1
|
Murphy AR, Ng XJ, Lidgerwood G, Pébay A, Truong YB, O'Brien CM, Glattauer V. Functionalized Collagen I Membranes as a Bruch's Membrane Mimetic for Outer Retinal In Vitro Models. ACS Biomater Sci Eng 2024; 10:5653-5665. [PMID: 39133836 PMCID: PMC11388139 DOI: 10.1021/acsbiomaterials.4c01112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Physiologically relevant in vitro models of the human outer retina are required to better elucidate the complex interplay of retinal tissue layers and investigate their role in retinal degenerative disorders. Materials currently used to mimic the function of Bruch's membrane fail to replicate a range of important structural, mechanical, and biochemical properties. Here, we detail the fabrication of a surface-functionalized, fibrous collagen I membrane. We demonstrate its ability to better replicate a range of important material properties akin to the function of human Bruch's membrane when compared with a commonly utilized synthetic polyethylene terephthalate alternative. We further reveal the ability of this membrane to support the culture of the ARPE-19 cell line, as well as human pluripotent stem cell-derived RPE-like cells and human umbilical vein endothelial cells. This material could provide greater physiological relevance to the native Bruch's membrane than current synthetic materials and further improve the outcomes of in vitro outer retinal models.
Collapse
Affiliation(s)
- Ashley R Murphy
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton 3168, VIC, Australia
| | - Xuen Jen Ng
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton 3168, VIC, Australia
| | - Grace Lidgerwood
- Department of Anatomy and Physiology, the University of Melbourne, Parkville 3010, VIC, Australia
| | - Alice Pébay
- Department of Anatomy and Physiology, the University of Melbourne, Parkville 3010, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, the University of Melbourne, Parkville 3050, VIC, Australia
| | - Yen B Truong
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton 3168, VIC, Australia
| | - Carmel M O'Brien
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton 3168, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton 3168, Australia
| | - Veronica Glattauer
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton 3168, VIC, Australia
| |
Collapse
|
2
|
Hall J, Daniszewski M, Cheung S, Shobhana K, Kumar H, Liang HH, Beetham H, Cho E, Abbott C, Hewitt AW, Simpson KJ, Guymer RH, Paull D, Pébay A, Lidgerwood GE. A semi-automated pipeline for quantifying drusen-like deposits in human induced pluripotent stem cell-derived retinal pigment epithelium cells. SLAS Technol 2024; 29:100106. [PMID: 37657710 DOI: 10.1016/j.slast.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/10/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Age-Related Macular Degeneration (AMD) is a highly prevalent form of retinal disease amongst Western communities over 50 years of age. A hallmark of AMD pathogenesis is the accumulation of drusen underneath the retinal pigment epithelium (RPE), a biological process also observable in vitro. The accumulation of drusen has been shown to predict the progression to advanced AMD, making accurate characterisation of drusen in vitro models valuable in disease modelling and drug development. More recently, deposits above the RPE in the subretinal space, called reticular pseudodrusen (RPD) have been recognized as a sub-phenotype of AMD. While in vitro imaging techniques allow for the immunostaining of drusen-like deposits, quantification of these deposits often requires slow, low throughput manual counting of images. This further lends itself to issues including sampling biases, while ignoring critical data parameters including volume and precise localization. To overcome these issues, we developed a semi-automated pipeline for quantifying the presence of drusen-like deposits in vitro, using RPE cultures derived from patient-specific induced pluripotent stem cells (iPSCs). Using high-throughput confocal microscopy, together with three-dimensional reconstruction, we developed an imaging and analysis pipeline that quantifies the number of drusen-like deposits, and accurately and reproducibly provides the location and composition of these deposits. Extending its utility, this pipeline can determine whether the drusen-like deposits locate to the apical or basal surface of RPE cells. Here, we validate the utility of this pipeline in the quantification of drusen-like deposits in six iPSCs lines derived from patients with AMD, following their differentiation into RPE cells. This pipeline provides a valuable tool for the in vitro modelling of AMD and other retinal disease, and is amenable to mid and high throughput screenings.
