitz
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| | - Daniel Chauss
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL
| | - Ping Wang
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY
| | - Marc Kantorow
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY,Department of Neurology, Albert Einstein College of Medicine, Bronx, NY,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
| | - Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY,Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
20
|
Kupsco A, Schlenk D. Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:1-66. [PMID: 26008783 DOI: 10.1016/bs.ircmb.2015.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Physiological development requires precise spatiotemporal regulation of cellular and molecular processes. Disruption of these key events can generate developmental toxicity in the form of teratogenesis or mortality. The mechanism behind many developmental toxicants remains unknown. While recent work has focused on the unfolded protein response (UPR), oxidative stress, and apoptosis in the pathogenesis of disease, few studies have addressed their relationship in developmental toxicity. Redox regulation, UPR, and apoptosis are essential for physiological development and can be disturbed by a variety of endogenous and exogenous toxicants to generate lethality and diverse malformations. This review examines the current knowledge of the role of oxidative stress, UPR, and apoptosis in physiological development as well as in developmental toxicity, focusing on studies and advances in vertebrates model systems.
Collapse
Affiliation(s)
- Allison Kupsco
- Environmental Toxicology Program, University of California, Riverside, CA, USA
| | - Daniel Schlenk
- Environmental Toxicology Program, University of California, Riverside, CA, USA; Environmental Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
21
|
Selenite cataracts: activation of endoplasmic reticulum stress and loss of Nrf2/Keap1-dependent stress protection. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1794-805. [PMID: 24997453 DOI: 10.1016/j.bbadis.2014.06.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 12/21/2022]
Abstract
Cataract-induced by sodium selenite in suckling rats is one of the suitable animal models to study the basic mechanism of human cataract formation. The aim of this present investigation is to study the endoplasmic reticulum (ER) stress-mediated activation of unfolded protein response (UPR), overproduction of reactive oxygen species (ROS), and suppression of Nrf2/Keap1-dependent antioxidant protection through endoplasmic reticulum-associated degradation (ERAD) pathway and Keap1 promoter DNA demethylation in human lens epithelial cells (HLECs) treated with sodium selenite. Lenses enucleated from sodium selenite injected rats generated overproduction of ROS in lens epithelial cells and newly formed lens fiber cells resulting in massive lens epithelial cells death after 1-5days. All these lenses developed nuclear cataracts after 4-5days. Sodium selenite treated HLECs induced ER stress and activated the UPR leading to release of Ca(2+) from ER, ROS overproduction and finally HLECs death. Sodium selenite also activated the mRNA expressions of passive DNA demethylation pathway enzymes such as Dnmt1, Dnmt3a, and Dnmt3b, and active DNA demethylation pathway enzyme, Tet1 leading to DNA demethylation in the Keap1 promoter of HLECs. This demethylated Keap1 promoter results in overexpression of Keap1 mRNA and protein. Overexpression Keap1 protein suppresses the Nrf2 protein through ERAD leading to suppression of Nrf2/Keap1 dependent antioxidant protection in the HLECs treated with sodium selenite. As an outcome, the cellular redox status is altered towards lens oxidation and results in cataract formation.
