1
|
Zengin Z, Köker L, Ozbayram EG, Albay M, Akçaalan R. Investigating Taste and Odour Characteristics in a Drinking Water Source: A Comprehensive 3-Year Monitoring Study. ENVIRONMENTAL MANAGEMENT 2024:10.1007/s00267-024-02071-4. [PMID: 39448416 DOI: 10.1007/s00267-024-02071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The monitoring of drinking water quality is a vital public health concern together with taste and odour (T&O) episodes, an emerging global problem causing a loss of public trust to the quality of water. Our objective was to monitor water quality of an important drinking water source and also the production dynamics of geosmin and 2-methylisoborneol (2-MIB) which cause taste and odour problems in the lake. The trophic status of the lake was classified as mesotrophic. 2-MIB was positively correlated temperature while geosmin was positively correlated with depth. Other physicochemical parameters related with water quality did not show significant correlation with geosmin and 2-MIB. The highest 2-MIB and geosmin concentrations were detected during the thermal stratification period in 2016 and 2018 by gas chromatography-mass spectrometry (GC-MS). Cyanobacteria and Actinobacteria were detected in geosmin & 2-MIB detected samples as potential taste and odour producers by PCR. Selected samples were analysed with metabarcoding and Planktothrix, Pseudanabaena, Cyanobium, Streptomyces, and Nocardioides were detected as potential geosmin & 2-MIB producers. Micrococcus, Rhodococcus, Acinetobacter, Comamonas, Novosphingobium, Sphingopyxis, Pseudomonas, Sphingomonas, Stenotrophomonas and Flavobacterium were identified as potential geosmin & 2-MIB degraders. The results highlighted the significant role of the autochthonous bacterial community, temperature and thermal stratification in the taste and odour dynamics of a drinking water source.
Collapse
Affiliation(s)
- Zuhal Zengin
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, lstanbul University, Fatih, Istanbul, Türkiye
| | - Latife Köker
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, lstanbul University, Fatih, Istanbul, Türkiye
| | - Emine Gözde Ozbayram
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, lstanbul University, Fatih, Istanbul, Türkiye
| | - Meriç Albay
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, lstanbul University, Fatih, Istanbul, Türkiye
| | - Reyhan Akçaalan
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, lstanbul University, Fatih, Istanbul, Türkiye.
| |
Collapse
|
2
|
Li S, Guo C, Liao C, Ke J, Hansen AG, Shi X, Zhang T, Jeppesen E, Li W, Liu J. Improvement of water quality through coordinated multi-trophic level biomanipulations: Application to a subtropical emergency water supply lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176888. [PMID: 39419218 DOI: 10.1016/j.scitotenv.2024.176888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/22/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Artificial emergency water source lakes have been built in most cities in the middle and lower reaches of the Yangtze River, China, to ensure water safety for residents. However, these new ecosystems are prone to algal blooms or other degraded water quality conditions. A newly built water supply lake in the lower reaches of the Yangtze River was selected as a model system to test whether the coordinated manipulation of fish and submerged macrophyte communities could enhance ecosystem function and quality. The coordinated manipulations spanned a five-year period, aiming to enhance both top-down and bottom-up control of phytoplankton. As a result of these manipulations, the catch per unit effort of small-bodied zooplanktivorous fishes decreased by >95 % from year two and remained low. The coverage and biomass of submerged macrophytes increased year by year. Water transparency increased from 1.07 to 3.33 m. Total phosphorus and total nitrogen showed a decreasing trend (not significant though). The annual mean biomass of Cyanophyta, Chlorophyta and Bacillariophyta decreased from 2.99 to 0.03 mg/L, 3.90 to 0.16 mg/L, and 3.50 to 0.3 mg/L, respectively. The biomass of phytoplankton in different groups decreased in all four seasons. The annual mean biomass of Cladocera and Copepoda remained low. The biomass of Cladocera and Copepoda decreased in summer, fall, and winter. The Ecosystem Health Index - increased from 15.9 to 32.0. The pros and cons of the various top-down and bottom-up control measures employed are discussed. This research presents a valuable case study on the enhancement of ecosystem structure and function in newly constructed emergency water supply lakes and offers insights into the restoration of other subtropical shallow lakes.
Collapse
Affiliation(s)
- Shiqi Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Guo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chuansong Liao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jie Ke
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Adam G Hansen
- Colorado Parks and Wildlife, Aquatic Research Section, Fort Collins, CO, USA
| | - Xuefeng Shi
- Jiangsu Sino-French Water Co., LTD, Changshu 215500, China
| | - Tanglin Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Erik Jeppesen
- Department of Ecoscience and WATEC, Aarhus University, Aarhus 8000, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing 100190, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and implementation, Middle East Technical University, Ankara 06800, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Wei Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiashou Liu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Carey CC, Calder RSD, Figueiredo RJ, Gramacy RB, Lofton ME, Schreiber ME, Thomas RQ. A framework for developing a real-time lake phytoplankton forecasting system to support water quality management in the face of global change. AMBIO 2024:10.1007/s13280-024-02076-7. [PMID: 39302615 DOI: 10.1007/s13280-024-02076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Phytoplankton blooms create harmful toxins, scums, and taste and odor compounds and thus pose a major risk to drinking water safety. Climate and land use change are increasing the frequency and severity of blooms, motivating the development of new approaches for preemptive, rather than reactive, water management. While several real-time phytoplankton forecasts have been developed to date, none are both automated and quantify uncertainty in their predictions, which is critical for manager use. In response to this need, we outline a framework for developing the first automated, real-time lake phytoplankton forecasting system that quantifies uncertainty, thereby enabling managers to adapt operations and mitigate blooms. Implementation of this system calls for new, integrated ecosystem and statistical models; automated cyberinfrastructure; effective decision support tools; and training for forecasters and decision makers. We provide a research agenda for the creation of this system, as well as recommendations for developing real-time phytoplankton forecasts to support management.
Collapse
Affiliation(s)
- Cayelan C Carey
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, USA.
- Center for Ecosystem Forecasting, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA.
| | - Ryan S D Calder
- Department of Population Health Sciences, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA, 24061, USA
- Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham, NC, 27708, USA
| | - Renato J Figueiredo
- Department of Electrical and Computer Engineering, University of Florida, 968 Center Drive, Gainesville, FL, 32611, USA
| | - Robert B Gramacy
- Department of Statistics, Virginia Tech, 250 Drillfield Drive, Blacksburg, VA, 24061, USA
| | - Mary E Lofton
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, USA
- Center for Ecosystem Forecasting, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA
| | - Madeline E Schreiber
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, USA
| | - R Quinn Thomas
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, USA
- Center for Ecosystem Forecasting, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA
- Department of Forest Resources and Environmental Conservation, Virginia Tech, 310 West Campus Drive, Blacksburg, VA, 24061, USA
| |
Collapse
|
4
|
Stere CE, Delarmelina M, Dlamini MW, Chansai S, Davies PR, Hutchings GJ, Catlow CRA, Hardacre C. Removal and Oxidation of Low Concentration tert-Butanol from Potable Water using Nonthermal Plasma Coupled with Metal Oxide Adsorption. ACS ES&T ENGINEERING 2024; 4:2121-2134. [PMID: 39296421 PMCID: PMC11406536 DOI: 10.1021/acsestengg.4c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/21/2024]
Abstract
Taste and odor are crucial factors in evaluating the quality of drinking water for consumers. Geosmin is an example of a pollutant commonly found in potable water responsible for earthy and musty taste, and odor even at low concentrations. We have investigated the use of a hybrid two-step adsorption-mineralization process for low-level volatile organic compounds removal from potable water using dielectric barrier discharge over common metal oxides (MO). The system proposed is a proof of principle with tert-butanol (TBA) used as a model compound for geosmin removal/degradation during wastewater treatment when combined with an appropriate metal oxide adsorbent. Initial assessments of the adsorption properties of titania by density functional theory (DFT) calculations and experimental tests indicated that the adsorption of geosmin and TBA with water present results in only weak interactions between the sorbate and the metal oxide. In contrast, the DFT results show that alumina could be a suitable adsorbent for these tertiary alcohols and were reinforced by experimental studies. We find that while there is a competitive effect between the water and TBA adsorption from gaseous/liquid feed, the VOC can be removed, and the alumina will be regenerated by the reactive oxygen species (ROS) produced by a dielectric barrier discharge (DBD). The use of alumina in conjunction with NTP leads to efficient degradation of the adsorbate and the formation of oxygenated intermediates (formates, carbonates, and carboxylate-type species), which could then be mineralized for the regeneration of the adsorbent. A reaction mechanism has been proposed based on the in-situ infrared measurements and DFT calculations, while the removal of TBA with conventional heating is indicative of a gradual desorption process as a function of temperature rather than the destruction of the adsorbate. Furthermore, steady performance was observed after several adsorption-regeneration cycles, indicating no alteration of the adsorption properties of alumina during the NTP treatment and demonstrating the potential of the approach to be applied in the treatment of high throughput of water, without the challenges faced by the biocatalysts or formation of toxic byproducts.
Collapse
Affiliation(s)
- Cristina E Stere
- Department of Chemical Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Maicon Delarmelina
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - Mbongiseni W Dlamini
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Sarayute Chansai
- Department of Chemical Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Philip R Davies
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Graham J Hutchings
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - C Richard A Catlow
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
- Department of Chemistry, University College London, 20 Gordon St., London WC1 HOAJ, U.K
| | - Christopher Hardacre
- Department of Chemical Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
5
|
Park R, Yu MN, Park JH, Kang T, Lee JE. Effect of Culture Temperature on 2-Methylisoborneol Production and Gene Expression in Two Strains of Pseudanabaena sp. Cells 2024; 13:1386. [PMID: 39195274 DOI: 10.3390/cells13161386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
The presence of the odorant 2-methylisoborneol (2-MIB) in drinking water sources is undesirable. Although 2-MIB production is known to be influenced by temperature, its regulation at the gene level and its relationship with Chlorophyll-a (Chl-a) at different temperatures remain unclear. This study investigates the impact of temperature on 2-MIB production and related gene expression in Pseudanabaena strains PD34 and PD35 isolated from Lake Paldang, South Korea. The strains were cultured at three temperatures (15, 25, and 30 °C) to examine cell growth, 2-MIB production, and mic gene expression levels. 2-MIB production per cell increased with higher temperatures, whereas mic gene expression levels were higher at lower temperatures, indicating a complex regulatory mechanism involving post-transcriptional and enzyme kinetics factors. Additionally, the relationship between Chl-a and 2-MIB involved in metabolic competition was analyzed, suggesting that high temperatures appear to favor 2-MIB synthesis more than Chl-a synthesis. The distinct difference in the total amount of the two products and the proportion of 2-MIB between the two strains partially explains the variations in 2-MIB production. These findings highlight the significant effect of temperature on 2-MIB biosynthesis in Pseudanabaena and provide a valuable background for gene data-based approaches to manage issues regarding 2-MIB in aquatic environments.
Collapse
Affiliation(s)
- Rumi Park
- Han River Environment Research Center, National Institute of Environmental Research, Yangpyeong 12585, Republic of Korea
| | - Mi-Na Yu
- Han River Environment Research Center, National Institute of Environmental Research, Yangpyeong 12585, Republic of Korea
| | - Ji-Hyun Park
- Han River Environment Research Center, National Institute of Environmental Research, Yangpyeong 12585, Republic of Korea
| | - Taegu Kang
- Han River Environment Research Center, National Institute of Environmental Research, Yangpyeong 12585, Republic of Korea
| | - Jung-Eun Lee
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Incheon 22689, Republic of Korea
| |
Collapse
|
6
|
Chen Y, Jiang Y, He Z, Gao J, Li R, Yu G. First report of PST-producing Microseira wollei from China reveals its novel toxin profile. HARMFUL ALGAE 2024; 137:102655. [PMID: 39003021 DOI: 10.1016/j.hal.2024.102655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 07/15/2024]
Abstract
Microseira wollei, a globally distributed freshwater bloom-forming benthic cyanobacterium, is known for its production of cyanotoxins and taste and odor (T&O). While CYN (Cylindrospermopsin)-producing populations of M. wollei are confined to Australia, PST (Paralytic shellfish toxins)-producing populations have been exclusively documented in North America. In this study, four benthic cyanobacterial strains, isolated from West Lake in China, were identified as M. wollei based on morphological and phylogenetic analyses. Detection of sxtA gene and UPLC-MS/MS analysis conclusively confirmed the PST-producing capability of M. wollei CHAB5998. In the phylogenetic tree of 16S rDNA, M. wollei strains formed a monophyletic group with two subclades. Notably, non-PST-producing Chinese strains clustered with Australian strains in Clade II, while all other strains, including PST-producing ones, clustered in Clade I. Additionally, CHAB5998 contains ten PST variants, of which STX, NEO, GTX2, GTX3, GTX5 and C1 were identified for the first time in M. wollei. Sequence analysis of PST biosynthetic gene cluster (sxt) genes indicated potential base variations, gene rearrangements, insertions, and deletions in the strain CHAB5998. Also, sxt gene has a longer evolutionary history in M. wollei than that in cyanobacteria from Nostocales. Multiple recombination breakpoints detected in sxt genes and the inconsistency in the topology of the phylogenetic trees between sxt and 16S rDNA suggested that multiple horizontal gene transfers (HGT) have occurred. Overall, the present study marks the first documented occurrence of PST-producing M. wollei outside of North America and identifies it as the first toxic freshwater benthic cyanobacterium in China. This revelation implies that benthic cyanobacteria may pose a higher environmental risk in China than previously acknowledged.
