1
|
Fernández-Herrera LJ, Núñez-Vázquez EJ, Hernández-Sandoval FE, Ceseña-Ojeda DO, García-Davis S, Teles A, Virgen-Félix M, Tovar-Ramírez D. Morphological, Toxicological, and Biochemical Characterization of Two Species of Gambierdiscus from Bahía de La Paz, Gulf of California. Mar Drugs 2024; 22:422. [PMID: 39330303 PMCID: PMC11433345 DOI: 10.3390/md22090422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
We describe five new isolates of two Gambierdiscus species from Bahía de La Paz in the southern Gulf of California. Batch cultures of Gambierdiscus were established for morphological characterization using light microscopy (LM) and scanning electron microscopy (SEM). Pigment and amino acid profiles were also analyzed using high-performance liquid chromatography (HPLC-UV and HPLC-DAD). Finally, toxicity (CTX-like and MTX-like activity) was evaluated using the Artemia salina assay (ARTOX), mouse assay (MBA), marine fish assay (MFA), and fluorescent receptor binding assay (fRBA). These strains were identified as Gambierdiscus cf. caribaeus and Gambierdiscus cf. carpenteri. Toxicity for CTX-like and MTX-like activity was confirmed in all evaluated clones. Seven pigments were detected, with chlorophyll a, pyridine, Chl2, and diadinoxanthin being particularly noteworthy. For the first time, a screening of the amino acid profile of Gambierdiscus from the Pacific Ocean was conducted, which showed 14 amino acids for all strains except histidine, which was only present in G. cf. caribeaus. We report the presence of Gambierdiscus and Fukuyoa species in the Mexican Pacific, where ciguatera fish poisoning (CFP) cases have occurred.
Collapse
Affiliation(s)
- Leyberth José Fernández-Herrera
- Laboratorio de Toxinas Marinas y Aminoácidos, Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz CP 23096, Mexico
| | - Erick Julián Núñez-Vázquez
- Laboratorio de Toxinas Marinas y Aminoácidos, Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz CP 23096, Mexico
| | - Francisco E Hernández-Sandoval
- Laboratorio de Microalgas Nocivas, Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz CP 23096, Mexico
| | - Daniel Octavio Ceseña-Ojeda
- Laboratorio de Toxinas Marinas y Aminoácidos, Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz CP 23096, Mexico
| | - Sara García-Davis
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Andressa Teles
- Laboratorio de Fisiología Comparada y Genómica Funcional, Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz CP 23096, Mexico
| | - Marte Virgen-Félix
- Laboratorio de Colección de Microalgas, Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz CP 23096, Mexico
| | - Dariel Tovar-Ramírez
- Laboratorio de Fisiología Comparada y Genómica Funcional, Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz CP 23096, Mexico
| |
Collapse
|
2
|
Argyle PA, Rhodes LL, Smith KF, Harwood DT, Halafihi T, Marsden ID. Diversity and distribution of benthic dinoflagellates in Tonga include the potentially harmful genera Gambierdiscus and Fukuyoa. HARMFUL ALGAE 2023; 130:102524. [PMID: 38061817 DOI: 10.1016/j.hal.2023.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/01/2023] [Accepted: 10/07/2023] [Indexed: 12/18/2023]
Abstract
Benthic dinoflagellates that can cause illness, such as ciguatera poisoning (CP), are prevalent around the Pacific but are poorly described in many locations. This study represents the first ecological assessment of benthic harmful algae species in the Kingdom of Tonga, a country where CP occurs regularly. Surveys were conducted in June 2016 in the Tongatapu island group, and in June 2017 across three island groups: Ha'apai, Vava'u, and Tongatapu. Shallow subtidal coastal habitats were investigated by measuring water quality parameters and conducting quadrat surveys. Microalgae samples were collected using either macrophyte collection or the artificial substrate method. Benthic dinoflagellates (Gambierdiscus and/or Fukuyoa, Ostreopsis, and Prorocentrum) were counted using light microscopy, followed by molecular analyses (real-time PCR in 2016 and high throughput sequencing (metabarcoding) in 2017) to identify Gambierdiscus and Fukuyoa to species level. Six species were detected from the Tongatapu island group in 2016 (G. australes, G. carpenteri, G. honu, G. pacificus, F. paulensis, and F. ruetzleri) using real-time PCR. Using the metabarcoding approach in 2017, a total of eight species (G. australes, G. carpenteri, G. honu, G. pacificus, G. cheloniae, G. lewisii, G. polynesiensis, and F. yasumotoi) were detected. Species were detected in mixed assemblages of up to six species, with G. pacificus and G. carpenteri being the most frequently observed. Ha'apai had the highest diversity with eight species detected, which identifies this area as a Gambierdiscus diversity 'hotspot'. Vava'u and Tongatapu had three and six species found respectively. Gambierdiscus polynesiensis, a described ciguatoxin producer and proposed causative agent of CP was found only in Ha'apai and Vava'u in 2017, but not in Tongatapu in either year. Ostreopsis spp. and Prorocentrum spp. were also frequently observed, with Prorocentrum most abundant at the majority of sites. In 2016, the highest number of Gambierdiscus and/or Fukuyoa cells were observed on seagrass (Halodule uninervis) from Sopu, Tongatapu. In 2017, the highest numbers of Gambierdiscus and/or Fukuyoa from artificial substrate samples were recorded in the Halimeda dominant habitat at Neiafu Tahi, Vava'u, a low energy site. This raised the question of the effect of wave motion or currents on abundance measurements from artificial substrates. Differences in detection were noticed between macrophytes and artificial substrates, with higher numbers of species found on artificial substrates. This study provides a baseline of benthic dinoflagellate distributions and diversity for Tonga that may be used for future studies and the development of monitoring programmes.
Collapse
Affiliation(s)
- Phoebe A Argyle
- School of Biological Sciences, University of Canterbury, Private Bag 4800, 20 Kirkwood Ave, Christchurch 8041, New Zealand; Cawthron Institute, Private Bag 2, 98 Halifax St East, Nelson 7042, New Zealand; Ministry of Marine Resources, PO Box 85, Moss Rd, Avarua, Rarotonga, Cook Islands.
| | - Lesley L Rhodes
- Cawthron Institute, Private Bag 2, 98 Halifax St East, Nelson 7042, New Zealand
| | - Kirsty F Smith
- Cawthron Institute, Private Bag 2, 98 Halifax St East, Nelson 7042, New Zealand
| | - D Tim Harwood
- Cawthron Institute, Private Bag 2, 98 Halifax St East, Nelson 7042, New Zealand
| | | | - Islay D Marsden
- School of Biological Sciences, University of Canterbury, Private Bag 4800, 20 Kirkwood Ave, Christchurch 8041, New Zealand
| |
Collapse
|
3
|
Nguyen-Ngoc L, Larsen J, Doan-Nhu H, Nguyen XV, Chomérat N, Lundholm N, Phan-Tan L, Dao HV, Nguyen NL, Nguyen HH, Van Chu T. Gambierdiscus (Gonyaulacales, Dinophyceae) diversity in Vietnamese waters with description of G. vietnamensis sp. nov. JOURNAL OF PHYCOLOGY 2023; 59:496-517. [PMID: 36866508 DOI: 10.1111/jpy.13326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/15/2023]
Abstract
Viet Nam has a coastline of 3200 km with thousands of islands providing diverse habitats for benthic harmful algal species including species of Gambierdiscus. Some of these species produce ciguatera toxins, which may accumulate in large carnivore fish potentially posing major threats to public health. This study reports five species of Gambierdiscus from Vietnamese waters, notably G. australes, G. caribaeus, G. carpenteri, G. pacificus, and G. vietnamensis sp. nov. All species are identified morphologically by LM and SEM, and identifications are supported by molecular analyses of nuclear rDNA (D1-D3 and D8-D10 domains of LSU, SSU, and ITS1-5.8S-ITS2 region) based on cultured material collected during 2010-2021. Statistical analyses of morphometric measurements may be used to differentiate some species if a sufficiently large number of cells are examined. Gambierdiscus vietnamensis sp. nov. is morphologically similar to other strongly reticulated species, such as G. belizeanus and possibly G. pacificus; the latter species is morphologically indistinguishable from G. vietnamensis sp. nov., but they are genetically distinct, and molecular analysis is deemed necessary for proper identification of the new species. This study also revealed that strains denoted G. pacificus from Hainan Island (China) should be included in G. vietnamensis sp. nov.
Collapse
Affiliation(s)
- Lam Nguyen-Ngoc
- Institute of Oceanography, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Jacob Larsen
- IOC Science and Communication Centre on Harmful Algae, Marine Biological Section, University of Copenhagen, Copenhagen Ø, Denmark
| | - Hai Doan-Nhu
- Institute of Oceanography, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Xuan-Vy Nguyen
- Institute of Oceanography, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Nicolas Chomérat
- Ifremer, LITTORAL, Station of Marine Biology of Concarneau, Concarneau, France
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
| | - Luom Phan-Tan
- Institute of Oceanography, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Ha Viet Dao
- Institute of Oceanography, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Ngoc-Lan Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Huy-Hoang Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thuoc Van Chu
- Institute of Marine Environment and Resources, Vietnam Academy of Science and Technology, Da Nang, Vietnam
| |
Collapse
|
4
|
Verma A, Hoppenrath M, Smith KF, Murray JS, Harwood DT, Hosking JM, Rongo T, Rhodes LL, Murray SA. Ostreopsis Schmidt and Coolia Meunier (Dinophyceae, Gonyaulacales) from Cook Islands and Niue (South Pacific Ocean), including description of Ostreopsis tairoto sp. nov. Sci Rep 2023; 13:3110. [PMID: 36813881 PMCID: PMC9947023 DOI: 10.1038/s41598-023-29969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
It is important to decipher the diversity and distribution of benthic dinoflagellates, as there are many morphologically indistinct taxa that differ from one another in production of potent toxins. To date, the genus Ostreopsis comprises twelve described species, of which seven are potentially toxic and produce compounds presenting a threat to human and environmental health. In this study, isolates previously identified as "Ostreopsis sp. 3" were sampled from the area where it was first reported, Rarotonga, Cook Islands, and have been taxonomically and phylogenetically characterised as Ostreopsis tairoto sp. nov. Phylogenetically, the species is closely related to "Ostreopsis sp. 8", O. mascarenensis, "O. sp. 4", O. fattorussoi, O. rhodesiae and O. cf. siamensis. Previously, it was considered a part of the O. cf. ovata complex but can be distinguished from O. cf. ovata based on the small pores identified on this study, and from O. fattorussoi and O. rhodesiae based on relative lengths of the 2' plates. No known palytoxin -like compounds were detected in strains investigated in this study. Strains of O. lenticularis, Coolia malayensis and C. tropicalis were also identified and described. This study advances our knowledge of biogeography, distribution, and toxins of Ostreopsis and Coolia species.