Collapse
Affiliation(s)
- Jenna Hall
- Department of Anatomy and Physiology, The University of Melbourne, VIC, Australia
| | - Maciej Daniszewski
- Department of Anatomy and Physiology, The University of Melbourne, VIC, Australia
| | - Shane Cheung
- Biological Optical Microscopy Platform, The University of Melbourne, VIC, Australia
| | - Kalyan Shobhana
- Biological Optical Microscopy Platform, The University of Melbourne, VIC, Australia
| | - Himeesh Kumar
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, VIC, Australia; Department of Surgery, Ophthalmology, The University of Melbourne, VIC, Australia
| | - Helena H Liang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, VIC, Australia
| | - Henry Beetham
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, VIC, Australia; Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, VIC, Australia
| | - Ellie Cho
- Biological Optical Microscopy Platform, The University of Melbourne, VIC, Australia
| | - Carla Abbott
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, VIC, Australia; Department of Surgery, Ophthalmology, The University of Melbourne, VIC, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, VIC, Australia; Department of Surgery, Ophthalmology, The University of Melbourne, VIC, Australia
| | - Kaylene J Simpson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, VIC, Australia; Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, VIC, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, VIC, Australia
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, VIC, Australia; Department of Surgery, Ophthalmology, The University of Melbourne, VIC, Australia
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, New York, United States
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, VIC, Australia; Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, VIC, Australia
| | - Grace E Lidgerwood
- Department of Anatomy and Physiology, The University of Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Aísa-Marín I, Rovira Q, Díaz N, Calvo-López L, Vaquerizas JM, Marfany G. Specific photoreceptor cell fate pathways are differentially altered in NR2E3-associated diseases. Neurobiol Dis 2024; 194:106463. [PMID: 38485095 DOI: 10.1016/j.nbd.2024.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/21/2024] Open
Abstract
Mutations in NR2E3, a gene encoding an orphan nuclear transcription factor, cause two retinal dystrophies with a distinct phenotype, but the precise role of NR2E3 in rod and cone transcriptional networks remains unclear. To dissect NR2E3 function, we performed scRNA-seq in the retinas of wildtype and two different Nr2e3 mouse models that show phenotypes similar to patients carrying NR2E3 mutations. Our results reveal that rod and cone populations are not homogeneous and can be separated into different sub-classes. We identify a previously unreported cone pathway that generates hybrid cones co-expressing both cone- and rod-related genes. In mutant retinas, this hybrid cone subpopulation is more abundant and includes a subpopulation of rods transitioning towards a cone cell fate. Hybrid photoreceptors with high misexpression of cone- and rod-related genes are prone to regulated necrosis. Overall, our results shed light on the role of NR2E3 in modulating photoreceptor differentiation towards cone and rod fates and explain how different mutations in NR2E3 lead to distinct visual disorders in humans.
Collapse
Affiliation(s)
- Izarbe Aísa-Marín
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona 08028, Spain; IBUB-IRSJD, Institut de Biomedicina de la Universitat de Barcelona-Institut de Recerca Sant Joan de Déu, Barcelona 08028, Spain; CIBERER, Instituto de Salud Carlos III, Barcelona 08028, Spain
| | - Quirze Rovira
- Max-Planck-Institute for Molecular Biomedicine, Münster 48149, Germany
| | - Noelia Díaz
- Max-Planck-Institute for Molecular Biomedicine, Münster 48149, Germany
| | - Laura Calvo-López
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona 08028, Spain
| | - Juan M Vaquerizas
- Max-Planck-Institute for Molecular Biomedicine, Münster 48149, Germany; MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK.; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| | - Gemma Marfany
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona 08028, Spain; IBUB-IRSJD, Institut de Biomedicina de la Universitat de Barcelona-Institut de Recerca Sant Joan de Déu, Barcelona 08028, Spain; CIBERER, Instituto de Salud Carlos III, Barcelona 08028, Spain; DBGen Ocular Genomics, Barcelona 08028, Spain.
| |
Collapse
|
4
|
Rzhanova LA, Markitantova YV, Aleksandrova MA. Recent Achievements in the Heterogeneity of Mammalian and Human Retinal Pigment Epithelium: In Search of a Stem Cell. Cells 2024; 13:281. [PMID: 38334673 PMCID: PMC10854871 DOI: 10.3390/cells13030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Retinal pigment epithelium (RPE) cells are important fundamentally for the development and function of the retina. In this regard, the study of the morphological and molecular properties of RPE cells, as well as their regenerative capabilities, is of particular importance for biomedicine. However, these studies are complicated by the fact that, despite the external morphological similarity of RPE cells, the RPE is a population of heterogeneous cells, the molecular genetic properties of which have begun to be revealed by sequencing methods only in recent years. This review carries out an analysis of the data from morphological and molecular genetic studies of the heterogeneity of RPE cells in mammals and humans, which reveals the individual differences in the subpopulations of RPE cells and the possible specificity of their functions. Particular attention is paid to discussing the properties of "stemness," proliferation, and plasticity in the RPE, which may be useful for uncovering the mechanisms of retinal diseases associated with pathologies of the RPE and finding new ways of treating them.
Collapse
Affiliation(s)
| | - Yuliya V. Markitantova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (L.A.R.); (M.A.A.)
| | | |
Collapse
|
5
|
Wang W, Zhang X, Zhao N, Xu ZH, Jin K, Jin ZB. RNA fusion in human retinal development. eLife 2024; 13:e92523. [PMID: 38165397 PMCID: PMC10890785 DOI: 10.7554/elife.92523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Chimeric RNAs have been found in both cancerous and healthy human cells. They have regulatory effects on human stem/progenitor cell differentiation, stemness maintenance, and central nervous system development. However, whether they are present in human retinal cells and their physiological functions in the retinal development remain unknown. Based on the human embryonic stem cell-derived retinal organoids (ROs) spanning from days 0 to 120, we present the expression atlas of chimeric RNAs throughout the developing ROs. We confirmed the existence of some common chimeric RNAs and also discovered many novel chimeric RNAs during retinal development. We focused on CTNNBIP1-CLSTN1 (CTCL) whose downregulation caused precocious neuronal differentiation and a marked reduction of neural progenitors in human cerebral organoids. CTCL is universally present in human retinas, ROs, and retinal cell lines, and its loss-of-function biases the progenitor cells toward retinal pigment epithelial cell fate at the expense of retinal cells. Together, this work provides a landscape of chimeric RNAs and reveals evidence for their critical role in human retinal development.