Collapse
Affiliation(s)
- Youxin Chen
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yongguang Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Zhongshi He
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, 21202, USA
| | - Jin Gao
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Renhui Li
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, China
| | - Gongliang Yu
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
7
|
Luo D, Tian B, Li J, Zhang W, Bi S, Fu B, Jing Y. Mechanisms underlying the formation of main volatile odor sulfur compounds in foods during thermal processing. Compr Rev Food Sci Food Saf 2024; 23:e13389. [PMID: 39031671 DOI: 10.1111/1541-4337.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 07/22/2024]
Abstract
Volatile sulfur compounds (VSCs) significantly influence food flavor and garner considerable attention in flavor research due to their low sensory thresholds, diverse odor attributes, and high reactivity. Extensive research studies have explored VSC formation through thermal processes such as the Maillard reaction, thermal pyrolysis, oxidation, and enzymatic reactions. However, understanding of the specific reaction mechanisms and processes remains limited. This is due to the dispersed nature of existing studies, the undefined intermediates involved, and the complexity of the matrices and processing conditions. Given these limitations, the authors have shifted their focus from foods to sulfides. The structure, source, and chemical characteristics of common precursors (sulfur-containing amino acids and derivatives, thiamine, thioglucoside, and lentinic acid) and their corresponding reactive intermediates (hydrogen sulfide, thiol, alkyl sulfide, alkyl sulfenic acid, and thial) are provided, and the degradation mechanisms, reaction rules, and matrix conditions are summarized based on their chemical characteristics. Additionally, the VSC formation processes in several typical foods during processing are elucidated, adhering to these identified rules. This article provides a comprehensive overview of VSCs, from precursors and intermediates to end products, and is crucial for understanding the mechanisms behind VSC formation and managing the flavor qualities of processed foods.
Collapse
Affiliation(s)
- Dongsheng Luo
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Binqiang Tian
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Jingxin Li
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Wentao Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Shuang Bi
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Bo Fu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Yanqiu Jing
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
8
|
Shang L, Ke F, Xu X, Feng M, Li W. Temporal Dynamics and Influential Factors of Taste and Odor Compounds in the Eastern Drinking Water Source of Chaohu Lake, China: A Comparative Analysis of Global Freshwaters. Toxins (Basel) 2024; 16:264. [PMID: 38922158 PMCID: PMC11209420 DOI: 10.3390/toxins16060264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
The escalating proliferation of cyanobacteria poses significant taste and odor (T/O) challenges, impacting freshwater ecosystems, public health, and water treatment costs. We examined monthly variations in four T/O compounds from September 2011 to August 2012 in Chaohu Lake's eastern drinking water source (DECL). More importantly, we compared the reported T/O occurrence and the related factors in freshwater bodies worldwide. The assessment of T/O issues indicated a severe and widespread problem, with many cases surpassing odor threshold values. Remarkably, China reported the highest frequency and severity of odor-related problems. A temporal analysis revealed variations in odor occurrences within the same water body across different years, emphasizing the need to consider high values in all seasons for water safety. Globally, T/O issues were widespread, demanding attention to variations within the same water body and across different layers. Algae were crucial contributors to odor compounds, necessitating targeted interventions due to diverse odorant sources and properties. A correlation analysis alone lacked definitive answers, emphasizing the essential role of further validation, such as algae isolation. Nutrients are likely to have influenced the T/O, as GSM and MIB correlated positively with nitrate and ammonia nitrogen in DECL, resulting in proposed control recommendations. This study offers recommendations for freshwater ecosystem management and serves as a foundation for future research and management strategies to address T/O challenges.
Collapse
Affiliation(s)
- Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (F.K.); (W.L.)
| | - Fan Ke
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (F.K.); (W.L.)
| | - Xiangen Xu
- Changzhou Academy of Environmental Science, Changzhou 213022, China;
| | - Muhua Feng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (F.K.); (W.L.)
| | - Wenchao Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (F.K.); (W.L.)
| |
Collapse
|
9
|
Drobac Backović D, Tokodi N. Blue revolution turning green? A global concern of cyanobacteria and cyanotoxins in freshwater aquaculture: A literature review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121115. [PMID: 38749125 DOI: 10.1016/j.jenvman.2024.121115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
To enhance productivity, aquaculture is intensifying, with high-density fish ponds and increased feed input, contributing to nutrient load and eutrophication. Climate change further exacerbates cyanobacterial blooms and cyanotoxin production that affect aquatic organisms and consumers. A review was conducted to outline this issue from its inception - eutrophication, cyanobacterial blooms, their harmful metabolites and consequential effects (health and economic) in aquacultures. The strength of evidence regarding the relationship between cyanobacteria/cyanotoxins and potential consequences in freshwater aquacultures (fish production) globally were assessed as well, while identifying knowledge gaps and suggesting future research directions. With that aim several online databases were searched through June 2023 (from 2000), and accessible publications conducted in aquacultures with organisms for human consumption, reflecting cyanotoxin exposure, were selected. Data on cyanobacteria/cyanotoxins in aquacultures and its products worldwide were extracted and analyzed. Selected 63 papers from 22 countries were conducted in Asia (48%), Africa (22%), America (22%) and Europe (8%). Microcystis aeruginosa was most frequent, among over 150 cyanobacterial species. Cyanobacterial metabolites (mostly microcystins) were found in aquaculture water and fish from 18 countries (42 and 33 papers respectively). The most affected were small and shallow fish ponds, and omnivorous or carnivorous fish species. Cyanotoxins were detected in various fish organs, including muscles, with levels exceeding the tolerable daily intake in 60% of the studies. The majority of research was done in developing countries, employing less precise detection methods, making the obtained values estimates. To assess the risk of human exposure, the precise levels of all cyanotoxins, not just microcystins are needed, including monitoring their fate in aquatic food chains and during food processing. Epidemiological research on health consequences, setting guideline values, and continuous monitoring are necessary as well. Further efforts should focus on methods for elimination, prevention, and education.
Collapse
Affiliation(s)
- Damjana Drobac Backović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Nada Tokodi
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia; Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Laboratory of Metabolomics, Gronostajowa 7, Krakow, 30387, Poland.
| |
Collapse
|
10
|
Yue Z, Chen Y, Wu Z, Cheng X, Bao Z, Deng X, Shen H, Liu J, Xie P, Chen J. Thermal stratification controls taste and odour compounds by regulating the phytoplankton community in a large subtropical water source reservoir (Xin'anjiang Reservoir). JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133539. [PMID: 38271873 DOI: 10.1016/j.jhazmat.2024.133539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024]
Abstract
2-Methylisoborneol (2-MIB) and geosmin are compounds released by algae that significantly degrade reservoir water quality, posing a threat to both the safety of drinking water and the quality of aquatic products sourced from these environments. However, few studies have explored how enhanced thermal stratification affects the occurrence and regulation of odorants in large drinking water reservoirs. Through systematic monitoring and investigation of Xin'anjiang Reservoir, we found that enhanced thermal stratification promotes filamentous cyanobacteria, particularly Leptolyngbya sp., as the primary contributor to 2-MIB production within the 1-10 m layer of the water column. The highest 2-MIB concentration, 92.5 ng/L, was recorded in the riverine region, which was 2.54 and 14.52 times higher than that in the transitional and central parts of the reservoir, respectively. Temperature indirectly impacted algal growth and odorant production by modulating TN/TP ratios. Geosmin concentration responded rapidly to relatively low TN/TP ratios (< 25). Our findings suggest that phosphorus control in estuaries should be enhanced during thermal stratification period. In summary, our study provides valuable insights to inform pragmatic water intake strategies and the distribution and release of odorants caused by thermal stratification. This is particularly relevant in the context of future global warming and extremely high temperatures during the warm season.
Collapse
Affiliation(s)
- Zhiying Yue
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yuru Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhixu Wu
- Hangzhou Bureau of Ecology and Environment Chun'An Branch, Hangzhou 311700, China
| | - Xinliang Cheng
- Hangzhou Bureau of Ecology and Environment Chun'An Branch, Hangzhou 311700, China
| | - Zhen Bao
- Hangzhou Ecological Environment Monitoring Center of Zhejiang, Hangzhou 311700, China
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| | - Hong Shen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Jiarui Liu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
11
|
Wang H, Li L, Cheng S, Chen L, Zhang H, Zhang X. Production and release of 2-MIB in Pseudanabaena: Effects of growth phases on cell characteristics and 2-MIB yield. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116198. [PMID: 38471340 DOI: 10.1016/j.ecoenv.2024.116198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
2-methylisoborneol (2-MIB), a secondary metabolite produced by cyanobacteria, often causes a musty odour in water, threatening the safety of drinking water supplies. This study investigated the effects of the growth phases on the production of 2-MIB by Pseudanabaena. The effects of cell characteristics on the production and release of 2-MIB were also explored. The total 2-MIB concentration increased during the exponential phase and decreased during the declining phase, which was consistent with the changes in cell density. However, the total 2-MIB yield (1.12-1.27 fg cell-1) of Pseudanabaena did not significantly differ throughout the growth cycle (p > 0.05). Meanwhile, the extracellular 2-MIB yield increased significantly from 0.31 fg cell-1 in the exponential phase to 0.76 fg cell-1 in the declining phase (p < 0.05), and the corresponding proportion of extracellular 2-MIB improved from 25.13% to 59.16% (p < 0.05). The surge in extracellular 2-MIB during the declining phase could be attributed to the breaking of the Pseudanabaena filament, as indicated by the decrease in Dmean during cell ageing. The findings of this study contribute to a more inclusive comprehension and management of musty odour issues resulting from cyanobacteria in the water supply.
Collapse
Affiliation(s)
- Hailing Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shaozhe Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Liang Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Haiyang Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xuezhi Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
12
|
Novo BDEL, Silva FANGDA, Bertolino LC, Yokoyama L. A Bibliometric Analysis of Geosmin Removal and Treatment Technologies using Web of Science Database and VOSviewer. AN ACAD BRAS CIENC 2024; 96:e20230145. [PMID: 38451597 DOI: 10.1590/0001-3765202420230145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/16/2023] [Indexed: 03/08/2024] Open
Abstract
In the last few years, the presence of geosmin (GEO) in water bodies has caused serious problems related to water consumption by the population. Many studies focus on its occurrence and detection, but little is discussed about the technologies for treatment and removal of this contaminant. In this way, the present work aims to present a bibliographic search and a bibliometric analysis carried out in the Web of Science database and in VOSviewer software about geosmin remediation, in the last 10 years. 100 articles were found, of which only one, from 2021, was a review. It was possible to assess that the subject has gained greater notoriety in the last 7 years, since the year 2016 marked the increase of publications on the subject, as well as an increasing number of citations. Among the most published countries is the People's Republic of China, with 53% of publications. Bibliometric analysis showed that GEO is directly related to 2-methylisoborneol (2-MIB), since both occur simultaneously in water bodies. In addition, it was possible to identify that adsorptive processes are the most used in the removal of these contaminants, followed by advanced oxidative processes and biological processes, in that order.
