1
|
Fadaka AO, Dourson AJ, Hofmann MC, Gupta P, Raut NGR, Jankowski MP. The intersection of endocrine signaling and neuroimmune communication regulates neonatal nociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605393. [PMID: 39211258 PMCID: PMC11361094 DOI: 10.1101/2024.07.26.605393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neonatal pain is a significant clinical issue but the mechanisms by which pain is produced early in life are poorly understood. Our recent work has linked the transcription factor serum response factor downstream of local growth hormone (GH) signaling to incision-related hypersensitivity in neonates. However, it remains unclear if similar mechanisms contribute to inflammatory pain in neonates. We found that local GH treatment inhibited neonatal inflammatory myalgia but appeared to do so through a unique signal transducer and activator of transcription (STAT) dependent pathway within sensory neurons. The STAT1 transcription factor appeared to regulate peripheral inflammation itself by modulation of monocyte chemoattractant protein 1 (MCP1) release from sensory neurons. Data suggests that STAT1 upregulation, downstream of GH signaling, contributes to neonatal nociception during muscle inflammation through a novel neuroimmune loop involving cytokine release from primary afferents. Results could uncover new ways to treat muscle pain and inflammation in neonates.
Collapse
|
2
|
Chesnokova V, Zonis S, Apaydin T, Barrett R, Melmed S. Non-pituitary growth hormone enables colon cell senescence evasion. Aging Cell 2024; 23:e14193. [PMID: 38724466 PMCID: PMC11320355 DOI: 10.1111/acel.14193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 08/15/2024] Open
Abstract
DNA damage-induced senescence is initially sustained by p53. Senescent cells produce a senescence-associated secretory phenotype (SASP) that impacts the aging microenvironment, often promoting cell transformation. Employing normal non-tumorous human colon cells (hNCC) derived from surgical biopsies and three-dimensional human intestinal organoids, we show that local non-pituitary growth hormone (npGH) induced in senescent cells is a SASP component acting to suppress p53. npGH autocrine/paracrine suppression of p53 results in senescence evasion and cell-cycle reentry, as evidenced by increased Ki67 and BrdU incorporation. Post-senescent cells exhibit activated epithelial-to-mesenchymal transition (EMT), and increased cell motility. Nu/J mice harboring GH-secreting HCT116 xenografts with resultant high GH levels and injected intrasplenic with post-senescent hNCC developed fourfold more metastases than did mice harboring control xenografts, suggesting that paracrine npGH enables post-senescent cell transformation. By contrast, senescent cells with suppressed npGH exhibit downregulated Ki67 and decreased soft agar colony formation. Mechanisms underlying these observations include npGH induction by the SASP chemokine CXCL1, which attracts immune effectors to eliminate senescent cells; GH, in turn, suppresses CXCL1, likely by inhibiting phospho-NFκB, resulting in SASP cytokine downregulation. Consistent with these findings, GH-receptor knockout mice exhibited increased colon phospho-NFκB and CXCL1, while GH excess decreased colon CXCL1. The results elucidate mechanisms for local hormonal regulation of microenvironmental changes in DNA-damaged non-tumorous epithelial cells and portray a heretofore unappreciated GH action favoring age-associated epithelial cell transformation.
Collapse
Affiliation(s)
- Vera Chesnokova
- Department of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Svetlana Zonis
- Department of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Tugce Apaydin
- Department of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Robert Barrett
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Shlomo Melmed
- Department of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| |
Collapse
|
3
|
Zivkovic A, Trifunovic S, Savic D, Milosevic K, Lavrnja I. Experimental Autoimmune Encephalomyelitis Influences GH-Axis in Female Rats. Int J Mol Sci 2024; 25:5837. [PMID: 38892024 PMCID: PMC11172041 DOI: 10.3390/ijms25115837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammation, demyelination, and axonal damage to the central nervous system (CNS) are the hallmarks of multiple sclerosis (MS) and its representative animal model, experimental autoimmune encephalomyelitis (EAE). There is scientific evidence for the involvement of growth hormone (GH) in autoimmune regulation. Previous data on the relationship between the GH/insulin like growth factor-1 (IGF-1) axis and MS/EAE are inconclusive; therefore, the aim of our study was to investigate the changes in the GH axis during acute monophasic EAE. The results show that the gene expression of Ghrh and Sst in the hypothalamus does not change, except for Npy and Agrp, while at the pituitary level the Gh, Ghrhr and Ghr genes are upregulated. Interestingly, the cell volume of somatotropic cells in the pituitary gland remains unchanged at the peak of the disease. We found elevated serum GH levels in association with low IGF-1 concentration and downregulated Ghr and Igf1r expression in the liver, indicating a condition resembling GH resistance. This is likely due to inadequate nutrient intake at the peak of the disease when inflammation in the CNS is greatest. Considering that GH secretion is finely regulated by numerous central and peripheral signals, the involvement of the GH/IGF-1 axis in MS/EAE should be thoroughly investigated for possible future therapeutic strategies, especially with a view to improving EAE disease.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Female
- Rats
- Growth Hormone/metabolism
- Insulin-Like Growth Factor I/metabolism
- Insulin-Like Growth Factor I/genetics
- Hypothalamus/metabolism
- Hypothalamus/pathology
- Pituitary Gland/metabolism
- Pituitary Gland/pathology
- Receptors, Somatotropin/metabolism
- Receptors, Somatotropin/genetics
- Receptors, Pituitary Hormone-Regulating Hormone/genetics
- Receptors, Pituitary Hormone-Regulating Hormone/metabolism
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Multiple Sclerosis/genetics
- Growth Hormone-Releasing Hormone/metabolism
- Growth Hormone-Releasing Hormone/genetics
- Liver/metabolism
- Liver/pathology
- Disease Models, Animal
Collapse
Affiliation(s)
- Anica Zivkovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (A.Z.); (D.S.); (K.M.)
| | - Svetlana Trifunovic
- Department of Cytology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia;
| | - Danijela Savic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (A.Z.); (D.S.); (K.M.)
| | - Katarina Milosevic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (A.Z.); (D.S.); (K.M.)
| | - Irena Lavrnja
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (A.Z.); (D.S.); (K.M.)
| |
Collapse
|
4
|
Kaushansky K. Thrombopoietin, the Primary Regulator of Platelet Production: From Mythos to Logos, a Thirty-Year Journey. Biomolecules 2024; 14:489. [PMID: 38672505 PMCID: PMC11047867 DOI: 10.3390/biom14040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Thrombopoietin, the primary regulator of blood platelet production, was postulated to exist in 1958, but was only proven to exist when the cDNA for the hormone was cloned in 1994. Since its initial cloning and characterization, the hormone has revealed many surprises. For example, instead of acting as the postulated differentiation factor for platelet precursors, megakaryocytes, it is the most potent stimulator of megakaryocyte progenitor expansion known. Moreover, it also stimulates the survival, and in combination with stem cell factor leads to the expansion of hematopoietic stem cells. All of these growth-promoting activities have resulted in its clinical use in patients with thrombocytopenia and aplastic anemia, although the clinical development of the native molecule illustrated that "it's not wise to mess with mother nature", as a highly engineered version of the native hormone led to autoantibody formation and severe thrombocytopenia. Finally, another unexpected finding was the role of the thrombopoietin receptor in stem cell biology, including the development of myeloproliferative neoplasms, an important disorder of hematopoietic stem cells. Overall, the past 30 years of clinical and basic research has yielded many important insights, which are reviewed in this paper.
Collapse
Affiliation(s)
- Kenneth Kaushansky
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
5
|
George AM, Felicita AS, Priyadharsini VJ, P A, Tr PA. Role of the Growth Hormone Receptor (GHR) Gene in Skeletal Class II Malocclusion and Its Significant Influence on the Skeletal Facial Profile in Both the Sagittal and Vertical Dimensions: A Systematic Review. Cureus 2024; 16:e53596. [PMID: 38449954 PMCID: PMC10915704 DOI: 10.7759/cureus.53596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/03/2024] [Indexed: 03/08/2024] Open
Abstract
This systematic review aims to determine the role of the growth hormone receptor (GHR) gene in skeletal malocclusion and its significant influence on the growth of the maxilla and the mandible in both sagittal and vertical dimensions. A search of the electronic databases of PubMed, Google Scholar, and Cochrane up to and including the year 2023 was made. In addition to this, a hand search of orthodontic and dentofacial orthopaedic journals was carried out. This search included randomized control trials. The Mesh terms used were "skeletal class II malocclusion", "mandibular retrognathism", "sagittal malocclusion", "genetic expression", "genetic factors", "genetic study", "genetic polymorphism", and "single nucleotide polymorphism". The inclusion criteria included studies such as clinical trials and orthopaedic appliances in the presurgical phase. The exclusion criteria for the study were studies not in the English language, case reports, case series, and studies with irrelevant data. It has been cited in various literature that polymorphic variations of the GHR gene could cause variations in mandibular morphogenesis affecting both the mandibular body length and ramal height. However, its effects are quite variable and are based on different population groups. Polymorphism of the GHR gene can be considered a reliable indicator predicting variations in affecting the growth of the mandible with greater significance in affecting the vertical ramal height compared to the body length of the mandible. Its effects on the maxillary skeletal base are rather limited comparatively.
Collapse
Affiliation(s)
- Ashwin Mathew George
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - A Sumathi Felicita
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Vijayashree J Priyadharsini
- Clinical Genetics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Anita P
- Clinical Genetics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Prasanna Aravind Tr
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
6
|
Rampersaud A, Connerney J, Waxman DJ. Plasma growth hormone pulses induce male-biased pulsatile chromatin opening and epigenetic regulation in adult mouse liver. eLife 2023; 12:RP91367. [PMID: 38091606 PMCID: PMC10721219 DOI: 10.7554/elife.91367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Sex differences in plasma growth hormone (GH) profiles, pulsatile in males and persistent in females, regulate sex differences in hepatic STAT5 activation linked to sex differences in gene expression and liver disease susceptibility, but little is understood about the fundamental underlying, GH pattern-dependent regulatory mechanisms. Here, DNase-I hypersensitivity site (DHS) analysis of liver chromatin accessibility in a cohort of 18 individual male mice established that the endogenous male rhythm of plasma GH pulse-stimulated liver STAT5 activation induces dynamic, repeated cycles of chromatin opening and closing at several thousand liver DHS and comprises a novel mechanism conferring male bias to liver chromatin accessibility. Strikingly, a single physiological replacement dose of GH given to hypophysectomized male mice restored, within 30 min, liver STAT5 activity and chromatin accessibility at 83% of the dynamic, pituitary hormone-dependent male-biased DHS. Sex-dependent transcription factor binding patterns and chromatin state analysis identified key genomic and epigenetic features distinguishing this dynamic, STAT5-driven mechanism of male-biased chromatin opening from a second GH-dependent mechanism operative at static male-biased DHS, which are constitutively open in male liver. Dynamic but not static male-biased DHS adopt a bivalent-like epigenetic state in female liver, as do static female-biased DHS in male liver, albeit using distinct repressive histone marks in each sex, namely, H3K9me3 at male-biased DHS in female liver and H3K27me3 at female-biased DHS in male liver. Moreover, sex-biased H3K36me3 marks are uniquely enriched at static sex-biased DHS, which may serve to keep these sex-dependent hepatocyte enhancers free of H3K27me3 repressive marks and thus constitutively open. Pulsatile chromatin opening stimulated by endogenous, physiological hormone pulses is thus one of two distinct GH-determined mechanisms for establishing widespread sex differences in hepatic chromatin accessibility and epigenetic regulation, both closely linked to sex-biased gene transcription and the sexual dimorphism of liver function.