Collapse
Affiliation(s)
- Wen Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Xiao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Ning Zhao
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Ze-Hua Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
6
|
De Kleijn KMA, Zuure WA, Straasheijm KR, Martens MB, Avramut MC, Koning RI, Martens GJM. Human cortical spheroids with a high diversity of innately developing brain cell types. Stem Cell Res Ther 2023; 14:50. [PMID: 36959625 PMCID: PMC10035191 DOI: 10.1186/s13287-023-03261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/28/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Three-dimensional (3D) human brain spheroids are instrumental to study central nervous system (CNS) development and (dys)function. Yet, in current brain spheroid models the limited variety of cell types hampers an integrated exploration of CNS (disease) mechanisms. METHODS Here we report a 5-month culture protocol that reproducibly generates H9 embryonic stem cell-derived human cortical spheroids (hCSs) with a large cell-type variety. RESULTS We established the presence of not only neuroectoderm-derived neural progenitor populations, mature excitatory and inhibitory neurons, astrocytes and oligodendrocyte (precursor) cells, but also mesoderm-derived microglia and endothelial cell populations in the hCSs via RNA-sequencing, qPCR, immunocytochemistry and transmission electron microscopy. Transcriptomic analysis revealed resemblance between the 5-months-old hCSs and dorsal frontal rather than inferior regions of human fetal brains of 19-26 weeks of gestational age. Pro-inflammatory stimulation of the generated hCSs induced a neuroinflammatory response, offering a proof-of-principle of the applicability of the spheroids. CONCLUSIONS Our protocol provides a 3D human brain cell model containing a wide variety of innately developing neuroectoderm- as well as mesoderm-derived cell types, furnishing a versatile platform for comprehensive examination of intercellular CNS communication and neurological disease mechanisms.
Collapse
Affiliation(s)
- Kim M A De Kleijn
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, Faculty of Science, Radboud University, 6525GA, Nijmegen, The Netherlands.
- NeuroDrug Research Ltd, 6525ED, Nijmegen, The Netherlands.
| | - Wieteke A Zuure
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, Faculty of Science, Radboud University, 6525GA, Nijmegen, The Netherlands
| | | | | | - M Cristina Avramut
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Roman I Koning
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Gerard J M Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, Faculty of Science, Radboud University, 6525GA, Nijmegen, The Netherlands
- NeuroDrug Research Ltd, 6525ED, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Park Y, Jeong Y, Son S, Kim DE. AMPK-induced mitochondrial biogenesis decelerates retinal pigment epithelial cell degeneration under nutrient starvation. BMB Rep 2023; 56:84-89. [PMID: 36195569 PMCID: PMC9978359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 02/24/2023] Open
Abstract
The implications of nutrient starvation due to aging on the degeneration of the retinal pigment epithelium (RPE) is yet to be fully explored. We examined the involvement of AMPK activation in mitochondrial homeostasis and its relationship with the maintenance of a healthy mitochondrial population and epithelial characteristics of RPE cells under nutrient starvation. Nutrient starvation induced mitochondrial senescence, which led to the accumulation of reactive oxygen species (ROS) in RPE cells. As nutrient starvation persisted, RPE cells underwent pathological epithelial-mesenchymal transition (EMT) via the upregulation of TWIST1, a transcription regulator which is activated by ROS-induced NF-κB signaling. Enhanced activation of AMPK with metformin decelerated mitochondrial senescence and EMT progression through mitochondrial biogenesis, primed by activation of PGC1-α. Thus, by facilitating mitochondrial biogenesis, AMPK protects RPE cells from the loss of epithelial integrity due to the accumulation of ROS in senescent mitochondria under nutrient starvation. [BMB Reports 2023; 56(2): 84-89].
Collapse
Affiliation(s)
- Yujin Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Yeeun Jeong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Sumin Son
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea,Corresponding author. Tel: +82-2-2049-6062; Fax: +82-2-3436-6062; E-mail:
| |
Collapse
|
8
|
Emri E, Cappa O, Kelly C, Kortvely E, SanGiovanni JP, McKay BS, Bergen AA, Simpson DA, Lengyel I. Zinc Supplementation Induced Transcriptional Changes in Primary Human Retinal Pigment Epithelium: A Single-Cell RNA Sequencing Study to Understand Age-Related Macular Degeneration. Cells 2023; 12:773. [PMID: 36899910 PMCID: PMC10000409 DOI: 10.3390/cells12050773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Zinc supplementation has been shown to be beneficial to slow the progression of age-related macular degeneration (AMD). However, the molecular mechanism underpinning this benefit is not well understood. This study used single-cell RNA sequencing to identify transcriptomic changes induced by zinc supplementation. Human primary retinal pigment epithelial (RPE) cells could mature for up to 19 weeks. After 1 or 18 weeks in culture, we supplemented the culture medium with 125 µM added zinc for one week. RPE cells developed high transepithelial electrical resistance, extensive, but variable pigmentation, and deposited sub-RPE material similar to the hallmark lesions of AMD. Unsupervised cluster analysis of the combined transcriptome of the cells isolated after 2, 9, and 19 weeks in culture showed considerable heterogeneity. Clustering based on 234 pre-selected RPE-specific genes divided the cells into two distinct clusters, we defined as more and less differentiated cells. The proportion of more differentiated cells increased with time in culture, but appreciable numbers of cells remained less differentiated even at 19 weeks. Pseudotemporal ordering identified 537 genes that could be implicated in the dynamics of RPE cell differentiation (FDR < 0.05). Zinc treatment resulted in the differential expression of 281 of these genes (FDR < 0.05). These genes were associated with several biological pathways with modulation of ID1/ID3 transcriptional regulation. Overall, zinc had a multitude of effects on the RPE transcriptome, including several genes involved in pigmentation, complement regulation, mineralization, and cholesterol metabolism processes associated with AMD.