Collapse
|
22
|
Wang X, Wang G, Kunte M, Shinde V, Gorbatyuk M. Modulation of angiogenesis by genetic manipulation of ATF4 in mouse model of oxygen-induced retinopathy [corrected]. Invest Ophthalmol Vis Sci 2013; 54:5995-6002. [PMID: 23942974 DOI: 10.1167/iovs.13-12117] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The activation of the unfolded protein response (UPR) and an increase in activating transcription factor 4 (ATF4) has been previously reported in the diabetic retina. Despite this, a direct link between ATF4 and the degree of proliferative retinopathy has not been demonstrated to date. Therefore, the objective of this study was to determine whether ATF4 deficiency could reduce neovascularization in mice with oxygen-induced retinopathy (OIR). METHODS We induced OIR in C57BL/6, ATF4(+/-), and endoplasmic reticulum stress-activated indicator (ERAI) mice and used quantitative RT-PCR and Western blot analysis to evaluate relative gene and protein expression. Histology and microscopy were used to calculate the extent of neovascularization in flat-mounted retinas. RESULTS Experimental data revealed Xbp1 splicing in the retinal ganglia cells, outer plexiform layer, inner nuclear layer, and outer nuclear layer and in pericytes of postdevelopment day 17 ERAI OIR mice, confirming the activation of IRE1 UPR signaling. In naive ATF4-deficient mice, we also observed an elevation in UPR-associated and vascular-associated gene expression (Bip, Atf6, Hif1a, Pik3/Akt, Flt1/Vegfa, and Tgfb1), which may have contributed to the alleviation of hypoxia-driven neovascularization in experimental ATF4(+/-) retinas. The OIR ATF4(+/-) retinas demonstrated reprogramming of the UPR seen at both the mRNA (Atf6 and Bip) and protein (pATF6 and peIf2α) levels, as well as a reduction in vascularization-associated gene expression (Flt1, Vegf1, Hif1, and Tgb1). These changes corresponded to the decline in the rate of neovascularization. CONCLUSIONS Our study validates ATF4 as a prospective therapeutic target to inhibit neovascularization in proliferative retinopathy.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, North Texas Eye Research Institute, Fort Worth, Texas, USA
| | | | | | | | | |
Collapse
|
23
|
Prell T, Lautenschläger J, Grosskreutz J. Calcium-dependent protein folding in amyotrophic lateral sclerosis. Cell Calcium 2013; 54:132-43. [DOI: 10.1016/j.ceca.2013.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 12/25/2022]
|
24
|
Alapure BV, Stull JK, Firtina Z, Duncan MK. The unfolded protein response is activated in connexin 50 mutant mouse lenses. Exp Eye Res 2012; 102:28-37. [PMID: 22713599 DOI: 10.1016/j.exer.2012.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 04/25/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
The unfolded protein response is a set of cell signaling pathways recently recognized to be activated in the lens during both normal development and endoplasmic reticulum stress induced by either unfolded proteins or oxidative damage. While mutations in the gene for connexin 50 are known to cause autosomal dominant cataracts, it has not been previously reported whether mutant connexins can activate the unfolded protein response in the lens. Mice homozygous for the S50P or G22R mutation of connexin 50 have reduced amounts of connexin 50 protein at the cell membrane, with some intracellular staining consistent with retention in the endoplasmic reticulum. Connexin 50 mutants have elevated levels of BiP expression in both lens epithelial and fiber cells from E15.5 with the most robust elevation detected in newborns. While this elevation decreases in magnitude postnatally, BiP expression is still abnormally high in adults, particularly in the perinuclear endoplasmic reticulum of cell nuclei that are inappropriately retained in adult homozygous mutant lenses. Xbp1 splicing was elevated in lenses from both connexin mutants studied, while Atf4 and Atf6 levels were not majorly affected. Overall, these data suggest that UPR may be a contributing factor to the phenotype of connexin 50 mutant lenses even though the relatively modest extent of the response suggests that it is unlikely to be a major driver of the pathology.
Collapse
Affiliation(s)
- Bhagwat V Alapure
- Department of Biological Sciences, University of Delaware, 327 Wolf Hall, The Green, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
25
|
Baird TD, Wek RC. Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv Nutr 2012; 3:307-21. [PMID: 22585904 PMCID: PMC3649462 DOI: 10.3945/an.112.002113] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulation of mRNA translation is a rapid and effective means to couple changes in the cellular environment with global rates of protein synthesis. In response to stresses, such as nutrient deprivation and accumulation of misfolded proteins in the endoplasmic reticulum, phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α~P) reduces general translation initiation while facilitating the preferential translation of select transcripts, such as that encoding activating transcription factor 4 (ATF4), a transcriptional activator of genes subject to the integrated stress response (ISR). In this review, we highlight the translational control processes regulated by nutritional stress, with an emphasis on the events triggered by eIF2α~P, and describe the family of eukaryotic initiation factor 2 kinases and the mechanisms by which each sense different stresses. We then address 3 questions. First, what are the mechanisms by which eIF2α~P confers preferential translation on select mRNA and what are the consequences of the gene expression induced by the ISR? Second, what are the molecular processes by which certain stresses can differentially activate eIF2α~P and ATF4 expression? The third question we address is what are the modes of cross-regulation between the ISR and other stress response pathways, such as the unfolded protein response and mammalian target of rapamycin, and how do these regulatory schemes provide for gene expression programs that are tailored for specific stresses? This review highlights recent advances in each of these areas of research, emphasizing how eIF2α~P and the ISR can affect metabolic health and disease.