Collapse
Affiliation(s)
- Bruna DE Lemos Novo
- Federal University of Rio de Janeiro, School of Chemistry, Inorganic Chemistry Department, Athos da Silveira Ramos Avenue, 149, Block E, Room 206, University City, 21941-909 Rio de Janeiro, RJ, Brazil
- Center for Mineral Technology/CETEM-MCTI, Mineral Characterization Sector, Pedro Calmon Avenue, 900, University City, 21941-908 Rio de Janeiro, RJ, Brazil
| | - Fernanda A N G DA Silva
- Federal University of Rio de Janeiro, Institute of Chemistry, Inorganic Chemistry Department, Athos da Silveira Ramos Avenue, 149, Block A, Room 630, University City, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Luiz Carlos Bertolino
- Center for Mineral Technology/CETEM-MCTI, Mineral Characterization Sector, Pedro Calmon Avenue, 900, University City, 21941-908 Rio de Janeiro, RJ, Brazil
| | - Lidia Yokoyama
- Federal University of Rio de Janeiro, School of Chemistry, Inorganic Chemistry Department, Athos da Silveira Ramos Avenue, 149, Block E, Room 206, University City, 21941-909 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
Goh KC, Sim ZY, Te SH, He Y, Gin KYH. Microcystis genotypes in a tropical freshwater lake: Discovery of novel MIB-producing Microcystis with potentially unique synthesis pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169249. [PMID: 38081424 DOI: 10.1016/j.scitotenv.2023.169249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Harmful algal blooms (HABs) are a threat to freshwater systems over the world due to the production of hepatotoxins like microcystin (MC), and nuisance taste and odour (T&O) compounds like 2-methylisoborneol (MIB). While MCs are known to cause detrimental effects to both water quality and human health, MIB is only reported to cause aesthetical problems. In this study, we investigated a tropical, urban lake that was experiencing persistent MC and MIB events. Although it was dominated by Microcystis blooms, analysis revealed that the toxigenic Microcystis were not the only species driving the MC concentrations. Additionally, there was also a lack of causative species for the MIB events. Through isolation, we have identified three toxigenic Microcystis found to produce four different variants of MCs, and two novel non-toxigenic Microcystis that were capable of producing MIB. The ability to produce MIB had never been previously reported for this species. Compared to other major producers such as Planktothricoides sp. and Streptomyces sp., the MIB synthase genes of our Microcystis sp. strains were partial, illustrating the possibility of unique synthesis pathways. The Microcystis sp. strains were found to produce about 2.77-5.22 fg MIB cell-1, with a majority of the contents (70-80 %) existing in the extracellular phase. Correlation analysis of field study indicated that phosphorus limitation may have an indirect effect on non-toxigenic Microcystis abundance and proportion by influencing the toxigenic genotype, suggesting that current measures to control HABs may favour the proliferation of the non-toxigenic Microcystis. The potential for Microcystis sp. to produce MIB through unique synthesis pathway, coupled with the potential dominance of non-toxigenic genotypes in Microcystis blooms, signals the possibility that non-toxigenic Microcystis should be monitored as well.
Collapse
Affiliation(s)
- Kwan Chien Goh
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Zhi Yang Sim
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Shu Harn Te
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
14
|
Foysal MJ, Timms V, Neilan BA. Dynamics of the benthic and planktic microbiomes in a Planktothrix-dominated toxic cyanobacterial bloom in Australia. WATER RESEARCH 2024; 249:120980. [PMID: 38101053 DOI: 10.1016/j.watres.2023.120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Cyanobacterial blooms are a concerning issue that threaten ecosystems, ecology and animal health. Bloom frequency has increased tremendously in recent times due to pollution, eutrophication of waterways, climate change, and changes in microbial community dynamics within the aquatic environment. Information about the spatiotemporal variation in microbial communities that drive a cyanobacterial bloom is very limited. Here, we analysed the spatiotemporal diversity and composition of bacterial communities, with a focus on cyanobacteria, during the bloom phase in a natural reservoir in Eastern Australia using high throughput amplicon sequencing. Sampling points and season had no influence on the richness and evenness of microbial communities during the bloom period, however some compositional differences were apparent across the seasons. Cyanobacteria were highly abundant during summer and autumn compared to winter and spring. The dominant cyanobacterial taxa were Planktothrix, Cyanobium and Microcystis and were found to be significantly abundant during summer and autumn. While cyanobacterial abundance soared in summer (25.4 %), dominated by Planktothrix (12.2 %) and Cyanobium (8.0 %), the diversity was highest in autumn (24.9 %) and consisted of Planktothrix (7.8 %), Nodularia (5.3 %), Planktothricoides (4.6 %), Microcystis (3.5 %), and Cyanobium (2.3 %). The strongly correlated non-photosynthetic Gastranaerophilales found in the sediment and water, suggested vertical transmission from the animal gut through faeces. To our knowledge, this is the first report of Planktothrix-driven toxic cyanobacterial bloom in Australia. Our study expands current understanding of the spatiotemporal variation in bacterial communities during a cyanobacterial bloom and sheds light on setting future management strategies for its control.
Collapse
Affiliation(s)
- Md Javed Foysal
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Verlaine Timms
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
15
|
Ozgur C. The analytic hierarchy process method to design applicable decision making for the effective removal of 2-MIB and geosmin in water sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12431-12445. [PMID: 38231335 PMCID: PMC10869403 DOI: 10.1007/s11356-024-31848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 12/31/2023] [Indexed: 01/18/2024]
Abstract
Numerous utilities encounter issues with taste and odor that alter the public's impression of the safety of drinking water. The creation of certain components in water naturally due to global climate change is another source of taste and odor components, in addition to industrial emissions. Geosmin and 2-methylisoborneol (2-MIB), both of which are generated by blue-green algae and actinomycetes, are two substances that contribute to the musty and earthy smells in drinking water sources. Unfortunately, current conventional treatment plants only partially remove 2-MIB and geosmin. Therefore, to protect the environment and public health, more up-to-date or optimized treatment methods should be applied to outdated treatment facilities. Best treatment practices, evaluation standards, and decision-making approaches, however, are still shrouded in mystery. The goal of this study was to identify the most effective treatment options for 2-MIB and geosmin. By using the analytical hierarchy process (AHP), a total of 22 assessment criteria were found and prioritized. A thorough literature search led to the identification of potential treatment options, and their effectiveness was evaluated. These options and priority rankings were decided upon using AHP in the decision-making process. Advanced oxidation techniques came out on top in the final priority ranking, followed by membrane filtering, adsorption, oxidation, hybrid processes, and traditional treatment methods. The applied analytical decision techniques may also be used to choose the optimal treatment options, even though the results are particular to 2-MIB and geosmin.
Collapse
Affiliation(s)
- Cihan Ozgur
- Isparta University of Applied Sciences, Sutculer Prof. Dr. Hasan Gurbuz Vocational School, Isparta, Turkey.
| |
Collapse
|
16
|
Pan N, Xu H, Chen W, Liu Z, Liu Y, Huang T, Du S, Xu S, Zheng T, Zuo Z. Cyanobacterial VOCs β-ionone and β-cyclocitral poisoning Lemna turionifera by triggering programmed cell death. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123059. [PMID: 38042469 DOI: 10.1016/j.envpol.2023.123059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/07/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
β-Ionone and β-cyclocitral are two typical components in cyanobacterial volatiles, which can poison aquatic plants and even cause death. To reveal the toxic mechanisms of the two compounds on aquatic plants through programmed cell death (PCD), the photosynthetic capacities, caspase-3-like activity, DNA fragmentation and ladders, as well as expression of the genes associated with PCD in Lemna turionifera were investigated in exposure to β-ionone (0.2 mM) and β-cyclocitral (0.4 mM) at lethal concentration. With prolonging the treatment time, L. turionifera fronds gradually died, and photosynthetic capacities gradually reduced and even disappeared at the 96th h. This demonstrated that the death process might be a PCD rather than a necrosis, due to the gradual loss of physiological activities. When L. turionifera underwent the death, caspase-3-like was activated after 3 h, and reached to the strongest activity at the 24th h. TUNEL-positive nuclei were detected after 12 h, and appeared in large numbers at the 48th h. The DNA was cleaved by Ca2+-dependent endonucleases and showed obviously ladders. In addition, the expression of 5 genes (TSPO, ERN1, CTSB, CYC, and ATR) positively related with PCD initiation was up-regulated, while the expression of 2 genes (RRM2 and TUBA) negatively related with PCD initiation was down-regulated. Therefore, β-ionone and β-cyclocitral can poison L. turionifera by adjusting related gene expression to trigger PCD.
Collapse
Affiliation(s)
- Ning Pan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Haozhe Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Wangbo Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zijian Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yichi Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Tianyu Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Siyi Du
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Sun Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Tiefeng Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
17
|
Li Z, Cao G, Qiu L, Chen X, Zhong L, Wang X, Xu H, Wang C, Fan L, Meng S, Chen J, Song C. Aquaculture activities influencing the generation of geosmin and 2-methylisoborneol: a case study in the aquaculture regions of Hongze Lake, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4196-4208. [PMID: 38100023 DOI: 10.1007/s11356-023-31329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024]
Abstract
Contamination by odor substances such as geosmin (GSM) and 2-methylisoborneol (2-MIB) was examined in the cultured water from aquaculture farming in the region of the Hongze Lake in 2022, and some factors influencing residual levels of them in the water were analyzed. Geographically, high concentrations of GSM were located mainly in the north and northeast culture areas of the lake, while those of 2-MIB were found in the northeast and southwest. Analysis of the water in the enclosure culture revealed significant differences in the concentrations of GSM and 2-MIB among the cultured species. The mean concentrations of GSM in culture water were ranked in the order: crab > the four major Chinese carps > silver and bighead carp, and silver and bighead carp > crab > the four major Chinese carps for 2-MIB. The concentration of GSM was significantly higher at 38.99 ± 18.93 ng/L in crab culture water compared to other fish culture water. Significant differences were observed in GSM concentrations between crab enclosure culture and pond culture, while 2-MIB levels were comparable. These findings suggest that cultural management practices significantly affect the generation of odor substances. The taste and odor (T&O) assessment revealed that the residual levels of GSM and 2-MIB in most samples were below the odor threshold concentrations (OTCs), although high levels of GSM and 2-MIB in all water bodies were at 30.9% and 27.5%, respectively. Compared with the corresponding data from other places and the regulation guidelines of Japan, USA, and China, the region in the Hongze Lake is generally classified as a slightly T&O area, capable of supporting the aquaculture production scale.
Collapse
Affiliation(s)
- Zhonghua Li
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, People's Republic of China
| | - Guoqing Cao
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, People's Republic of China
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, People's Republic of China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China
| | - Xi Chen
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, People's Republic of China
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China
| | - Liqiang Zhong
- Freshwater Fisheries Research Institute of Jiangsu Province, 210017, Nanjing, People's Republic of China
| | - Xinchi Wang
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, People's Republic of China
| | - Huimin Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, People's Republic of China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China
| | - Changbo Wang
- Kunshan Fisheries Technology Extension Center, 215300, Kunshan, People's Republic of China
| | - Limin Fan
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, People's Republic of China
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, People's Republic of China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China
| | - Shunlong Meng
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, People's Republic of China
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, People's Republic of China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China
| | - Jiazhang Chen
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, People's Republic of China
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, People's Republic of China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China
| | - Chao Song
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, People's Republic of China.
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China.
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, People's Republic of China.
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, People's Republic of China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China.
| |
Collapse
|
18
|
Wang C, Liu T, Jia Z, Su M, Dong Y, Guo Q, Yang M, Yu J. Unraveling the source-water fishy odor occurrence during low-temperature periods: Odorants identification, typical algae species and odor-producing potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166998. [PMID: 37716685 DOI: 10.1016/j.scitotenv.2023.166998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/15/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
In this study, odor characteristics and phytoplankton composition were systematically investigated in two winter periods in a reservoir with fishy odor in north China. Ten potential fishy odor-producing algae were isolated and odorant-producing potentials were evaluated. Olfactometry profile and odorant composition of water samples were analyzed using GC-Olfactometry combined with GC × GC-TOFMS. The results showed that 2,4-heptadienal and hexanal were major fishy odor contributors. The abundance of Uroglena sp., Synura sp. and Peridinium sp. was negatively correlated with total dissolved organic carbon, ammonia nitrogen, and nitrate, illustrating nutrient level might be major drivers for the succession of fishy odor-producing algae. Dinobryon sp. and Uroglena sp. made the greatest contribution to fishy odor, followed by Peridinium sp., Synura sp., and Ochromonas sp. Fishy odor in 2016 winter and the early of 2017 winter was mainly caused by Dinobryon sp., while Uroglena sp. contributes mostly in March in 2017 winter. This study demonstrates the main odorants and algae causing fishy odor in reservoir, which will provide a scientific basis for the management of seasonal fishy odor problems in water source.
Collapse
Affiliation(s)
- Chunmiao Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tingting Liu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zeyu Jia
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ming Su
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yunxing Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyuan Guo
- Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Lee JE, Park R, Yu M, Byeon M, Kang T. qPCR-Based Monitoring of 2-Methylisoborneol/Geosmin-Producing Cyanobacteria in Drinking Water Reservoirs in South Korea. Microorganisms 2023; 11:2332. [PMID: 37764175 PMCID: PMC10538080 DOI: 10.3390/microorganisms11092332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cyanobacteria can exist in water resources and produce odorants. 2-Methylisoborneol (2-MIB) and geosmin are the main odorant compounds affecting the drinking water quality in reservoirs. In this study, encoding genes 2-MIB (mic, monoterpene cyclase) and geosmin (geo, putative geosmin synthase) were investigated using newly developed primers for quantitative PCR (qPCR). Gene copy numbers were compared to 2-MIB/geosmin concentrations and cyanobacterial cell abundance. Samples were collected between July and October 2020, from four drinking water sites in South Korea. The results showed similar trends in three parameters, although the changes in the 2-MIB/geosmin concentrations followed the changes in the mic/geo copy numbers more closely than the cyanobacterial cell abundances. The number of odorant gene copies decreased from upstream to downstream. Regression analysis revealed a strong positive linear correlation between gene copy number and odorant concentration for mic (R2 = 0.8478) and geo (R2 = 0.601). In the analysis of several environmental parameters, only water temperature was positively correlated with both mic and geo. Our results demonstrated the feasibility of monitoring 2-MIB/geosmin occurrence using qPCR of their respective synthase genes. Odorant-producing, gene-based qPCR monitoring studies may contribute to improving drinking water quality management.