Collapse
Affiliation(s)
- Eszter Emri
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
- Section Ophthalmogenetics, Department of Human Genetics, Queen Emma Centre for Precision Medicine, Amsterdam UMC, Location AMC, 1105AZ Amsterdam, The Netherlands
| | - Oisin Cappa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
| | - Caoimhe Kelly
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
| | - Elod Kortvely
- Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - John Paul SanGiovanni
- Biosciences Research Laboratories, BIO5 Institute, University of Arizona, 1230 North Cherry Avenue, Tucson, AZ 85724, USA
| | - Brian S. McKay
- Department of Ophthalmology and Vision Science, University of Arizona, 1656 E. Mabel Street, Tucson, AZ 85724, USA
| | - Arthur A. Bergen
- Section Ophthalmogenetics, Department of Human Genetics, Queen Emma Centre for Precision Medicine, Amsterdam UMC, Location AMC, 1105AZ Amsterdam, The Netherlands
- The Netherlands Institute for Neuroscience (NIN-KNAW), 1105AZ Amsterdam, The Netherlands
| | - David A. Simpson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
| |
Collapse
|
9
|
Park Y, Jeong Y, Son S, Kim DE. AMPK-induced mitochondrial biogenesis decelerates retinal pigment epithelial cell degeneration under nutrient starvation. BMB Rep 2023; 56:84-89. [PMID: 36195569 PMCID: PMC9978359 DOI: 10.5483/bmbrep.2022-0125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 07/04/2024] Open
Abstract
The implications of nutrient starvation due to aging on the degeneration of the retinal pigment epithelium (RPE) is yet to be fully explored. We examined the involvement of AMPK activation in mitochondrial homeostasis and its relationship with the maintenance of a healthy mitochondrial population and epithelial characteristics of RPE cells under nutrient starvation. Nutrient starvation induced mitochondrial senescence, which led to the accumulation of reactive oxygen species (ROS) in RPE cells. As nutrient starvation persisted, RPE cells underwent pathological epithelial-mesenchymal transition (EMT) via the upregulation of TWIST1, a transcription regulator which is activated by ROS-induced NF-κB signaling. Enhanced activation of AMPK with metformin decelerated mitochondrial senescence and EMT progression through mitochondrial biogenesis, primed by activation of PGC1-α. Thus, by facilitating mitochondrial biogenesis, AMPK protects RPE cells from the loss of epithelial integrity due to the accumulation of ROS in senescent mitochondria under nutrient starvation. [BMB Reports 2023; 56(2): 84-89].
Collapse
Affiliation(s)
- Yujin Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Yeeun Jeong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Sumin Son
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
10
|
Gupta S, Lytvynchuk L, Ardan T, Studenovska H, Faura G, Eide L, Znaor L, Erceg S, Stieger K, Motlik J, Bharti K, Petrovski G. Retinal Pigment Epithelium Cell Development: Extrapolating Basic Biology to Stem Cell Research. Biomedicines 2023; 11:310. [PMID: 36830851 PMCID: PMC9952929 DOI: 10.3390/biomedicines11020310] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The retinal pigment epithelium (RPE) forms an important cellular monolayer, which contributes to the normal physiology of the eye. Damage to the RPE leads to the development of degenerative diseases, such as age-related macular degeneration (AMD). Apart from acting as a physical barrier between the retina and choroidal blood vessels, the RPE is crucial in maintaining photoreceptor (PR) and visual functions. Current clinical intervention to treat early stages of AMD includes stem cell-derived RPE transplantation, which is still in its early stages of evolution. Therefore, it becomes essential to derive RPEs which are functional and exhibit features as observed in native human RPE cells. The conventional strategy is to use the knowledge obtained from developmental studies using various animal models and stem cell-based exploratory studies to understand RPE biogenies and developmental trajectory. This article emphasises such studies and aims to present a comprehensive understanding of the basic biology, including the genetics and molecular pathways of RPE development. It encompasses basic developmental biology and stem cell-based developmental studies to uncover RPE differentiation. Knowledge of the in utero developmental cues provides an inclusive methodology required for deriving RPEs using stem cells.
