1
|
Pryor JL, Sweet DK, Rosbrook P, Qiao J, Looney DP, Mahmood S, Rideout T. Endocrine Responses to Heated Resistance Exercise in Men and Women. J Strength Cond Res 2024; 38:1248-1255. [PMID: 38595219 DOI: 10.1519/jsc.0000000000004768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
ABSTRACT Pryor, JL, Sweet, DK, Rosbrook, P, Qiao, J, Looney, DP, Mahmood, S, and Rideout, T. Endocrine responses to heated resistance exercise in men and women. J Strength Cond Res 38(7): 1248-1255, 2024-We examined the endocrine responses of 16 (female = 8) resistance trained volunteers to a single bout of whole-body high-volume load resistance exercise in hot (HOT; 40° C) and temperate (TEMP; 20° C) environmental conditions. Thermoregulatory and heart rate (HR) data were recorded, and venous blood was acquired before and after resistance exercise to assess serum anabolic and catabolic hormones. In men, testosterone increased after resistance exercise in HOT and TEMP ( p < 0.01), but postexercise testosterone was not different between condition ( p = 0.51). In women, human growth hormone was different between condition at pre-exercise ( p = 0.02) and postexercise ( p = 0.03). After controlling for pre-exercise values, the between-condition postexercise difference was abolished ( p = 0.16). There were no differences in insulin-like growth factor-1 for either sex ( p ≥ 0.06). In women, cortisol increased from pre-exercise to postexercise in HOT ( p = 0.04) but not TEMP ( p = 0.19), generating a between-condition difference at postexercise ( p < 0.01). In men, cortisol increased from pre-exercise to postexercise in HOT only ( p < 0.01). Rectal temperature increased to a greater extent in HOT compared with TEMP in both men ( p = 0.01) and women ( p = 0.02). Heart rate increased after exercise under both conditions in men and women ( p = 0.01), but only women experience greater postexercise HR in HOT vs. TEMP ( p = 0.04). The addition of heat stress to resistance exercise session did not overtly shift the endocrine response toward an anabolic or catabolic response. When acute program variables are prescribed to increase postresistance exercise anabolic hormones, adding heat stress is not synergistic but does increase physiologic strain (i.e., elevated HR and rectal temperature).
Collapse
Affiliation(s)
- J Luke Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - Daniel K Sweet
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - Paul Rosbrook
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - JianBo Qiao
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - David P Looney
- United States Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts
| | - Saleh Mahmood
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - Todd Rideout
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| |
Collapse
|
2
|
Kargl CK, Sterczala AJ, Santucci D, Conkright WR, Krajewski KT, Martin BJ, Greeves JP, O'Leary TJ, Wardle SL, Sahu A, Ambrosio F, Nindl BC. Circulating extracellular vesicle characteristics differ between men and women following 12 weeks of concurrent exercise training. Physiol Rep 2024; 12:e16016. [PMID: 38697940 PMCID: PMC11065700 DOI: 10.14814/phy2.16016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Concurrent resistance and endurance exercise training (CET) has well-studied benefits; however, inherent hormonal and genetic differences alter adaptive responses to exercise between sexes. Extracellular vesicles (EVs) are factors that contribute to adaptive signaling. Our purpose was to test if EV characteristics differ between men and women following CET. 18 young healthy participants underwent 12-weeks of CET. Prior to and following CET, subjects performed an acute bout of heavy resistance exercise (AHRET) consisting of 6 × 10 back squats at 75% 1RM. At rest and following AHRET, EVs were isolated from plasma and characteristics and miRNA contents were analyzed. AHRET elevated EV abundance in trained men only (+51%) and AHRET-induced changes were observed for muscle-derived EVs and microvesicles. There were considerable sex-specific effects of CET on EV miRNAs, highlighted by larger variation following the 12-week program in men compared to women at rest. Pathway analysis based on differentially expressed EV miRNAs predicted that AHRET and 12 weeks of CET in men positively regulates hypertrophy and growth pathways more so than in women. This report highlights sex-based differences in the EV response to resistance and concurrent exercise training and suggests that EVs may be important adaptive signaling factors altered by exercise training.