Collapse
Affiliation(s)
- Jung Eun Lee
- Han River Environment Research Center, National Institute of Environmental Research, 819 Yangsoo-ri, Yangpyeong-goon, Incheon 12585, Gyeonggi-do, Republic of Korea
| | - Rumi Park
- Han River Environment Research Center, National Institute of Environmental Research, 819 Yangsoo-ri, Yangpyeong-goon, Incheon 12585, Gyeonggi-do, Republic of Korea
| | - Mina Yu
- Han River Environment Research Center, National Institute of Environmental Research, 819 Yangsoo-ri, Yangpyeong-goon, Incheon 12585, Gyeonggi-do, Republic of Korea
| | - Myeongseop Byeon
- Han River Environment Research Center, National Institute of Environmental Research, 819 Yangsoo-ri, Yangpyeong-goon, Incheon 12585, Gyeonggi-do, Republic of Korea
| | - Taegu Kang
- Han River Environment Research Center, National Institute of Environmental Research, 819 Yangsoo-ri, Yangpyeong-goon, Incheon 12585, Gyeonggi-do, Republic of Korea
| |
Collapse
|
20
|
Li XB, Hu CM, Li CH, Ji GY, Luo SZ, Cao Y, Ji KP, Tan Q, Bao DP, Shang JJ, Yang RH. LC/MS- and GC/MS-based metabolomic profiling to determine changes in flavor quality and bioactive components of Phlebopus portentosus under low-temperature storage. Front Nutr 2023; 10:1168025. [PMID: 37457983 PMCID: PMC10349180 DOI: 10.3389/fnut.2023.1168025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Low temperature is the most common method used to maintain the freshness of Phlebopus portentosus during long-distance transportation. However, there is no information regarding the nutritional changes that occur in P. portentosus preserved postharvest in low temperature. Methods In this study, the changes in flavor quality and bioactive components in fruiting bodies stored at 4 °C for different storage periods were determined through LC/MS and GC/MS analyses. Sampling was performed at 0, 3, 5, 7, and 13 days storage. Results and Discussion Based on the results, the metabolites present in caps and stipes were different at the same period and significantly different after 7 days of storage. A total of 583 and 500 different metabolites were detected in caps and stipes, respectively, and were mainly lipids and lipid-like molecules, organic acids and derivatives, organic oxygen compounds and others. Except for prenol lipids and nucleotides, the expression levels of most metabolites increased with longer storage time. In addition, geosmin was identified as the major contributor to earthy-musty odors, and the level of geosmin was increased when the storage time was short. Conclusion The variations in these metabolites might cause changes in flavor quality and bioactive components in P. portentosus. Variations in these metabolites were thoroughly analyzed, and the results revealed how storage processes affect the postharvest quality of P. portentosus for the first time.
Collapse
Affiliation(s)
- Xiao-Bei Li
- Shanghai Academy of Agricultural Sciences, Shanghai, China
| | | | - Cai-Hong Li
- Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Guang-Yan Ji
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Shun-Zhen Luo
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Yang Cao
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Kai-Ping Ji
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Qi Tan
- Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Da-Peng Bao
- Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jun-Jun Shang
- Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Rui-Heng Yang
- Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
21
|
Brown AO, Green PJ, Frankham GJ, Stuart BH, Ueland M. Insights into the Effects of Violating Statistical Assumptions for Dimensionality Reduction for Chemical "-omics" Data with Multiple Explanatory Variables. ACS OMEGA 2023; 8:22042-22054. [PMID: 37360494 PMCID: PMC10286096 DOI: 10.1021/acsomega.3c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
Biological volatilome analysis is inherently complex due to the considerable number of compounds (i.e., dimensions) and differences in peak areas by orders of magnitude, between and within compounds found within datasets. Traditional volatilome analysis relies on dimensionality reduction techniques which aid in the selection of compounds that are considered relevant to respective research questions prior to further analysis. Currently, compounds of interest are identified using either supervised or unsupervised statistical methods which assume the data residuals are normally distributed and exhibit linearity. However, biological data often violate the statistical assumptions of these models related to normality and the presence of multiple explanatory variables which are innate to biological samples. In an attempt to address deviations from normality, volatilome data can be log transformed. However, whether the effects of each assessed variable are additive or multiplicative should be considered prior to transformation, as this will impact the effect of each variable on the data. If assumptions of normality and variable effects are not investigated prior to dimensionality reduction, ineffective or erroneous compound dimensionality reduction can impact downstream analyses. It is the aim of this manuscript to assess the impact of single and multivariable statistical models with and without the log transformation to volatilome dimensionality reduction prior to any supervised or unsupervised classification analysis. As a proof of concept, Shingleback lizard (Tiliqua rugosa) volatilomes were collected across their species distribution and from captivity and were assessed. Shingleback volatilomes are suspected to be influenced by multiple explanatory variables related to habitat (Bioregion), sex, parasite presence, total body volume, and captive status. This work determined that the exclusion of relevant multiple explanatory variables from analysis overestimates the effect of Bioregion and the identification of significant compounds. The log transformation increased the number of compounds that were identified as significant, as did analyses that assumed that residuals were normally distributed. Among the methods considered in this work, the most conservative form of dimensionality reduction was achieved through analyzing untransformed data using Monte Carlo tests with multiple explanatory variables.
Collapse
Affiliation(s)
- Amber O. Brown
- Australian
Museum Research Institute, Australian Museum, Sydney 2001, NSW, Australia
- Centre
for Forensic Science, University of Technology
Sydney, Ultimo 2007, NSW, Australia
| | - Peter J. Green
- University
of Bristol, Bristol BS8 1UG, U.K.
- University
of Technology Sydney, Ultimo 2007, NSW, Australia
| | - Greta J. Frankham
- Australian
Museum Research Institute, Australian Museum, Sydney 2001, NSW, Australia
- Centre
for Forensic Science, University of Technology
Sydney, Ultimo 2007, NSW, Australia
| | - Barbara H. Stuart
- Australian
Museum Research Institute, Australian Museum, Sydney 2001, NSW, Australia
| | - Maiken Ueland
- Australian
Museum Research Institute, Australian Museum, Sydney 2001, NSW, Australia
| |
Collapse
|
22
|
Shi X, Huang Q, Shen X, Wu J, Nan J, Li J, Lu H, Yang C. Distribution, driving forces, and risk assessment of 2-MIB and its producer in a drinking water source-oriented shallow lake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27506-z. [PMID: 37162675 DOI: 10.1007/s11356-023-27506-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/04/2023] [Indexed: 05/11/2023]
Abstract
Freshwater blooms of harmful cyanobacteria in drinking water source-oriented shallow lakes affect public health and ecosystem services worldwide. Therefore, identifying 2-methylisoborneol (2-MIB)-producing cyanobacteria and predicting the risks of 2-MIB are critical for managing 2-MIB-infected water sources. Previous studies on the potential producers and risks of 2-MIB have focused on reservoirs or have been limited by the ecosystems of phytoplankton-dominated areas. We investigated the producers, distribution, and occurrence of 2-MIB in East Taihu Lake-a drinking water source-oriented shallow lake with macrophyte- and phytoplankton-dominated areas-from August 2020 to November 2021. We observed that Pseudanabaena sp. produces 2-MIB in this lake, as determined by the maximum correlation coefficient (R = 0.71, p < 0.001), maximum detection rate, and minimum false positive/negative ratio exhibited by this genus. Extreme odor events occurred in this lake during late summer and early autumn in 2021, with the mean 2-MIB concentration increasing to 727 ± 426 ng/L and 369 ± 176 ng/L in August and September, respectively. Moreover, the macrophyte-dominated area, particularly the wetland area, exhibited a significant decrease (p < 0.01) in bloom intensity and 2-MIB production during these extreme odor events. Pseudanabaena sp. outbreak was likely owing to eutrophication, seasonal gradients, and macrophyte reduction, considering that temporal trends were consistent with high water temperature, high total phosphorus levels, and low-light conditions. Moreover, 2-MIB production was sensitive to short-term hydrometeorological processes, with high water levels and radiant intensity enhancing 2-MIB production. The risk assessment results showed that the probability of 2-MIB concentration exceeding the odor threshold (10 ng/L) is up to 90% when the cell density of Pseudanabaena sp. reaches 1.8 × 107 cell/L; this risk is reduced to 50 and 25% at densities of < 3.8 × 105 cell/L and 5.6 × 104 cell/L, respectively. Our findings support calls for shallow lake management efforts to maintain a macrophyte-dominated state and control odorous cyanobacteria growth.
Collapse
Affiliation(s)
- Xinyi Shi
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Research Center for Aquatic Ecology of East Taihu Lake, Suzhou, 215200, China
| | - Qinghui Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education of China, Tongji University, Shanghai, 200092, China
| | - Xiaobing Shen
- Research Center for Aquatic Ecology of East Taihu Lake, Suzhou, 215200, China
- Bureau of Water Resource of Wujiang District, Suzhou, 215228, China
| | - Jianbin Wu
- Research Center for Aquatic Ecology of East Taihu Lake, Suzhou, 215200, China
- Bureau of Water Resource of Wujiang District, Suzhou, 215228, China
| | - Jing Nan
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jianhua Li
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Haiming Lu
- Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Changtao Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Research Center for Aquatic Ecology of East Taihu Lake, Suzhou, 215200, China.
| |
Collapse
|
23
|
Passos LS, Jacinavicius FR, Geraldes V, Nunes de Freitas PN, Helena da Silva G, Costa de Almeida É, Priscila do Carmo Alves A, Orlando TM, da Silva Cerozi B, Teodoro Martinez DS, Pinto E. Ecotoxicological assessment of guanitoxin-producing cyanobacteria in Danio rerio and Daphnia similis. CHEMOSPHERE 2023; 332:138846. [PMID: 37146772 DOI: 10.1016/j.chemosphere.2023.138846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/27/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Anthropogenic activity has dramatically deteriorated aquatic ecosystems in recent years. Such environmental alterations could change the primary producers' composition, exacerbating the proliferation of harmful microorganisms such as cyanobacteria. Cyanobacteria can produce several secondary metabolites, including guanitoxin, a potent neurotoxin and the only naturally occurring anticholinesterase organophosphate ever reported in the literature. Therefore, this study investigated the acute toxicity of guanitoxin-producing cyanobacteria Sphaerospermopsis torques-reginae (ITEP-024 strain) aqueous and 50% methanolic extracts in zebrafish (Danio rerio) hepatocytes (ZF-L cell line), zebrafish embryos (fish embryo toxicity - FET) and specimens of the microcrustacean Daphnia similis. For this, hepatocytes were exposed to 1-500 mg/L of the ITEP-024 extracts for 24 h, the embryos to 31.25-500 mg/L for 96 h, and D. similis to 10-3000 mg/L for 48 h. Non-target metabolomics was also performed to analyze secondary metabolites produced by the ITEP-024 using LC-MS/MS. Metabolomics indicated the guanitoxin presence just in the aqueous extract of the ITEP-024 and the presence of the cyanopeptides namalides, spumigins, and anabaenopeptins in the methanolic extract. The aqueous extract decreased the viability of zebrafish hepatocytes (EC(I)50(24h) = 366.46 mg/L), and the methanolic extract was not toxic. FET showed that the aqueous extract (LC50(96) = 353.55 mg/L) was more toxic than the methanolic extract (LC50(96) = 617.91 mg/L). However, the methanolic extract had more sublethal effects, such as abdominal and cardiac (cardiotoxicity) edema and deformation (spinal curvature of the larvae). Both extracts immobilized daphnids at the highest concentration analyzed. However, the aqueous extract was nine times more lethal (EC(I)50(48h) = 108.2 mg/L) than the methanolic extract (EC(I)50(48h) = 980.65 mg/L). Our results showed an imminent biological risk for aquatic fauna living in an ecosystem surrounded by ITEP-024 metabolites. Our findings thus highlight the urgency of understanding the effects of guanitoxin and cyanopeptides in aquatic animals.