Collapse
Affiliation(s)
- Santosh Gupta
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0450 Oslo, Norway
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus Liebig University Giessen, University Hospital Giessen and Marburg GmbH, 35392 Giessen, Germany
- Karl Landsteiner Institute for Retinal Research and Imaging, 1030 Vienna, Austria
| | - Taras Ardan
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 27721 Libechov, Czech Republic
| | - Hana Studenovska
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 16206 Prague, Czech Republic
| | - Georgina Faura
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Ljubo Znaor
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, 21000 Split, Croatia
| | - Slaven Erceg
- Research Center “Principe Felipe”, Stem Cell Therapies in Neurodegenerative Diseases Laboratory, 46012 Valencia, Spain
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 11720 Prague, Czech Republic
| | - Knut Stieger
- Department of Ophthalmology, Justus Liebig University Giessen, University Hospital Giessen and Marburg GmbH, 35392 Giessen, Germany
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 27721 Libechov, Czech Republic
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892, USA
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0450 Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, 21000 Split, Croatia
- Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway
| |
Collapse
|
11
|
Subramanian R, Sahoo D. Boolean implication analysis of single-cell data predicts retinal cell type markers. BMC Bioinformatics 2022; 23:378. [PMID: 36114457 PMCID: PMC9482279 DOI: 10.1186/s12859-022-04915-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022] Open
Abstract
Background The retina is a complex tissue containing multiple cell types that are essential for vision. Understanding the gene expression patterns of various retinal cell types has potential applications in regenerative medicine. Retinal organoids (optic vesicles) derived from pluripotent stem cells have begun to yield insights into the transcriptomics of developing retinal cell types in humans through single cell RNA-sequencing studies. Previous methods of gene reporting have relied upon techniques in vivo using microarray data, or correlational and dimension reduction methods for analyzing single cell RNA-sequencing data computationally. We aimed to develop a state-of-the-art Boolean method that filtered out noise, could be applied to a wide variety of datasets and lent insight into gene expression over differentiation. Results Here, we present a bioinformatic approach using Boolean implication to discover genes which are retinal cell type-specific or involved in retinal cell fate. We apply this approach to previously published retina and retinal organoid datasets and improve upon previously published correlational methods. Our method improves the prediction accuracy of marker genes of retinal cell types and discovers several new high confidence cone and rod-specific genes. Conclusions The results of this study demonstrate the benefits of a Boolean approach that considers asymmetric relationships. We have shown a statistically significant improvement from correlational, symmetric methods in the prediction accuracy of retinal cell-type specific genes. Furthermore, our method contains no cell or tissue-specific tuning and hence could impact other areas of gene expression analyses in cancer and other human diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04915-4.
Collapse
|
12
|
Senabouth A, Daniszewski M, Lidgerwood GE, Liang HH, Hernández D, Mirzaei M, Keenan SN, Zhang R, Han X, Neavin D, Rooney L, Lopez Sanchez MIG, Gulluyan L, Paulo JA, Clarke L, Kearns LS, Gnanasambandapillai V, Chan CL, Nguyen U, Steinmann AM, McCloy RA, Farbehi N, Gupta VK, Mackey DA, Bylsma G, Verma N, MacGregor S, Watt MJ, Guymer RH, Powell JE, Hewitt AW, Pébay A. Transcriptomic and proteomic retinal pigment epithelium signatures of age-related macular degeneration. Nat Commun 2022; 13:4233. [PMID: 35882847 PMCID: PMC9325891 DOI: 10.1038/s41467-022-31707-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 06/29/2022] [Indexed: 11/08/2022] Open
Abstract
There are currently no treatments for geographic atrophy, the advanced form of age-related macular degeneration. Hence, innovative studies are needed to model this condition and prevent or delay its progression. Induced pluripotent stem cells generated from patients with geographic atrophy and healthy individuals were differentiated to retinal pigment epithelium. Integrating transcriptional profiles of 127,659 retinal pigment epithelium cells generated from 43 individuals with geographic atrophy and 36 controls with genotype data, we identify 445 expression quantitative trait loci in cis that are asssociated with disease status and specific to retinal pigment epithelium subpopulations. Transcriptomics and proteomics approaches identify molecular pathways significantly upregulated in geographic atrophy, including in mitochondrial functions, metabolic pathways and extracellular cellular matrix reorganization. Five significant protein quantitative trait loci that regulate protein expression in the retinal pigment epithelium and in geographic atrophy are identified - two of which share variants with cis- expression quantitative trait loci, including proteins involved in mitochondrial biology and neurodegeneration. Investigation of mitochondrial metabolism confirms mitochondrial dysfunction as a core constitutive difference of the retinal pigment epithelium from patients with geographic atrophy. This study uncovers important differences in retinal pigment epithelium homeostasis associated with geographic atrophy.
Collapse
Affiliation(s)
- Anne Senabouth
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Maciej Daniszewski
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Grace E Lidgerwood
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Helena H Liang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Damián Hernández
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Stacey N Keenan
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ran Zhang
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Xikun Han
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Drew Neavin
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Louise Rooney
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Lerna Gulluyan
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Linda Clarke
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Lisa S Kearns
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | | | - Chia-Ling Chan
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Uyen Nguyen
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Angela M Steinmann
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Rachael A McCloy
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Nona Farbehi
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Vivek K Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - David A Mackey
- Lions Eye Institute, Centre for Vision Sciences, University of Western Australia, Perth, WA, 6009, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Guy Bylsma
- Lions Eye Institute, Centre for Vision Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Nitin Verma
- School of Medicine, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
- Department of Surgery, Ophthalmology, Royal Victorian Eye and Ear Hospital, The University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia.