Collapse
Affiliation(s)
- Andy Rampersaud
- Department of Biology and Bioinformatics Program, Boston UniversityBostonUnited States
| | - Jeannette Connerney
- Department of Biology and Bioinformatics Program, Boston UniversityBostonUnited States
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston UniversityBostonUnited States
| |
Collapse
|
7
|
Rampersaud A, Connerney J, Waxman DJ. Plasma Growth Hormone Pulses Induce Male-biased Pulsatile Chromatin Opening and Epigenetic Regulation in Adult Mouse Liver. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554153. [PMID: 37662275 PMCID: PMC10473588 DOI: 10.1101/2023.08.21.554153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Sex-differences in plasma growth hormone (GH) profiles, pulsatile in males and persistent in females, regulate sex differences in hepatic STAT5 activation linked to sex differences in gene expression and liver disease susceptibility, but little is understood about the fundamental underlying, GH pattern-dependent regulatory mechanisms. Here, DNase hypersensitivity site (DHS) analysis of liver chromatin accessibility in a cohort of 18 individual male mice established that the endogenous male rhythm of plasma GH pulse-stimulated liver STAT5 activation induces dynamic, repeated cycles of chromatin opening and closing at several thousand liver DHS and comprises a novel mechanism conferring male bias to liver chromatin accessibility. Strikingly, a single physiological replacement dose of GH given to hypophysectomized male mice restored, within 30 min, liver STAT5 activity and chromatin accessibility at 83% of the pituitary hormone-dependent dynamic male-biased DHS. Sex-dependent transcription factor binding patterns and chromatin state analysis identified key genomic and epigenetic features distinguishing this dynamic, STAT5-driven mechanism of male-biased chromatin opening from a second GH-dependent mechanism operative at static male-biased DHS, which are constitutively open in male liver. Dynamic but not static male-biased DHS adopt a bivalent-like epigenetic state in female liver, as do static female-biased DHS in male liver, albeit using distinct repressive histone marks in each sex, namely, H3K27me3 at female-biased DHS in male liver, and H3K9me3 at male-biased DHS in female liver. Moreover, sex-biased H3K36me3 marks are uniquely enriched at static sex-biased DHS, which may serve to keep these sex-dependent hepatocyte enhancers free of H3K27me3 repressive marks and thus constitutively open. Pulsatile chromatin opening stimulated by endogenous, physiological hormone pulses is thus one of two distinct GH-determined mechanisms for establishing widespread sex differences in hepatic chromatin accessibility and epigenetic regulation, both closely linked to sex-biased gene transcription and the sexual dimorphism of liver function.
Collapse
Affiliation(s)
- Andy Rampersaud
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215 USA
| | - Jeannette Connerney
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215 USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215 USA
| |
Collapse
|
8
|
Leem KH, Kim S, Lim J, Park HJ, Shin YC, Lee JS. Hydrolyzed Collagen Tripeptide Promotes Longitudinal Bone Growth in Childhood Rats via Increases in Insulin-Like Growth Factor-1 and Bone Morphogenetic Proteins. J Med Food 2023; 26:809-819. [PMID: 37862561 DOI: 10.1089/jmf.2023.k.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
Previous studies have reported that collagen tripeptide (CTP) derived from collagen hydrolysate has various beneficial effects on health by protecting against skin aging and improving bone formation and cartilage regeneration. Collagen-Tripep20TM (CTP20), which is a low-molecular-weight CTP derived from fish skin, contains a bioactive CTP, Gly-Pro-Hyp >3.2% with a tripeptide content >20%. Herein, we investigated the osteogenic effects and mechanisms of CTP20 (<500 Da) on MG-63 osteoblast-like cells and SW1353 chondrocytes. And we measured promoting ratio of the longitudinal bone growth in childhood rats. First, CTP20 at 100 μg/mL elevated the proliferation (15.0% and 28.2%), alkaline phosphatase activity (29.3% and 32.0%), collagen synthesis (1.25- and 1.14-fold), and calcium deposition (1.18- and 1.15-fold) in MG-63 cells and SW1353, respectively. In addition, we found that CTP20 could promote the longitudinal growth and height of the growth plate of the tibia in childhood rats. CTP20 enhanced the protein expression of insulin-like growth factor-1 (IGF-1) in MG-63 and SW1353 cells, and in the growth plate of childhood rats, along with Janus Kinase 2, and signal transducer and activator of transcription 5 activation in MG-63 and SW1353 cells. CTP20 also elevated the expression levels of bone morphogenetic proteins (BMPs) in MG-63 and SW1353 cells and in the growth plates of childhood rats. These results indicate that CTP20 may promote the endochondral ossification and longitudinal bone growth, through enhancing of IGF-1 and BMPs. (Clinical Trial Registration number: smecae 19-09-01).
Collapse
Affiliation(s)
- Kang Hyun Leem
- College of Korean Medicine, Semyung University, Jecheon, Korea
| | - Sanga Kim
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Junsik Lim
- College of Korean Medicine, Semyung University, Jecheon, Korea
| | - Hae Jeong Park
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | |
Collapse
|
9
|
Jain L, Vickers MH, Jacob B, Middleditch MJ, Chudakova DA, Ganley ARD, O'Sullivan JM, Perry JK. The growth hormone receptor interacts with transcriptional regulator HMGN1 upon GH-induced nuclear translocation. J Cell Commun Signal 2023; 17:925-937. [PMID: 37043098 PMCID: PMC10409943 DOI: 10.1007/s12079-023-00741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/15/2023] [Indexed: 04/13/2023] Open
Abstract
Growth hormone (GH) actions are mediated through binding to its cell-surface receptor, the GH receptor (GHR), with consequent activation of downstream signalling. However, nuclear GHR localisation has also been observed and is associated with increased cancer cell proliferation. Here we investigated the functional implications of nuclear translocation of the GHR in the human endometrial cancer cell-line, RL95-2, and human mammary epithelial cell-line, MCF-10A. We found that following GH treatment, the GHR rapidly translocates to the nucleus, with maximal localisation at 5-10 min. Combined immunoprecipitation-mass spectrometry analysis of RL95-2 whole cell lysates identified 40 novel GHR binding partners, including the transcriptional regulator, HMGN1. Moreover, microarray analysis demonstrated that the gene targets of HMGN1 were differentially expressed following GH treatment, and co-immunoprecipitation showed that HMGN1 associates with the GHR in the nucleus. Therefore, our results suggest that GHR nuclear translocation might mediate GH actions via interaction with chromatin factors that then drive changes in specific downstream transcriptional programs.
Collapse
Affiliation(s)
- Lekha Jain
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand
| | - Mark H Vickers
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand
| | - Bincy Jacob
- Faculty of Science, University of Auckland, Auckland, New Zealand
| | | | - Daria A Chudakova
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Austen R D Ganley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Justin M O'Sullivan
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Jo K Perry
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
10
|
Sharma A, Shambhwani D, Pandey S, Singh J, Lalhlenmawia H, Kumarasamy M, Singh SK, Chellappan DK, Gupta G, Prasher P, Dua K, Kumar D. Advances in Lung Cancer Treatment Using Nanomedicines. ACS OMEGA 2023; 8:10-41. [PMID: 36643475 PMCID: PMC9835549 DOI: 10.1021/acsomega.2c04078] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/13/2022] [Indexed: 06/01/2023]
Abstract
Carcinoma of the lungs is among the most menacing forms of malignancy and has a poor prognosis, with a low overall survival rate due to delayed detection and ineffectiveness of conventional therapy. Therefore, drug delivery strategies that may overcome undesired damage to healthy cells, boost therapeutic efficacy, and act as imaging tools are currently gaining much attention. Advances in material science have resulted in unique nanoscale-based theranostic agents, which provide renewed hope for patients suffering from lung cancer. Nanotechnology has vastly modified and upgraded the existing techniques, focusing primarily on increasing bioavailability and stability of anti-cancer drugs. Nanocarrier-based imaging systems as theranostic tools in the treatment of lung carcinoma have proven to possess considerable benefits, such as early detection and targeted therapeutic delivery for effectively treating lung cancer. Several variants of nano-drug delivery agents have been successfully studied for therapeutic applications, such as liposomes, dendrimers, polymeric nanoparticles, nanoemulsions, carbon nanotubes, gold nanoparticles, magnetic nanoparticles, solid lipid nanoparticles, hydrogels, and micelles. In this Review, we present a comprehensive outline on the various types of overexpressed receptors in lung cancer, as well as the various targeting approaches of nanoparticles.
Collapse
Affiliation(s)
- Akshansh Sharma
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | | | - Sadanand Pandey
- Department
of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Jay Singh
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Hauzel Lalhlenmawia
- Department
of Pharmacy, Regional Institute of Paramedical
and Nursing Sciences, Zemabawk, Aizawl, Mizoram 796017, India
| | - Murali Kumarasamy
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research, Hajipur 844102, India
| | - Sachin Kumar Singh
- School
of Pharmaceutical Sciences, Lovely Professional
University, Phagwara 144411, India
- Faculty
of Health, Australian Research Centre in Complementary and Integrative
Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department
of Life Sciences, School of Pharmacy, International
Medical University, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- Department
of Pharmacology, School of Pharmacy, Suresh
Gyan Vihar University, Jaipur 302017, India
- Department
of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical
and Technical Sciences, Saveetha University, Chennai 602117, India
- Uttaranchal
Institute of Pharmaceutical Sciences, Uttaranchal
University, Dehradun 248007, India
| | - Parteek Prasher
- Department
of Chemistry, University of Petroleum &
Energy Studies, Dehradun 248007, India
| | - Kamal Dua
- Faculty
of Health, Australian Research Centre in Complementary and Integrative
Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- Discipline
of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Deepak Kumar
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| |
Collapse
|
11
|
Blackmore DG, Waters MJ. The multiple roles of GH in neural ageing and injury. Front Neurosci 2023; 17:1082449. [PMID: 36960169 PMCID: PMC10027725 DOI: 10.3389/fnins.2023.1082449] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
Advanced age is typically associated with a decrease in cognitive function including impairment in the formation and retention of new memories. The hippocampus is critical for learning and memory, especially spatial learning, and is particularly affected by ageing. With advanced age, multiple neural components can be detrimentally affected including a reduction in the number of neural stem and precursor cells, a decrease in the formation of adult born neurons (neurogenesis), and deficits in neural circuitry, all of which ultimately contribute to impaired cognitive function. Importantly, physical exercise has been shown to ameliorate many of these impairments and is able to improve learning and memory. Relevantly, growth hormone (GH) is an important protein hormone that decreases with ageing and increases following physical exercise. Originally described due to its role in longitudinal growth, GH has now been identified to play several additional key roles, especially in relation to the brain. Indeed, the regular decrease in GH levels following puberty is one of the most well documented components of neuroendocrine ageing. Growth hormone deficiency (GHD) has been described to have adverse effects on brain function, which can be ameliorated via GH replacement therapy. Physical exercise has been shown to increase circulating GH levels. Furthermore, we recently demonstrated the increase in exercise-mediated GH is critical for improved cognitive function in the aged mouse. Here we examine the multiple roles that GH plays, particularly in the aged brain and following trauma, irradiation and stroke, and how increasing GH levels can ameliorate deficits in cognition.