Collapse
Affiliation(s)
- Larissa Souza Passos
- Laboratory of Environmental Biogeochemistry, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil; Laboratory of Toxins and Natural Algae Products, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernanda Rios Jacinavicius
- Laboratory of Toxins and Natural Algae Products, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vanessa Geraldes
- Laboratory of Environmental Biogeochemistry, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil; Laboratory of Toxins and Natural Algae Products, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paloma Nathane Nunes de Freitas
- Laboratory of Environmental Biogeochemistry, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Gabriela Helena da Silva
- National Nanotechnology Laboratory, National Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Éryka Costa de Almeida
- Laboratory of Toxins and Natural Algae Products, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Tamira Maria Orlando
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Brunno da Silva Cerozi
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Ernani Pinto
- Laboratory of Environmental Biogeochemistry, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil; Laboratory of Toxins and Natural Algae Products, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC - CEPID), University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
24
|
Yancey CE, Mathiesen O, Dick GJ. Transcriptionally active nitrogen fixation and biosynthesis of diverse secondary metabolites by Dolichospermum and Aphanizomenon-like Cyanobacteria in western Lake Erie Microcystis blooms. HARMFUL ALGAE 2023; 124:102408. [PMID: 37164563 DOI: 10.1016/j.hal.2023.102408] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 05/12/2023]
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs) in the western basin of Lake Erie are dominated by microcystin producing Microcystis spp., but other cyanobacterial taxa that coexist in these communities may play important roles in production of toxins and shaping bloom dynamics and community function. In this study, we used metagenomic and metatranscriptomic data from the 2014 western Lake Erie cyanoHAB to explore the genetic diversity and biosynthetic potential of cyanobacteria belonging to the Anabaena, Dolichospermum, Aphanizomenon (ADA) clade. We reconstructed two near-complete metagenome-assembled genomes from two distinct ADA clade species, each containing biosynthetic gene clusters that encode novel and known secondary metabolites, including those with toxic and/or known taste and odor properties, that were transcriptionally active. However, neither ADA metagenome-assembled genome contained genes encoding guanitoxins, anatoxins, or saxitoxins, which are known to be produced by ADA. The ADA cyanobacteria accounted for most of the metagenomic and metatranscriptomic reads from nitrogen fixation genes, suggesting they were the dominant N-fixers at the times and stations sampled. Despite their relatively low abundance, our results highlight the possibility that ADA taxa could influence the water quality and ecology of Microcystis blooms, although the extent of these impacts remains to be quantified.
Collapse
Affiliation(s)
- Colleen E Yancey
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, 48109, USA
| | - Olivia Mathiesen
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, 48109, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, 48109, USA; Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, 4840 South State Road, Ann Arbor, MI 48108 USA.
| |
Collapse
|
25
|
Hooper AS, Kille P, Watson SE, Christofides SR, Perkins RG. The importance of nutrient ratios in determining elevations in geosmin synthase (geoA) and 2-MIB cyclase (mic) resulting in taste and odour events. WATER RESEARCH 2023; 232:119693. [PMID: 36764104 DOI: 10.1016/j.watres.2023.119693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Geosmin synthase (geoA) and 2-MIB cyclase (mic) are key biosynthetic genes responsible for the production of taste and odour (T&O) compounds, geosmin and 2-MIB. These T&O compounds are becoming an increasing global problem for drinking water supplies. It is thought that geosmin and 2-MIB may be linked to, or exacerbated by, a variety of different environmental and nutrient triggers. However, to the best of our knowledge, no studies to date have evaluated the combined effects of seasonality, temperature, and nutrient concentrations on geoA and mic copy numbers in conjunction with T&O concentrations. In this study, environmental triggers behind geosmin and 2-MIB production were investigated in nine reservoirs across Wales, U.K. between July 2019 - August 2020. The abundance of geoA and mic were quantified through quantitative Polymerase Chain Reaction (qPCR). Temporal changes in geoA and geosmin concentrations revealed geoA to be an indicator of monthly geosmin concentrations, although only when geosmin concentrations exceeded 100 ng L-1. Model analysis of a reservoir with elevated geosmin concentrations revealed geoA to be significantly associated with mean temperature (p < 0.001) and the nutrients dissolved reactive silicate (p < 0.001), dissolved iron (p < 0.001), total inorganic nitrogen to phosphorous ratio (TIN:TP) (p < 0.001) and ammonium to nitrate ratio (NH4+:NO3-) (p < 0.001). Sulphate also demonstrated a significant positive linear relationship with geoA (p < 0.001). For mic analysis, NH4+:NO3- was significantly associated with mic (p < 0.05) and an association with dissolved reactive silicate was also observed (p = 0.084). Within this study we also report extreme variance in gene copy numbers between the study seasons. No consistent relationship could be determined for mic copy numbers mL-1 and 2-MIB (ng L-1). The findings from this study indicate that TIN:TP and NH4+:NO3- serve as good predictors for elevated geoA and mic, along with negative linear relationships observed for mean temperature and dissolved reactive silicate. Overall, our findings demonstrate the importance of nutrient concentrations, nutrient ratios and temperature for evidence based predictive capacity of taste and odour events in drinking water reservoirs.
Collapse
Affiliation(s)
- A S Hooper
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales, CF10 3AX, UK; School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff, Wales, CF10 3AT, UK
| | - P Kille
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales, CF10 3AX, UK
| | - S E Watson
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales, CF10 3AX, UK; School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff, Wales, CF10 3AT, UK
| | - S R Christofides
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales, CF10 3AX, UK
| | - R G Perkins
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales, CF10 3AX, UK; School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff, Wales, CF10 3AT, UK.
| |
Collapse
|
26
|
Manganelli M, Testai E, Tazart Z, Scardala S, Codd GA. Co-Occurrence of Taste and Odor Compounds and Cyanotoxins in Cyanobacterial Blooms: Emerging Risks to Human Health? Microorganisms 2023; 11:microorganisms11040872. [PMID: 37110295 PMCID: PMC10146173 DOI: 10.3390/microorganisms11040872] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Cyanobacteria commonly form large blooms in waterbodies; they can produce cyanotoxins, with toxic effects on humans and animals, and volatile compounds, causing bad tastes and odors (T&O) at naturally occurring low concentrations. Notwithstanding the large amount of literature on either cyanotoxins or T&O, no review has focused on them at the same time. The present review critically evaluates the recent literature on cyanotoxins and T&O compounds (geosmin, 2-methylisoborneol, β-ionone and β-cyclocitral) to identify research gaps on harmful exposure of humans and animals to both metabolite classes. T&O and cyanotoxins production can be due to the same or common to different cyanobacterial species/strains, with the additional possibility of T&O production by non-cyanobacterial species. The few environmental studies on the co-occurrence of these two groups of metabolites are not sufficient to understand if and how they can co-vary, or influence each other, perhaps stimulating cyanotoxin production. Therefore, T&Os cannot reliably serve as early warning surrogates for cyanotoxins. The scarce data on T&O toxicity seem to indicate a low health risk (but the inhalation of β-cyclocitral deserves more study). However, no data are available on the effects of combined exposure to mixtures of cyanotoxins and T&O compounds and to combinations of T&O compounds; therefore, whether the co-occurrence of cyanotoxins and T&O compounds is a health issue remains an open question.
Collapse
Affiliation(s)
- Maura Manganelli
- Istituto Superiore di Sanità, Department of Environment and Health, viale Regina Elena, 299, 00162 Rome, Italy; (E.T.); (S.S.)
- Correspondence:
| | - Emanuela Testai
- Istituto Superiore di Sanità, Department of Environment and Health, viale Regina Elena, 299, 00162 Rome, Italy; (E.T.); (S.S.)
| | - Zakaria Tazart
- Department of Food Sciences and Nutrition, University of Malta, 2080 Msida, Malta;
| | - Simona Scardala
- Istituto Superiore di Sanità, Department of Environment and Health, viale Regina Elena, 299, 00162 Rome, Italy; (E.T.); (S.S.)
| | - Geoffrey A. Codd
- School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK;
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
27
|
Cao T, Fang J, Jia Z, Zhu Y, Su M, Zhang Q, Song Y, Yu J, Yang M. Early warning of MIB episode based on gene abundance and expression in drinking water reservoirs. WATER RESEARCH 2023; 231:119667. [PMID: 36724724 DOI: 10.1016/j.watres.2023.119667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Cellular 2-methylisoborneol (MIB) yield of cyanobacteria varies under different conditions according to culture studies and field investigations, the causal mechanism remains unclear and results in ineffective MIB prediction. Through an intensive field survey during an MIB episode produced by Pseudanabaena cinerea in QCS reservoir, we demonstrated that MIB synthesis (mic) gene abundance (DNA) and expression (RNA) might be useful as parameters for early warning of MIB production. It was found that the abundance of mic DNA and RNA peaked ahead of MIB concentrations by 10 and 7 days, respectively. In addition, the RNA abundance (R2 = 0.45, p < 0.01) showed a slightly higher correlation with MIB compared to DNA abundance (R2 = 0.37, p < 0.01), suggesting that the conditions for the growth of Pseudanabaena cinerea might be slightly different from those for mic gene expression, which was verified by a culture experiment. The highest cell growth was obtained under 36 μmol photons m-2 s-1, while the highest cellular MIB yield and mic gene expression level were obtained under 85 μmol photons m-2 s-1. Our results clearly supported that light intensity was the virtual regulator governing the mic gene expression within the controlled culture experiment and the actual MIB episode in the reservoir. Besides these results, we developed an early warning model using mic gene abundance as an indicator of MIB episodes, which was verified in two other reservoirs. Our findings highlight the effect of light intensity on mic gene expression and MIB synthesis and provide an early warning tool targeting MIB episode prediction, which therefore should be of importance for source water authorities.
Collapse
Affiliation(s)
- Tengxin Cao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiao Fang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
| | - Zeyu Jia
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, China
| | - Yiping Zhu
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, China
| | - Ming Su
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qi Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang, Wuhan, 430072, China
| | - Yichao Song
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; Shanghai Chengtou Raw Water Co. Ltd., Beiai Rd. 1540, Shanghai, 200125, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Lejaegere C, Vercammen J, Verheyden L, Martens J. Online Solid-Phase Extraction–Gas Chromatography–Flame Ionization Detection System for Monitoring Contaminants at Parts-Per-Trillion Concentrations in Process Waters. LCGC EUROPE 2023. [DOI: 10.56530/lcgc.eu.eb6169h7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Online monitoring of odour and taste components that occur at parts-per-trillion (ppt) levels in industrial process waters requires specialized analytical hardware that is generally not compatible with the harsh environmental conditions in these typical industrial settings. An alternative instrumental method is proposed that uses dynamic extraction in combination with gas chromatography (GC) equipped with a simple flame ionization detector (FID) to achieve these extremely low detection limits. The extraction process was fully automated by means of online solid-phase extraction (SPE). The combination of online SPE and GC–FID was used to monitor the quality of process water contaminated with 2-methylisoborneol and geosmin, which are two notorious odour and taste components, in volumes up to 1 L.
Collapse
|
29
|
Zuo Z. Emission of cyanobacterial volatile organic compounds and their roles in blooms. Front Microbiol 2023; 14:1097712. [PMID: 36891397 PMCID: PMC9987517 DOI: 10.3389/fmicb.2023.1097712] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Cyanobacteria are photosynthetic prokaryotes and one of dominant species in eutrophicated waters, which easily burst blooms in summer with high irradiance and temperature conditions. In response to high irradiance, high temperature, and nutrient conditions, cyanobacteria release abundant of volatile organic compounds (VOCs) by up-regulating related gene expression and oxidatively degrading β-carotene. These VOCs not only increase offensive odor in waters, but also transfer allelopathic signals to algae and aquatic plants, resulting in cyanobacteria dominating eutrophicated waters. Among these VOCs, β-cyclocitral, α-ionone, β-ionone, limonene, longifolene, and eucalyptol have been identified as the main allelopathic agents, which even directly kill algae by inducing programmed cell death (PCD). The VOCs released from cyanobacteria, especially the ruptured cells, exhibit repelling effects on the herbivores, which is beneficial to survival of the population. Cyanobacterial VOCs might transfer aggregating information among homogeneous species, so the acceptors initiate aggregation to resist the coming stresses. It can be speculated that the adverse conditions can promote VOC emission from cyanobacteria, which play important roles in cyanobacteria dominating eutrophicated waters and even bursting blooms.