- School of Medicine, University of Tasmania, Hobart, TAS, 7005, Australia.
- Department of Surgery, Ophthalmology, Royal Victorian Eye and Ear Hospital, The University of Melbourne, East Melbourne, VIC, 3002, Australia.
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000, Australia.
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia.
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
13
|
Single-cell transcriptome of the mouse retinal pigment epithelium in response to a low-dose of doxorubicin. Commun Biol 2022; 5:722. [PMID: 35859009 PMCID: PMC9300683 DOI: 10.1038/s42003-022-03676-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 07/06/2022] [Indexed: 01/29/2023] Open
Abstract
Cellular senescence of the retinal pigment epithelium (RPE) is thought to play an important role in vision-threatening retinal degenerative diseases, such as age-related macular degeneration (AMD). However, the single-cell RNA profiles of control RPE tissue and RPE tissue exhibiting cellular senescence are not well known. We have analyzed the single-cell transcriptomes of control mice and mice with low-dose doxorubicin (Dox)-induced RPE senescence (Dox-RPE). Our results have identified 4 main subpopulations in the control RPE that exhibit heterogeneous biological activities and play roles in ATP synthesis, cell mobility/differentiation, mRNA processing, and catalytic activity. In Dox-RPE mice, cellular senescence mainly occurs in the specific cluster, which has been characterized by catalytic activity in the control RPE. Furthermore, in the Dox-RPE mice, 6 genes that have not previously been associated with senescence also show altered expression in 4 clusters. Our results might serve as a useful reference for the study of control and senescent RPE. Single cell transcriptomics pinpoints a cell subpopulation that could be involved in inducing cellular senescence of the retinal pigment epithelium, which in turn may construe retinal degenerative disease.
Collapse
|
14
|
Petrus-Reurer S, Lederer AR, Baqué-Vidal L, Douagi I, Pannagel B, Khven I, Aronsson M, Bartuma H, Wagner M, Wrona A, Efstathopoulos P, Jaberi E, Willenbrock H, Shimizu Y, Villaescusa JC, André H, Sundstrӧm E, Bhaduri A, Kriegstein A, Kvanta A, La Manno G, Lanner F. Molecular profiling of stem cell-derived retinal pigment epithelial cell differentiation established for clinical translation. Stem Cell Reports 2022; 17:1458-1475. [PMID: 35705015 PMCID: PMC9214069 DOI: 10.1016/j.stemcr.2022.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/08/2023] Open
Abstract
Human embryonic stem cell-derived retinal pigment epithelial cells (hESC-RPE) are a promising cell source to treat age-related macular degeneration (AMD). Despite several ongoing clinical studies, a detailed mapping of transient cellular states during in vitro differentiation has not been performed. Here, we conduct single-cell transcriptomic profiling of an hESC-RPE differentiation protocol that has been developed for clinical use. Differentiation progressed through a culture diversification recapitulating early embryonic development, whereby cells rapidly acquired a rostral embryo patterning signature before converging toward the RPE lineage. At intermediate steps, we identified and examined the potency of an NCAM1+ retinal progenitor population and showed the ability of the protocol to suppress non-RPE fates. We demonstrated that the method produces a pure RPE pool capable of maturing further after subretinal transplantation in a large-eyed animal model. Our evaluation of hESC-RPE differentiation supports the development of safe and efficient pluripotent stem cell-based therapies for AMD. Transcriptional analysis of hESC-RPE differentiation benchmarked to in vivo cells NCAM1 emerges as a cell-surface marker of multipotent neuroepithelial progenitors hESC-RPE cells are obtained through a divergence-convergence process
hESC-RPE further mature in vivo upon subretinal injection into the rabbit eye
Collapse
Affiliation(s)
- Sandra Petrus-Reurer
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, 17177 Stockholm, Sweden; Gynecology and Reproductive Medicine, Karolinska Universitetssjukhuset, 14186 Stockholm, Sweden; Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 11282 Stockholm, Sweden
| | - Alex R Lederer
- Laboratory of Neurodevelopmental Systems Biology, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Laura Baqué-Vidal
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, 17177 Stockholm, Sweden; Gynecology and Reproductive Medicine, Karolinska Universitetssjukhuset, 14186 Stockholm, Sweden
| | - Iyadh Douagi
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Belinda Pannagel
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Irina Khven
- Laboratory of Neurodevelopmental Systems Biology, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Monica Aronsson
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 11282 Stockholm, Sweden
| | - Hammurabi Bartuma
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 11282 Stockholm, Sweden
| | - Magdalena Wagner
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, 17177 Stockholm, Sweden; Gynecology and Reproductive Medicine, Karolinska Universitetssjukhuset, 14186 Stockholm, Sweden
| | - Andreas Wrona
- Cell Therapy R&D, Novo Nordisk A/S, Måløv 2760, Denmark
| | | | - Elham Jaberi
- Cell Therapy R&D, Novo Nordisk A/S, Måløv 2760, Denmark
| | | | | | | | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 11282 Stockholm, Sweden
| | - Erik Sundstrӧm
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Aparna Bhaduri
- Department of Neurology, University of California, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Arnold Kriegstein
- Department of Neurology, University of California, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Anders Kvanta