Collapse
Affiliation(s)
- Daniel G. Blackmore
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Michael J. Waters
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Michael J. Waters,
| |
Collapse
|
12
|
Castell AL, Goubault C, Ethier M, Fergusson G, Tremblay C, Baltz M, Dal Soglio D, Ghislain J, Poitout V. β Cell mass expansion during puberty involves serotonin signaling and determines glucose homeostasis in adulthood. JCI Insight 2022; 7:160854. [PMID: 36107617 PMCID: PMC9675460 DOI: 10.1172/jci.insight.160854] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023] Open
Abstract
Puberty is associated with transient insulin resistance that normally recedes at the end of puberty; however, in overweight children, insulin resistance persists, leading to an increased risk of type 2 diabetes. The mechanisms whereby pancreatic β cells adapt to pubertal insulin resistance, and how they are affected by the metabolic status, have not been investigated. Here, we show that puberty is associated with a transient increase in β cell proliferation in rats and humans of both sexes. In rats, β cell proliferation correlated with a rise in growth hormone (GH) levels. Serum from pubertal rats and humans promoted β cell proliferation, suggesting the implication of a circulating factor. In pubertal rat islets, expression of genes of the GH/serotonin (5-hydroxytryptamine [5-HT]) pathway underwent changes consistent with a proliferative effect. Inhibition of the pro-proliferative 5-HT receptor isoform HTR2B blocked the increase in β cell proliferation in pubertal islets ex vivo and in vivo. Peripubertal metabolic stress blunted β cell proliferation during puberty and led to altered glucose homeostasis later in life. This study identifies a role of GH/GH receptor/5-HT/HTR2B signaling in the control of β cell mass expansion during puberty and identifies a mechanistic link between pubertal obesity and the risk of developing type 2 diabetes.
Collapse
Affiliation(s)
- Anne-Laure Castell
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Medicine and
| | - Clara Goubault
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Pharmacology and Physiology, University of Montreal, Quebec, Canada
| | - Mélanie Ethier
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Grace Fergusson
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Caroline Tremblay
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Marie Baltz
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Dorothée Dal Soglio
- CHU Sainte-Justine, Montreal, Quebec, Canada.,Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Julien Ghislain
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Medicine and
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Canonical growth hormone (GH)-dependent signaling is essential for growth and counterregulatory responses to hypoglycemia, but also may contribute to glucose homeostasis (even in the absence of hypoglycemia) via its impact on metabolism of carbohydrates, lipids and proteins, body composition, and cardiovascular risk profile. The aim of this review is to summarize recent data implicating GH action in metabolic control, including both IGF-1-dependent and -independent pathways, and its potential role as target for T2D therapy. RECENT FINDINGS Experimental blockade of the GHR can modulate glucose metabolism. Moreover, the soluble form of the GH receptor (GHR, or GHBP) was recently identified as a mediator of improvement in glycemic control in patients with T2D randomized to bariatric surgery vs. medical therapy. Reductions in GHR were accompanied by increases in plasma GH, but unchanged levels of both total and free IGF-1. Likewise, hepatic GHR expression is reduced following both RYGB and VSG in rodents. Emerging data indicate that GH signaling is important for regulation of long-term glucose metabolism in T2D. Future studies will be required to dissect tissue-specific GH signaling and sensitivity and their contributions to systemic glucose metabolism.
Collapse
Affiliation(s)
- Xuehong Dong
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Endocrinology, Diabetes & Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Su
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mary-Elizabeth Patti
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Zhu C, Liu G, Gu X, Yin J, Xia A, Han M, Zhang T, Jiang Q. Effect of quercetin on muscle growth and antioxidant status of the dark sleeper Odontobutis potamophila. Front Genet 2022; 13:938526. [PMID: 35957695 PMCID: PMC9358148 DOI: 10.3389/fgene.2022.938526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Quercetin is a flavanol beneficial in reducing fat, promoting muscle growth, and Anti-oxidation. To study its effects in freshwater fish, the full-length cDNA of the follistatin (FST) and myostatin (MSTN) genes of the dark sleeper Odontobutis potamophila were cloned for the first time. Juvenile individual O. potamophila was exposed to quercetin at one of four concentrations (0, 2.5, 5, and 10 mg/L) for 21 days. The expression level of MSTN which inhibits muscle growth in the quercetin solution was lower than in the unexposed control group. The genes that promote muscle growth are in TGF-β superfamily like FST, TGF-β1 (transforming growth factor-beta 1), and Myogenic regulatory factors (MRFs) like Myf5 (myogenic factor 5), MyoD (myogenic differentiation), MyoG (myogenin), were higher than in the control group. Apolipoprotein and growth hormone receptor transcription levels in the quercetin-treated fish were significantly lower than in the control group. The concentrations of triglyceride, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol in the muscle tissue decreased, and the lipid-lowering function of quercetin was also demonstrated at the biochemical level. In this study, we analyzed the mRNA levels of AKT, Keap1 (kelch-like ECH-associated protein 1), Nrf2 (NF-E2-related factor 2) oxidation-related genes in the Nrf2/ARE antioxidant pathway, and Malondialdehyde (MDA), catalase (CAT) activity and glutathione (GSH) content in the hepatopancreas of O. potamophila after quercetin treatment, the mRNA expression of AKT, Nrf2 and CAT activity and GSH content are higher than in the control group. Quercetin enhances antioxidant properties and positively affects muscle growth. The results showed that quercetin has no significant effects on the growth performance of O. potamophila, but is effective in increasing muscle growth rate and lowering muscle fat content.
Collapse
Affiliation(s)
- Chenxi Zhu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Guoxing Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiankun Gu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Lowtemperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and TechnologyResources (Agricultural Germplasm Resources) Coordination Service Platform, Freshwater Fisheries Research Institute of JiangsuProvince, NanjingChina
| | - Jiawen Yin
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Lowtemperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and TechnologyResources (Agricultural Germplasm Resources) Coordination Service Platform, Freshwater Fisheries Research Institute of JiangsuProvince, NanjingChina
| | - Aijun Xia
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Lowtemperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and TechnologyResources (Agricultural Germplasm Resources) Coordination Service Platform, Freshwater Fisheries Research Institute of JiangsuProvince, NanjingChina
| | - Mingming Han
- Biology Program, School of Distance Education, Universiti Sains Malaysia, Minden, Malaysia
| | - Tongqing Zhang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Lowtemperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and TechnologyResources (Agricultural Germplasm Resources) Coordination Service Platform, Freshwater Fisheries Research Institute of JiangsuProvince, NanjingChina
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Lowtemperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and TechnologyResources (Agricultural Germplasm Resources) Coordination Service Platform, Freshwater Fisheries Research Institute of JiangsuProvince, NanjingChina
- *Correspondence: Qichen Jiang,
| |
Collapse
|
15
|
Goldfarb CN, Karri K, Pyatkov M, Waxman DJ. Interplay Between GH-regulated, Sex-biased Liver Transcriptome and Hepatic Zonation Revealed by Single-Nucleus RNA Sequencing. Endocrinology 2022; 163:6580481. [PMID: 35512247 PMCID: PMC9154260 DOI: 10.1210/endocr/bqac059] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 11/19/2022]
Abstract
The zonation of liver metabolic processes is well-characterized; however, little is known about the cell type-specificity and zonation of sexually dimorphic gene expression or its growth hormone (GH)-dependent transcriptional regulators. We address these issues using single-nucleus RNA-sequencing of 32 000 nuclei representing 9 major liver cell types. Nuclei were extracted from livers from adult male and female mice; from males infused with GH continuously, mimicking the female plasma GH pattern; and from mice exposed to TCPOBOP, a xenobiotic agonist ligand of the nuclear receptor CAR that perturbs sex-biased gene expression. Analysis of these rich transcriptomic datasets revealed the following: 1) expression of sex-biased genes and their GH-dependent transcriptional regulators is primarily restricted to hepatocytes and is not a feature of liver nonparenchymal cells; 2) many sex-biased transcripts show sex-dependent zonation within the liver lobule; 3) gene expression is substantially feminized both in periportal and pericentral hepatocytes when male mice are infused with GH continuously; 4) sequencing nuclei increases the sensitivity for detecting thousands of nuclear-enriched long-noncoding RNAs (lncRNAs) and enables determination of their liver cell type-specificity, sex-bias and hepatocyte zonation profiles; 5) the periportal to pericentral hepatocyte cell ratio is significantly higher in male than female liver; and 6) TCPOBOP exposure disrupts both sex-specific gene expression and hepatocyte zonation within the liver lobule. These findings highlight the complex interconnections between hepatic sexual dimorphism and zonation at the single-cell level and reveal how endogenous hormones and foreign chemical exposure can alter these interactions across the liver lobule with large effects both on protein-coding genes and lncRNAs.
Collapse
Affiliation(s)
- Christine N Goldfarb
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Kritika Karri
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Bioinformatics Program Boston University, Boston, Massachusetts 02215, USA
| | - Maxim Pyatkov
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | - David J Waxman
- Correspondence: David J. Waxman, PhD, Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
16
|
Moteki H, Ogihara M, Kimura M. <i>S</i>-Allyl-L-cysteine Promotes Cell Proliferation by Stimulating Growth Hormone Receptor/Janus Kinase 2/Phospholipase C Pathways and Promoting Insulin-Like Growth Factor Type-I Secretion in Primary Cultures of Adult Rat Hepatocytes. Biol Pharm Bull 2022; 45:625-634. [DOI: 10.1248/bpb.b21-01071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hajime Moteki
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Josai University
| | - Masahiko Ogihara
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Josai University
| | - Mitsutoshi Kimura
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Josai University
| |
Collapse
|
17
|
Lau-Corona D, Ma H, Vergato C, Sarmento-Cabral A, del Rio-Moreno M, Kineman RD, Waxman DJ. Constitutively Active STAT5b Feminizes Mouse Liver Gene Expression. Endocrinology 2022; 163:bqac046. [PMID: 35396838 PMCID: PMC9070516 DOI: 10.1210/endocr/bqac046] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/19/2022]
Abstract
STAT5 is an essential transcriptional regulator of the sex-biased actions of GH in the liver. Delivery of constitutively active STAT5 (STAT5CA) to male mouse liver using an engineered adeno-associated virus with high tropism for the liver is shown to induce widespread feminization of the liver, with extensive induction of female-biased genes and repression of male-biased genes, largely mimicking results obtained when male mice are given GH as a continuous infusion. Many of the STAT5CA-responding genes were associated with nearby (< 50 kb) sites of STAT5 binding to liver chromatin, supporting the proposed direct role of persistently active STAT5 in continuous GH-induced liver feminization. The feminizing effects of STAT5CA were dose-dependent; moreover, at higher levels, STAT5CA overexpression resulted in some histopathology, including hepatocyte hyperplasia, and increased karyomegaly and multinuclear hepatocytes. These findings establish that the persistent activation of STAT5 by GH that characterizes female liver is by itself sufficient to account for the sex-dependent expression of a majority of hepatic sex-biased genes. Moreover, histological changes seen when STAT5CA is overexpressed highlight the importance of carefully evaluating such effects before considering STAT5 derivatives for therapeutic use in treating liver disease.