Collapse
|
26
|
Buzzi LI, Simonetta SH, Parodi AJ, Castro OA. The two Caenorhabditis elegans UDP-glucose:glycoprotein glucosyltransferase homologues have distinct biological functions. PLoS One 2011; 6:e27025. [PMID: 22073243 PMCID: PMC3206904 DOI: 10.1371/journal.pone.0027025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 10/09/2011] [Indexed: 11/19/2022] Open
Abstract
The UDP-Glc:glycoprotein glucosyltransferase (UGGT) is the sensor of glycoprotein conformations in the glycoprotein folding quality control as it exclusively glucosylates glycoproteins not displaying their native conformations. Monoglucosylated glycoproteins thus formed may interact with the lectin-chaperones calnexin (CNX) and calreticulin (CRT). This interaction prevents premature exit of folding intermediates to the Golgi and enhances folding efficiency. Bioinformatic analysis showed that in C. elegans there are two open reading frames (F48E3.3 and F26H9.8 to be referred as uggt-1 and uggt-2, respectively) coding for UGGT homologues. Expression of both genes in Schizosaccharomyces pombe mutants devoid of UGGT activity showed that uggt-1 codes for an active UGGT protein (CeUGGT-1). On the other hand, uggt-2 coded for a protein (CeUGGT-2) apparently not displaying a canonical UGGT activity. This protein was essential for viability, although cnx/crt null worms were viable. We constructed transgenic worms carrying the uggt-1 promoter linked to the green fluorescent protein (GFP) coding sequence and found that CeUGGT-1 is expressed in cells of the nervous system. uggt-1 is upregulated under ER stress through the ire-1 arm of the unfolded protein response (UPR). Real-time PCR analysis showed that both uggt-1 and uggt-2 genes are expressed during the entire C. elegans life cycle. RNAi-mediated depletion of CeUGGT-1 but not of CeUGGT-2 resulted in a reduced lifespan and that of CeUGGT-1 and CeUGGT-2 in a developmental delay. We found that both CeUGGT1 and CeUGGT2 play a protective role under ER stress conditions, since 10 µg/ml tunicamycin arrested development at the L2/L3 stage of both uggt-1(RNAi) and uggt-2(RNAi) but not of control worms. Furthermore, we found that the role of CeUGGT-2 but not CeUGGT-1 is significant in relieving low ER stress levels in the absence of the ire-1 unfolding protein response signaling pathway. Our results indicate that both C. elegans UGGT homologues have distinct biological functions.
Collapse
Affiliation(s)
- Lucila I. Buzzi
- Laboratory of Glycobiology, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Sergio H. Simonetta
- Laboratory of Genetics and Molecular Physiology, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Armando J. Parodi
- Laboratory of Glycobiology, Fundación Instituto Leloir, Buenos Aires, Argentina
- Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Olga A. Castro
- Laboratory of Glycobiology, Fundación Instituto Leloir, Buenos Aires, Argentina
- Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
27
|
Castorino JJ, Gallagher-Colombo SM, Levin AV, Fitzgerald PG, Polishook J, Kloeckener-Gruissem B, Ostertag E, Philp NJ. Juvenile cataract-associated mutation of solute carrier SLC16A12 impairs trafficking of the protein to the plasma membrane. Invest Ophthalmol Vis Sci 2011; 52:6774-84. [PMID: 21778275 DOI: 10.1167/iovs.10-6579] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE SLC16A12 encodes an orphan member of the monocarboxylate transporter family, MCT12. A nonsense mutation in SLC16A12 (c.643C>T; p.Q215X) causes juvenile cataract with a dominant inheritance pattern. In the present study, in vitro and in vivo experimental models were used to gain insight into how the SLC16A12 (c.643C>T) mutation leads to cataract formation. METHODS MCT12 peptide antibodies were generated and used to examine the expression of MCT12 in the lens using immuno-confocal microscopy. To determine whether loss of Slc16a12 resulted in cataract formation, a Slc16a12 hypomorphic rat generated by transposon insertional mutagenesis was characterized using RT-PCR, slit lamp microscopy and histologic methods. Exogenous expression of MCT12 and MCT12:214Δ, a mimic of the mutant allele, were used to assess protein expression and trafficking. RESULTS MCT12 protein was detected in the lens epithelium and secondary fiber cells at postnatal day 1. In the Slc16a12(TKO) rat, complete loss of MCT12 did not result in any detectable ocular phenotype. Exogenous expression of MCT12-GFP and MCT12:214Δ-GFP revealed that the full-length protein was trafficked to the plasma membrane (PM), whereas the truncated protein was retained in the endoplasmic reticulum (ER). When both MCT12 and MCT12:214Δ were coexpressed, to mimic the heterozygous patient genotype, the truncated protein was retained in the ER whereas full-length MCT12 was trafficked to the PM. Furthermore, MCT12 was identified as another MCT isoform that requires CD147 for trafficking to the cell surface. CONCLUSIONS These data support a model whereby the SLC16A12 (c.643C>T) mutation causes juvenile cataract by a defect in protein trafficking rather than by haploinsufficiency.