Collapse
Affiliation(s)
- A. Verma
- grid.117476.20000 0004 1936 7611School of Life Sciences, University of Technology, Broadway, Sydney, NSW 2007 Australia
| | - M. Hoppenrath
- grid.500026.10000 0004 0487 6958Senckenberg am Meer, German Center for Marine Biodiversity Research (DZMB), Südstrand 44, D-26382 Wilhelmshaven, Germany
| | - K. F. Smith
- grid.418703.90000 0001 0740 4700Cawthron Institute, Nelson, 7010 New Zealand
| | - J. S. Murray
- grid.418703.90000 0001 0740 4700Cawthron Institute, Nelson, 7010 New Zealand
| | - D. T. Harwood
- grid.418703.90000 0001 0740 4700Cawthron Institute, Nelson, 7010 New Zealand
| | - J. M. Hosking
- Te Ipukarea Society, PO Box 649, Rarotonga, Cook Islands
| | - T. Rongo
- Kōrero O Te `Ōrau, Avarua, PO Box 881, Avarua, Rarotonga, Cook Islands
| | - L. L. Rhodes
- grid.418703.90000 0001 0740 4700Cawthron Institute, Nelson, 7010 New Zealand
| | - S. A. Murray
- grid.117476.20000 0004 1936 7611School of Life Sciences, University of Technology, Broadway, Sydney, NSW 2007 Australia
| |
Collapse
|
5
|
Stuart J, Smith KF, Rhodes L, Murray JS, Viallon J, Henry K, Darius HT, Murray SA, De Azevedo CD, Argyle P, Chinain M. Geographical distribution, molecular and toxin diversity of the dinoflagellate species Gambierdiscus honu in the Pacific region. HARMFUL ALGAE 2022; 118:102308. [PMID: 36195424 DOI: 10.1016/j.hal.2022.102308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/29/2022] [Accepted: 08/07/2022] [Indexed: 06/16/2023]
Abstract
An increase in cases of ciguatera poisoning (CP) and expansion of the causative species in the South Pacific region highlight the need for baseline data on toxic microalgal species to help identify new areas of risk and manage known hot spots. Gambierdiscus honu is a toxin producing and potential CP causing dinoflagellate species, first described in 2017. Currently no high-resolution geographical distribution, intraspecific genetic variation or toxin production diversity data is available for G. honu. This research aimed to further characterize G. honu by investigating its distribution using species-specific real-time polymerase chain reaction assays at 25 sites in an area spanning ∼8000 km of the Coral Sea/Pacific Ocean, and assessing intraspecific genetic variation, toxicity and toxin production of isolated strains. Assessment of genetic variation of the partial rRNA operon of isolates demonstrated no significant intraspecific population structure, in addition to a lack of adherence to isolation by distance (IBD) model of evolution. The detected distribution of G. honu in the Pacific region was within the expected tropical to temperate latitudinal ranges of 10° to -30° and extended from Australia to French Polynesia. In the lipophilic fractions, the neuroblastoma cell-based assay (CBA-N2a) showed no ciguatoxin (CTX)-like activity for nine of the 10 isolates, and an atypical pattern for CAWD233 isolate which showed cytotoxic activity in OV- and OV+ conditions. In the same way, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis confirmed no Pacific-CTXs (CTX-3B, CTX-3C, CTX-4A, CTX-4B) were produced by the ten strains. The CBA-N2a assessment of the hydrophilic fractions showed moderate to high cytotoxicity in both OV- and OV+ condition for all the strains showing a cytotoxic profile similar to that of gambierone. Indeed, this study is the first to show the cytotoxic activity of gambierone on mouse neuroblastoma cells while no cytotoxicity was observed when 44-MG was analysed at the same concentrations using the CBA-N2a. Analysis of the hydrophilic via LC-MS/MS confirmed production of gambierone in all isolates, ranging from 2.1 to 38.1 pg/cell, with 44-methylgambierone (44-MG) also produced by eight of the isolates, ranging from 0.3 to 42.9 pg/cell. No maitotoxin-1 was detected in any of the isolates. Classification of the G. honu strains according to the quantities of gambierone produced aligned with the classification of their cytotoxicity using the CBA-N2a. Finally, no maitotoxin-1 (MTX) was detected in any of the isolates. This study shows G. honu is widely distributed within the Pacific region with no significant intraspecific population structure present. This aligns with the view of microalgal populations as global metapopulations, however more in-depth assessment with other genetic markers could detect further structure. Toxicity diversity across 10 isolates assessed did not display any geographical patterns.
Collapse
Affiliation(s)
- Jacqui Stuart
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand.
| | - Kirsty F Smith
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Lesley Rhodes
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | - J Sam Murray
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | - Jérôme Viallon
- Institut Louis Malardé - UMR EIO, Laboratoire des Biotoxines Marines, Papeete, Tahiti, French Polynesia
| | - Kevin Henry
- Institut Louis Malardé - UMR EIO, Laboratoire des Biotoxines Marines, Papeete, Tahiti, French Polynesia
| | - H Taiana Darius
- Institut Louis Malardé - UMR EIO, Laboratoire des Biotoxines Marines, Papeete, Tahiti, French Polynesia
| | | | | | - Phoebe Argyle
- University of Technology Sydney, New South Wales, Australia
| | - Mireille Chinain
- Institut Louis Malardé - UMR EIO, Laboratoire des Biotoxines Marines, Papeete, Tahiti, French Polynesia
| |
Collapse
|
6
|
Gambierdiscus and Its Associated Toxins: A Minireview. Toxins (Basel) 2022; 14:toxins14070485. [PMID: 35878223 PMCID: PMC9324261 DOI: 10.3390/toxins14070485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Gambierdiscus is a dinoflagellate genus widely distributed throughout tropical and subtropical regions. Some members of this genus can produce a group of potent polycyclic polyether neurotoxins responsible for ciguatera fish poisoning (CFP), one of the most significant food-borne illnesses associated with fish consumption. Ciguatoxins and maitotoxins, the two major toxins produced by Gambierdiscus, act on voltage-gated channels and TRPA1 receptors, consequently leading to poisoning and even death in both humans and animals. Over the past few decades, the occurrence and geographic distribution of CFP have undergone a significant expansion due to intensive anthropogenic activities and global climate change, which results in more human illness, a greater public health impact, and larger economic losses. The global spread of CFP has led to Gambierdiscus and its toxins being considered an environmental and human health concern worldwide. In this review, we seek to provide an overview of recent advances in the field of Gambierdiscus and its associated toxins based on the existing literature combined with re-analyses of current data. The taxonomy, phylogenetics, geographic distribution, environmental regulation, toxin detection method, toxin biosynthesis, and pharmacology and toxicology of Gambierdiscus are summarized and discussed. We also highlight future perspectives on Gambierdiscus and its associated toxins.
Collapse
|
7
|
Murray JS, Finch SC, Mudge EM, Wilkins AL, Puddick J, Harwood DT, Rhodes LL, van Ginkel R, Rise F, Prinsep MR. Structural Characterization of Maitotoxins Produced by Toxic Gambierdiscus Species. Mar Drugs 2022; 20:md20070453. [PMID: 35877746 PMCID: PMC9324523 DOI: 10.3390/md20070453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 01/27/2023] Open
Abstract
Identifying compounds responsible for the observed toxicity of the Gambierdiscus species is a critical step to ascertaining whether they contribute to ciguatera poisoning. Macroalgae samples were collected during research expeditions to Rarotonga (Cook Islands) and North Meyer Island (Kermadec Islands), from which two new Gambierdiscus species were characterized, G. cheloniae CAWD232 and G. honu CAWD242. Previous chemical and toxicological investigations of these species demonstrated that they did not produce the routinely monitored Pacific ciguatoxins nor maitotoxin-1 (MTX-1), yet were highly toxic to mice via intraperitoneal (i.p.) injection. Bioassay-guided fractionation of methanolic extracts, incorporating wet chemistry and chromatographic techniques, was used to isolate two new MTX analogs; MTX-6 from G. cheloniae CAWD232 and MTX-7 from G. honu CAWD242. Structural characterization of the new MTX analogs used a combination of analytical chemistry techniques, including LC–MS, LC–MS/MS, HR–MS, oxidative cleavage and reduction, and NMR spectroscopy. A substantial portion of the MTX-7 structure was elucidated, and (to a lesser extent) that of MTX-6. Key differences from MTX-1 included monosulfation, additional hydroxyl groups, an extra double bond, and in the case of MTX-7, an additional methyl group. To date, this is the most extensive structural characterization performed on an MTX analog since the complete structure of MTX-1 was published in 1993. MTX-7 was extremely toxic to mice via i.p. injection (LD50 of 0.235 µg/kg), although no toxicity was observed at the highest dose rate via oral administration (155.8 µg/kg). Future research is required to investigate the bioaccumulation and likely biotransformation of the MTX analogs in the marine food web.
Collapse
Affiliation(s)
- J. Sam Murray
- Cawthron Institute, Private Bag 2, Nelson 7040, New Zealand; (J.P.); (D.T.H.); (L.L.R.); (R.v.G.)
- New Zealand Food Safety Science and Research Centre, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand; (A.L.W.); (M.R.P.)
- Correspondence: ; Tel.: +64-3-548-2319
| | - Sarah C. Finch
- AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand;
| | - Elizabeth M. Mudge
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada;
| | - Alistair L. Wilkins
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand; (A.L.W.); (M.R.P.)
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, NO-0315 Oslo, Norway;
| | - Jonathan Puddick
- Cawthron Institute, Private Bag 2, Nelson 7040, New Zealand; (J.P.); (D.T.H.); (L.L.R.); (R.v.G.)
| | - D. Tim Harwood
- Cawthron Institute, Private Bag 2, Nelson 7040, New Zealand; (J.P.); (D.T.H.); (L.L.R.); (R.v.G.)
- New Zealand Food Safety Science and Research Centre, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Lesley L. Rhodes
- Cawthron Institute, Private Bag 2, Nelson 7040, New Zealand; (J.P.); (D.T.H.); (L.L.R.); (R.v.G.)
| | - Roel van Ginkel
- Cawthron Institute, Private Bag 2, Nelson 7040, New Zealand; (J.P.); (D.T.H.); (L.L.R.); (R.v.G.)
| | - Frode Rise
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, NO-0315 Oslo, Norway;
| | - Michèle R. Prinsep
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand; (A.L.W.); (M.R.P.)
| |
Collapse
|
8
|
Gu H, Mertens KN, Derrien A, Bilien G, Li Z, Hess P, Séchet V, Krock B, Amorim A, Li Z, Pospelova V, Smith KF, MacKenzie L, Yoon JY, Kim HJ, Shin HH. Unraveling the Gonyaulax baltica Species Complex: Cyst-theca Relationship of Impagidinium variaseptum, Spiniferites pseudodelicatus sp. nov. and S. ristingensis (Gonyaulacaceae, Dinophyceae), With Descriptions of Gonyaulax bohaiensis sp. nov, G. amoyensis sp. nov. and G. portimonensis sp. nov. JOURNAL OF PHYCOLOGY 2022; 58:465-486. [PMID: 35234279 DOI: 10.1111/jpy.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The taxonomy of the extant dinoflagellate genus Gonyaulax is challenging since its thecate morphology is rather conservative. In contrast, cysts of Gonyaulax are varied in morphology and have been related with the fossil-based genera Spiniferites and Impagidinium. To better understand the systematics of Gonyaulax species, we performed germination experiments on cysts that can be identified as S. ristingensis, an unidentified Spiniferites with petaloid processes here described as Spiniferites pseudodelicatus sp. nov. and Impagidinium variaseptum from Chinese and Portuguese waters. Despite marked differences in cyst morphology, motile cells of S. pseudodelicatus and I. variaseptum are indistinguishable from Gonyaulax baltica. Motile cells hatched from S. ristingensis are morphologically similar to G. baltica as well but differ in the presence of one pronounced antapical spine. Three new species, Gonyaulax amoyensis (cyst equivalent S. pseudodelicatus), Gonyaulax bohaiensis (cyst equivalent I. variaseptum), and Gonyaulax portimonensis (cyst equivalent S. ristingensis), were erected. In addition, a new ribotype (B) of G. baltica was reported from South Korea and a bloom of G. baltica ribotype B is reported from New Zealand. Molecular phylogeny based on LSU and SSU rRNA gene sequences revealed that Gonyaulax species with minute or short antapical spines formed a well-resolved clade, whereas species with two pronounced antapical spines or lack of antapical spines formed the sister clade. Six strains of four above species were examined for yessotoxin production by liquid chromatography coupled with tandem mass spectrometry, and very low concentrations of yessotoxin were detected for one G. bohaiensis strain.