Collapse
Affiliation(s)
- Dana Lau-Corona
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Hong Ma
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Cameron Vergato
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Andre Sarmento-Cabral
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago and Research and Development Division, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Mercedes del Rio-Moreno
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago and Research and Development Division, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Rhonda D Kineman
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago and Research and Development Division, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, USA
| |
Collapse
|
18
|
Lappano R, Todd LA, Stanic M, Cai Q, Maggiolini M, Marincola F, Pietrobon V. Multifaceted Interplay between Hormones, Growth Factors and Hypoxia in the Tumor Microenvironment. Cancers (Basel) 2022; 14:539. [PMID: 35158804 PMCID: PMC8833523 DOI: 10.3390/cancers14030539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Hormones and growth factors (GFs) are signaling molecules implicated in the regulation of a variety of cellular processes. They play important roles in both healthy and tumor cells, where they function by binding to specific receptors on target cells and activating downstream signaling cascades. The stages of tumor progression are influenced by hormones and GF signaling. Hypoxia, a hallmark of cancer progression, contributes to tumor plasticity and heterogeneity. Most solid tumors contain a hypoxic core due to rapid cellular proliferation that outgrows the blood supply. In these circumstances, hypoxia-inducible factors (HIFs) play a central role in the adaptation of tumor cells to their new environment, dramatically reshaping their transcriptional profile. HIF signaling is modulated by a variety of factors including hormones and GFs, which activate signaling pathways that enhance tumor growth and metastatic potential and impair responses to therapy. In this review, we summarize the role of hormones and GFs during cancer onset and progression with a particular focus on hypoxia and the interplay with HIF proteins. We also discuss how hypoxia influences the efficacy of cancer immunotherapy, considering that a hypoxic environment may act as a determinant of the immune-excluded phenotype and a major hindrance to the success of adoptive cell therapies.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Lauren A. Todd
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Mia Stanic
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Qi Cai
- Kite Pharma Inc., Santa Monica, CA 90404, USA; (Q.C.); (F.M.)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | | | | |
Collapse
|
19
|
Meng Y, Zhou B, Pei Z, Chen Y, Chang D. The nuclear-localized GHR is involved in the cell proliferation of gastric cancer, and pegvisomant may be an important potential drug to inhibit the proliferation of gastric cancer cells. Biochem Cell Biol 2022; 100:125-135. [PMID: 35061546 DOI: 10.1139/bcb-2021-0386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Under normal physiological conditions, growth hormones (GH) play an important role in body growth and metabolism. A recent study showed that GH has important biological effects on gastric cancer (GC) both in vitro and in vivo. However, the biological properties of GH/GHR (GHR, growth hormone receptor) in GC cells have not been fully elucidated. To this end, we systemically studied the biological properties of GH in GC cells and found that GH/GHR was transported into the nuclei of GC cells. Furthermore, we investigated the functions of nuclear GHR and its potential mechanisms of action. We found that nuclear-localized GHR was closely related to the proliferation of GC cells. In addition, we systematically studied the effect of a GHR inhibitor (pegvisomant) on GC in vivo and in vitro, and the results showed that pegvisomant can not only inhibit the proliferation of GC cells but also inhibit the nuclear localization of GHR, suggesting that pegvisomant may be a dual-effect antagonist. Current research indicates that GHR may be a potential target for the treatment of GC.
Collapse
Affiliation(s)
- YuanPu Meng
- Department of Surgical Oncology, Xi’an, Shaanxi, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Bo Zhou
- Department of Gastrointestinal Oncology, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Zhe Pei
- Department of Gastrointestinal Oncology, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Ye Chen
- Department of Gastrointestinal Oncology, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Dongmin Chang
- Department of Surgical Oncology, Xi’an, Shaanxi, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| |
Collapse
|
20
|
Chesnokova V, Zonis S, Apostolou A, Estrada HQ, Knott S, Wawrowsky K, Michelsen K, Ben-Shlomo A, Barrett R, Gorbunova V, Karalis K, Melmed S. Local non-pituitary growth hormone is induced with aging and facilitates epithelial damage. Cell Rep 2021; 37:110068. [PMID: 34910915 PMCID: PMC8716125 DOI: 10.1016/j.celrep.2021.110068] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/27/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Microenvironmental factors modulating age-related DNA damage are unclear. Non-pituitary growth hormone (npGH) is induced in human colon, non-transformed human colon cells, and fibroblasts, and in 3-dimensional intestinal organoids with age-associated DNA damage. Autocrine/paracrine npGH suppresses p53 and attenuates DNA damage response (DDR) by inducing TRIM29 and reducing ATM phosphorylation, leading to reduced DNA repair and DNA damage accumulation. Organoids cultured up to 4 months exhibit aging markers, p16, and SA-β-galactosidase and decreased telomere length, as well as DNA damage accumulation, with increased npGH, suppressed p53, and attenuated DDR. Suppressing GH in aged organoids increases p53 and decreases DNA damage. WT mice exhibit age-dependent colon DNA damage accumulation, while in aged mice devoid of colon GH signaling, DNA damage remains low, with elevated p53. As age-associated npGH induction enables a pro-proliferative microenvironment, abrogating npGH signaling could be targeted as anti-aging therapy by impeding DNA damage and age-related pathologies. Chesnokova et al. show that non-pituitary growth hormone (npGH) is induced in aging DNA-damaged colon epithelium and suppresses DNA damage response by attenuating the phosphorylation of DNA repair proteins. npGH induction promotes DNA damage accumulation, resulting in age-associated colon microenvironment changes. Accordingly, disrupted GH signaling in aging mice prevents accumulated DNA damage.
Collapse
Affiliation(s)
- Vera Chesnokova
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Svetlana Zonis
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Athanasia Apostolou
- Emulate Inc, Boston, MA 02210, USA; Graduate Program, Department of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Hannah Q Estrada
- Department of Medicine, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Medicine, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Simon Knott
- Department of Medicine, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kolja Wawrowsky
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kathrin Michelsen
- Department of Medicine, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anat Ben-Shlomo
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robert Barrett
- Department of Medicine, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Medicine, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | - Shlomo Melmed
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
21
|
Juárez-Aguilar E, Olivares-Hernández JD, Regalado-Santiago C, García-García F. The role of growth hormone in hippocampal function. VITAMINS AND HORMONES 2021; 118:289-313. [PMID: 35180930 DOI: 10.1016/bs.vh.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Growth hormone is a multifunctional molecule with broad cellular targets. This pituitary hormone is currently used as a therapeutic agent against several brain injuries due to its neurotrophic activity. The hippocampus is one of the brain regions where the growth hormone plays a role in normal and pathologic conditions. This brain structure is associated with several cognitive functions such as learning, memory, and mood, which are frequently affected by brain traumatism. The present chapter describes the experimental and clinical evidence that supports a central role of growth hormone in the hippocampus functionality.
Collapse
Affiliation(s)
- Enrique Juárez-Aguilar
- Departmento de Biomedicina, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, Mexico.
| | - Juan David Olivares-Hernández
- Laboratorio D-01, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | | - Fabio García-García
- Departmento de Biomedicina, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, Mexico
| |
Collapse
|
22
|
Shibel R, Sarfstein R, Nagaraj K, Lapkina-Gendler L, Laron Z, Dixit M, Yakar S, Werner H. The Olfactory Receptor Gene Product, OR5H2, Modulates Endometrial Cancer Cells Proliferation via Interaction with the IGF1 Signaling Pathway. Cells 2021; 10:cells10061483. [PMID: 34204736 PMCID: PMC8231575 DOI: 10.3390/cells10061483] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Endometrial cancer is the most common gynecologic malignancy in Western countries. The insulin-like growth factor-1 (IGF1) axis has an important role in endometrial cancer biology and emerged as a promising therapeutic target in oncology. However, there is an urgent need to identify biomarkers that may help in patient stratification and prognosis. Laron syndrome (LS) is a type of dwarfism that results from the mutation of the growth hormone receptor (GHR) gene, leading to congenital IGF1 deficiency. While high circulating IGF1 is regarded as a risk factor in cancer, epidemiological studies have shown that LS patients are protected from cancer development. Recent genome-wide profilings conducted on LS-derived lymphoblastoid cells led to the identification of a series of genes whose over- or under-representation in this condition might be mechanistically linked to cancer protection. The olfactory receptor 5 subfamily H member 2 (OR5H2) was the top downregulated gene in LS, its expression level being 5.8-fold lower than in the control cells. In addition to their typical role in the olfactory epithelium, olfactory receptors (ORs) are expressed in multiple tissues and play non-classical roles in various pathologies, including cancer. The aim of our study was to investigate the regulation of OR5H2 gene expression by IGF1 in endometrial cancer. Data showed that IGF1 and insulin stimulate OR5H2 mRNA and the protein levels in uterine cancer cell lines expressing either a wild-type or a mutant p53. OR5H2 silencing led to IGF1R downregulation, with ensuing reductions in the downstream cytoplasmic mediators. In addition, OR5H2 knockdown reduced the proliferation rate and cell cycle progression. Analyses of olfr196 (the mouse orthologue of OR5H2) mRNA expression in animal models of GHR deficiency or GH overexpression corroborated the human data. In summary, OR5H2 emerged as a novel target for positive regulation by IGF1, with potential relevance in endometrial cancer.
Collapse
Affiliation(s)
- Rand Shibel
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (R.S.); (R.S.); (K.N.); (L.L.-G.)
| | - Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (R.S.); (R.S.); (K.N.); (L.L.-G.)
| | - Karthik Nagaraj
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (R.S.); (R.S.); (K.N.); (L.L.-G.)
| | - Lena Lapkina-Gendler
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (R.S.); (R.S.); (K.N.); (L.L.-G.)
| | - Zvi Laron
- Endocrinology and Diabetes Research Unit, Schneider Children’s Medical Center, Petah Tikva 49292, Israel;
| | - Manisha Dixit
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010-4086, USA; (M.D.); (S.Y.)
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010-4086, USA; (M.D.); (S.Y.)
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (R.S.); (R.S.); (K.N.); (L.L.-G.)