Collapse
Affiliation(s)
- Zhaojiang Zuo
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou, China.,State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
30
|
Zhu J, Stuetz RM, Hamilton L, Power K, Crosbie ND, Tamburic B. Management of biogenic taste and odour: From source water, through treatment processes and distribution systems, to consumers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116225. [PMID: 36115245 DOI: 10.1016/j.jenvman.2022.116225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Biogenic taste and odour (T&O) have become a global concern for water utilities, due to the increasing frequency of algal blooms and other microbial events arising from the combined effects of climate change and eutrophication. Microbially-produced T&O compounds impact source waters, drinking water treatment plants, and drinking water distribution systems. It is important to manage across the entire biogenic T&O pathway to identify key risk factors and devise strategies that will safeguard the quality of drinking water in a changing world, since the presence of T&O impacts consumer confidence in drinking water safety. This study provides a critical review of current knowledge on T&O-causing microbes and compounds for proactive management, including the identification of abiotic risk factors in source waters, a discussion on the effectiveness of existing T&O barriers in drinking water treatment plants, an analysis of risk factors for biofilm growth in water distribution systems, and an assessment of the impacts of T&O on consumers. The fate of biogenic T&O in drinking water systems is tracked from microbial production pathways, through the release of intracellular T&O by cell lysis, to the treatment of microbial cells and dissolved T&O. Based on current knowledge, five impactful research and management directions across the T&O pathway are recommended.
Collapse
Affiliation(s)
- Jin Zhu
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Richard M Stuetz
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | | | - Kaye Power
- Sydney Water Corporation, Parramatta, NSW, 2150, Australia
| | - Nicholas D Crosbie
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Kensington, NSW, 2052, Australia; Melbourne Water Corporation, Docklands, VIC, 3008, Australia
| | - Bojan Tamburic
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Kensington, NSW, 2052, Australia.
| |
Collapse
|
31
|
Deng X, Ruan L, Ren R, Tao M, Zhang J, Wang L, Yan Y, Wen X, Yang X, Xie P. Phosphorus accelerate the sulfur cycle by promoting the release of malodorous volatile organic sulfur compounds from Microcystis in freshwater lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157280. [PMID: 35835193 DOI: 10.1016/j.scitotenv.2022.157280] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/18/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Volatile organic sulfur compounds (VSCs) released by algae are of great significance in sulfur cycle, climate regulation and biological information transmission, and they also caused taste and odor in freshwaters. However, the categories, sources, and environmental regulatory factors of VSCs in freshwaters were less known. Here, we show that eight common freshwater cyanobacterium Microcystis, which bloom in freshwaters over the world, are found to be important producers of VSCs. Dimethyl sulfide (DMS), dimethyl disulfide (DMDS) and isopropyl methyl sulfide (IPMS) are the main VSCs with the highest concentrations 184.81 nmol/L, 162.01 nmol/L and 101.55 nmol/L, respectively. The amount of VSCs released from those Microcystis varied greatly, M. elabens, M. panniformis and M. flos-aquae released the largest amount of VSCs (1260.52 nmol S/L, 1154.75 nmol S/L and 670.58 nmol S/L), and M. wesenbergii had the smallest release amount. We also found for the first time that phosphorus (P) was one of the important factors for the regulation VSCs from most Microcystis. P can elevate the release of DMS by promoting the biomass and DMS yields of most Microcystis in the range 0.05 mg/L to 0.5 mg/L. Similar results were also found in 16 lakes at three different spatiotemporal scales. Overall, we revealed that the common freshwater Microcystis were able to release diverse thioethers, and the major VSCs were significantly influenced by water P concentrations. In the context of global freshwater eutrophication and Microcystis bloom, freshwater cyanobacteria driven sulfur cycle and water odor will probably be further strengthened.
Collapse
Affiliation(s)
- Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Linwei Ruan
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Ren Ren
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Min Tao
- School of Life Sciences, Neijiang Normal University, Neijiang 641112, China
| | - Jing Zhang
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment of the People's Republic of China, Wuhan 430010, China
| | - Lantian Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yunzhi Yan
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Xinli Wen
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Xi Yang
- State Key Laboratory of Plateau Ecology and Agriculture, College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
32
|
Hayashi S, Masuki S, Furuta K, Doi S, Kim S, Seike Y. Phylogenetic Analysis and Characterization of Odorous Compound-Producing Actinomycetes in Sediments in the Sanbe Reservoir, A Drinking Water Reservoir in Japan. Curr Microbiol 2022; 79:344. [PMID: 36209310 DOI: 10.1007/s00284-022-03052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/21/2022] [Indexed: 11/03/2022]
Abstract
Odor caused by the presence of geosmin and 2-methylisoborneol (2-MIB) in aquatic ecosystems leads to considerable economic loss worldwide. The odorous compounds are primarily produced by cyanobacteria and actinomycetes. While the contribution of odorous compounds-producing cyanobacteria has been thoroughly investigated, the production of geosmin and 2-MIB by actinomycetes in aquatic ecosystems is poorly understood. In this study, we isolated geosmin and/or 2-MIB-producing actinomycetes in sediments collected from the Sanbe Reservoir, Japan, identified the biosynthetic gene of geosmin and 2-MIB, and investigated the production of the odorous compounds by the isolated strains. Partial sequence of 16S rRNA and the biosynthetic genes was determined to analyze the phylogenetic relationship among the strains. The geosmin and 2-MIB concentrations in the culture of the isolated strains were measured using gas chromatography mass spectrometry. Fifty-four strains of odorous compounds-producing and non-geosmin-producing actinomycetes were isolated from sediments from the Sanbe Reservoir. Diverse actinomycetes were identified and many of them produced geosmin and/or 2-MIB. Many odorous compounds-producing actinomycetes were phylogenetically different from previously reported producing actinomycetes. The producing ability of the odorous compounds of the isolated strains in this study was not significantly related with the phylogenetic groups of 16S rRNA and the biosynthetic genes. The findings suggest that the odorous compounds-producing actinomycetes in the sediments are diverse and different from previously reported strains.
Collapse
Affiliation(s)
- Shohei Hayashi
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan. .,Estuary Research Center, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan.
| | - Shingo Masuki
- Estuary Research Center, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Koichi Furuta
- Shimane Environment & Health Public Corporation, 1-4-6 Koshibara, Matsue, Shimane, 690-0012, Japan
| | - Shinichi Doi
- Shimane Environment & Health Public Corporation, 1-4-6 Koshibara, Matsue, Shimane, 690-0012, Japan
| | - Sangyeob Kim
- Estuary Research Center, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Yasushi Seike
- Estuary Research Center, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| |
Collapse
|
33
|
Pozzer AC, Gómez PA, Weiss J. Volatile organic compounds in aquatic ecosystems - Detection, origin, significance and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156155. [PMID: 35609693 DOI: 10.1016/j.scitotenv.2022.156155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) include a broad range of compounds. Their production influences a large number of processes, having direct and secondary effects on different fields, such as climate change, economy and ecology. Although our planet is primarily covered with water (~70% of the globe surface), the information on aquatic VOCs, compared to the data available for the terrestrial environments, is still limited. Regardless of the difficulty in collecting and analysing data, because of their extreme complexity, diversification and important spatial-temporal emission variation, it was demonstrated that aquatic organisms are able to produce a variety of bioactive compounds. This production happens in response to abiotic and biotic stresses, evidencing the fundamental role of these metabolites, both in terms of composition and amount, in providing important ecological information and possible non-invasive tools to monitor different biological systems. The study of these compounds is an important and productive task with possible and interesting impacts in future practical applications in different fields. This review aims to summarize the knowledge on the aquatic VOCs, the recent advances in understanding their diverse roles and ecological impacts, the generally used methodology for their sampling and analysis, and their enormous potential as non-invasive, non-destructive and financeable affordable real-time biomonitoring tool, both in natural habitats and in controlled industrial situations. Finally, the possible future technical applications, highlighting their economic and social potential, such as the possibility to use VOCs as valuable alternative source of chemicals and as biocontrol and bioregulation agents, are emphasized.
Collapse
Affiliation(s)
- Anna Caterina Pozzer
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Campus Muralla del Mar. 30202, Cartagena, Murcia, Spain
| | - Perla A Gómez
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Campus Muralla del Mar. 30202, Cartagena, Murcia, Spain
| | - Julia Weiss
- Molecular Genetics, Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Campus Muralla del Mar. 30202, Cartagena, Murcia, Spain.
| |
Collapse
|
34
|
Changes in volatile and fatty acid compositions of selected microalgal suspensions with high pressure homogenization. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Du S, Xu H, Yang M, Pan N, Zheng T, Xu C, Li Y, Zuo Z. Toxic mechanism of two cyanobacterial volatiles β-cyclocitral and β-ionone on the photosynthesis in duckweed by altering gene expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119711. [PMID: 35809713 DOI: 10.1016/j.envpol.2022.119711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) promote cyanobacteria dominating eutrophicated waters, with aquatic plant decrease and even disappearance. To uncover the toxic mechanism of cyanobacterial VOCs on aquatic plants, we investigated the growth, photosynthetic pigment levels, photosynthetic abilities and related gene expression in duckweed treated with β-cyclocitral and β-ionone, 2 main components in the VOCs. The levels of chlorophylls and carotenoids gradually declined with raising the concentration of the 2 compounds and prolonging the treatment time. Their decline should result from the down-regulation of 8 genes associated with photosynthetic pigment biosynthesis and up-regulation of 2 genes involved in carotenoid degradation. The reduction was also found in the photosystem II (PSII) efficiency and O2 evolution rate, which should result from the lowered photosynthetic pigment levels and down-regulation of 38 genes related with photosynthetic process. The frond numbers, total frond area and fresh weight gradually decreased with raising the 2 compound concentration, which may result from the lowered photosynthetic abilities as well as down-regulated expression of 7 genes associated with growth-promoting hormone biosynthesis and signal transduction. It can be speculated that cyanobacterial VOCs may poison aquatic plants by lowering the photosynthesis and growth through altering related gene expression.
Collapse
Affiliation(s)
- Siyi Du
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Haozhe Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Mengdan Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ning Pan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Tiefeng Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Chenyi Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
36
|
Saha M, Fink P. Algal volatiles - the overlooked chemical language of aquatic primary producers. Biol Rev Camb Philos Soc 2022; 97:2162-2173. [PMID: 35912802 DOI: 10.1111/brv.12887] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
Volatiles are important 'infochemicals' that play a crucial role in structuring life on our planet, fulfilling diverse functions in natural and artificial systems. Algae contribute significant quantities to the global budget of volatiles, but the ecological roles of aquatic volatiles are not well understood. In this review, we discuss the current knowledge of volatile compounds from freshwater and marine microalgae and marine macroalgae, with a focus on their ecological roles. We highlight the multiple reported functions of biogenic volatiles, ranging from intraspecific communication for reproduction, intra-bloom signalling and antioxidant functions, to various interspecific signal exchanges that may allow herbivores to locate them and function in defence against competitors and predators. Beyond reviewing our current understanding, we specifically highlight major knowledge gaps and emerging questions for algal volatile research. These novel perspectives have the potential to improve our understanding of aquatic ecosystems and thus need to be addressed in future research. Filling these gaps and addressing these questions will facilitate humanity's efforts to exploit aquatic volatiles in various applications.
Collapse
Affiliation(s)
- Mahasweta Saha
- Marine Ecology and Biodiversity, Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | - Patrick Fink
- Department River Ecology, Helmholtz Centre of Environmental Research - UFZ, Brückstrasse 3a, 39114, Magdeburg, Germany.,Department Aquatic Ecosystem Analysis and Management, Helmholtz Centre of Environmental Research - UFZ, Brückstrasse 3a, 39114, Magdeburg, Germany
| |
Collapse
|
37
|
Lu J, Su M, Su Y, Wu B, Cao T, Fang J, Yu J, Zhang H, Yang M. Driving forces for the growth of MIB-producing Planktothricoides raciborskii in a low-latitude reservoir. WATER RESEARCH 2022; 220:118670. [PMID: 35640507 DOI: 10.1016/j.watres.2022.118670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
In comparison with the middle- and high-latitude regions, the low-latitude regions are less associated with the occurrence of 2-methylisoborneol (MIB) episodes, since most of the previously identified MIB producers favor moderate/low light/temperature conditions. Here, we report a serious MIB outbreak over the period from Jul. 2018 to Jun. 2019 in a low-latitude reservoir with a mean annual water temperature of 25.6 °C. The MIB episode lasted for a long period, from Jul. 2018 to Jan. 2019, and Planktothricoides raciborskii was confirmed to be the main MIB producer. The growth characteristics of P. raciborskii were explored through both laboratory culturing and on-site verification experiments. The results indicated that this strain was not nutrient-sensitive at TN > 800 μg L-1 and TP > 10 μg L-1, but favored moderate light intensity (54 μmol photon m-2·s-1) and high temperature (30 °C). The two bloom-forming genera, Limnothrix and Aphanizomenon, favoring lower temperature and similar or relatively higher light intensity, showed much greater proliferation, about 13 folds (Limnothrix) and 58 folds (Aphanizomenon), from Dec. to Jun.; by contrast, the high water temperature (29.9 ± 2.8 °C) and light intensity (189.1 ± 87.6 μmol photon m-2·s-1) from Jul. to Nov. were not favorable to Limnothrix or Aphanizomenon, which might have created an opportunity for the growth of MIB-producing P. raciborskii. In addition, we also found that high temperature could promote the release of MIB from P. raciborskii cells, therefore exerting increased pressure on drinking water treatment processes.