Collapse
Affiliation(s)
- Haifeng Gu
- Department of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | | | - Amélie Derrien
- Ifremer, LITTORAL, Place de la Croix, BP40537, Concarneau CEDEX, 29900, France
| | - Gwenael Bilien
- Ifremer, LITTORAL, Place de la Croix, BP40537, Concarneau CEDEX, 29900, France
| | - Zhen Li
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 329 West Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Philipp Hess
- Ifremer, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, Nantes, 44311, France
| | - Véronique Séchet
- Ifremer, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, Nantes, 44311, France
| | - Bernd Krock
- Department of Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, Bremerhaven, D-27570, Germany
| | - Ana Amorim
- Centro de Ciências do Mar e do Ambiente (MARE) and Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, 1749-016, Portugal
| | - Zhun Li
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Korea
| | - Vera Pospelova
- Department of Earth and Environmental Sciences, University of Minnesota, 116 Church Street SE, Minneapolis, Minnesota, 55455, USA
| | - Kirsty F Smith
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson, 7042, New Zealand
| | - Lincoln MacKenzie
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson, 7042, New Zealand
| | - Joo Yeon Yoon
- Library of Marine Samples, Korea Institute of Ocean Science and Technology, Geoje, 53201, Korea
| | - Hyun Jung Kim
- Library of Marine Samples, Korea Institute of Ocean Science and Technology, Geoje, 53201, Korea
| | - Hyeon Ho Shin
- Library of Marine Samples, Korea Institute of Ocean Science and Technology, Geoje, 53201, Korea
| |
Collapse
|
9
|
Darius HT, Revel T, Viallon J, Sibat M, Cruchet P, Longo S, Hardison DR, Holland WC, Tester PA, Litaker RW, McCall JR, Hess P, Chinain M. Comparative Study on the Performance of Three Detection Methods for the Quantification of Pacific Ciguatoxins in French Polynesian Strains of Gambierdiscus polynesiensis. Mar Drugs 2022; 20:md20060348. [PMID: 35736151 PMCID: PMC9229625 DOI: 10.3390/md20060348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Gambierdiscus and Fukuyoa dinoflagellates produce a suite of secondary metabolites, including ciguatoxins (CTXs), which bioaccumulate and are further biotransformed in fish and marine invertebrates, causing ciguatera poisoning when consumed by humans. This study is the first to compare the performance of the fluorescent receptor binding assay (fRBA), neuroblastoma cell-based assay (CBA-N2a), and liquid chromatography tandem mass spectrometry (LC-MS/MS) for the quantitative estimation of CTX contents in 30 samples, obtained from four French Polynesian strains of Gambierdiscus polynesiensis. fRBA was applied to Gambierdiscus matrix for the first time, and several parameters of the fRBA protocol were refined. Following liquid/liquid partitioning to separate CTXs from other algal compounds, the variability of CTX contents was estimated using these three methods in three independent experiments. All three assays were significantly correlated with each other, with the highest correlation coefficient (r2 = 0.841) found between fRBA and LC-MS/MS. The CBA-N2a was more sensitive than LC-MS/MS and fRBA, with all assays showing good repeatability. The combined use of fRBA and/or CBA-N2a for screening purposes and LC-MS/MS for confirmation purposes allows for efficient CTX evaluation in Gambierdiscus. These findings, which support future collaborative studies for the inter-laboratory validation of CTX detection methods, will help improve ciguatera risk assessment and management.
Collapse
Affiliation(s)
- Hélène Taiana Darius
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
- Correspondence: ; Tel.: +689-40-416-484
| | - Taina Revel
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
| | - Jérôme Viallon
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
| | - Manoëlla Sibat
- IFREMER, PHYTOX, Laboratoire METALG, F-44000 Nantes, France; (M.S.); (P.H.)
| | - Philippe Cruchet
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
| | - Sébastien Longo
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
| | - Donnie Ransom Hardison
- National Oceanic and Atmospheric Administration, Center for Coastal Fisheries and Habitat Research, Beaufort, NC 28516, USA; (D.R.H.); (W.C.H.)
| | - William C. Holland
- National Oceanic and Atmospheric Administration, Center for Coastal Fisheries and Habitat Research, Beaufort, NC 28516, USA; (D.R.H.); (W.C.H.)
| | | | - R. Wayne Litaker
- CSS, Inc. Under Contract to National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, National Ocean Service, Beaufort, NC 28516, USA;
| | - Jennifer R. McCall
- Center for Marine Science, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403, USA;
| | - Philipp Hess
- IFREMER, PHYTOX, Laboratoire METALG, F-44000 Nantes, France; (M.S.); (P.H.)
| | - Mireille Chinain
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
| |
Collapse
|
10
|
Darius HT, Paillon C, Mou-Tham G, Ung A, Cruchet P, Revel T, Viallon J, Vigliola L, Ponton D, Chinain M. Evaluating Age and Growth Relationship to Ciguatoxicity in Five Coral Reef Fish Species from French Polynesia. Mar Drugs 2022; 20:md20040251. [PMID: 35447924 PMCID: PMC9027493 DOI: 10.3390/md20040251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/03/2022] Open
Abstract
Ciguatera poisoning (CP) results from the consumption of coral reef fish or marine invertebrates contaminated with potent marine polyether compounds, namely ciguatoxins. In French Polynesia, 220 fish specimens belonging to parrotfish (Chlorurus microrhinos, Scarus forsteni, and Scarus ghobban), surgeonfish (Naso lituratus), and groupers (Epinephelus polyphekadion) were collected from two sites with contrasted risk of CP, i.e., Kaukura Atoll versus Mangareva Island. Fish age and growth were assessed from otoliths’ yearly increments and their ciguatoxic status (negative, suspect, or positive) was evaluated by neuroblastoma cell-based assay. Using permutational multivariate analyses of variance, no significant differences in size and weight were found between negative and suspect specimens while positive specimens showed significantly greater size and weight particularly for E. polyphekadion and S. ghobban. However, eating small or low-weight specimens remains risky due to the high variability in size and weight of positive fish. Overall, no relationship could be evidenced between fish ciguatoxicity and age and growth characteristics. In conclusion, size, weight, age, and growth are not reliable determinants of fish ciguatoxicity which appears to be rather species and/or site-specific, although larger fish pose an increased risk of poisoning. Such findings have important implications in current CP risk management programs.
Collapse
Affiliation(s)
- Hélène Taiana Darius
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
- Correspondence: ; Tel.: +689-40-416-484
| | - Christelle Paillon
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, Labex Corail, 98848 Nouméa, New Caledonia, France; (C.P.); (G.M.-T.); (L.V.)
| | - Gérard Mou-Tham
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, Labex Corail, 98848 Nouméa, New Caledonia, France; (C.P.); (G.M.-T.); (L.V.)
| | - André Ung
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Philippe Cruchet
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Taina Revel
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Jérôme Viallon
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Laurent Vigliola
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, Labex Corail, 98848 Nouméa, New Caledonia, France; (C.P.); (G.M.-T.); (L.V.)
| | - Dominique Ponton
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, c/o Institut Halieutique et des Sciences Marines (IH.SM), Université de Toliara, Rue Dr. Rabesandratana, P.O. Box 141, Toliara 601, Madagascar;
| | - Mireille Chinain
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| |
Collapse
|
11
|
Ott BM, Litaker RW, Holland WC, Delwiche CF. Using RDNA sequences to define dinoflagellate species. PLoS One 2022; 17:e0264143. [PMID: 35213572 PMCID: PMC8880924 DOI: 10.1371/journal.pone.0264143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
Dinoflagellate species are traditionally defined using morphological characters, but molecular evidence accumulated over the past several decades indicates many morphologically-based descriptions are inaccurate. This recognition led to an increasing reliance on DNA sequence data, particularly rDNA gene segments, in defining species. The validity of this approach assumes the divergence in rDNA or other selected genes parallels speciation events. Another concern is whether single gene rDNA phylogenies by themselves are adequate for delineating species or if multigene phylogenies are required instead. Currently, few studies have directly assessed the relative utility of multigene versus rDNA-based phylogenies for distinguishing species. To address this, the current study examined D1-D3 and ITS/5.8S rDNA gene regions, a multi-gene phylogeny, and morphological characters in Gambierdiscus and other related dinoflagellate genera to determine if they produce congruent phylogenies and identify the same species. Data for the analyses were obtained from previous sequencing efforts and publicly available dinoflagellate transcriptomic libraries as well from the additional nine well-characterized Gambierdiscus species transcriptomic libraries generated in this study. The D1-D3 and ITS/5.8S phylogenies successfully identified the described Gambierdiscus and Alexandrium species. Additionally, the data showed that the D1-D3 and multigene phylogenies were equally capable of identifying the same species. The multigene phylogenies, however, showed different relationships among species and are likely to prove more accurate at determining phylogenetic relationships above the species level. These data indicated that D1-D3 and ITS/5.8S rDNA region phylogenies are generally successful for identifying species of Gambierdiscus, and likely those of other dinoflagellates. To assess how broadly general this finding is likely to be, rDNA molecular phylogenies from over 473 manuscripts representing 232 genera and 863 described species of dinoflagellates were reviewed. Results showed the D1-D3 rDNA and ITS phylogenies in combination are capable of identifying 97% of dinoflagellate species including all the species belonging to the genera Alexandrium, Ostreopsis and Gambierdiscus, although it should be noted that multi-gene phylogenies are preferred for inferring relationships among these species. A protocol is presented for determining when D1-D3, confirmed by ITS/5.8S rDNA sequence data, would take precedence over morphological features when describing new dinoflagellate species. This protocol addresses situations such as: a) when a new species is both morphologically and molecularly distinct from other known species; b) when a new species and closely related species are morphologically indistinguishable, but genetically distinct; and c) how to handle potentially cryptic species and cases where morphotypes are clearly distinct but have the same rDNA sequence. The protocol also addresses other molecular, morphological, and genetic approaches required to resolve species boundaries in the small minority of species where the D1-D3/ITS region phylogenies fail.
Collapse
Affiliation(s)
- Brittany M. Ott
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland—College Park, College Park, MD, United States of America
- Cell Biology and Molecular Genetics, University of Maryland—College Park, College Park, MD, United States of America
- * E-mail: (BMO); (RWL)
| | - R. Wayne Litaker
- CSS, Inc. Under Contract to National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, Beaufort, North Carolina, United States of America
- * E-mail: (BMO); (RWL)
| | - William C. Holland
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, Beaufort, North Carolina, United States of America
| | - Charles F. Delwiche
- Cell Biology and Molecular Genetics, University of Maryland—College Park, College Park, MD, United States of America
| |
Collapse
|
12
|
Murray JS, Finch SC, Puddick J, Rhodes LL, Harwood DT, van Ginkel R, Prinsep MR. Acute Toxicity of Gambierone and Quantitative Analysis of Gambierones Produced by Cohabitating Benthic Dinoflagellates. Toxins (Basel) 2021; 13:toxins13050333. [PMID: 34063025 PMCID: PMC8147941 DOI: 10.3390/toxins13050333] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/05/2023] Open
Abstract
Understanding the toxicity and production rates of the various secondary metabolites produced by Gambierdiscus and cohabitating benthic dinoflagellates is essential to unravelling the complexities associated with ciguatera poisoning. In the present study, a sulphated cyclic polyether, gambierone, was purified from Gambierdiscus cheloniae CAWD232 and its acute toxicity was determined using intraperitoneal injection into mice. It was shown to be of low toxicity with an LD50 of 2.4 mg/kg, 9600 times less toxic than the commonly implicated Pacific ciguatoxin-1B, indicating it is unlikely to play a role in ciguatera poisoning. In addition, the production of gambierone and 44-methylgambierone was assessed from 20 isolates of ten Gambierdiscus, two Coolia and two Fukuyoa species using quantitative liquid chromatography–tandem mass spectrometry. Gambierone was produced by seven Gambierdiscus species, ranging from 1 to 87 pg/cell, and one species from each of the genera Coolia and Fukuyoa, ranging from 2 to 17 pg/cell. The production of 44-methylgambierone ranged from 5 to 270 pg/cell and was ubiquitous to all Gambierdiscus species tested, as well as both species of Coolia and Fukuyoa. The relative production ratio of these two secondary metabolites revealed that only two species produced more gambierone, G. carpenteri CAWD237 and G. cheloniae CAWD232. This represents the first report of gambierone acute toxicity and production by these cohabitating benthic dinoflagellate species. While these results demonstrate that gambierones are unlikely to pose a risk to human health, further research is required to understand if they bioaccumulate in the marine food web.
Collapse
Affiliation(s)
- J. Sam Murray
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (J.P.); (L.L.R.); (D.T.H.); (R.v.G.)