- Correspondence:
| |
Collapse
|
23
|
Functional Consequences of Mutations in Myeloproliferative Neoplasms. Hemasphere 2021; 5:e578. [PMID: 34095761 PMCID: PMC8171364 DOI: 10.1097/hs9.0000000000000578] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 01/14/2023] Open
Abstract
Driver mutations occur in Janus kinase 2 (JAK2), thrombopoietin receptor (MPL), and calreticulin (CALR) in BCR-ABL1 negative myeloproliferative neoplasms (MPNs). From mutations leading to one amino acid substitution in JAK2 or MPL, to frameshift mutations in CALR resulting in a protein with a different C-terminus, all the mutated proteins lead to pathologic and persistent JAK2-STAT5 activation. The most prevalent mutation, JAK2 V617F, is associated with the 3 entities polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF), while CALR and MPL mutations are associated only with ET and MF. Triple negative ET and MF patients may harbor noncanonical mutations in JAK2 or MPL. One major fundamental question is whether the conformations of JAK2 V617F, MPL W515K/L/A, or CALR mutants differ from those of their wild type counterparts so that a specific treatment could target the clone carrying the mutated driver and spare physiological hematopoiesis. Of great interest, a set of epigenetic mutations can co-exist with the phenotypic driver mutations in 35%–40% of MPNs. These epigenetic mutations, such as TET2, EZH2, ASXL1, or DNMT3A mutations, promote clonal hematopoiesis and increased fitness of aged hematopoietic stem cells in both clonal hematopoiesis of indeterminate potential (CHIP) and MPNs. Importantly, the main MPN driver mutation JAK2 V617F is also associated with CHIP. Accumulation of several epigenetic and splicing mutations favors progression of MPNs to secondary acute myeloid leukemia. Another major fundamental question is how epigenetic rewiring due to these mutations interacts with persistent JAK2-STAT5 signaling. Answers to these questions are required for better therapeutic interventions aimed at preventing progression of ET and PV to MF, and transformation of these MPNs in secondary acute myeloid leukemia.
Collapse
|
24
|
Kassem N, Araya-Secchi R, Bugge K, Barclay A, Steinocher H, Khondker A, Wang Y, Lenard AJ, Bürck J, Sahin C, Ulrich AS, Landreh M, Pedersen MC, Rheinstädter MC, Pedersen PA, Lindorff-Larsen K, Arleth L, Kragelund BB. Order and disorder-An integrative structure of the full-length human growth hormone receptor. SCIENCE ADVANCES 2021; 7:7/27/eabh3805. [PMID: 34193419 PMCID: PMC8245047 DOI: 10.1126/sciadv.abh3805] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/18/2021] [Indexed: 05/13/2023]
Abstract
Because of its small size (70 kilodalton) and large content of structural disorder (>50%), the human growth hormone receptor (hGHR) falls between the cracks of conventional high-resolution structural biology methods. Here, we study the structure of the full-length hGHR in nanodiscs with small-angle x-ray scattering (SAXS) as the foundation. We develop an approach that combines SAXS, x-ray diffraction, and NMR spectroscopy data obtained on individual domains and integrate these through molecular dynamics simulations to interpret SAXS data on the full-length hGHR in nanodiscs. The hGHR domains reorient freely, resulting in a broad structural ensemble, emphasizing the need to take an ensemble view on signaling of relevance to disease states. The structure provides the first experimental model of any full-length cytokine receptor in a lipid membrane and exemplifies how integrating experimental data from several techniques computationally may access structures of membrane proteins with long, disordered regions, a widespread phenomenon in biology.
Collapse
Affiliation(s)
- Noah Kassem
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Raul Araya-Secchi
- X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Bugge
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Abigail Barclay
- X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Helena Steinocher
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Adree Khondker
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Yong Wang
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Aneta J Lenard
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
| | - Cagla Sahin
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
| | - Michael Landreh
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Martin Cramer Pedersen
- X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Per Amstrup Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark.
| | - Lise Arleth
- X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark.
| |
Collapse
|
25
|
Young J, Bell S, Qian Y, Hyman C, Berryman DE. Mouse models of growth hormone insensitivity. Rev Endocr Metab Disord 2021; 22:17-29. [PMID: 33037595 PMCID: PMC7979446 DOI: 10.1007/s11154-020-09600-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 11/28/2022]
Abstract
Growth hormone (GH) induces pleiotropic effects on growth and metabolism via binding and subsequent activation of the growth hormone receptor (GHR) and its downstream signaling pathways. Growth hormone insensitivity (GHI) describes a group of disorders in which there is resistance to the action of GH and resultant insulin-like growth factor I (IGF-I) deficiency. GHI is commonly due to genetic disorders of the GH receptor causing GH receptor deficiency (e.g. Laron Syndrome (LS)), decreased activation of GHR, or defects in post-receptor signaling molecules. Genetically altered mouse lines have been invaluable to better understand the physiological impact of GHI due to the ability to do invasive and longitudinal measures of metabolism, growth, and health on a whole animal or in individual tissues/cells. In the current review, the phenotype of mouse lines with GHI will be reviewed. Mouse lines to be discussed include: 1) GHR-/- mice with a gene disruption in the GHR that results in no functional GHR throughout life, also referred to as the Laron mouse, 2) mice with temporal loss of GHR (aGHRKO) starting at 6 weeks of age, 3) mice transgenic for a GHR antagonist (GHA mice), 4) mice with GHI in select tissues or cells generated via Cre-lox or related technology, and 5) assorted mice with defects in post-receptor signaling molecules. Collectively, these mouse lines have revealed an intriguing role of GH action in health, disease, and aging.
Collapse
Affiliation(s)
- Jonathan Young
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
- Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, OH, USA
| | - Stephen Bell
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
- Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, OH, USA
| | - Yanrong Qian
- Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, OH, USA
| | - Caroline Hyman
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
| | - Darlene E Berryman
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA.
- Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, OH, USA.
| |
Collapse
|
26
|
Guevara-Aguirre J, Bautista C, Torres C, Peña G, Guevara C, Palacios C, Guevara A, Gavilanes AWD. Insights from the clinical phenotype of subjects with Laron syndrome in Ecuador. Rev Endocr Metab Disord 2021; 22:59-70. [PMID: 33047268 DOI: 10.1007/s11154-020-09602-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/15/2022]
Abstract
The Ecuadorian cohort of subjects with LS has taught us valuable lessons since the late 80's. We have learned about migration of Sephardic Jews to our country, their isolation in remote hamlets and further inbreeding. These geographical, historical and social determinants induced dissemination of a growth hormone (GH) receptor mutation which widely occurred in those almost inaccessible villages. Consequently, the world's largest Laron syndrome (LS) cohort emerged in Loja and El Oro, two of the southern provinces of Ecuador. We have been fortunate to study these patients since 1987. New clinical features derived from GH insensitivity, their growth patterns as well as treatment with exogenous insulin-like growth factor I (IGF-I) have been reported. Novel biochemical characteristics in the field of GH insensitivity, IGFs, IGF binding proteins (BP) and their clinical correlates have also been described. In the last few years, studies on the morbidity and mortality of Ecuadorian LS adults surprisingly demonstrated that despite obesity, they had lower incidence of diabetes and cancer than their relatives. These events were linked to their metabolic phenotype of elevated but ineffective GH concentrations and low circulating IGF-I and IGFBP-3. It was also noted that absent GH counter-regulation induces a decrease in insulin resistance (IR), which results in low but highly efficient insulin levels which properly handle metabolic substrates. We propose that the combination of low IGF-I signaling, decreased IR, and efficient serum insulin concentrations are reasonable explanations for the diminished incidence of diabetes and cancer in these subjects.
Collapse
Affiliation(s)
- Jaime Guevara-Aguirre
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbayá, Quito, Ecuador.
- Instituto de Endocrinología IEMYR, Quito, Ecuador.
- Maastricht University, Maastricht, The Netherlands.
| | - Camila Bautista
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbayá, Quito, Ecuador
| | - Carlos Torres
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbayá, Quito, Ecuador
| | - Gabriela Peña
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbayá, Quito, Ecuador
| | - Carolina Guevara
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbayá, Quito, Ecuador
- Instituto de Endocrinología IEMYR, Quito, Ecuador
| | - Cristina Palacios
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbayá, Quito, Ecuador
| | | | | |
Collapse
|
27
|
Wallis M. Do some viruses use growth hormone, prolactin and their receptors to facilitate entry into cells?: Episodic evolution of hormones and receptors suggests host-virus arms races; related placental lactogens may provide protective viral decoys. Bioessays 2021; 43:e2000268. [PMID: 33521987 DOI: 10.1002/bies.202000268] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
The molecular evolution of pituitary growth hormone and prolactin in mammals shows two unusual features: episodes of markedly accelerated evolution and, in some species, complex families of related proteins expressed in placenta and resulting from multiple gene duplications. Explanations of these phenomena in terms of physiological adaptations seem unconvincing. Here, I propose an alternative explanation, namely that these evolutionary features reflect the use of the hormones (and their receptors) as viral receptors. Episodes of rapid evolution can then be explained as due to "arms races" in which changes in the hormone lead to reduced interaction with the virus, and subsequent changes in the virus counteract this. Placental paralogues of the hormones could provide decoys that bind viruses, and protect the foetus against infection. The hypothesis implies that the extensive changes introduced into growth hormone, prolactin and their receptors during the course of mammalian evolution reflect viral interactions, not endocrine adaptations.
Collapse
Affiliation(s)
- Michael Wallis
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
28
|
STAT5 Regulation of Sex-Dependent Hepatic CpG Methylation at Distal Regulatory Elements Mapping to Sex-Biased Genes. Mol Cell Biol 2021; 41:MCB.00166-20. [PMID: 33199496 DOI: 10.1128/mcb.00166-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
Growth hormone-activated STAT5b is an essential regulator of sex-differential gene expression in mouse liver; however, its impact on hepatic gene expression and epigenetic responses is poorly understood. Here, we found a substantial, albeit incomplete loss of liver sex bias in hepatocyte-specific STAT5a/STAT5b (collectively, STAT5)-deficient mouse liver. In male liver, many male-biased genes were downregulated in direct association with the loss of STAT5 binding; many female-biased genes, which show low STAT5 binding, were derepressed, indicating an indirect mechanism for repression by STAT5. Extensive changes in CpG methylation were seen in STAT5-deficient liver, where sex differences were abolished at 88% of ∼1,500 sex-differentially methylated regions, largely due to increased DNA methylation upon STAT5 loss. STAT5-dependent CpG hypomethylation was rarely found at proximal promoters of STAT5-dependent genes. Rather, STAT5 primarily regulated the methylation of distal enhancers, where STAT5 deficiency induced widespread hypermethylation at genomic regions enriched for accessible chromatin, enhancer histone marks (histone H3 lysine 4 monomethylation [H3K4me1] and histone H3 lysine 27 acetylation [H3K27ac]), STAT5 binding, and DNA motifs for STAT5 and other transcription factors implicated in liver sex differences. Thus, the sex-dependent binding of STAT5 to liver chromatin is closely linked to the sex-dependent demethylation of distal regulatory elements linked to STAT5-dependent genes important for liver sex bias.