Collapse
Affiliation(s)
- Christopher K. Kargl
- Neuromuscular Research Lab/Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Adam J. Sterczala
- Neuromuscular Research Lab/Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Daniella Santucci
- Neuromuscular Research Lab/Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - William R. Conkright
- Neuromuscular Research Lab/Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Kellen T. Krajewski
- Neuromuscular Research Lab/Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Brian J. Martin
- Neuromuscular Research Lab/Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Julie P. Greeves
- Army Health and Performance Research, Army HeadquartersAndoverUK
- Division of Surgery and Interventional ScienceUniversity College LondonLondonUK
- Norwich Medical SchoolUniversity of East AngliaNorwichUK
| | - Thomas J. O'Leary
- Army Health and Performance Research, Army HeadquartersAndoverUK
- Division of Surgery and Interventional ScienceUniversity College LondonLondonUK
| | - Sophie L. Wardle
- Army Health and Performance Research, Army HeadquartersAndoverUK
- Division of Surgery and Interventional ScienceUniversity College LondonLondonUK
| | - Amrita Sahu
- Department of Physical Medicine and RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Environmental and Occupational HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Fabrisia Ambrosio
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at SpauldingBostonMassachusettsUSA
- Department of Physical Medicine & RehabilitationHarvard Medical SchoolBostonMassachusettsUSA
| | - Bradley C. Nindl
- Neuromuscular Research Lab/Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Environmental and Occupational HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
3
|
Wang Y, Li Z, Tongtong C, Zhang W, Li X. Effect of continuous and intermittent blood flow restriction deep-squat training on thigh muscle activation and fatigue levels in male handball players. Sci Rep 2023; 13:19152. [PMID: 37932313 PMCID: PMC10628241 DOI: 10.1038/s41598-023-44523-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023] Open
Abstract
We aimed to investigate acute changes before and after low-intensity continuous and intermittent blood flow restriction (BFR) deep-squat training on thigh muscle activation characteristics and fatigue level under suitable individual arterial occlusion pressure (AOP). Twelve elite male handball players were recruited. Continuous (Program 1) and intermittent (Program 2) BFR deep-squat training was performed with 30% one-repetition maximum load. Program 1 did not include decompression during the intervals, while Program 2 contained decompression during each interval. Electromyography (EMG) was performed before and after two BFR training programs in each period. EMG signals of the quadriceps femoris, posterior femoral muscles, and gluteus maximus, including the root mean square (RMS) and normalized RMS and median frequency (MF) values of each muscle group under maximum voluntary contraction (MVC), before and after training were calculated. The RMS value under MVC (RMSMVC) of the rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL), and gluteus maximus (GM) decreased after continuous and intermittent BFR training programs, and those of the biceps femoris (BF) and semitendinosus (SEM) increased; The RMS standard values of the VL, BF, and SEM were significantly increased after continuous and intermittent BFR training (P < 0.05), The RMS value of GM significantly decreased after cuff inflating (P < 0.05). The MF values of RF, VM, VL, and GM decreased significantly after continuous BFR training (P < 0.05). Continuous BFR deep-squat training applied at 50% AOP was more effective than the intermittent BFR training program. Continuous application of BFR induces greater levels of acute fatigue than intermittent BFR that may translate into greater muscular training adaptations over time.
Collapse
Affiliation(s)
- Yan Wang
- Department of Physical Education Teaching and Research, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Zhiyuan Li
- Department of Public Physical and Art Education, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Che Tongtong
- School of Physical Education, Qingdao University, Qingdao, 266071, China.
| | - Wenjuan Zhang
- Department of Military Theory, Fuzhou University, Fuzhou, 350108, Fujian, China.
| | - Xiaoxiao Li
- Department of Military Theory, Fuzhou University, Fuzhou, 350108, Fujian, China
| |
Collapse
|
4
|
Hymer WC, Kraemer WJ. Resistance exercise stress: theoretical mechanisms for growth hormone processing and release from the anterior pituitary somatotroph. Eur J Appl Physiol 2023; 123:1867-1878. [PMID: 37421488 DOI: 10.1007/s00421-023-05263-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/15/2023] [Indexed: 07/10/2023]
Abstract
Heavy resistance exercise (HRE) is the most effective method for inducing muscular hypertrophy and stimulating anabolic hormones, including growth hormone, into the blood. In this review, we explore possible mechanisms within the GH secretory pathway of the pituitary somatotroph, which are likely to modulate the flow of hormone synthesis and packaging as it is processed prior to exocytosis. Special emphasis is placed on the secretory granule and its possible role as a signaling hub. We also review data that summarize how HRE affects the quality and quantity of the secreted hormone. Finally, these pathway mechanisms are considered in the context of heterogeneity of the somatotroph population in the anterior pituitary.
Collapse
Affiliation(s)
- Wesley C Hymer
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, OH, 43802, USA.
- Department of Kinesiology, University of Connecticut, Storrs, CT, USA.