- New Zealand Food Safety Science and Research Centre, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
- Correspondence:
| | - Sarah C. Finch
- AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand;
| | - Jonathan Puddick
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (J.P.); (L.L.R.); (D.T.H.); (R.v.G.)
| | - Lesley L. Rhodes
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (J.P.); (L.L.R.); (D.T.H.); (R.v.G.)
| | - D. Tim Harwood
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (J.P.); (L.L.R.); (D.T.H.); (R.v.G.)
- New Zealand Food Safety Science and Research Centre, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Roel van Ginkel
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (J.P.); (L.L.R.); (D.T.H.); (R.v.G.)
| | - Michèle R. Prinsep
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| |
Collapse
|
13
|
Chinain M, Gatti CMI, Darius HT, Quod JP, Tester PA. Ciguatera poisonings: A global review of occurrences and trends. HARMFUL ALGAE 2021; 102:101873. [PMID: 33875186 DOI: 10.1016/j.hal.2020.101873] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 06/12/2023]
Abstract
Ciguatera Poisoning (CP) is the most prevalent, phycotoxin related seafood poisoning across the globe, affecting between 10,000 and 50,000 people annually. This illness results from the consumption of seafood contaminated with lipid soluble toxins known as ciguatoxins (CTXs) that are produced by benthic dinoflagellates in the genera Gambierdiscus and Fukuyoa. The present work reviews the global occurrence of CP events and outbreaks, based on both scientific and gray literature. Ciguatera prevalence is significantly underestimated due to a lack of recognition of ciguatera symptoms, limited collection of epidemiological data on a global level, and reticence to report ciguatera in CP-endemic regions. Analysis of the time-series data available for a limited number of countries indicates the highest incidence rates are consistently reported from two historical CP-endemic areas i.e., the Pacific and Caribbean regions, a situation due in part to the strong reliance of local communities on marine resources. Ciguatera-related fatalities are rare (<0.1% of reported cases). The vast majority of outbreaks involve carnivorous fish including snappers, groupers, wrasses, and barracudas. Since 2000, an expansion of the geographical range of CP has been observed in several areas like Macaronesia and east and southeast Asia. In some of these locales, random surveys confirmed the presence of CTXs in locally sourced fish, consistent with the concurrent report of novel CP incidents (e.g., Canary Islands, Madeira, Selvagens Islands, New South Wales). One characteristic of outbreaks occurring in Asia is that they often present as large disease clusters due to group consumption of a single contaminated fish. Similar observations are reported from the Indian Ocean in the form of shark poisoning outbreaks which often lead to singular types of CP characterized by a high fatality rate. Other atypical forms of CP linked to the consumption of marine invertebrates also have been documented recently. Owing to the significant health, socioeconomic and socio-cultural impacts of ciguatera, there is an urgent need for increased, standardized, coordinated efforts in ciguatera education, monitoring and research programs. Several regional and international initiatives have emerged recently, that may help improve patients' care, data collection at a global scale, and risk monitoring and management capabilities in countries most vulnerable to CP's toxic threat.
Collapse
Affiliation(s)
- M Chinain
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia.
| | - C M I Gatti
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia
| | - H T Darius
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia
| | - J-P Quod
- ARVAM-Pareto, Technopole de la Réunion, 14 rue Henri Cornu, 97490 Sainte-Clotilde, La Réunion, France
| | - P A Tester
- Ocean Tester, LLC, 295 Dills Point Road, Beaufort, NC 28516, USA
| |
Collapse
|
14
|
Longo S, Sibat M, Darius HT, Hess P, Chinain M. Effects of pH and Nutrients (Nitrogen) on Growth and Toxin Profile of the Ciguatera-Causing Dinoflagellate Gambierdiscus polynesiensis (Dinophyceae). Toxins (Basel) 2020; 12:E767. [PMID: 33291542 PMCID: PMC7761829 DOI: 10.3390/toxins12120767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Ciguatera poisoning is a foodborne disease caused by the consumption of seafood contaminated with ciguatoxins (CTXs) produced by dinoflagellates in the genera Gambierdiscus and Fukuyoa. Ciguatera outbreaks are expected to increase worldwide with global change, in particular as a function of its main drivers, including changes in sea surface temperature, acidification, and coastal eutrophication. In French Polynesia, G. polynesiensis is regarded as the dominant source of CTXs entering the food web. The effects of pH (8.4, 8.2, and 7.9), Nitrogen:Phosphorus ratios (24N:1P vs. 48N:1P), and nitrogen source (nitrates vs. urea) on growth rate, biomass, CTX levels, and profiles were examined in four clones of G. polynesiensis at different culture age (D10, D21, and D30). Results highlight a decrease in growth rate and cellular biomass at low pH when urea is used as a N source. No significant effect of pH, N:P ratio, and N source on the overall CTX content was observed. Up to ten distinct analogs of Pacific ciguatoxins (P-CTXs) could be detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in clone NHA4 grown in urea, at D21. Amounts of more oxidized P-CTX analogs also increased under the lowest pH condition. These data provide interesting leads for the custom production of CTX standards.
Collapse
Affiliation(s)
- Sébastien Longo
- Laboratory of Marine Biotoxins, Institut Louis Malardé-UMR241 EIO (IFREMER, ILM, IRD, UPF), 98713 Papeete, Tahiti, French Polynesia; (H.T.D.); (M.C.)
| | - Manoëlla Sibat
- Phycotoxins Laboratory, IFREMER, Rue de I’lle d’Yeu, 44311 Nantes, France; (M.S.); (P.H.)
| | - Hélène Taiana Darius
- Laboratory of Marine Biotoxins, Institut Louis Malardé-UMR241 EIO (IFREMER, ILM, IRD, UPF), 98713 Papeete, Tahiti, French Polynesia; (H.T.D.); (M.C.)
| | - Philipp Hess
- Phycotoxins Laboratory, IFREMER, Rue de I’lle d’Yeu, 44311 Nantes, France; (M.S.); (P.H.)
| | - Mireille Chinain
- Laboratory of Marine Biotoxins, Institut Louis Malardé-UMR241 EIO (IFREMER, ILM, IRD, UPF), 98713 Papeete, Tahiti, French Polynesia; (H.T.D.); (M.C.)
| |
Collapse
|
15
|
Pisapia F, Sibat M, Watanabe R, Roullier C, Suzuki T, Hess P, Herrenknecht C. Characterization of maitotoxin-4 (MTX4) using electrospray positive mode ionization high-resolution mass spectrometry and UV spectroscopy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8859. [PMID: 32530533 DOI: 10.1002/rcm.8859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE The dinoflagellate genera Gambierdiscus and Fukuyoa are producers of toxins responsible for Ciguatera Poisoning (CP). Although having very low oral potency, maitotoxins (MTXs) are very toxic following intraperitoneal injection and feeding studies have shown they may accumulate in fish muscle. To date, six MTX congeners have been described but two congeners (MTX2 and MTX4) have not yet been structurally elucidated. The aim of the present study was to further characterize MTX4. METHODS Chemical analysis was performed using liquid chromatography coupled to a diode-array detector (DAD) and positive ion mode high-resolution mass spectrometry (LC/HRMS) on partially purified extracts of G. excentricus (strain VGO792). HRMS/MS studies were also carried out to tentatively explain the fragmentation pathways of MTX and MTX4. RESULTS The comparison of UV and HRMS (ESI+ ) spectra between MTX and MTX4 led us to propose the elemental formula of MTX4 (C157 H241 NO68 S2 , as the unsalted molecule). The comparison of the theoretical and measured m/z values of the doubly charged ions of the isotopic profile in ESI+ were coherent with the proposed elemental formula of MTX4. The study of HRMS/MS spectra on the tri-ammoniated adduct ([M - H + 3NH4 ]2+ ) of both molecules gave additional information about structural features. The cleavage observed, probably located at C99 -C100 in both MTX and MTX4, highlighted the same A-side product ion shared by the two molecules. CONCLUSIONS All these investigations on the characterization of MTX4 contribute to highlighting that MTX4 belongs to the same structural family of MTXs. However, to accomplish a complete structural elucidation of MTX4, an NMR-based study and LC/HRMSn investigation will have to be carried out.
Collapse
Affiliation(s)
| | - Manoëlla Sibat
- Ifremer, DYNECO, Rue de l'Île d'Yeu, Nantes, 44311, France
| | - Ryuichi Watanabe
- NRIFS, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Catherine Roullier
- MMS EA2160, Faculté de Pharmacie, Université de Nantes, 9 rue Bias, Nantes, 44035, France
| | - Toshiyuki Suzuki
- NRIFS, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Philipp Hess
- Ifremer, DYNECO, Rue de l'Île d'Yeu, Nantes, 44311, France
| | - Christine Herrenknecht
- MMS EA2160, Faculté de Pharmacie, Université de Nantes, 9 rue Bias, Nantes, 44035, France
| |
Collapse
|
16
|
Van Dolah FM, Morey JS, Milne S, Ung A, Anderson PE, Chinain M. Transcriptomic analysis of polyketide synthases in a highly ciguatoxic dinoflagellate, Gambierdiscus polynesiensis and low toxicity Gambierdiscus pacificus, from French Polynesia. PLoS One 2020; 15:e0231400. [PMID: 32294110 PMCID: PMC7159223 DOI: 10.1371/journal.pone.0231400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/23/2020] [Indexed: 11/18/2022] Open
Abstract
Marine dinoflagellates produce a diversity of polyketide toxins that are accumulated in marine food webs and are responsible for a variety of seafood poisonings. Reef-associated dinoflagellates of the genus Gambierdiscus produce toxins responsible for ciguatera poisoning (CP), which causes over 50,000 cases of illness annually worldwide. The biosynthetic machinery for dinoflagellate polyketides remains poorly understood. Recent transcriptomic and genomic sequencing projects have revealed the presence of Type I modular polyketide synthases in dinoflagellates, as well as a plethora of single domain transcripts with Type I sequence homology. The current transcriptome analysis compares polyketide synthase (PKS) gene transcripts expressed in two species of Gambierdiscus from French Polynesia: a highly toxic ciguatoxin producer, G. polynesiensis, versus a non-ciguatoxic species G. pacificus, each assembled from approximately 180 million Illumina 125 nt reads using Trinity, and compares their PKS content with previously published data from other Gambierdiscus species and more distantly related dinoflagellates. Both modular and single-domain PKS transcripts were present. Single domain β-ketoacyl synthase (KS) transcripts were highly amplified in both species (98 in G. polynesiensis, 99 in G. pacificus), with smaller numbers of standalone acyl transferase (AT), ketoacyl reductase (KR), dehydratase (DH), enoyl reductase (ER), and thioesterase (TE) domains. G. polynesiensis expressed both a larger number of multidomain PKSs, and larger numbers of modules per transcript, than the non-ciguatoxic G. pacificus. The largest PKS transcript in G. polynesiensis encoded a 10,516 aa, 7 module protein, predicted to synthesize part of the polyether backbone. Transcripts and gene models representing portions of this PKS are present in other species, suggesting that its function may be performed in those species by multiple interacting proteins. This study contributes to the building consensus that dinoflagellates utilize a combination of Type I modular and single domain PKS proteins, in an as yet undefined manner, to synthesize polyketides.