Collapse
|
29
|
Chhabra Y, Lee CMM, Müller AF, Brooks AJ. GHR signalling: Receptor activation and degradation mechanisms. Mol Cell Endocrinol 2021; 520:111075. [PMID: 33181235 DOI: 10.1016/j.mce.2020.111075] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Growth hormone (GH) actions via initiating cell signalling through the GH receptor (GHR) are important for many physiological processes, in addition to its well-known role in regulating growth. The activation of JAK-STAT signalling by GH is well characterized, however knowledge on GH activation of SRC family kinases (SFKs) is still limited. In this review we summarise the collective knowledge on the activation, regulation, and downstream signalling of GHR. We highlight studies on GH activation of SFKs and the important outcome of this signalling pathway with a focus on the different degradation mechanisms that can regulate GHR availability since this is an area that warrants further study considering its role in tumour progression.
Collapse
Affiliation(s)
- Yash Chhabra
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21231, USA
| | - Christine M M Lee
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Alexandra Franziska Müller
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Andrew J Brooks
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
30
|
Spinal muscular atrophy: Broad disease spectrum and sex-specific phenotypes. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166063. [PMID: 33412266 DOI: 10.1016/j.bbadis.2020.166063] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% of cases of SMA result from deletions of or mutations in the Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1 due to predominant skipping of exon 7. The spectrum of SMA is broad, ranging from prenatal death to infant mortality to survival into adulthood. All tissues, including brain, spinal cord, bone, skeletal muscle, heart, lung, liver, pancreas, gastrointestinal tract, kidney, spleen, ovary and testis, are directly and/or indirectly affected in SMA. Accumulating evidence on impaired mitochondrial biogenesis and defects in X chromosome-linked modifying factors, coupled with the sexual dimorphic nature of many tissues, point to sex-specific vulnerabilities in SMA. Here we review the role of sex in the pathogenesis of SMA.
Collapse
|
31
|
GH/IGF-1 Abnormalities and Muscle Impairment: From Basic Research to Clinical Practice. Int J Mol Sci 2021; 22:ijms22010415. [PMID: 33401779 PMCID: PMC7795003 DOI: 10.3390/ijms22010415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/29/2022] Open
Abstract
The impairment of skeletal muscle function is one of the most debilitating least understood co-morbidity that accompanies acromegaly (ACRO). Despite being one of the major determinants of these patients’ poor quality of life, there is limited evidence related to the underlying mechanisms and treatment options. Although growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels are associated, albeit not indisputable, with the presence and severity of ACRO myopathies the precise effects attributed to increased GH or IGF-1 levels are still unclear. Yet, cell lines and animal models can help us bridge these gaps. This review aims to describe the evidence regarding the role of GH and IGF-1 in muscle anabolism, from the basic to the clinical setting with special emphasis on ACRO. We also pinpoint future perspectives and research lines that should be considered for improving our knowledge in the field.
Collapse
|
32
|
Strous GJ, Almeida ADS, Putters J, Schantl J, Sedek M, Slotman JA, Nespital T, Hassink GC, Mol JA. Growth Hormone Receptor Regulation in Cancer and Chronic Diseases. Front Endocrinol (Lausanne) 2020; 11:597573. [PMID: 33312162 PMCID: PMC7708378 DOI: 10.3389/fendo.2020.597573] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
The GHR signaling pathway plays important roles in growth, metabolism, cell cycle control, immunity, homeostatic processes, and chemoresistance via both the JAK/STAT and the SRC pathways. Dysregulation of GHR signaling is associated with various diseases and chronic conditions such as acromegaly, cancer, aging, metabolic disease, fibroses, inflammation and autoimmunity. Numerous studies entailing the GHR signaling pathway have been conducted for various cancers. Diverse factors mediate the up- or down-regulation of GHR signaling through post-translational modifications. Of the numerous modifications, ubiquitination and deubiquitination are prominent events. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and induces proteasomal degradation or starts the sequence of events that leads to endocytosis and lysosomal degradation. In this review, we discuss the role of first line effectors that act directly on the GHR at the cell surface including ADAM17, JAK2, SRC family member Lyn, Ubc13/CHIP, proteasome, βTrCP, CK2, STAT5b, and SOCS2. Activity of all, except JAK2, Lyn and STAT5b, counteract GHR signaling. Loss of their function increases the GH-induced signaling in favor of aging and certain chronic diseases, exemplified by increased lung cancer risk in case of a mutation in the SOCS2-GHR interaction site. Insight in their roles in GHR signaling can be applied for cancer and other therapeutic strategies.
Collapse
Affiliation(s)
- Ger J. Strous
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
- BIMINI Biotech B.V., Leiden, Netherlands
| | - Ana Da Silva Almeida
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Joyce Putters
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Julia Schantl
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Magdalena Sedek
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Johan A. Slotman
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tobias Nespital
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Gerco C. Hassink
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
33
|
Akhatayeva Z, Mao C, Jiang F, Pan C, Lin C, Hao K, Lan T, Chen H, Zhang Q, Lan X. Indel variants within the PRL and GHR genes associated with sheep litter size. Reprod Domest Anim 2020; 55:1470-1478. [PMID: 32762057 DOI: 10.1111/rda.13796] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022]
Abstract
Growth hormone and prolactin belong to the class of peptide hormones that have a wide range of regulatory functions. In this study, polymorphisms of growth hormone receptor (GHR) and prolactin (PRL) genes were analysed as candidate genes, which are responsible for the litter size in Australian White (AUW) sheep. According to the statistical analyses results, the polymorphism information content (PIC) values of the PRL-P1-ins-23 bp, GHR-P2-del-23 bp and GHR-P8-del-23 bp were 0.371, 0.366 and 0.375, respectively, which indicates the high genetic polymorphism in AUW sheep. Moreover, all indel loci are not conformed to the HWE (p < .05). Further, our findings revealed that the PRL-P1-ins-23 bp polymorphism in the ovine PRL gene was significantly related to the first parity litter size (p = .001) and the DD genotype displaying the highest genotypic mean. Meanwhile, the GHR-P2-del-23 bp and GHR-P8-23 bp indels in the ovine GHR gene were significantly correlated with first parity litter size (p < .05), and the individuals with the genotype II showed significantly higher litter size than others. Collectively, these results demonstrated that our findings could be useful for future sheep breeding strategies based on the molecular-assisted selection (MAS).
Collapse
Affiliation(s)
- Zhanerke Akhatayeva
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Cui Mao
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin, China.,Tianjin Aoqun Animal Husbandry Co., Ltd., Tianjin, China
| | - Fugui Jiang
- Tianjin Aoqun Animal Husbandry Co., Ltd., Tianjin, China.,Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chunjian Lin
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin, China.,Tianjin Aoqun Animal Husbandry Co., Ltd., Tianjin, China
| | - Kunjie Hao
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin, China.,Tianjin Aoqun Animal Husbandry Co., Ltd., Tianjin, China
| | - Tianxin Lan
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin, China.,Tianjin Aoqun Animal Husbandry Co., Ltd., Tianjin, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qingfeng Zhang
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin, China.,Tianjin Aoqun Animal Husbandry Co., Ltd., Tianjin, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
34
|
Yuan X, Lin Y, Qin J, Zhang Y, Yang G, Cai R, Liao Z, Sun C, Li W. Molecular identification, tissue distribution and in vitro functional analysis of growth hormone and its receptors in red-spotted grouper (Epinephelus akaara). Comp Biochem Physiol B Biochem Mol Biol 2020; 250:110488. [PMID: 32781031 DOI: 10.1016/j.cbpb.2020.110488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/01/2020] [Accepted: 08/03/2020] [Indexed: 11/15/2022]
Abstract
Red-spotted grouper (Epinephelus akaara) is one of the high economic value grouper species, however, the knowledge regarding its growth is limited. In this study, full-length cDNAs of growth hormone (gh) and its receptors (ghr1 and ghr2) were cloned from the pituitary and liver of red-spotted grouper, respectively. Tissue distribution analysis showed that gh mRNA was predominantly expressed in the pituitary. ghr1 mRNA was highly expressed in the liver, muscle, fat and gonad, while ghr2 mRNA expression was ubiquitously high in the peripheral tissues. However, the mRNA expression of both ghr isoforms was relatively low in the central nervous system. Secretory recombinant grouper GH (rgGH) was expressed in yeast Pichia pastoris and verified. HEK293T cells transiently transfected with the GHR isoforms were used to elucidate the receptor-mediated signaling pathways related to growth regulation. rgGH activated rapid phosphorylation of Janus kinase 2, signal transducer and activator of transcription 5 (STAT5) and extracellular signal-regulated protein kinase 1/2 through GHR1, but only STAT5 was phosphorylated via GHR2. rgGH strongly activated STAT5 phosphorylation and significantly stimulated ghr1, ghr2 and insulin-like growth factor (igf1, igf2) mRNA expression in primary cultured hepatocytes. Data showed that the recombinant protein rgGH played effects on igf1/2 mRNA expression via GHR-mediated signaling pathways. Our findings provide essential information about GH and GHRs characteristics in red-spotted grouper.
Collapse
Affiliation(s)
- Xi Yuan
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuxin Lin
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingkai Qin
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yazhou Zhang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Guokun Yang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ruijian Cai
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zongzhen Liao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Caiyun Sun
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
35
|
Martínez-Moreno CG, Arámburo C. Growth hormone (GH) and synaptogenesis. VITAMINS AND HORMONES 2020; 114:91-123. [PMID: 32723552 DOI: 10.1016/bs.vh.2020.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Growth hormone (GH) is known to exert several roles during development and function of the nervous system. Initially, GH was exclusively considered a pituitary hormone that regulates body growth and metabolism, but now its alternative extrapituitary production and pleiotropic functions are widely accepted. Through excess and deficit models, the critical role of GH in nervous system development and adult brain function has been extensively demonstrated. Moreover, neurotrophic actions of GH in neural tissues include pro-survival effects, neuroprotection, axonal growth, synaptogenesis, neurogenesis and neuroregeneration. The positive effects of GH upon memory, behavior, mood, sensorimotor function and quality of life, clearly implicate a beneficial action in synaptic physiology. Experimental and clinical evidence about GH actions in synaptic function modulation, protection and restoration are revised in this chapter.