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 11282 Stockholm, Sweden
| | - Gioele La Manno
- Laboratory of Neurodevelopmental Systems Biology, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Fredrik Lanner
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, 17177 Stockholm, Sweden; Gynecology and Reproductive Medicine, Karolinska Universitetssjukhuset, 14186 Stockholm, Sweden; Ming Wai Lau Center for Reparative Medicine, Stockholm node, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
15
|
Wang JH, Lidgerwood GE, Daniszewski M, Hu ML, Roberts GE, Wong RCB, Hung SSC, McClements ME, Hewitt AW, Pébay A, Hickey DG, Edwards TL. AAV2-mediated gene therapy for Bietti crystalline dystrophy provides functional CYP4V2 in multiple relevant cell models. Sci Rep 2022; 12:9525. [PMID: 35680963 PMCID: PMC9184470 DOI: 10.1038/s41598-022-12210-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/06/2022] [Indexed: 12/23/2022] Open
Abstract
Bietti crystalline dystrophy (BCD) is an inherited retinal disease (IRD) caused by mutations in the CYP4V2 gene. It is a relatively common cause of IRD in east Asia. A number of features of this disease make it highly amenable to gene supplementation therapy. This study aims to validate a series of essential precursor in vitro experiments prior to developing a clinical gene therapy for BCD. We demonstrated that HEK293, ARPE19, and patient induced pluripotent stem cell (iPSC)-derived RPE cells transduced with AAV2 vectors encoding codon optimization of CYP4V2 (AAV2.coCYP4V2) resulted in elevated protein expression levels of CYP4V2 compared to those transduced with AAV2 vectors encoding wild type CYP4V2 (AAV2.wtCYP4V2), as assessed by immunocytochemistry and western blot. Similarly, we observed significantly increased CYP4V2 enzyme activity in cells transduced with AAV2.coCYP4V2 compared to those transduced with AAV2.wtCYP4V2. We also showed CYP4V2 expression in human RPE/choroid explants transduced with AAV2.coCYP4V2 compared to those transduced with AAV2.wtCYP4V2. These preclinical data support the further development of a gene supplementation therapy for a currently untreatable blinding condition—BCD. Codon-optimized CYP4V2 transgene was superior to wild type in terms of protein expression and enzyme activity. Ex vivo culture of human RPE cells provided an effective approach to test AAV-mediated transgene delivery.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia
| | - Grace E Lidgerwood
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia.,Department of Anatomy and Physiology, The University of Melbourne, Parkville, Australia
| | - Maciej Daniszewski
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Australia
| | - Monica L Hu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia
| | - Georgina E Roberts
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia
| | - Raymond C B Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, East Melbourne, VIC, Australia.,Shenzhen Eye Hospital, Shenzhen University School of Medicine, Shenzhen, China
| | - Sandy S C Hung
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, East Melbourne, VIC, Australia
| | - Michelle E McClements
- Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, East Melbourne, VIC, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Doron G Hickey
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia
| | - Thomas L Edwards
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia. .,Ophthalmology, Department of Surgery, The University of Melbourne, East Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Viheriälä T, Hongisto H, Sorvari J, Skottman H, Nymark S, Ilmarinen T. Cell maturation influences the ability of hESC-RPE to tolerate cellular stress. Stem Cell Res Ther 2022; 13:30. [PMID: 35073969 PMCID: PMC8785579 DOI: 10.1186/s13287-022-02712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/10/2022] [Indexed: 11/15/2022] Open
Abstract
Background Transplantation of human pluripotent stem cell-derived retinal pigment epithelium (RPE) is an urgently needed treatment for the cure of degenerative diseases of the retina. The transplanted cells must tolerate cellular stress caused by various sources such as retinal inflammation and regain their functions rapidly after the transplantation. We have previously shown the maturation level of the cultured human embryonic stem cell-derived RPE (hESC-RPE) cells to influence for example their calcium (Ca2+) signaling properties. Yet, no comparison of the ability of hESC-RPE at different maturity levels to tolerate cellular stress has been reported. Methods Here, we analyzed the ability of the hESC-RPE populations with early (3 weeks) and late (12 weeks) maturation status to tolerate cellular stress caused by chemical cell stressors protease inhibitor (MG132) or hydrogen peroxide (H2O2). After the treatments, the functionality of the RPE cells was studied by transepithelial resistance, immunostainings of key RPE proteins, phagocytosis, mitochondrial membrane potential, Ca2+ signaling, and cytokine secretion. Results The hESC-RPE population with late maturation status consistently showed improved tolerance to cellular stress in comparison to the population with early maturity. After the treatments, the early maturation status of hESC-RPE monolayer showed impaired barrier properties. The hESC-RPE with early maturity status also exhibited reduced phagocytic and Ca2+ signaling properties, especially after MG132 treatment. Conclusions Our results suggest that due to better tolerance to cellular stress, the late maturation status of hESC-RPE population is superior compared to monolayers with early maturation status in the transplantation therapy settings. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02712-7.