Collapse
Affiliation(s)
- Frances M. Van Dolah
- Marine Genomics Core, Hollings Marine Laboratory, Charleston, SC, United States of America
- * E-mail:
| | - Jeanine S. Morey
- Marine Genomics Core, Hollings Marine Laboratory, Charleston, SC, United States of America
| | - Shard Milne
- Charleston Computational Genomics Group, Department of Computer Science, College of Charleston, Charleston, SC, United States of America
| | - André Ung
- Laboratoire des Biotoxines Marines, Institut Louis Malardé—UMR 241 EIO, Papeete, Tahiti, French Polynesia
| | - Paul E. Anderson
- Charleston Computational Genomics Group, Department of Computer Science, College of Charleston, Charleston, SC, United States of America
| | - Mireille Chinain
- Laboratoire des Biotoxines Marines, Institut Louis Malardé—UMR 241 EIO, Papeete, Tahiti, French Polynesia
| |
Collapse
|
17
|
Soliño L, Costa PR. Global impact of ciguatoxins and ciguatera fish poisoning on fish, fisheries and consumers. ENVIRONMENTAL RESEARCH 2020; 182:109111. [PMID: 31927300 DOI: 10.1016/j.envres.2020.109111] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Ciguatera fish poisoning (CFP) is one of the most devastating food-borne illnesses caused by fish consumption. Ciguatoxins (CTXs) are potent neurotoxins synthesized by the benthic microalgae Gambierdiscus spp. and Fukuyoa spp. that are transmitted to fish by grazing and predation. Despite the high incidence of CFP, affecting an estimated number of 50,000 persons per year in tropical and subtropical latitudes, the factors underlying CTXs occurrence are still not well understood. Toxin transfer and dynamics in fish and food-webs are complex. Feeding habits and metabolic pathways determine the toxin profile and toxicity of fish, and migratory species may transport and spread the hazard. Furthermore, CTX effect on fish may be a limiting factor for fish recruitment and toxin prevalence. Recently, new occurrences of Gambierdiscus spp. in temperate areas have been concomitant with the detection of toxic fish and CFP incidents in non-endemic areas. CFP cases in Europe have led to implementation of monitoring programs and fisheries restrictions with considerable impact on local economies. More than 400 species of fish can be vectors of CTXs, and most of them are high-valued commercial species. Thus, the risk uncertainty and the spread of Gambierdiscus have serious consequences for fisheries and food safety. Here, we present a critical review of CTXs impacts on fish, fisheries, and humans, based on the current knowledge on CFP incidence and CTXs prevalence in microalgae and fish.
Collapse
Affiliation(s)
- Lucía Soliño
- IPMA - Instituto Português do Mar da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1495-006, Lisbon, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| | - Pedro Reis Costa
- IPMA - Instituto Português do Mar da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1495-006, Lisbon, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
18
|
Ciguatera Fish Poisoning: The Risk from an Aotearoa/New Zealand Perspective. Toxins (Basel) 2020; 12:toxins12010050. [PMID: 31952334 PMCID: PMC7020403 DOI: 10.3390/toxins12010050] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 01/24/2023] Open
Abstract
Gambierdiscus and Fukuyoa species have been identified in Aotearoa/New Zealand's coastal waters and G. polynesiensis, a known producer of ciguatoxins, has been isolated from Rangitāhua/Kermadec Islands (a New Zealand territory). The warming of the Tasman Sea and the waters around New Zealand's northern subtropical coastline heighten the risk of Gambierdiscus proliferating in New Zealand. If this occurs, the risk of ciguatera fish poisoning due to consumption of locally caught fish will increase. Research, including the development and testing of sampling methods, molecular assays, and chemical and toxicity tests, will continue. Reliable monitoring strategies are important to manage and mitigate the risk posed by this emerging threat. The research approaches that have been made, many of which will continue, are summarised in this review.
Collapse
|
19
|
Tester PA, Litaker RW, Berdalet E. Climate change and harmful benthic microalgae. HARMFUL ALGAE 2020; 91:101655. [PMID: 32057343 DOI: 10.1016/j.hal.2019.101655] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Sea surface temperatures in the world's oceans are projected to warm by 0.4-1.4 °C by mid twenty-first century causing many tropical and sub-tropical harmful dinoflagellate genera like Gambierdiscus, Fukuyoa and Ostreopsis (benthic harmful algal bloom species, BHABs) to exhibit higher growth rates over much of their current geographic range, resulting in higher population densities. The primary exception to this trend will be in the tropics where temperatures exceed species-specific upper thermal tolerances (30-31 °C) beyond which growth slows significantly. As surface waters warm, migration to deeper habitats is expected to provide refuge. Range extensions of several degrees of latitude also are anticipated, but only where species-specific habitat requirements can be met (e.g., temperature, suitable substrate, low turbulence, light, salinity, pH). The current understanding of habitat requirements that determine species distributions are reviewed to provide fuller understanding of how individual species will respond to climate change from the present to 2055 while addressing the paucity of information on environmental factors controlling small-scale distribution in localized habitats. Based on the available information, we hypothesized how complex environmental interactions can influence abundance and potential range extensions of BHAB species in different biogeographic regions and identify sentinel sites appropriate for long-term monitoring programs to detect range extensions and reduce human health risks.
Collapse
Affiliation(s)
| | - R Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, 101 Pivers Island Road, Beaufort, NC, 28516, USA
| | - Elisa Berdalet
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Catalonia, Spain
| |
Collapse
|
20
|
Kretzschmar AL, Verma A, Kohli G, Murray S. Development of a quantitative PCR assay for the detection and enumeration of a potentially ciguatoxin-producing dinoflagellate, Gambierdiscus lapillus (Gonyaulacales, Dinophyceae). PLoS One 2019; 14:e0224664. [PMID: 31730656 PMCID: PMC6857910 DOI: 10.1371/journal.pone.0224664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/19/2019] [Indexed: 11/19/2022] Open
Abstract
Ciguatera fish poisoning (CFP) is an illness contracted through the ingestion of seafood containing ciguatoxins. It is prevalent in tropical regions worldwide, including in Australia. Ciguatoxins are produced by some species of Gambierdiscus. Therefore, screening of Gambierdiscus species identification through quantitative PCR (qPCR), along with the determination of species toxicity, can be useful in monitoring potential ciguatera risk in these regions. In Australia, CFP is prevalent in tropical Queensland and increasingly in sub-tropical regions of Australia, but has a report rate of approximately 10%. Yet the identity, distribution and abundance of ciguatoxin producing Gambierdiscus spp. is largely unknown. In this study, we developed a rapid qPCR assay to quantify the presence and abundance of Gambierdiscus lapillus, a likely ciguatoxic species first described from Australia. We assessed the specificity and efficiency of the qPCR assay. The assay was tested on 25 environmental samples from the Heron Island reef in the southern Great Barrier Reef, a ciguatera endemic region, to determine the presence and patchiness of this species across samples from Chnoospora sp., Padina sp. and Sargassum sp. macroalgal hosts.
Collapse
Affiliation(s)
- Anna Liza Kretzschmar
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, New South Wales, Australia
- ithree institute (i3), University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Arjun Verma
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Gurjeet Kohli
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, New South Wales, Australia
- Alfred Wegener-Institut Helmholtz-Zentrum fr Polar- und Meeresforschung, Bremerhaven, Germany
| | - Shauna Murray
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
21
|
Kretzschmar AL, Larsson ME, Hoppenrath M, Doblin MA, Murray SA. Characterisation of Two Toxic Gambierdiscus spp. (Gonyaulacales, Dinophyceae) from the Great Barrier Reef (Australia): G. lewisii sp. nov. and G. holmesii sp. nov. Protist 2019; 170:125699. [PMID: 31770639 DOI: 10.1016/j.protis.2019.125699] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/29/2022]
Abstract
Ciguatera fish poisoning (CFP) is a human illness caused via consumption of seafood contaminated with neurotoxins produced by some species from the epiphytic dinoflagellate genus Gambierdiscus. In this study, we describe two new species of Gambierdiscus isolated from Heron Island in the Southern Great Barrier Reef, Queensland, Australia. These new species were analysed using light microscopy, scanning electron microscopy, and phylogenetic analyses of nuclear encoded ribosomal ITS, SSU as well as D1-D3 and D8-D10 of the LSU gene regions. Gambierdiscus lewisii sp. nov. (Po, 3', 0a, 7″, 6c,? s, 5‴, 0p, 2'‴) is distinguished by its strong reticulate-foveate ornamentation and is genetically distinct from its sister species, G. pacificus. Gambierdiscus holmesii sp. nov. (Po, 3', 0a, 7″, 6c, 6s?, 5‴, 0p, 2'‴) is morphologically distinct from the genetically similar species G. silvae because of a strongly ventrally displaced apical pore complex and a characteristic fold at the anterior edge of the sulcus. Both G. lewisii and G. holmesii produce putative Maitotoxin-(44-Methylgambierone) and compounds which show ciguatoxin and maitotoxin-like activities. Identification of two new Gambierdiscus species will enable us to more accurately assess the risk of CFP in Australia and internationally.
Collapse
Affiliation(s)
- Anna L Kretzschmar
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| | - Michaela E Larsson
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| | - Mona Hoppenrath
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Südstrand 44, D-26382 Wilhelmshaven, Germany
| | - Martina A Doblin
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| | - Shauna A Murray
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.
| |
Collapse
|
22
|
Díaz-Asencio L, Vandersea M, Chomérat N, Fraga S, Clausing RJ, Litaker RW, Chamero-Lago D, Gómez-Batista M, Moreira-González A, Tester P, Alonso-Hernández C, Dechraoui Bottein MY. Morphology, toxicity and molecular characterization of Gambierdiscus spp. towards risk assessment of ciguatera in south central Cuba. HARMFUL ALGAE 2019; 86:119-127. [PMID: 31358271 DOI: 10.1016/j.hal.2019.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Ciguatera poisoning is caused by the consumption of reef fish or shellfish that have accumulated ciguatoxins, neurotoxins produced by benthic dinoflagellates of the genera Gambierdiscus or Fukuyoa. Although ciguatera constitutes the primary cause of seafood intoxication in Cuba, very little information is available on the occurrence of ciguatoxins in the marine food web and the causative benthic dinoflagellate species. This study conducted on the south-central coast of Cuba reports the occurrence of Gambierdiscus and Fukuyoa genera and the associated benthic genera Ostreopsis and Prorocentrum. Gambierdiscus/Fukuyoa cells were present at low to moderate abundances depending on the site and month of sampling. This genus was notably higher on Dictyotaceae than on other macrophytes. PCR analysis of field-collected samples revealed the presence of six different Gambierdiscus and one Fukuyoa species, including G. caribaeus, G. carolinianus, G. carpenteri, G. belizeanus, F. ruetzleri, G. silvae, and Gambierdiscus sp. ribotype 2. Only Gambierdiscus excentricus was absent from the eight Gambierdiscus/Fukuyoa species known in the wider Caribbean region. Eleven clonal cultures were established and confirmed by PCR and SEM as being either G. carolinianus or G. caribaeus. Toxin production in each isolate was assessed by a radioligand receptor binding assay and found to be below the assay quantification limit. These novel findings augment the knowledge of the ciguatoxin-source dinoflagellates that are present in Cuba, however further studies are needed to better understand the correlation between their abundance, species-specific toxin production in the environment, and the risk for fish contamination, in order to develop better informed ciguatera risk management strategies.