Collapse
Affiliation(s)
- Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México.
| |
Collapse
|
36
|
Abstract
Growth hormone (GH) plays a pivotal role in many physiological processes in humans, and in other mammalian and non-mammalian vertebrate species, through actions on somatic growth, tissue development and repair, and intermediary metabolism. This review will focus on mechanisms of GH actions on gene expression, primarily from the perspective of the genes that encode proteins stimulated by GH to regulate somatic growth, especially insulin-like growth factor 1 (IGF-I), but also others that are induced or repressed by GH. Topics to be discussed will include a brief overview of GH-mediated signal transduction pathways and how these cascades alter the functions of responsive transcription factors, with a specific focus on STAT5B, a key member of the signal transducers and activators of transcription family, characterization of essential GH-regulated genes, and elucidation of mechanisms of their regulation from biochemical, genetic, and genomic perspectives.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, TX, 79905, USA.
| |
Collapse
|
37
|
Yu-Jiang Y, Xin Z, Hai-Nan L. JAK2-STAT5 signaling is insensitive to porcine growth hormone (pGH) in hepatocytes of neonatal pig. Anim Cells Syst (Seoul) 2020; 24:69-78. [PMID: 32489685 PMCID: PMC7241498 DOI: 10.1080/19768354.2020.1735518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/17/2019] [Accepted: 02/10/2020] [Indexed: 10/24/2022] Open
Abstract
Porcine growth hormone (pGH) is most important hormone which is involved in the growth and development of pig. However, a series of studies have indicated that neonatal pig is insensitive to pGH; the reason for this phenomenon is still not fully understood. In this work, we try to investigate this issue from the angle of intracellular signaling induced by pGH. In the present study, porcine hepatocytes from neonatal pig were used as a model, and confocal laser scanning microscopy (CLSM), Western blot, co-immunoprecipitation and colocalization assay were used to study pGH's signaling properties in hepatocytes of neonatal pig and explore the possible mechanism(s) for why intracellular signaling is insensitive to pGH. The results indicated that Janus kinase 2 and signal transducers and activators of transcription 5/3/1 (JAK2-STATs) signaling are not activated. We further investigated the possible mechanism(s) by which JAK2-STATs' signaling is not activated by pGH and growth hormone receptor (GHR) and found that the negative regulatory molecules of JAK2-STATs signaling may be associated with this phenomenon in the hepatocytes of neonatal pig. In addition, we also explored pGH's biology in hepatocytes from neonatal pig, it can be found that pGH/GHR could translocate into the cell nucleus, which implies that pGH/GHR may exhibit physiological roles based on their nuclear localization. We found that pGH could not trigger intracellular signaling in the hepatocytes of neonatal pigs, but not young pigs, which provides an important explanation for why the growth of neonatal pig is GH independent.
Collapse
Affiliation(s)
- Yang Yu-Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People's Republic of China
| | - Zheng Xin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People's Republic of China
| | - Lan Hai-Nan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People's Republic of China
| |
Collapse
|
38
|
Montjean R, Escaich S, Paolini R, Carelli C, Pirson S, Neutelings T, Henrotin Y, Vêtu C. REG-O3 chimeric peptide combining growth hormone and somatostatin sequences improves joint function and prevents cartilage degradation in rat model of traumatic knee osteoarthritis. PLoS One 2020; 15:e0231240. [PMID: 32287299 PMCID: PMC7156079 DOI: 10.1371/journal.pone.0231240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Objective REG-O3 is a 24-aminoacid chimeric peptide combining a sequence derived from growth hormone (GH) and an analog of somatostatin (SST), molecules displaying cartilage repair and anti-inflammatory properties, respectively. This study aimed to investigate the disease-modifying osteoarthritis drug (DMOAD) potential of REG-O3 by analyzing its effect on pain, joint function and structure, upon injection into osteoarthritic rat knee joint. Design Osteoarthritis was induced in the right knee of mature male Lewis rats (n = 12/group) by surgical transection of the anterior cruciate ligament (ACLT) combined with partial medial meniscectomy (pMMx). Treatments were administered intra-articularly from fourteen days after surgery through three consecutive injections one week apart. The effect of REG-O3, solubilized in a liposomal solution and injected at either 5, 25 or 50 μg/50 μL, was compared to liposomal (LIP), dexamethasone and hyaluronic acid (HA) solutions. The study endpoints were the pain/function measured once a week throughout the entire study, and the joint structure evaluated eight weeks after surgery using OARSI score. Results ACLT/pMMx surgery induced a significant modification of weight bearing in all groups. When compared to liposomal solution, REG-O3 was able to significantly improve weight bearing as efficiently as dexamethasone and HA. REG-O3 (25 μg) was also able to significantly decrease OARSI histological global score as well as degeneration of both cartilage and matrix while the other treatments did not. Conclusion This study provides evidence of a remarkable protecting effect of REG-O3 on pain/knee joint function and cartilage/matrix degradation in ACLT/pMMx model of rat osteoarthritis. REG-O3 thus displays an interesting profile as a DMOAD.
Collapse
Affiliation(s)
| | - Sonia Escaich
- Regulaxis SAS, Romainville, France
- ESE Conseil, Saint-Cloud, France
| | | | | | | | | | - Yves Henrotin
- Artialis SA, Tour GIGA, CHU Sart-Tilman, Liège, Belgium
- Bone and Cartilage Research Unit, Arthropôle Liège, University of Liège, Liège, Belgium
- Physical Therapy and Rehabilitation Department, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium
- * E-mail:
| | | |
Collapse
|
39
|
Reikhardt BA, Shabanov PD. Catalytic Subunit of PKA as a Prototype of the Eukaryotic Protein Kinase Family. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:409-424. [PMID: 32569549 DOI: 10.1134/s0006297920040021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 06/11/2023]
Abstract
The catalytic subunit of protein kinase A (PKAc) is conserved in all eukaryotic protein kinases. PKAc consists of two lobes that form the catalytic cleft containing the ATP-binding, peptide-binding site, and catalytic sites. During folding, PKAc secondary structures organize so that the non-polar regions form a globular core, while mobile loops and tails are exposed and can act as regulatory elements. De novo synthesized PKAc is phosphorylated at the T-loop, resulting in the formation of the active center capable of high-affinity binding of co-substrates. The ATP-molecule "sticks" the two lobes together, whereas the binding of peptide substrate completes the active center formation. The resulting catalytic triad (γ-phosphate of ATP, hydroxyl of Ser/Thr residue of the protein substrate, and Asp166 carboxyl) occupies a position optimal for catalysis. During the catalytic cycle, dynamic reorganization of polar and hydrophobic interactions ensures PKAc transition from the open to the closed conformation and vice versa. Understanding the structural basis of functioning of eukaryotic protein kinases (ePKs) is essential for successful design of ePK modulators.
Collapse
Affiliation(s)
- B A Reikhardt
- Institute of Experimental Medicine, St. Petersburg, 197376, Russia.
| | - P D Shabanov
- Institute of Experimental Medicine, St. Petersburg, 197376, Russia
| |
Collapse
|
40
|
Why Should Growth Hormone (GH) Be Considered a Promising Therapeutic Agent for Arteriogenesis? Insights from the GHAS Trial. Cells 2020; 9:cells9040807. [PMID: 32230747 PMCID: PMC7226428 DOI: 10.3390/cells9040807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/25/2020] [Accepted: 03/25/2020] [Indexed: 01/07/2023] Open
Abstract
Despite the important role that the growth hormone (GH)/IGF-I axis plays in vascular homeostasis, these kind of growth factors barely appear in articles addressing the neovascularization process. Currently, the vascular endothelium is considered as an authentic gland of internal secretion due to the wide variety of released factors and functions with local effects, including the paracrine/autocrine production of GH or IGF-I, for which the endothelium has specific receptors. In this comprehensive review, the evidence involving these proangiogenic hormones in arteriogenesis dealing with the arterial occlusion and making of them a potential therapy is described. All the elements that trigger the local and systemic production of GH/IGF-I, as well as their possible roles both in physiological and pathological conditions are analyzed. All of the evidence is combined with important data from the GHAS trial, in which GH or a placebo were administrated to patients suffering from critical limb ischemia with no option for revascularization. We postulate that GH, alone or in combination, should be considered as a promising therapeutic agent for helping in the approach of ischemic disease.
Collapse
|
41
|
Kopchick JJ, Berryman DE, Puri V, Lee KY, Jorgensen JOL. The effects of growth hormone on adipose tissue: old observations, new mechanisms. Nat Rev Endocrinol 2020; 16:135-146. [PMID: 31780780 PMCID: PMC7180987 DOI: 10.1038/s41574-019-0280-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2019] [Indexed: 12/18/2022]
Abstract
The ability of growth hormone (GH) to induce adipose tissue lipolysis has been known for over five decades; however, the molecular mechanisms that mediate this effect and the ability of GH to inhibit insulin-stimulated glucose uptake have scarcely been documented. In this same time frame, our understanding of adipose tissue has evolved to reveal a complex structure with distinct types of adipocyte, depot-specific differences, a biologically significant extracellular matrix and important endocrine properties mediated by adipokines. All these aforementioned features, in turn, can influence lipolysis. In this Review, we provide a historical and current overview of the lipolytic effect of GH in humans, mice and cultured cells. More globally, we explain lipolysis in terms of GH-induced intracellular signalling and its effect on obesity, insulin resistance and lipotoxicity. In this regard, findings that define molecular mechanisms by which GH induces lipolysis are described. Finally, data are presented for the differential effect of GH on specific adipose tissue depots and on distinct classes of metabolically active adipocytes. Together, these cellular, animal and human studies reveal novel cellular phenotypes and molecular pathways regulating the metabolic effects of GH on adipose tissue.
Collapse
Affiliation(s)
- John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
- The Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA.
- Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH, USA.
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH, USA
| | - Vishwajeet Puri
- The Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH, USA
| | - Kevin Y Lee
- The Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH, USA
| | - Jens O L Jorgensen
- Department of Endocrinology and Diabetes, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
42
|
Walser M, Svensson J, Karlsson L, Motalleb R, Åberg M, Kuhn HG, Isgaard J, Åberg ND. Growth Hormone and Neuronal Hemoglobin in the Brain-Roles in Neuroprotection and Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2020; 11:606089. [PMID: 33488521 PMCID: PMC7821093 DOI: 10.3389/fendo.2020.606089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, evidence for hemoglobin (Hb) synthesis in both animal and human brains has been accumulating. While circulating Hb originating from cerebral hemorrhage or other conditions is toxic, there is also substantial production of neuronal Hb, which is influenced by conditions such as ischemia and regulated by growth hormone (GH), insulin-like growth factor-I (IGF-I), and other growth factors. In this review, we discuss the possible functions of circulating and brain Hb, mainly the neuronal form, with respect to the neuroprotective activities of GH and IGF-I against ischemia and neurodegenerative diseases. The molecular pathways that link Hb to the GH/IGF-I system are also reviewed, although the limited number of reports on this topic suggests a need for further studies. In summary, GH and/or IGF-I appear to be significant determinants of systemic and local brain Hb concentrations through mediating responses to oxygen and metabolic demand, as part of the neuroprotective effects exerted by GH and IGF-I. The nature and quantity of the latter deserve further exploration in specific experiments.
Collapse
Affiliation(s)
- Marion Walser
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- *Correspondence: Marion Walser,
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Karlsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Reza Motalleb
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Maria Åberg
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- School of Public Health and Community Medicine at University of Gothenburg, Gothenburg, Sweden
| | - H Georg Kuhn
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Institute for Public Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jörgen Isgaard
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - N David Åberg
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
43
|
Schneider A, Wood HN, Geden S, Greene CJ, Yates RM, Masternak MM, Rohde KH. Growth hormone-mediated reprogramming of macrophage transcriptome and effector functions. Sci Rep 2019; 9:19348. [PMID: 31852980 PMCID: PMC6920138 DOI: 10.1038/s41598-019-56017-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/29/2019] [Indexed: 01/07/2023] Open
Abstract
Macrophages are an important component of the innate immune response. Priming and activation of macrophages is stimulated by cytokines (i.e IFNγ). However, growth hormone (GH) can also stimulate macrophage activation. Based on these observations, the goal of this work was to 1) to compare the transcriptome profile of macrophages activated in vitro with GH and IFNγ, and 2) to assess the impact of GH on key macrophage functional properties like reactive oxygen species (ROS) production and phagosomal proteolysis. To assess the global transcriptional and functional impact of GH on macrophage programming, bone marrow derived macrophages were treated with GH or IFNγ. Our data strongly support a potential link between GH, which wanes with age, and impaired macrophage function. The notable overlap of GH with IFNγ-induced pathways involved in innate immune sensing of pathogens and antimicrobial responses argue for an important role for GH in macrophage priming and maturation. By using functional assays that report on biochemical activities within the lumen of phagosomes, we have also shown that GH alters physiologically relevant processes such as ROS production and proteolysis. These changes could have far reaching impacts on antimicrobial capacity, signaling, and antigen presentation.