Collapse
Affiliation(s)
- Jinping Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Su
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuliang Su
- Zhuhai Water Environment Holdings Group Ltd., Zhuhai, 519020, China
| | - Bin Wu
- Zhuhai Water Environment Holdings Group Ltd., Zhuhai, 519020, China
| | - Tengxin Cao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiao Fang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Civil Engineering, Chang'an University, Xi'an, 710054, China
| | - Jianwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Honggang Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
38
|
Abd El-Hack ME, El-Saadony MT, Elbestawy AR, Ellakany HF, Abaza SS, Geneedy AM, Salem HM, Taha AE, Swelum AA, Omer FA, AbuQamar SF, El-Tarabily KA. Undesirable odour substances (geosmin and 2-methylisoborneol) in water environment: Sources, impacts and removal strategies. MARINE POLLUTION BULLETIN 2022; 178:113579. [PMID: 35398689 DOI: 10.1016/j.marpolbul.2022.113579] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Off-flavours in fish products generated from recirculating aquaculture systems (RAS) are a major problem in the fish farming industry affecting the market demand and prices. A particular concern is the muddy or musty odour and taste in fish due to the presence of secondary metabolites geosmin and 2-methylisoborneol (2-MIB), produced by actinobacteria (mainly Streptomyces), myxobacteria and cyanobacteria. Off-flavours have deteriorated the quality of fish, rendering their products unfit for human consumption. The process of odour removal requires purification for several days to weeks in clean water; thus this leads to additional production costs. Geosmin and 2-MIB, detected at extremely low odour thresholds, are the most widespread off-flavour metabolites in aquaculture, entering through fish gills and accumulating in the fish adipose tissues. In this review, we aimed to determine the diversity and identity of geosmin- and 2-MIB-producing bacteria in aquaculture and provide possible strategies for their elimination.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed R Elbestawy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Hany F Ellakany
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Samar S Abaza
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Amr M Geneedy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Fatima A Omer
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia.
| |
Collapse
|
39
|
Xian X, Li X, Ye C, Wan K, Feng M, Luo C, Yu X. Higher sensitivity to Cu 2+ exposure of Microcystis aeruginosa in late lag phase is beneficial to its control. WATER RESEARCH 2022; 214:118207. [PMID: 35217491 DOI: 10.1016/j.watres.2022.118207] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/05/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacterial blooms are always treated in exponential phase, which demands high dosages of algicides (e.g., CuSO4). Actually, cyanobacterial blooms in late lag phase exhibit low cell-density and specific physiological/biochemical characteristics, implying the possibility of controlling blooms in a more efficient and economical way with CuSO4 treatment if cyanobacterial cells in late lag phase can be treated. In this study, the outbreakof a Microcystis bloom was simulated, and Microcystis samples in late lag and exponential phases were treated with CuSO4. The results showed that M. aeruginosa in late lag phase had a higher ratio of dividing-cells, Fv/Fm and intracellular total organic carbon content (TOC) than that in exponential phase, indicating that its metabolic activity was vigorous. M. aeruginosa in late lag phase could more easily be blocked, since a higher decrease in chlorophyll-a, Fv/Fm and membrane integrity occurred under the same dosages of CuSO4 exposure compared to M. aeruginosa in exponential phase. Meanwhile, microcystin release in late lag phase was less than that in exponential phase. Moreover, higher sensitivity in late lag phase was confirmed at the individual level, as the photosynthesis related genes psaB and rbcL were more down-regulated than those in exponential phase. In general, cyanobacteria in late lag phase exhibited higher sensitivity to CuSO4, indicating that CuSO4 treatments in late lag phase can achieve a higher control efficiency and fewer release of microcystin with low-dosages algicide. Hence, it is a more environmentally friendly strategy to control cyanobacterial blooms than the traditional strategy applied in exponential phase.
Collapse
Affiliation(s)
- Xuanxuan Xian
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xi Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Kun Wan
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Chen Luo
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
40
|
Moretto JAS, de Freitas PNN, de Almeida ÉC, Altarugio LM, da Silva SV, de Fátima Fiore M, Pinto E. Effects of different cultivation conditions on the production of β-cyclocitral and β-ionone in Microcystis aeruginosa. BMC Microbiol 2022; 22:78. [PMID: 35321650 PMCID: PMC8944028 DOI: 10.1186/s12866-022-02473-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 02/12/2022] [Indexed: 12/20/2022] Open
Abstract
Background Cyanobacteria blooms have become a major environmental problem and concern because of secondary metabolites produced by cyanobacteria released into the water. Cyanobacteria produce volatile organic compounds (VOCs), such as the compounds β-cyclocitral and β-ionone, which comprise odors, off-flavors, defense compounds, as well as growth regulators. Therefore, the general objective of this work was to evaluate the VOCs produced by two strains of Microcystis aeruginosa, differing in their ability to produce microcystins (LTPNA 01—non-producing and LTPNA 08—toxin-producing). The analysis of VOC production was carried out in (1) normal culture conditions, (2) under different light intensities (LI), and (3) after the external application of β-ionone in both cultures. Results The results showed that β-cyclocitral and β-ionone are produced in all growth phases of LTPNA 01 and LTPNA 08. Both strains were producers of β-cyclocitral and β-ionone in normal culture conditions. It was observed that the β-cyclocitral concentration was higher than β-ionone in all light intensities investigated in this study. Additionally, the strain LTPNA 01 produced more β-cyclocitral than LTPNA 08 at almost all times and LIs analyzed. However, the strain LTPNA 08 produced more β-ionone, mainly at the initial times. In addition, the experiment results with the external addition of β-ionone in the cultures showed that the strain LTPNA 01 produced more β-cyclocitral in control conditions than in treatment. Nonetheless, β-ionone production was higher in treatment conditions in LTPNA 08, indicating that the addition of β-ionone may favor the production of these compounds and inhibit the production of β-cyclocitral. Conclusion Our results showed that some abiotic factors, such as different light intensities and external application of β-ionone, can be triggers that lead to the production of VOCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02473-6.
Collapse
Affiliation(s)
| | - Paloma Nathane Nunes de Freitas
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil.,Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | | | | | | | - Marli de Fátima Fiore
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil. .,Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil. .,Food Research Center (FoRC - CEPID), University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
41
|
Wu T, Zhu G, Wang Z, Zhu M, Xu H. Seasonal dynamics of odor compounds concentration driven by phytoplankton succession in a subtropical drinking water reservoir, southeast China. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128056. [PMID: 34986576 DOI: 10.1016/j.jhazmat.2021.128056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Occurrences of odor compounds in drinking water reservoirs are considered as a nuisance by the water industry. Through the high-frequency monitoring of Tianmuhu Reservoir, a drinking water source for a city with a population of 700,000, we found that odor compounds seasonal dynamics were significantly related to phytoplankton succession, which was controlled by hydrometeorological process. 2-Methylisoborneol (2-MIB) was significantly related to Aphanizomenon sp. (r = 0.51). When the surface water temperature exceeded 12 ℃, 2-MIB concentration may exceed the odor threshold concentration. With the proliferation of Aphanizomenon sp. in spring, 2-MIB concentration reached 87.22 ng/L. After late spring heavy rain, 2-MIB concentration sharply decreased to 3.19 ng/L. As the temperature increased at the end of the rainy season, Aphanizomenon sp. biomass increased to 2.09 mg/L, and 2-MIB concentration increased to 40.16 ng/L. These results showed that the concentration of odor compounds in shallow layer varied greatly because odor compounds mainly originated from phytoplankton and were susceptible to short-term hydrometeorological processes. However, the concentrations of odor compounds in deep layer were relatively insensitive to short-term weather processes. This study will improve the understanding of seasonal changes in odor compounds at different depths, and provide useful information for reservoir managers to prevent odor problems.
Collapse
Affiliation(s)
- Tianhao Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guangwei Zhu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Zicong Wang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Mengyuan Zhu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Hai Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| |
Collapse
|
42
|
Suruzzaman M, Cao T, Lu J, Wang Y, Su M, Yang M. Evaluation of the MIB-producing potential based on real-time qPCR in drinking water reservoirs. ENVIRONMENTAL RESEARCH 2022; 204:112308. [PMID: 34757030 DOI: 10.1016/j.envres.2021.112308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacteria release 2-methylisoborneol (MIB) as a secondary metabolite. Here, we propose a reverse transcription quantitative real-time PCR (RT-qPCR) based method to evaluate the MIB-producing potential in source water by detecting the MIB-synthesis gene (mic). A MIBQSF/R primer set was designed based on 35 mic gene sequences obtained from 12 pure-cultured MIB-producing strains and 23 sequences from the NCBI database. This primer set successfully identified all known 43 MIB-producing cyanobacterial strains (12 from this study and 31 from the NCBI database), belonging to different genera, showing a wider coverage than previous primer sets. The efficiency of the method was proved by the amplification efficiency (E = 91.23%), R2 of the standard curve (0.999), the limit of detection (LOD, 5.7 fg μL-1), and the limit of quantification (LOQ, 1.86 × 104 gene copies μL-1). Further, the method was verified by the correlation between the mic gene abundance and MIB concentration 50 field samples from different reservoirs (R2 = 0.614, p < 0.001) and one reservoir (R2 = 0.752, p < 0.001), suggesting its potential as an alternative warning tool to evaluate the risk of MIB problems in source water.
Collapse
Affiliation(s)
- Md Suruzzaman
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tengxin Cao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinping Lu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongjing Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| | - Ming Su
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
43
|
Prevalence of Actinobacteria in the production of 2-methylisoborneol and geosmin, over Cyanobacteria in a temperate eutrophic reservoir. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
44
|
Shen Q, Wang Q, Miao H, Shimada M, Utsumi M, Lei Z, Zhang Z, Nishimura O, Asada Y, Fujimoto N, Takanashi H, Akiba M, Shimizu K. Temperature affects growth, geosmin/2-methylisoborneol production, and gene expression in two cyanobacterial species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12017-12026. [PMID: 34558048 DOI: 10.1007/s11356-021-16593-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacterial blooms accompanied by taste and odor (T&O) compounds affect the recreational function and safe use of drinking water. Geosmin and 2-methylisoborneol (2-MIB) are the most common T&O compounds. In this study, we investigated the effect of temperature on geosmin and 2-MIB production in Dolichospermum smithii and Pseudanabaena foetida var. intermedia. More specifically, transcription of one geosmin synthase gene (geoA) and two 2-MIB synthase genes (mtf and mtc) was explored. Of the three temperatures (15, 25, and 35 °C) tested, the maximum Chl-a content was determined at 25 °C in both D. smithii and P. foetida var. intermedia. The maximum total geosmin concentration (19.82 μg/L) produced by D. smithii was detected at 25 °C. The total 2-MIB concentration (82.5 μg/L) produced by P. foetida var. intermedia was the highest at 35 °C. Besides, the lowest Chl-a content and minimum geosmin/2-MIB concentration were observed at 15 °C. There was a good positive correlation between geosmin/2-MIB concentration and Chl-a content. The expression levels of the geoA, mtf, and mtc genes at 15 °C were significantly higher than those at 25 and 35 °C. The transcription of the mtf and mtc genes in P. foetida var. intermedia was higher at 35 °C than at 25 °C. The results highlight unfavorable temperature can increase the potential of geosmin/2-MIB synthesis from the gene expression level in cyanobacteria. This study could provide basic knowledge of geosmin/2-MIB production by cyanobacteria for better understanding and management of T&O problems in drinking water.