Collapse
Affiliation(s)
- Lisbet Díaz-Asencio
- Centro de Estudios Ambientales de Cienfuegos (CEAC), Carretera a Castillo de Jagua Km 1 ½ Ciudad Nuclear AP, 59350, Cienfuegos, Cuba
| | - Mark Vandersea
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, 101 Pivers Island Road, Beaufort, NC, 28516, USA
| | - Nicolas Chomérat
- Ifremer, Laboratory of Environment and Resources Western Britanny, Coastal Research Unit, Place de la Croix, B.P. 40537, 29185, Concarneau Cedex, France
| | - Santiago Fraga
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390, Vigo, Spain
| | - Rachel J Clausing
- Environment Laboratories, Department of Nuclear Science and Application, International Atomic Energy Agency, 98000, Monaco
| | - R Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, 101 Pivers Island Road, Beaufort, NC, 28516, USA
| | - Donaida Chamero-Lago
- Centro de Estudios Ambientales de Cienfuegos (CEAC), Carretera a Castillo de Jagua Km 1 ½ Ciudad Nuclear AP, 59350, Cienfuegos, Cuba
| | - Miguel Gómez-Batista
- Centro de Estudios Ambientales de Cienfuegos (CEAC), Carretera a Castillo de Jagua Km 1 ½ Ciudad Nuclear AP, 59350, Cienfuegos, Cuba
| | - Angel Moreira-González
- Centro de Estudios Ambientales de Cienfuegos (CEAC), Carretera a Castillo de Jagua Km 1 ½ Ciudad Nuclear AP, 59350, Cienfuegos, Cuba
| | - Patricia Tester
- Ocean Tester, LLC, 295 Dills Point Road, Beaufort, NC, 28516, USA
| | - Carlos Alonso-Hernández
- Centro de Estudios Ambientales de Cienfuegos (CEAC), Carretera a Castillo de Jagua Km 1 ½ Ciudad Nuclear AP, 59350, Cienfuegos, Cuba
| | | |
Collapse
|
23
|
Reñé A, Hoppenrath M. Psammodinium inclinatum gen. nov. et comb. nov. (=Thecadinium inclinatum Balech) is the closest relative to the toxic dinoflagellate genera Gambierdiscus and Fukuyoa. HARMFUL ALGAE 2019; 84:161-171. [PMID: 31128800 DOI: 10.1016/j.hal.2019.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
The heterotrophic sand-dwelling dinoflagellate Thecadinium inclinatum has been re-examined by light and scanning electron microscopy in order to resolve the discrepancies on its plate pattern from the literature, and to obtain its phylogenetic information single-cell PCR technique has been used. The comparison of morphological and molecular information available for other Thecadinium species confirms the genus is polyphyletic and T. inclinatum seems not related to other representatives of the genus sensu lato. Thus, a new genus and combination for the species, Psammodinium inclinatum gen. nov., comb. nov. is proposed. Cells are heterotrophic and strongly laterally flattened, with sulcal pocket. The revised tabulation is: APC 3' 7" 7c 7s? 5"' 1p 2"" with a long-shank fishhook-shaped apical pore and descending cingulum. The cingulum inclines ventrally and declines on the right lateral side producing an asymmetrical epitheca. The epitheca is much smaller than the hypotheca. The phylogenetic results showed a strong relationship with the autotrophic epiphytic genera Gambierdiscus and Fukuyoa, being closely related with the latter. The Gambierdiscus species typically have a tropical and sub-tropical distribution and produce ciguatoxins, causing thousands of intoxications every year by consumption of contaminated fish. Fukuyoa representatives have a wider distribution including warm and temperate waters, and it has been demonstrated that they are also able to produce ciguatoxins, even though at lower amounts. P. inclinatum, which potential toxicity remains to be determined, represents an interesting independent evolutionary branch that resulted in the loss of chloroplasts, the strong lateral compression and the adaptation to sandy habitats in temperate and cold waters.
Collapse
Affiliation(s)
- Albert Reñé
- Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain.
| | - Mona Hoppenrath
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Südstrand 44, D-26382 Wilhelmshaven, Germany
| |
Collapse
|
24
|
Ciguatera in Mexico (1984⁻2013). Mar Drugs 2018; 17:md17010013. [PMID: 30597874 PMCID: PMC6356608 DOI: 10.3390/md17010013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 11/17/2022] Open
Abstract
Historical records of ciguatera in Mexico date back to 1862. This review, including references and epidemiological reports, documents 464 cases during 25 events from 1984 to 2013: 240 (51.72%) in Baja California Sur, 163 (35.12%) in Quintana Roo, 45 (9.69%) in Yucatan, and 16 (3.44%) cases of Mexican tourists intoxicated in Cuba. Carnivorous fish, such as snapper (Lutjanus) and grouper (Epinephelus and Mycteroperca) in the Pacific Ocean, and great barracuda (Sphyraena barracuda) and snapper (Lutjanus) in the Atlantic (Gulf of Mexico and Caribbean Sea), were involved in all cases. In the Mexican Caribbean, a sub-record of ciguatera cases that occurred before 1984 exists. However, the number of intoxications has increased in recent years, and this food poisoning is poorly studied in the region. Current records suggest that ciguatera fish poisoning in humans is the second most prevalent form of seafood poisoning in Mexico, only exceeded by paralytic shellfish poisoning (505 cases, 21 fatalities in the same 34-year period). In this study, the status of ciguatera in Mexico (epidemiological and treatment), and the fish vectors are reviewed. Dinoflagellate species Gambierdiscus, Ostreopsis, and Prorocentrum are related with the reported outbreaks, marine toxins, ecological risk, and the potential toxicological impact.
Collapse
|
25
|
Vacarizas J, Benico G, Austero N, Azanza R. Taxonomy and toxin production of Gambierdiscus carpenteri (Dinophyceae) in a tropical marine ecosystem: The first record from the Philippines. MARINE POLLUTION BULLETIN 2018; 137:430-443. [PMID: 30503452 DOI: 10.1016/j.marpolbul.2018.10.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/30/2018] [Accepted: 10/15/2018] [Indexed: 06/09/2023]
Abstract
Morphological and phylogenetic analysis showed that the Gambierdiscus isolate from Bolinao, Philippines belongs to the species of G. carpenteri. It was morphologically more similar to the Merimbula strain than the subtropical Florida Keys strain. Growth and toxin production were also investigated at varying levels of temperature, salinity, and irradiance. Gambierdiscus are known to grow favorably in a low light environment. However, this study showed high growth rates of G. carpenteri even at high irradiance levels. Generally, cells produced more toxins at lower treatment levels. Highest cellular toxin content recorded was 7.48 ± 0.49 pg Pbtx eq/cell at culture conditions of 25 °C, 100 μmol photons m-2 s-1, and salinity of 26. Growth rate and toxin production data suggest that cells produced more toxins during the slowest growth at certain range of treatments. This information gives insight into how changes in environmental conditions may affect toxin production and growth of G. carpenteri.
Collapse
Affiliation(s)
- Joshua Vacarizas
- Harmful Algal Bloom Laboratory, The Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines; Verde Island Passage Center for Oceanographic Research and Aquatic Life Sciences, Batangas State University, Batangas City, Batangas, Philippines.
| | - Garry Benico
- Harmful Algal Bloom Laboratory, The Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Nero Austero
- Harmful Algal Bloom Laboratory, The Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Rhodora Azanza
- Harmful Algal Bloom Laboratory, The Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
26
|
Jang SH, Jeong HJ, Yoo YD. Gambierdiscus jejuensis sp. nov., an epiphytic dinoflagellate from the waters of Jeju Island, Korea, effect of temperature on the growth, and its global distribution. HARMFUL ALGAE 2018; 80:149-157. [PMID: 30502807 DOI: 10.1016/j.hal.2018.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
The genus Gambierdiscus produces ciguatera toxins, which has led to extensive studies of this genus. Epiphytic dinoflagellate cells were isolated from coralline macroalgae collected from the coastal waters of Jeju Island, Korea, and two clonal cultures were established. The morphology of these cells was examined using light and scanning electron microscopy, and the sequences of the small subunit (SSU), large subunit (LSU), and internal transcribed spacer (ITS) region of rDNA were determined. The phylogenetic trees based on SSU, LSU (D1-D3), and LSU (D8-D10) rDNA showed the two Korean isolates forming a clade with unidentified strains named Gambierdiscus sp. type 2. This clade showed a clear divergence from the two closest clades containing of the G. caribaeus and G. carpenteri strains. Morphologically, the Korean isolates had an anteroposteriorly compressed cell shape having a smooth theca ornamentation. Growth of the Korean isolates ceased when water temperatures were <20 °C or >30 °C with an optimum at 26 °C. This temperature preference may account for why Gambierdiscus sp. type 2 has only been isolated from the temperate waters of Korea and Japan. However, the two most closely related species G. caribaeus and G. carpenteri have broader temperature ranges tolerating as high as 34-36 °C and are globally distributed. Based on these results, the Korean isolates are proposed as a new species in the genus Gambierdiscus and named Gambierdiscus jejuensis sp. nov. Furthermore, it is suggested that the unidentified strains belonging to the Gambierdiscus sp. type 2 be transferred to the new species, G. jejuensis.
Collapse
Affiliation(s)
- Se Hyeon Jang
- School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hae Jin Jeong
- School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Suwon, Gyeonggi-do 16229, Republic of Korea.
| | - Yeong Du Yoo
- Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University, Kunsan 54150, Republic of Korea
| |
Collapse
|
27
|
Murray JS, Boundy MJ, Selwood AI, Harwood DT. Development of an LC-MS/MS method to simultaneously monitor maitotoxins and selected ciguatoxins in algal cultures and P-CTX-1B in fish. HARMFUL ALGAE 2018; 80:80-87. [PMID: 30502815 DOI: 10.1016/j.hal.2018.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 06/09/2023]
Abstract
Ciguatera fish poisoning is a serious human health issue that is highly localized to tropical and sub-tropical coastal areas, affecting many of the indigenous island communities intrinsically linked to reef systems for sustenance and trade. It is caused by the consumption of reef fish contaminated with ciguatoxins and is reported as the most common cause of non-bacterial food poisoning. The causative toxins bioaccumulate up the food web, from small herbivorous fish that graze on microalgae of the genus Gambierdiscus into the higher trophic level omnivorous and carnivorous fish predating on them. The number of Gambierdiscus species being described is increasing rapidly and the role of other toxins produced by this microalgal genus in ciguatera intoxications, such as maitotoxin, remains unclear. Ciguatoxins and maitotoxin are among the most potent marine toxins known and there are currently no methods of analysis that can simultaneously monitor these toxins with a high degree of specificity. To meet this need a rapid and selective ultra-performance liquid chromatography tandem mass spectrometry method has been developed to rapidly screen Gambierdiscus cultures and environmental sample device extracts for ciguatoxins and maitotoxins. A fast sample preparation method has also been developed to allow sensitive quantification of the potent ciguatoxin fish metabolite P-CTX-1B from fish extracts, and this method has been subjected to a small validation study. Novel aspects of this approach include the use of alkaline mobile phase for chromatographic separation and specific monitoring of the various toxins. This method has good potential to help evaluate ciguatera risk associated with Gambierdiscus and related microalgal species, and to help promote method development activities for this important and analytically challenging toxin class.
Collapse
Affiliation(s)
- J Sam Murray
- Cawthron Institute, Private Bag 2, Nelson 7010, New Zealand(1)
| | | | | | - D Tim Harwood
- Cawthron Institute, Private Bag 2, Nelson 7010, New Zealand(1).
| |
Collapse
|
28
|
Roué M, Darius HT, Chinain M. Solid Phase Adsorption Toxin Tracking (SPATT) Technology for the Monitoring of Aquatic Toxins: A Review. Toxins (Basel) 2018; 10:toxins10040167. [PMID: 29677131 PMCID: PMC5923333 DOI: 10.3390/toxins10040167] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
The Solid Phase Adsorption Toxin Tracking (SPATT) technology, first introduced in 2004, uses porous synthetic resins capable of passively adsorbing toxins produced by harmful microalgae or cyanobacteria and dissolved in the water. This method allows for the detection of toxic compounds directly in the water column and offers numerous advantages over current monitoring techniques (e.g., shellfish or fish testing and microalgae/cyanobacteria cell detection), despite some limitations. Numerous laboratory and field studies, testing different adsorbent substrates of which Diaion® HP20 resin appears to be the most versatile substrate, have been carried out worldwide to assess the applicability of these passive monitoring devices to the detection of toxins produced by a variety of marine and freshwater microorganisms. SPATT technology has been shown to provide reliable, sensitive and time-integrated sampling of various aquatic toxins, and also has the potential to provide an early warning system for both the occurrence of toxic microalgae or cyanobacteria and bioaccumulation of toxins in foodstuffs. This review describes the wide range of lipophilic and hydrophilic toxins associated with toxin-producing harmful algal blooms (HABs) that are successfully detected by SPATT devices. Implications in terms of monitoring of emerging toxic risks and reinforcement of current risk assessment programs are also discussed.