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.
| |
Collapse
|
5
|
Merawati D, Susanto H, Taufiq A, Pranoto A, Amelia D, Rejeki PS. Dynamic of irisin secretion change after moderate-intensity chronic physical exercise on obese female. J Basic Clin Physiol Pharmacol 2023:jbcpp-2023-0041. [PMID: 37209011 DOI: 10.1515/jbcpp-2023-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
OBJECTIVES Exercise is one of the beneficial mediators for the regulation and prevention of obesity through the role of irisin, so it potentially enhances metabolism health. This study aims to investigate the dynamic of irisin secrecy change after chronic exercise in obese females. METHODS Thirty-one female adolescents aged 20-22 years enrolled in the study and were given interventions aerobic, resistance, and a combination of aerobic and resistance training. The exercises were performed at moderate-intensity, for 35-40 min per session, and three times a week for four weeks. The measurement of irisin level, IGF-1 level, and bio-anthropometry was carried out before and after the four weeks of exercise. The bio-anthropometry measurement was carried out using seca mBCA 514, while the measurement of insulin-like growth factor 1 (IGF-1) and irisin was completed using an enzyme-linked immunosorbent assay (ELISA). The obtained data were analyzed using a one-way ANOVA test with 5 % significance. RESULTS Our results indicated higher dynamic of irisin and IGF-1 increases in the group with a combination of aerobic and resistance training exercises than the other two groups with a different exercise. Further, we also observed different dynamics of irisin and IGF-1 level increase (p<0.05). Besides, the irisin was also correlated with the IGF-1 and bio-anthropometric parameters (p<0.05). CONCLUSIONS The combination of aerobic and resistance training exercises is considered as the alternative for enhancing the dynamic of irisin and IGF-1 increase. Thus, it can be used to prevent and regulate obesity.
Collapse
Affiliation(s)
- Desiana Merawati
- Department of Sport Science, Faculty of Sport Science, Universitas Negeri Malang, Malang, Indonesia
| | - Hendra Susanto
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang, Indonesia
| | - Ahmad Taufiq
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang, Indonesia
| | - Adi Pranoto
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Dessy Amelia
- Department of Sport Science, Faculty of Sport Science, Universitas Negeri Malang, Malang, Indonesia
| | - Purwo Sri Rejeki
- Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
6
|
Rodríguez-Gutiérrez E, Torres-Costoso A, Pascual-Morena C, Pozuelo-Carrascosa DP, Garrido-Miguel M, Martínez-Vizcaíno V. Effects of Resistance Exercise on Neuroprotective Factors in Middle and Late Life: A Systematic Review and Meta-Analysis. Aging Dis 2023:AD.2022.1207. [PMID: 37163437 PMCID: PMC10389831 DOI: 10.14336/ad.2022.1207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/07/2022] [Indexed: 05/12/2023] Open
Abstract
Neuroprotective factors are involved in brain functioning. Although physical exercise has been shown to have a positive influence on these factors, the effect of resistance exercise on them is not well known. This systematic review and meta-analysis aimed to 1) estimate the efficacy of resistance exercise on major neuroprotective factors, such as insulin-like growth factor-1 (IGF-1), brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF), in middle and late life and 2) determine whether the effect is dose dependent. A systematic search was conducted in CINAHL, Cochrane CENTRAL, MEDLINE, Scopus, PEDro, SPORTDiscus, and Web of Science up to November 2022. Random effects models were used to estimate standardized mean differences (SMDs) and their respective 95% confidence intervals (CI) for the effect of resistance exercise on peripheral IGF-1, BDNF or VEGF levels in older adults. Thirty randomized clinical trials with 1247 subjects (53.25% women, 45-92 years) were included in the systematic review, and 27 were selected for the meta-analysis. A significant effect of resistance exercise on IGF-1 levels was observed (SMD: 0.48; 95% CI: 0.27, 0.69), being more effective when performing 3 sessions/week (SMD: 0.55; 95% CI: 0.31, 0.79) but not on BDNF (SMD: 0.33; 95% CI: -0.29, 0.94). The effect on VEGF could not be determined due to the scarcity of studies. Our data support the resistance training recommendation in middle and late life, at a frequency of at least 3 sessions/week, to mitigate the neurological and cognitive consequences associated with aging, mainly through IGF-1.