Collapse
Affiliation(s)
- Qingyue Shen
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, Japan
| | - Qian Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, Japan
| | - Hanchen Miao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, Japan
| | - Marie Shimada
- Water Quality Management Center, Ibaraki Prefectural Public Enterprise Bureau, 2972 Ooiwata, Tsuchiura, Ibaraki, Japan
| | - Motoo Utsumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, Japan
| | - Osamu Nishimura
- Department of Civil and Environmental Engineering, Tohoku University, 6-6-06 Aramaki-Aza Aoba, Sendai, Miyagi, Japan
| | - Yasuhiro Asada
- National Institute of Public Health, 2-3-6 Minami Wako, Saitama, Japan
| | - Naoshi Fujimoto
- Faculty of Applied Biosciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, Japan
| | - Hirokazu Takanashi
- Department of Chemistry, Biotechnology and Chemical Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima City, Kagoshima, Japan
| | - Michihiro Akiba
- National Institute of Public Health, 2-3-6 Minami Wako, Saitama, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
45
|
Li H, Gu X, Chen H, Mao Z, Shen R, Zeng Q, Ge Y. Co-occurrence of multiple cyanotoxins and taste-and-odor compounds in the large eutrophic Lake Taihu, China: Dynamics, driving factors, and challenges for risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118594. [PMID: 34848287 DOI: 10.1016/j.envpol.2021.118594] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/31/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacterial blooms producing toxic metabolites occur frequently in freshwater, yet the environmental behaviors of complex cyanobacterial metabolites remain largely unknown. In this study, the seasonal and spatial variations of several classes of cyanotoxins (microcystins, cylindrospermopsins, saxitoxins) and taste-and-odor (T&O) compounds (β-cyclocitral, β-ionone, geosmin, 2-methylisoborneol) in Lake Taihu were simultaneously investigated for the first time. The total cyanotoxins were dominated by microcystins with concentrations highest in November (mean 2209 ng/L) and lowest in February (mean 48.7 ng/L). Cylindrospermopsins were abundant in May with the highest content of 622.8 ng/L. Saxitoxins only occurred in May (mean 19.2 ng/L) and November (mean 198.5 ng/L). Extracellular T&O compounds were most concentrated in August, the highest being extracellular β-cyclocitral (mean 240.6 ng/L) followed by 2-methylisoborneol (mean 146.6 ng/L). Environment variables play conflicting roles in modulating the dynamics of different groups of cyanotoxins and T&O compounds. Total phosphorus (TP), total nitrogen (TN), chlorophyll-a and cyanobacteria density were important factors affecting the variation of total microcystins, β-cyclocitral and β-ionone concentrations. In contrast, total cylindrospermopsins, 2-methylisoborneol and geosmin concentrations were significantly influenced by water temperature and TP. There was a significant and linear relationship between microcystins and β-cyclocitral/β-ionone, while cylindrospermopsins were positively correlated with 2-methylisoborneol and geosmin. The perceptible odors may be good indicators for the existence of cyanotoxins. Hazard quotients revealed that potential human health risks from microcystins were high in August and November. Meanwhile, the risks from cylindrospermopsins were at moderate levels. Cylindrospermopsins and saxitoxins were first identified in this lake, suggesting that diverse cyanotoxins might co-occur more commonly than previously thought. Hence, the risks from other cyanotoxins beyond microcystins shouldn't be ignored. This study also highlights that the necessity for further assessing the combination effects of these complex metabolites.
Collapse
Affiliation(s)
- Hongmin Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ruijie Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - You Ge
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
46
|
Abstract
Off-flavors in fish and water are considered a worldwide problem. Several factors, such as the presence of phosphorus, micronutrients, and organic matter, contribute to phytoplankton proliferation and the production of off-flavors. Geosmin and 2-methylisoborneol are the most common off-flavors that confer the smell of earth or mold to water and fish. These metabolites are not considered toxic, but they can be easily transferred from water to living organisms and accumulate in the biota, up the trophic levels and to consumers, including fish species. Numerous processes have been studied to eliminate or reduce the presence of off-flavors in recirculating aquaculture systems. Managing off-flavors must be eco-friendly and consumer-friendly. Strategies against off-flavors must be efficient and low-cost. However, these solutions may be different for each fish production system. We review herein the main compounds produced by cyanobacteria that can accumulate in fish used in aquaculture that can affect the quality of food, as well as production costs and consumer preference.
Collapse
|
47
|
Harada KI. [Elucidation of Phenomena Involving Cyanobacteria in Freshwater Ecosystem by Chemically Ecological Approach]. YAKUGAKU ZASSHI 2022; 142:39-64. [PMID: 34980750 DOI: 10.1248/yakushi.21-00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lakes Sagami and Tsukui are reservoirs constructed by connecting to the Sagami River. Because of eutrophication of the lakes, cyanobacteria have appeared every year. This review deals with phenomena related to occurrence of cyanobacteria that have been observed for 40 years since 1974 at the lakes. These 40 years of observations raised three interesting issues including the retention of cyanobacteria on their surfaces. These phenomena have been attributed to the usual factors, such as illuminance, nutrition and water temperature, but our research results suggested that they cannot be resolved without the introduction of another factor. We have attempted to elucidate various phenomena involving cyanobacteria in lake ecosystems by chemical ecological methods using volatile organic compounds (VOCs) produced by the cyanobacteria as indicators. One of the VOCs, β-cyclocitral, was significantly involved in the above phenomena, which was considered to be produced by the carotenoid cleavage dioxygenase (CCD) of the cyanobacteria. β-Cyclocitral was not produced in the two known CCDs, but two additional CCDs to Microcystis aeruginosa participated to produce the β-cyclocitral. These CCDs did not directly produce β-cyclocitral, but it was accumulated in cells as their precursors. The released β-cyclocitral underwent a Baeyer-Villiger-like oxidation. It was speculated that Microcystis activated the CCD genes through density stress and produced β-cyclocitral, which acted as an allelopathic substance. As a result, the number of cells of cyanobacteria decreased, and the resulting nitrogen and phosphorus were fed to the living cyanobacteria. It is postulated that this "quorum sensing" was functioning in the above-mentioned issues.
Collapse
|
48
|
Arii S, Yamashita R, Tsuji K, Tomita K, Hasegawa M, Bober B, Harada KI. Differences in susceptibility of cyanobacteria species to lytic volatile organic compounds and influence on seasonal succession. CHEMOSPHERE 2021; 284:131378. [PMID: 34217930 DOI: 10.1016/j.chemosphere.2021.131378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacteria produce numerous volatile organic compounds (VOCs) that show a lytic activity against other cyanobacteria. We found the lytic phenomenon under natural conditions and during densification experiments, and also observed the species change of the cyanobacteria during the lysis processes, in which Microcystis finally became dominant. The species change of the cyanobacteria was strongly suggested to depend on the susceptibility of the cyanobacteria toward the VOCs. To verify this suggestion, the susceptibility of the species was evaluated by the minimal inhibitory concentration (MIC) using axenic cyanobacterial strains against β-cyclocitral, its oxidation products and β-ionone with the aid of log D. It was found that the difference depended on the susceptibility of the cyanobacteria toward the VOCs, in which β-cyclocitral played a crucial role and Microcystis had a significantly protective ability compared to the other cyanobacteria. In addition, the species change of cyanobacteria was consistent with the cyanobacterial seasonal succession in Lakes Sagami and Tsukui, based on data that had been accumulated for 10 years. Conventionally, although this phenomenon could be explained by nutrient availability or the physical structure of the environment, the results of this study revealed that it was controlled by the VOCs, particularly β-cyclocitral produced by the cyanobacteria.
Collapse
Affiliation(s)
- Suzue Arii
- Graduate School of Environmental and Human Science and Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya, 468-8503, Japan.
| | - Ryuji Yamashita
- Graduate School of Environmental and Human Science and Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya, 468-8503, Japan
| | - Kiyomi Tsuji
- Kanagawa Prefectural Institute of Public Health, Shimomachiya, Chigasaki, Kanagawa, 253-0087, Japan
| | - Koji Tomita
- Aichi Prefectural Institute of Public Health, Tsujimachi, Kita, Nagoya, 462-8576, Japan
| | - Masateru Hasegawa
- Aichi Prefectural Institute of Public Health, Tsujimachi, Kita, Nagoya, 462-8576, Japan
| | - Beata Bober
- Graduate School of Environmental and Human Science and Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya, 468-8503, Japan; Department of Plant Physiology and Development, Jagiellonian University, Krakow, Poland
| | - Ken-Ichi Harada
- Graduate School of Environmental and Human Science and Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya, 468-8503, Japan
| |
Collapse
|
49
|
Espinosa C, Abril M, Bretxa È, Jutglar M, Ponsá S, Sellarès N, Vendrell-Puigmitjà L, Llenas L, Ordeix M, Proia L. Driving Factors of Geosmin Appearance in a Mediterranean River Basin: The Ter River Case. Front Microbiol 2021; 12:741750. [PMID: 34790181 PMCID: PMC8591308 DOI: 10.3389/fmicb.2021.741750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
In recent decades, human activity coupled with climate change has led to a deterioration in the quality of surface freshwater. This has been related to an increase in the appearance of algal blooms, which can produce organic compounds that can be toxic or can affect the organoleptic characteristics of the water, such as its taste and odor. Among these latter compounds is geosmin, a metabolite produced by certain cyanobacteria that confers an earthy taste to water and which can be detected by humans at very low concentrations (nanogram per liter). The difficulty and cost of both monitoring the presence of this compound and its treatment is a problem for drinking water treatment companies, as the appearance of geosmin affects consumer confidence in the quality of the drinking water they supply. In this field study, the evaluation of four sampling sites with different physicochemical conditions located in the upper part of the Ter River basin, a Mediterranean river located in Catalonia (NE Spain), has been carried out, with the aim of identifying the main triggers of geosmin episodes. The results, obtained from 1 year of sampling, have made it possible to find out that: (i) land uses with a higher percentage of agricultural and industrial activity are related to high nutrient conditions in river water, (ii) these higher nutrient concentrations favor the development of benthic cyanobacteria, (iii) in late winter-early spring, when these cyanobacteria are subjected to both an imbalance of the dissolved inorganic nitrogen and soluble reactive phosphorus ratio, guided by a phosphorus concentration increase, and to cold-mild temperatures close to 10°C, they produce and release geosmin, and (iv) 1-2 weeks after cyanobacteria reach a high relative presence in the whole biofilm, an increase in geosmin concentration in water is observed, probably associated with the cyanobacteria detachment from cobbles and consequent cell lysis. These results could serve as a guide for drinking water treatment companies, indicating under what conditions they can expect the appearance of geosmin episodes and implement the appropriate treatment before it reaches consumers' tap.
Collapse
Affiliation(s)
- Carmen Espinosa
- BETA Technological Center, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain.,CERM, Center for the Study of Mediterranean Rivers, University of Vic - Central University of Catalonia (UVic-UCC), Manlleu, Spain
| | - Meritxell Abril
- BETA Technological Center, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Èlia Bretxa
- CERM, Center for the Study of Mediterranean Rivers, University of Vic - Central University of Catalonia (UVic-UCC), Manlleu, Spain
| | - Marta Jutglar
- CERM, Center for the Study of Mediterranean Rivers, University of Vic - Central University of Catalonia (UVic-UCC), Manlleu, Spain
| | - Sergio Ponsá
- BETA Technological Center, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Núria Sellarès
- CERM, Center for the Study of Mediterranean Rivers, University of Vic - Central University of Catalonia (UVic-UCC), Manlleu, Spain
| | - Lídia Vendrell-Puigmitjà
- BETA Technological Center, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Laia Llenas
- BETA Technological Center, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Marc Ordeix
- CERM, Center for the Study of Mediterranean Rivers, University of Vic - Central University of Catalonia (UVic-UCC), Manlleu, Spain
| | - Lorenzo Proia
- BETA Technological Center, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| |
Collapse
|
50
|
Lukassen MB, Menanteau-Ledouble S, de Jonge N, Schram E, Nielsen JL. Impact of water quality parameters on geosmin levels and geosmin producers in European recirculating aquaculture systems. J Appl Microbiol 2021; 132:2475-2487. [PMID: 34773307 DOI: 10.1111/jam.15358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 11/28/2022]
Abstract
AIMS Geosmin is associated with off-flavour problems in recirculating aquaculture systems (RAS) and represents an economic problem for the aquaculture industry. This study aims at investigating factors influencing the composition of the bacterial microbiota, in particular the presence of geosmin producers and the environmental and farming factors favouring geosmin accumulation. METHODS AND RESULTS Several water quality parameters were correlated to the composition of the microbiota with special emphasis on the presence of geosmin producers within 26 different RAS from four European countries. Three novel groups of geosmin-producing bacteria were quantified to identify potential correlations with geosmin concentration. CONCLUSIONS The microbiome differed significantly between systems. However, phosphate levels, calcium levels and redox potential correlated to geosmin concentration in the water and the presence of the Actinomycetales geosmin-producers but not with the presence of other groups of geosmin-producing bacteria. Oxygen levels and conductivity were found to negatively correlate with geosmin concentration. A large proportion of the detected geosmin producers represented novel taxonomic groups not previously linked with this activity. SIGNIFICANCE AND IMPACT OF THE STUDY These results improve our understanding of the diversity of microbiota in RAS and the water quality parameters favouring the populations of geosmin-producing bacteria and the production of geosmin.
Collapse
Affiliation(s)
- Mie Bech Lukassen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg East, Denmark
| | | | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Aalborg East, Denmark
| | - Edward Schram
- Wageningen Marine Research, IJmuiden, The Netherlands
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg East, Denmark
| |
Collapse
|