Collapse
Affiliation(s)
- Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| | - Hillary N Wood
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| | - Sandra Geden
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| | - Catherine J Greene
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robin M Yates
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA.
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan, Poland.
| | - Kyle H Rohde
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
44
|
Bolamperti S, Guidobono F, Rubinacci A, Villa I. The Role of Growth Hormone in Mesenchymal Stem Cell Commitment. Int J Mol Sci 2019; 20:ijms20215264. [PMID: 31652811 PMCID: PMC6862273 DOI: 10.3390/ijms20215264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Abstract
Growth hormone (GH) is best known for its prominent role in promoting prepubertal growth and in regulating body composition and metabolism during adulthood. In recent years, the possible role of GH in the modulation of mesenchymal stem cell (MSC) commitment has gained interest. MSCs, characterized by active self-renewal and differentiation potential, express GH receptors. In MSCs derived from different adult tissues, GH induces an inhibition of adipogenic differentiation and favors MSC differentiation towards osteogenesis. This activity of GH indicates that regulation of body composition by GH has already started in the tissue progenitor cells. These findings have fostered research on possible uses of MSCs treated with GH in those pathologies, where a lack of or delays in bone repair occur. After an overview of GH activities, this review will focus on the research that has characterized GH’s effects on MSCs and on preliminary studies on the possible application of GH in bone regenerative medicine.
Collapse
Affiliation(s)
- Simona Bolamperti
- Bone Metabolism Unit, Division of Genetics & Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Francesca Guidobono
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy.
| | - Alessandro Rubinacci
- Bone Metabolism Unit, Division of Genetics & Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Isabella Villa
- Bone Metabolism Unit, Division of Genetics & Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| |
Collapse
|
45
|
Tack L, Bracke N, Verbeke F, Wynendaele E, Pauwels E, Maes A, Van de Wiele C, Sathekge M, De Spiegeleer B. Biological Characterisation of Somatropin-Derived Cryptic Peptides. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9749-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
Wang J, Lian S, He X, Yu D, Liang J, Sun D, Wu R. Selenium deficiency induces splenic growth retardation by deactivating the IGF-1R/PI3K/Akt/mTOR pathway. Metallomics 2019; 10:1570-1575. [PMID: 30349927 DOI: 10.1039/c8mt00183a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selenium (Se) deficiency impairs the development and function of immune system in human beings and animals. We investigated the effect and molecular mechanism of Se deficiency on spleen development in chicken. The concentration of Se in blood and spleen, the spleen weight and splenocyte number, the histological characteristics of spleen, the concentration of growth factors in serum, the transcription level of growth factor receptor gene and the activity of growth and proliferation pathway in spleen were investigated. We found that the growth of the spleen and the splenocyte number were significantly lower in the chicken fed with Se-deficient diet for 21 and 35 days. The ELISA and qRT-PCR results showed that the serum IGF-I concentration and the transcription level of IGF1R gene in spleen were significantly lower in the SD group. The Western blotting and immunohistochemistry results showed that Se deficiency could deactivate the PI3K/Akt/mTOR pathway in spleen. In summary, the results indicated that Se deficiency decreases the growth rate of spleen and the number of splenic lymphocytes by deactivating the IGF-1R/PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Jianfa Wang
- College of Animal Science and Veterinary Medicine in Heilongjiang Bayi Agricultural University, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
47
|
Floss DM, Scheller J. Naturally occurring and synthetic constitutive-active cytokine receptors in disease and therapy. Cytokine Growth Factor Rev 2019; 47:1-20. [PMID: 31147158 DOI: 10.1016/j.cytogfr.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Cytokines control immune related events and are critically involved in a plethora of patho-physiological processes including autoimmunity and cancer development. Mutations which cause ligand-independent, constitutive activation of cytokine receptors are quite frequently found in diseases. Many constitutive-active cytokine receptor variants have been directly connected to disease development and mechanistically analyzed. Nature's solutions to generate constitutive cytokine receptors has been recently adopted by synthetic cytokine receptor biology, with the goal to optimize immune therapeutics. Here, CAR T cell immmunotherapy represents the first example to combine synthetic biology with genetic engineering during therapy. Hence, constitutive-active cytokine receptors are therapeutic targets, but also emerging tools to improve or modulate immunotherapeutic strategies. This review gives a comprehensive insight into the field of naturally occurring and synthetic constitutive-active cytokine receptors.
Collapse
Affiliation(s)
- Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
48
|
Rotwein P. Characterizing the complexity of Australian marsupial insulin-like growth factor 1 genes. Mol Cell Endocrinol 2019; 488:52-69. [PMID: 30871962 PMCID: PMC6996716 DOI: 10.1016/j.mce.2019.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/15/2023]
Abstract
Insulin-like growth factor 1 (IGF1) actions are essential for somatic growth and tissue repair. IGF1 gene regulation is controlled by many inputs, with growth hormone playing a major role. In most mammals, the 6-exon IGF1/Igf1 gene produces multiple transcripts via independent activity of its promoters plus alternative RNA splicing and differential polyadenylation. Here, by analyzing public genomic and RNA-sequencing repositories, I have characterized three Australian marsupial IGF1 genes. Koala, Tasmanian devil, and wallaby IGF1 are more complicated than other mammals, as they contain up to 11 exons, and encode multiple mRNAs and predicted protein precursors, including potentially novel isoforms. Moreover, just two of multiple growth hormone-stimulated transcriptional enhancers found in other IGF1/Igf1 loci are detected in these species. These observations define Australian marsupial IGF1 genes and demonstrate that comprehensive interrogation of genomic and RNA-sequencing resources is an effective strategy for characterizing genes and gene expression in otherwise experimentally intractable organisms.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, TX 79905, USA
| |
Collapse
|
49
|
Boguszewski CL, Boguszewski MCDS. Growth Hormone's Links to Cancer. Endocr Rev 2019; 40:558-574. [PMID: 30500870 DOI: 10.1210/er.2018-00166] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022]
Abstract
Several components of the GH axis are involved in tumor progression, and GH-induced intracellular signaling has been strongly associated with breast cancer susceptibility in genome-wide association studies. In the general population, high IGF-I levels and low IGF-binding protein-3 levels within the normal range are associated with the development of common malignancies, and components of the GH-IGF signaling system exhibit correlations with clinical, histopathological, and therapeutic parameters in cancer patients. Despite promising findings in preclinical studies, anticancer therapies targeting the GH-IGF signaling system have led to disappointing results in clinical trials. There is substantial evidence for some degree of protection against tumor development in several animal models and in patients with genetic defects associated with GH deficiency or resistance. In contrast, the link between GH excess and cancer risk in acromegaly patients is much less clear, and cancer screening in acromegaly has been a highly controversial issue. Recent studies have shown that increased life expectancy in acromegaly patients who attain normal GH and IGF-I levels is associated with more deaths due to age-related cancers. Replacement GH therapy in GH deficiency hypopituitary adults and short children has been shown to be safe when no other risk factors for malignancy are present. Nevertheless, the use of GH in cancer survivors and in short children with RASopathies, chromosomal breakage syndromes, or DNA-repair disorders should be carefully evaluated owing to an increased risk of recurrence, primary cancer, or second neoplasia in these individuals.
Collapse
Affiliation(s)
- Cesar Luiz Boguszewski
- Department of Internal Medicine, Endocrine Division (SEMPR), University Hospital, Federal University of Parana, Curitiba, Brazil
| | | |
Collapse
|
50
|
Espinosa E, Salame L, Marrero-Rodriguez D, Romero-Nieves AM, Cuenca D, Castelan-Martínez OD, Mendoza V, Ponce-Navarrete G, Salcedo M, Luque-Leòn E, Rodriguez-Gonzalez A, Mercado M. Expression of the growth hormone receptor isoforms and its correlation with the metabolic profile in morbidly obese subjects. Endocrine 2019; 63:573-581. [PMID: 30361972 DOI: 10.1007/s12020-018-1794-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/15/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIM OF THE STUDY Given the lipolytic effect of GH and its potential role in determining adipose tissue distribution, we evaluated the expression of the GH hormone receptor (GHR) isoforms in patients with morbid obesity seeking associations with metabolic parameters. METHODS 262 morbidly obese subjects (mean age 42.5 ± 11 years, 75% women) underwent PCR-genotyping of the exon 3 GHR polymorphism. In 17 of these subjects, who proved to be heterozygous for the exon 3 genotype (+3/-3), subcutaneous and visceral adipose tissue was obtained during bariatric surgery; total RNA was extracted, reversely transcribed, and the different isoforms of the GHR (exon 3 containing and lacking flGHR as well as the trGHR) were PCR-amplified using specific primers. RESULTS 27% were +3/+3 homozygous, 20% -3/-3 homozygous and 53% were +3/-3 heterozygous. Compared to subjects homozygous for the +3 genotype, homozygous and heterozygous carriers of the -3 genotype were significantly heavier and tended to have a higher HOMA 2-IR. Expression of the flGHR and trGHR mRNA was demonstrated in all evaluated samples of subcutaneous and visceral adipose tissue from the 17 patients. The exon 3+ isoform was expressed in all adipose tissue samples, whereas only six subjects expressed the 3- isoform as well. The only distinctive feature of these six patients was a higher HbA1c. CONCLUSIONS The heterozygous GHR +3/-3 genotype is more prevalent in subjects with morbid obesity. Patients expressing the exon +3 and exon -3 isoforms in adipose tissue had a higher HbA1c, than those expressing only the exon -3 isoform.
Collapse
Affiliation(s)
- Etual Espinosa
- Endocrinology Service/Experimental Endocrinology Unit and Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Juárez, Mexico
| | - Latife Salame
- Endocrinology Service/Experimental Endocrinology Unit and Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Juárez, Mexico
| | - Daniel Marrero-Rodriguez
- Obesity Clinic Hospital de Especialidades and Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Juárez, Mexico
| | - Andy-Michel Romero-Nieves
- Oncology Research Unit, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Juárez, Mexico
| | - Dalia Cuenca
- Endocrinology Service/Experimental Endocrinology Unit and Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Juárez, Mexico
| | | | - Victoria Mendoza
- Endocrinology Service/Experimental Endocrinology Unit and Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Juárez, Mexico
| | - Gustavo Ponce-Navarrete
- Obesity Clinic Hospital de Especialidades and Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Juárez, Mexico
| | - Mauricio Salcedo
- Obesity Clinic Hospital de Especialidades and Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Juárez, Mexico
| | | | | | - Moisés Mercado
- Endocrinology Service/Experimental Endocrinology Unit and Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Juárez, Mexico.
| |
Collapse
|