Collapse
Affiliation(s)
| | - Ana Torres-Costoso
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Facultad de Fisioterapia y Enfermería, Universidad de Castilla-La Mancha, 45071, Toledo, Spain
| | - Carlos Pascual-Morena
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
| | - Diana P Pozuelo-Carrascosa
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Grupo de Investigación Multidisciplinar en Cuidados (IMCU), Campus de Fábrica de Armas, Universidad de Castilla-La Mancha, Toledo, 45071, Spain
| | - Miriam Garrido-Miguel
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Facultad de Enfermería, Universidad de Castilla-La Mancha, 02006, Albacete, Spain
| | - Vicente Martínez-Vizcaíno
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, 3460000 Talca, Chile
| |
Collapse
|
7
|
Sugiharto, Merawati D, Pranoto A, Susanto H. Physiological response of endurance exercise as a growth hormone mediator in adolescent women's. J Basic Clin Physiol Pharmacol 2023; 34:61-67. [PMID: 35499967 DOI: 10.1515/jbcpp-2022-0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/09/2022] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Overweight status decreases the growth hormone (GH) secretion, thus, increasing the risk factors for medical complications. However, proper exercise is reported to enhance GH and affect the energy balance. Therefore, exercise is proclaimed to be an accurate and engaging therapy to increase GH in preventing overweight. This study aims to investigate the physiological response of exercise in mediating the increase of GH secretion in female adolescents. METHODS 22 overweight women aged 19-20 years old, with maximal oxygen consumption of 27-35 mL/kg/min, were selected as sample size. They were divided into three groups, namely (CONT, n=7) Control, (MIEE, n=7) Moderate-intensity interval endurance exercise, and (MCEE, n=8) Moderate-intensity continuous endurance exercise. The exercise was carried out by running for 30-35 min using treadmills with an intensity of 60-70% HRmax. The blood sampling for GH examination was carried out four times before exercise, 10 min, 6 h, and 24 h after exercise. The enzyme-linked immunosorbent assay (ELISA) was used to measure the GH and IGF-1 levels. The data analysis was carried out using a one-way ANOVA test, with a significance level of 5%. RESULTS The results of the one-Way ANOVA test suggested a significantly different average GH and IGF-1 before and after the exercise between the three groups (CON, MIEE, and MCEE) (p≤0.05). CONCLUSIONS MCEE increases the GH and IGF-1 levels more considerably than MIEE. Therefore, exercise is a mediator to increase GH and IGF-1 secretion in overweight individuals. Exercise could be a viable therapy for overweight people.
Collapse
Affiliation(s)
- Sugiharto
- Department of Sport Science, Faculty of Sport Science, Universitas Negeri Malang, Malang, Indonesia
| | - Desiana Merawati
- Department of Sport Science, Faculty of Sport Science, Universitas Negeri Malang, Malang, Indonesia
| | - Adi Pranoto
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Hendra Susanto
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang, Indonesia
| |
Collapse
|
8
|
Kon M, Ebi Y, Nakagaki K. Hormonal, metabolic, and angiogenic responses to all-out sprint interval exercise under systemic hyperoxia. Growth Horm IGF Res 2022; 63:101445. [PMID: 35168036 DOI: 10.1016/j.ghir.2022.101445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/15/2022] [Accepted: 01/23/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Hyperoxic gas inhalation during exercise may negatively affect all-out sprint interval exercise (SIE)-induced hormonal, metabolic, and angiogenic responses. We investigated the effects of acute all-out SIE under systemic hyperoxia on hormonal, metabolic, and angiogenic responses. DESIGN This was a randomised-crossover trial. Ten healthy males (mean ± standard error of age = 23.1 ± 0.9 years; height = 171.0 ± 1.6 cm; body mass = 66.2 ± 2.0 kg; body mass index = 22.6 ± 0.5 kg/m2) completed the following two experimental regimens: 1) SIE under normoxia and 2) SIE under systemic hyperoxia (FiO2 = 60%). The subjects performed four bouts of 30-s maximal cycling efforts with 4 min recovery between efforts. The circulating levels of hormonal (growth hormone, epinephrine, and norepinephrine), metabolic (glucose, free fatty acid, and lactate), and angiogenic (vascular endothelial growth factor, matrix metalloproteinase-2 and -9, and endostatin) markers were measured before and at 0 (immediately after the regimen), 30, and 120 min after both regimens. RESULTS In response to both SIE regimens, the peak and mean power outputs gradually decreased over the intermittent exercise session compared with those in the first bout (p < 0.01) with no significant differences between the regimens. Both regimens significantly increased the circulating concentrations of all hormonal, metabolic, and angiogenic markers (p < 0.01). However, there were no significant differences in the levels of these markers in response to the two regimens at any time point (p > 0.05). CONCLUSION These findings suggest that acute systemic hyperoxia does not influence the hormonal, metabolic, and angiogenic responses to all-out SIE.
Collapse
Affiliation(s)
- Michihiro Kon
- Department of Health Care and Sports, Faculty of Human Life Design, Toyo University, 1-7-11, Akabanedai, Kita-ku, Tokyo 115-0053, Japan; Department of Sports Sciences, Japan Institute of Sports Sciences, 3-15-1 Nishigaoka, Kita-ku, Tokyo 115-0056, Japan.
| | - Yoshiko Ebi
- Department of Sports Sciences, Japan Institute of Sports Sciences, 3-15-1 Nishigaoka, Kita-ku, Tokyo 115-0056, Japan
| | - Kohei Nakagaki
- Department of Sports Sciences, Japan Institute of Sports Sciences, 3-15-1 Nishigaoka, Kita-ku, Tokyo 115-0056, Japan; Department of Sports Sciences, Yamanashi Gakuin University, 2-4-5 Sakaori, Kofu, Yamanashi 158-8508, Japan
| |
Collapse
|