Collapse
Affiliation(s)
- Mélanie Roué
- Institut de Recherche pour le Développement (IRD), UMR 241 EIO, P.O. box 53267, 98716 Pirae, Tahiti, French Polynesia.
| | - Hélène Taiana Darius
- Laboratory of Toxic Microalgae, Institut Louis Malardé (ILM), UMR 241 EIO, P.O. box 30, 98713 Papeete, Tahiti, French Polynesia.
| | - Mireille Chinain
- Laboratory of Toxic Microalgae, Institut Louis Malardé (ILM), UMR 241 EIO, P.O. box 30, 98713 Papeete, Tahiti, French Polynesia.
| |
Collapse
|
29
|
Larsson ME, Laczka OF, Harwood DT, Lewis RJ, Himaya SWA, Murray SA, Doblin MA. Toxicology of Gambierdiscus spp. (Dinophyceae) from Tropical and Temperate Australian Waters. Mar Drugs 2018; 16:md16010007. [PMID: 29301247 PMCID: PMC5793055 DOI: 10.3390/md16010007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 11/22/2022] Open
Abstract
Ciguatera Fish Poisoning (CFP) is a human illness caused by the consumption of marine fish contaminated with ciguatoxins (CTX) and possibly maitotoxins (MTX), produced by species from the benthic dinoflagellate genus Gambierdiscus. Here, we describe the identity and toxicology of Gambierdiscus spp. isolated from the tropical and temperate waters of eastern Australia. Based on newly cultured strains, we found that four Gambierdiscus species were present at the tropical location, including G. carpenteri, G. lapillus and two others which were not genetically identical to other currently described species within the genus, and may represent new species. Only G. carpenteri was identified from the temperate location. Using LC-MS/MS analysis we did not find any characterized microalgal CTXs (P-CTX-3B, P-CTX-3C, P-CTX-4A and P-CTX-4B) or MTX-1; however, putative maitotoxin-3 (MTX-3) was detected in all species except for the temperate population of G. carpenteri. Using the Ca2+ influx SH-SY5Y cell Fluorescent Imaging Plate Reader (FLIPR) bioassay we found CTX-like activity in extracts of the unidentified Gambierdiscus strains and trace level activity in strains of G. lapillus. While no detectable CTX-like activity was observed in tropical or temperate strains of G. carpenteri, all species showed strong maitotoxin-like activity. This study, which represents the most comprehensive analyses of the toxicology of Gambierdiscus strains isolated from Australia to date, suggests that CFP in this region may be caused by currently undescribed ciguatoxins and maitotoxins.
Collapse
Affiliation(s)
- Michaela E Larsson
- Climate Change Cluster, University of Technology Sydney, P.O. Box 123 Broadway, Sydney, NSW 2007, Australia.
| | - Olivier F Laczka
- Climate Change Cluster, University of Technology Sydney, P.O. Box 123 Broadway, Sydney, NSW 2007, Australia.
| | - D Tim Harwood
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7010, New Zealand.
| | - Richard J Lewis
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - S W A Himaya
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Shauna A Murray
- Climate Change Cluster, University of Technology Sydney, P.O. Box 123 Broadway, Sydney, NSW 2007, Australia.
| | - Martina A Doblin
- Climate Change Cluster, University of Technology Sydney, P.O. Box 123 Broadway, Sydney, NSW 2007, Australia.
| |
Collapse
|
30
|
Roué M, Darius HT, Viallon J, Ung A, Gatti C, Harwood DT, Chinain M. Application of solid phase adsorption toxin tracking (SPATT) devices for the field detection of Gambierdiscus toxins. HARMFUL ALGAE 2018; 71:40-49. [PMID: 29306395 DOI: 10.1016/j.hal.2017.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 11/26/2017] [Accepted: 11/26/2017] [Indexed: 06/07/2023]
Abstract
Ciguatera fish poisoning is a food-borne illness caused by the consumption of seafood contaminated with ciguatoxins (CTXs) produced by dinoflagellates in the Gambierdiscus genus. Since most surveillance programs currently rely on the survey of Gambierdiscus cell densities and species composition, supplementary toxin-based methods allowing the time- and spatially integrated sampling of toxins in ciguateric environments are needed for a more reliable assessment and management of the risks associated with Gambierdiscus proliferation. Solid Phase Adsorption Toxin Tracking (SPATT) filters use porous synthetic resins capable of adsorbing toxins directly from the water column. To assess the ability of these passive monitoring devices to retain Gambierdiscus toxins, SPATT bags filled with 10g of HP20 resin were deployed for 48h in two French Polynesian locations at high (Nuku Hiva Island) vs. low to moderate (Kaukura Atoll) risk of ciguatera. CTXs could be detected in SPATT bags extracts from Nuku Hiva Island, as assessed by the mouse neuroblastoma cell-based assay (CBA-N2a) and liquid chromatography - tandem mass spectrometry (LC-MS/MS) analyses. Results of in vitro experiments suggest that the saturation limit of CTXs on HP20 resin, for a deployment time of 48h, is ≃ 55ng P-CTX-3C equiv. g-1 resin. Despite the non detection of maitotoxin (MTX), LC-MS/MS analyses showed that two other compounds also produced by Gambierdiscus species were retained on SPATT bags, i.e. iso-P-CTX-3B/C and a putative MTX analogue, known as MTX-3. This study, the first to demonstrate the suitability of SPATT technology for the in situ monitoring of Gambierdiscus toxins, highlights the potential application of this tool for routine ciguatera risk assessment and management programs.
Collapse
Affiliation(s)
- Mélanie Roué
- Institut de Recherche pour le Développement (IRD) - UMR 241 EIO, PO Box 5 29, 98713 Papeete, Tahiti, French Polynesia.
| | - Hélène Taiana Darius
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae - UMR 241 EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia
| | - Jérôme Viallon
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae - UMR 241 EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia
| | - André Ung
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae - UMR 241 EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia
| | - Clémence Gatti
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae - UMR 241 EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia
| | - D Tim Harwood
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand
| | - Mireille Chinain
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae - UMR 241 EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia
| |
Collapse
|
31
|
Kibler SR, Davenport ED, Tester PA, Hardison DR, Holland WC, Litaker RW. Gambierdiscus and Fukuyoa species in the greater Caribbean: Regional growth projections for ciguatera-associated dinoflagellates. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2017.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
32
|
Giussani V, Asnaghi V, Pedroncini A, Chiantore M. Management of harmful benthic dinoflagellates requires targeted sampling methods and alarm thresholds. HARMFUL ALGAE 2017; 68:97-104. [PMID: 28962993 DOI: 10.1016/j.hal.2017.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Concern regarding Benthic Harmful Algal Blooms (BHABs) is increasing since some harmful benthic species have been identified in new areas. In the Mediterranean basin, the most common harmful benthic microalgae are Ostreopsis cf. ovata and Prorocentrum lima, which produce palytoxin-like compounds and okadaic acid respectively, and the need to implement monitoring activities has increased. However, a general agreement on appropriate strategies (e.g. sampling season, definition of alarm thresholds, etc.) is still lagging behind, especially for P. lima, whose proliferation dynamics are still poorly known.
Collapse
Affiliation(s)
- Valentina Giussani
- DISTAV-University of Genoa, Corso Europa 26, 16132, Genoa, Italy; ARPAL-Dip. Biotossicologia ambientale, Via Fontevivo 21L, 19125 La Spezia, Italy.
| | - Valentina Asnaghi
- DISTAV-University of Genoa, Corso Europa 26, 16132, Genoa, Italy; CoNISMa-P.le Flaminio, 9, 00196, Rome, Italy
| | | | - Mariachiara Chiantore
- DISTAV-University of Genoa, Corso Europa 26, 16132, Genoa, Italy; CoNISMa-P.le Flaminio, 9, 00196, Rome, Italy
| |
Collapse
|
33
|
Smith KF, Biessy L, Argyle PA, Trnski T, Halafihi T, Rhodes LL. Molecular Identification of Gambierdiscus and Fukuyoa (Dinophyceae) from Environmental Samples. Mar Drugs 2017; 15:md15080243. [PMID: 28767092 PMCID: PMC5577598 DOI: 10.3390/md15080243] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/11/2017] [Accepted: 07/28/2017] [Indexed: 12/03/2022] Open
Abstract
Ciguatera Fish Poisoning (CFP) is increasing across the Pacific and the distribution of the causative dinoflagellates appears to be expanding. Subtle differences in thecal plate morphology are used to distinguish dinoflagellate species, which are difficult to determine using light microscopy. For these reasons we sought to develop a Quantitative PCR assay that would detect all species from both Gambierdiscus and Fukuyoa genera in order to rapidly screen environmental samples for potentially toxic species. Additionally, a specific assay for F. paulensis was developed as this species is of concern in New Zealand coastal waters. Using the assays we analyzed 31 samples from three locations around New Zealand and the Kingdom of Tonga. Fourteen samples in total were positive for Gambierdiscus/Fukuyoa and two samples were also positive using the F. paulensis assay. Samples from the Kermadec Islands were further characterized using high-throughput sequencing metabarcoding. The majority of reads corresponded to Gambierdiscus species with three species identified at all sites (G. australes, G. honu and G. polynesiensis). This is the first confirmed identification of G. polynesiensis, a known ciguatoxin producer, in New Zealand waters. Other known toxin-producing genera were also detected, included Alexandrium, Amphidinium, Azadinium, Dinophysis, Ostreopsis, and Prorocentrum.
Collapse
Affiliation(s)
- Kirsty F Smith
- Coastal & Freshwater Group, Cawthron Institute, Private Bag 2, 98 Halifax Street East, Nelson 7042, New Zealand.
| | - Laura Biessy
- Coastal & Freshwater Group, Cawthron Institute, Private Bag 2, 98 Halifax Street East, Nelson 7042, New Zealand.
| | - Phoebe A Argyle
- Coastal & Freshwater Group, Cawthron Institute, Private Bag 2, 98 Halifax Street East, Nelson 7042, New Zealand.
- School of Biological Sciences, University of Canterbury, Private Bag 4800, 20 Kirkwood Avenue, Christchurch 8041, New Zealand.
| | - Tom Trnski
- Auckland War Memorial Museum, Private Bag 92018, Victoria Street West, Auckland 1142, New Zealand.
| | | | - Lesley L Rhodes
- Coastal & Freshwater Group, Cawthron Institute, Private Bag 2, 98 Halifax Street East, Nelson 7042, New Zealand.
| |
Collapse
|
34
|
Shmukler YB, Nikishin DA. Ladder-Shaped Ion Channel Ligands: Current State of Knowledge. Mar Drugs 2017; 15:E232. [PMID: 28726749 PMCID: PMC5532674 DOI: 10.3390/md15070232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 12/20/2022] Open
Abstract
Ciguatoxins (CTX) and brevetoxins (BTX) are polycyclic ethereal compounds biosynthesized by the worldwide distributed planktonic and epibenthic dinoflagellates of Gambierdiscus and Karenia genera, correspondingly. Ciguatera, evoked by CTXs, is a type of ichthyosarcotoxism, which involves a variety of gastrointestinal and neurological symptoms, while BTXs cause so-called neurotoxic shellfish poisoning. Both types of toxins are reviewed together because of similar mechanisms of their action. These are the only molecules known to activate voltage-sensitive Na⁺-channels in mammals through a specific interaction with site 5 of its α-subunit and may compete for it, which results in an increase in neuronal excitability, neurotransmitter release and impairment of synaptic vesicle recycling. Most marine ciguatoxins potentiate Nav channels, but a considerable number of them, such as gambierol and maitotoxin, have been shown to affect another ion channel. Although the extrinsic function of these toxins is probably associated with the function of a feeding deterrent, it was suggested that their intrinsic function is coupled with the regulation of photosynthesis via light-harvesting complex II and thioredoxin. Antagonistic effects of BTXs and brevenal may provide evidence of their participation as positive and negative regulators of this mechanism.