Collapse
Affiliation(s)
- Taina Viheriälä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Heidi Hongisto
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Juhana Sorvari
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Heli Skottman
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Soile Nymark
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tanja Ilmarinen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland. .,BioMediTech, Faculty of Medicine and Life Sciences, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| |
Collapse
|
17
|
Woogeng IN, Kaczkowski B, Abugessaisa I, Hu H, Tachibana A, Sahara Y, Hon CC, Hasegawa A, Sakai N, Nishida M, Sanyal H, Sho J, Kajita K, Kasukawa T, Takasato M, Carninci P, Maeda A, Mandai M, Arner E, Takahashi M, Kime C. Inducing human retinal pigment epithelium-like cells from somatic tissue. Stem Cell Reports 2022; 17:289-306. [PMID: 35030321 PMCID: PMC8828536 DOI: 10.1016/j.stemcr.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022] Open
Abstract
Regenerative medicine relies on basic research outcomes that are only practical when cost effective. The human eyeball requires the retinal pigment epithelium (RPE) to interface the neural retina and the choroid at large. Millions of people suffer from age-related macular degeneration (AMD), a blinding multifactor genetic disease among RPE degradation pathologies. Recently, autologous pluripotent stem-cell-derived RPE cells were prohibitively expensive due to time; therefore, we developed a faster reprogramming system. We stably induced RPE-like cells (iRPE) from human fibroblasts (Fibs) by conditional overexpression of both broad plasticity and lineage-specific transcription factors (TFs). iRPE cells displayed critical RPE benchmarks and significant in vivo integration in transplanted retinas. Herein, we detail the iRPE system with comprehensive single-cell RNA sequencing (scRNA-seq) profiling to interpret and characterize its best cells. We anticipate that our system may enable robust retinal cell induction for basic research and affordable autologous human RPE tissue for regenerative cell therapy. Human Fibs reprogrammed to stable RPE-like cells Reprogramming factors selected for pioneering, plasticity, lineage, and target cell Nicotinamide (NIC) and Chetomin (CTM) improved the reprogramming outcomes scRNA-seq analysis identifies high-quality subpopulation resembling model cells
Collapse
Affiliation(s)
| | | | - Imad Abugessaisa
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Haiming Hu
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | | | - Yoshiki Sahara
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Department of Renal and Cardiovascular Research, New Drug Research Division, Otsuka Pharmaceutical Co. Ltd., Tokushima 771-0192, Japan
| | - Chung-Chau Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Akira Hasegawa
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Noriko Sakai
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | | | - Hashimita Sanyal
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Junki Sho
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Keisuke Kajita
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Minoru Takasato
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Human Technopole, Via Rita Levi Montalcini 1, Milan, Italy
| | - Akiko Maeda
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Michiko Mandai
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Erik Arner
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Masayo Takahashi
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Cody Kime
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.
| |
Collapse
|
18
|
Korkka I, Skottman H, Nymark S. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:753-766. [PMID: 35639962 PMCID: PMC9299513 DOI: 10.1093/stcltm/szac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/09/2022] [Indexed: 11/15/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived retinal pigment epithelium (RPE) is extensively used in RPE research, disease modeling, and transplantation therapies. For successful outcomes, a thorough evaluation of their physiological authenticity is a necessity. Essential determinants of this are the different ion channels of the RPE, yet studies evaluating this machinery in hPSC-RPE are scarce. We examined the functionality and localization of potassium (K+) channels in the human embryonic stem cell (hESC)-derived RPE. We observed a heterogeneous pattern of voltage-gated K+ (KV) and inwardly rectifying K+ (Kir) channels. Delayed rectifier currents were recorded from most of the cells, and immunostainings showed the presence of KV1.3 channel. Sustained M-currents were also present in the hESC-RPE, and based on immunostaining, these currents were carried by KCNQ1-KCNQ5 channel types. Some cells expressed transient A-type currents characteristic of native human fetal RPE (hfRPE) and cultured primary RPE and carried by KV1.4 and KV4.2 channels. Of the highly important Kir channels, we found that Kir7.1 is present both at the apical and basolateral membranes of the hESC- and fresh native mouse RPE. Kir currents, however, were recorded only from 14% of the hESC-RPE cells with relatively low amplitudes. Compared to previous studies, our data suggest that in the hESC-RPE, the characteristics of the delayed rectifier and M-currents resemble native adult RPE, while A-type and Kir currents resemble native hfRPE or cultured primary RPE. Overall, the channelome of the RPE is a sensitive indicator of maturity and functionality affecting its therapeutic utility.
Collapse
Affiliation(s)
- Iina Korkka
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Heli Skottman
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Soile Nymark
- Corresponding author: Soile Nymark, PhD, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland. Tel: +358 40 849 0009; E-mail:
| |
Collapse
|
19
|
Chen L, Fan R, Tang F. Advanced Single-cell Omics Technologies and Informatics Tools for Genomics, Proteomics, and Bioinformatics Analysis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:343-345. [PMID: 34923125 PMCID: PMC8864189 DOI: 10.1016/j.gpb.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/06/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022]
Affiliation(s)
- Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China; Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|