Collapse
Affiliation(s)
- John J Castorino
- Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Slabaugh E, Brandizzi F. Membrane-tethered transcription factors provide a connection between stress response and developmental pathways. PLANT SIGNALING & BEHAVIOR 2011; 6:1210-1. [PMID: 21758012 PMCID: PMC3260725 DOI: 10.4161/psb.6.8.16047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Membrane-tethered transcription factors (MTTFs) are proteins that are targeted to membranes and are capable of regulating gene expression. In this way, they are physically restrained from entering the nucleus and are innately dormant. Upon specific signal recognition cues, MTTFs are activated through cleavage by a protease that releases the transcription factor domain into the cytosol thus allowing it to translocate to the nucleus where it can regulate gene expression. MTTFs are classically thought to provide an advantage to an organism by allowing for rapid signal transduction in response to cellular and environmental stresses. However, recent findings suggest that MTTFs may not only act as a means to respond quickly to stress but also are able to regulate developmental pathways, illustrating a point of interaction between stress and development.
Collapse
Affiliation(s)
- Erin Slabaugh
- Plant Research Laboratory, Department of Energy, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
29
|
Shull GE, Miller ML, Prasad V. Secretory pathway stress responses as possible mechanisms of disease involving Golgi Ca2+ pump dysfunction. Biofactors 2011; 37:150-8. [PMID: 21674634 PMCID: PMC3338190 DOI: 10.1002/biof.141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/15/2010] [Indexed: 01/15/2023]
Abstract
In mammalian tissues, uptake of Ca(2+) and Mn(2+) by Golgi membranes is mediated by the secretory pathway Ca(2+) -ATPases, SPCA1 and SPCA2, encoded by the ATP2C1 and ATP2C2 genes. Loss of one copy of the ATP2C1 gene, which causes SPCA1 haploinsufficiency, leads to squamous cell tumors of keratinized epithelia in mice and to Hailey-Hailey disease, an acantholytic skin disease, in humans. Although the disease phenotypes resulting from SPCA1 haploinsufficiency in mice and humans are quite different, each species-specific phenotype is remarkably similar to those arising as a result of null mutations in one copy of the ATP2A2 gene, encoding SERCA2, the endoplasmic reticulum (ER) Ca(2+) pump. SERCA2 haploinsufficiency, like SPCA1 haploinsufficiency, causes squamous cell tumors in mice and Darier's disease, also an acantholytic skin disease, in humans. The phenotypic similarities between SPCA1 and SERCA2 haploinsufficiency in the two species, and the general functions of the two pumps in consecutive compartments of the secretory pathway, suggest that the underlying disease mechanisms are similar. In this review, we discuss evidence supporting the view that chronic Golgi stress and/or ER stress resulting from Ca(2+) pump haploinsufficiencies leads to activation of cellular stress responses in keratinocytes, with the predominance of proapoptotic pathways (although not necessarily apoptosis itself) leading to acantholytic skin disease in humans and the predominance of prosurvival pathways leading to tumors in mice.
Collapse
Affiliation(s)
- Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, OH, USA.
| | | | | |
Collapse
|