Collapse
Affiliation(s)
- Yuri B Shmukler
- Group of Embryophysiology, N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26, Vavilov st, 119334 Moscow, Russia.
| | - Denis A Nikishin
- Group of Embryophysiology, N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26, Vavilov st, 119334 Moscow, Russia.
| |
Collapse
|
35
|
Rhodes LL, Smith KF, Murray S, Harwood DT, Trnski T, Munday R. The Epiphytic Genus Gambierdiscus (Dinophyceae) in the Kermadec Islands and Zealandia Regions of the Southwestern Pacific and the Associated Risk of Ciguatera Fish Poisoning. Mar Drugs 2017; 15:E219. [PMID: 28696400 PMCID: PMC5532661 DOI: 10.3390/md15070219] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/19/2017] [Accepted: 07/05/2017] [Indexed: 11/30/2022] Open
Abstract
Species in the genus Gambierdiscus produce ciguatoxins (CTXs) and/or maitotoxins (MTXs), which may cause ciguatera fish poisoning (CFP) in humans if contaminated fish are consumed. Species of Gambierdiscus have previously been isolated from macroalgae at Rangitahua (Raoul Island and North Meyer Islands, northern Kermadec Islands), and the opportunity was taken to sample for Gambierdiscus at the more southerly Macauley Island during an expedition in 2016. Gambierdiscus cells were isolated, cultured, and DNA extracted and sequenced to determine the species present. Bulk cultures were tested for CTXs and MTXs by liquid chromatography-mass spectrometry (LC-MS/MS). The species isolated were G. australes, which produced MTX-1 (ranging from 3 to 36 pg/cell), and G. polynesiensis, which produced neither MTX-1 nor, unusually, any known CTXs. Isolates of both species produced putative MTX-3. The risk of fish, particularly herbivorous fish, causing CFP in the Zealandia and Kermadec Islands region is real, although in mainland New Zealand the risk is currently low. Both Gambierdiscus and Fukuyoa have been recorded in the sub-tropical northern region of New Zealand, and so the risk may increase with warming seas and shift in the distribution of Gambierdiscus species.
Collapse
Affiliation(s)
- Lesley L Rhodes
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand.
| | - Kirsty F Smith
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand.
| | - Sam Murray
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand.
| | - D Tim Harwood
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand.
| | - Tom Trnski
- Auckland War Memorial Museum, Private Bag 92018, Victoria Street West, Auckland 1010, New Zealand.
| | - Rex Munday
- AgResearch, Ruakura Research Centre, 10 Bisley Road, Private Bag 3240, Hamilton 3214, New Zealand.
| |
Collapse
|
36
|
Pisapia F, Sibat M, Herrenknecht C, Lhaute K, Gaiani G, Ferron PJ, Fessard V, Fraga S, Nascimento SM, Litaker RW, Holland WC, Roullier C, Hess P. Maitotoxin-4, a Novel MTX Analog Produced by Gambierdiscus excentricus. Mar Drugs 2017; 15:E220. [PMID: 28696398 PMCID: PMC5532662 DOI: 10.3390/md15070220] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 11/17/2022] Open
Abstract
Maitotoxins (MTXs) are among the most potent toxins known. These toxins are produced by epi-benthic dinoflagellates of the genera Gambierdiscus and Fukuyoa and may play a role in causing the symptoms associated with Ciguatera Fish Poisoning. A recent survey revealed that, of the species tested, the newly described species from the Canary Islands, G. excentricus, is one of the most maitotoxic. The goal of the present study was to characterize MTX-related compounds produced by this species. Initially, lysates of cells from two Canary Island G. excentricus strains VGO791 and VGO792 were partially purified by (i) liquid-liquid partitioning between dichloromethane and aqueous methanol followed by (ii) size-exclusion chromatography. Fractions from chromatographic separation were screened for MTX toxicity using both the neuroblastoma neuro-2a (N2a) cytotoxicity and Ca2+ flux functional assays. Fractions containing MTX activity were analyzed using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) to pinpoint potential MTX analogs. Subsequent non-targeted HRMS analysis permitted the identification of a novel MTX analog, maitotoxin-4 (MTX4, accurate mono-isotopic mass of 3292.4860 Da, as free acid form) in the most toxic fractions. HRMS/MS spectra of MTX4 as well as of MTX are presented. In addition, crude methanolic extracts of five other strains of G. excentricus and 37 other strains representing one Fukuyoa species and ten species, one ribotype and one undetermined strain/species of Gambierdiscus were screened for the presence of MTXs using low resolution tandem mass spectrometry (LRMS/MS). This targeted analysis indicated the original maitotoxin (MTX) was only present in one strain (G. australes S080911_1). Putative maitotoxin-2 (p-MTX2) and maitotoxin-3 (p-MTX3) were identified in several other species, but confirmation was not possible because of the lack of reference material. Maitotoxin-4 was detected in all seven strains of G. excentricus examined, independently of their origin (Brazil, Canary Islands and Caribbean), and not detected in any other species. MTX4 may therefore serve as a biomarker for the highly toxic G. excentricus in the Atlantic area.
Collapse
Affiliation(s)
- Francesco Pisapia
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Manoëlla Sibat
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Christine Herrenknecht
- Mer Molécules Santé (MMS) Laboratory EA2160, University of Nantes, LUNAM, Pharmacy Faculty, 9 rue Bias, F-44035 Nantes, France.
| | - Korian Lhaute
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Greta Gaiani
- Department of Life Science, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy.
| | - Pierre-Jean Ferron
- Toxicology of Contaminants Unit, ANSES Laboratory-French Agency for Food, Environmental and Occupational Health and Safety, Fougères, 10 B rue Claude Bourgelat, 35133 Javené, France.
| | - Valérie Fessard
- Toxicology of Contaminants Unit, ANSES Laboratory-French Agency for Food, Environmental and Occupational Health and Safety, Fougères, 10 B rue Claude Bourgelat, 35133 Javené, France.
| | - Santiago Fraga
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Spain.
| | - Silvia M Nascimento
- Laboratório de Microalgas Marinhas, Departamento de Ecologia e Recursos Marinhos, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-240, Brazil.
| | - R Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research (CCFHR), 101 Pivers Island Road, Beaufort, NC 28516, USA.
| | - William C Holland
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research (CCFHR), 101 Pivers Island Road, Beaufort, NC 28516, USA.
| | - Catherine Roullier
- Mer Molécules Santé (MMS) Laboratory EA2160, University of Nantes, LUNAM, Pharmacy Faculty, 9 rue Bias, F-44035 Nantes, France.
| | - Philipp Hess
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| |
Collapse
|
37
|
Dai X, Mak YL, Lu CK, Mei HH, Wu JJ, Lee WH, Chan LL, Lim PT, Mustapa NI, Lim HC, Wolf M, Li D, Luo Z, Gu H, Leaw CP, Lu D. Taxonomic assignment of the benthic toxigenic dinoflagellate Gambierdiscus sp. type 6 as Gambierdiscus balechii (Dinophyceae), including its distribution and ciguatoxicity. HARMFUL ALGAE 2017; 67:107-118. [PMID: 28755713 DOI: 10.1016/j.hal.2017.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
Recent molecular phylogenetic studies of Gambierdiscus species flagged several new species and genotypes, thus leading to revitalizing its systematics. The inter-relationships of clades revealed by the primary sequence information of nuclear ribosomal genes (rDNA), however, can sometimes be equivocal, and therefore, in this study, the taxonomic status of a ribotype, Gambierdiscus sp. type 6, was evaluated using specimens collected from the original locality, Marakei Island, Republic of Kiribati; and specimens found in Rawa Island, Peninsular Malaysia, were further used for comparison. Morphologically, the ribotype cells resembled G. scabrosus, G. belizeanus, G. balechii, G. cheloniae and G. lapillus in thecal ornamentation, where the thecal surfaces are reticulate-foveated, but differed from G. scabrosus by its hatchet-shaped Plate 2', and G. belizeanus by the asymmetrical Plate 3'. To identify the phylogenetic relationship of this ribotype, a large dataset of the large subunit (LSU) and small subunit (SSU) rDNAs were compiled, and performed comprehensive analyses, using Bayesian-inference, maximum-parsimony, and maximum-likelihood, for the latter two incorporating the sequence-structure information of the SSU rDNA. Both the LSU and SSU rDNA phylogenetic trees displayed an identical topology and supported the hypothesis that the relationship between Gambierdiscus sp. type 6 and G. balechii was monophyletic. As a result, the taxonomic status of Gambierdiscus sp. type 6 was revised, and assigned as Gambierdiscus balechii. Toxicity analysis using neuroblastoma N2A assay confirmed that the Central Pacific strains were toxic, ranging from 1.1 to 19.9 fg P-CTX-1 eq cell-1, but no toxicity was detected in a Western Pacific strain. This suggested that the species might be one of the species contributing to the high incidence rate of ciguatera fish poisoning in Marakei Island.
Collapse
Affiliation(s)
- Xinfeng Dai
- Key Laboratory of Marine Ecosystem and Biogeochemistry, The Second Institute of Oceanography, SOA, Hangzhou 310012, China
| | - Yim Ling Mak
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1, Sec. 2, Linong St, Beitou District, Taipei 1121, Taiwan; Department of Bioscience and Institute of Genomics, National Yang Ming University, Taiwan
| | - Hua-Hsuan Mei
- Department of Bioscience and Institute of Genomics, National Yang Ming University, Taiwan
| | - Jia Jun Wu
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory in Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong, Shenzhen, China
| | - Wai Hin Lee
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Leo Lai Chan
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong Special Administrative Region; Department of Biomedical Science, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Nurin Izzati Mustapa
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Hong Chang Lim
- Faculty of Applied Sciences, Tunku Abdul Rahman University College, Johor Branch Campus, 85000 Segamat, Johor, Malaysia
| | - Matthias Wolf
- Department of Bioinformatics, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Dongrong Li
- Key Laboratory of Marine Ecosystem and Biogeochemistry, The Second Institute of Oceanography, SOA, Hangzhou 310012, China
| | - Zhaohe Luo
- Third Institute of Oceanography, Xiamen, China
| | - Haifeng Gu
- Third Institute of Oceanography, Xiamen, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia.
| | - Douding Lu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, The Second Institute of Oceanography, SOA, Hangzhou 310012, China; Shenzhen Key Laboratory in Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
38
|
Munday R, Murray S, Rhodes LL, Larsson ME, Harwood DT. Ciguatoxins and Maitotoxins in Extracts of Sixteen Gambierdiscus Isolates and One Fukuyoa Isolate from the South Pacific and Their Toxicity to Mice by Intraperitoneal and Oral Administration. Mar Drugs 2017; 15:md15070208. [PMID: 28665362 PMCID: PMC5532650 DOI: 10.3390/md15070208] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 11/16/2022] Open
Abstract
Ciguatoxins (CTXs), and possibly maitotoxins (MTXs), are responsible for Ciguatera Fish Poisoning, an important health problem for consumers of reef fish (such as inhabitants of islands in the South Pacific Ocean). The habitational range of the Gambierdiscus species is expanding, and new species are being discovered. In order to provide information on the potential health risk of the Gambierdiscus species, and one Fukuyoa species (found in the Cook Islands, the Kermadec Islands, mainland New Zealand, and New South Wales, Australia), 17 microalgae isolates were collected from these areas. Unialgal cultures were grown and extracts of the culture isolates were analysed for CTXs and MTXs by liquid chromatography tandem mass spectrometry (LC-MS/MS), and their toxicity to mice was determined by intraperitoneal and oral administration. An isolate of G. carpenteri contained neither CTXs nor MTXs, while 15 other isolates (including G. australes, G. cheloniae, G. pacificus, G.honu, and F. paulensis) contained only MTX-1 and/or MTX-3. An isolate of G. polynesiensis contained both CTXs and MTX-3. All the extracts were toxic to mice by intraperitoneal injection, but those containing only MTX-1 and/or -3 were much less toxic by oral administration. The extract of G. polynesiensis was highly toxic by both routes of administration.
Collapse
Affiliation(s)
- Rex Munday
- AgResearch, Ruakura Research Centre, Private Bag 3240, Hamilton 3214, New Zealand.
| | - Sam Murray
- Cawthron Institute, Halifax Street Campus, Private Bag 2, Nelson 7042, New Zealand.
| | - Lesley L Rhodes
- Cawthron Institute, Halifax Street Campus, Private Bag 2, Nelson 7042, New Zealand.
| | - Michaela E Larsson
- Climate Change Cluster, School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, Sydney 2007, NSW, Australia.
| | - D Tim Harwood
- Cawthron Institute, Halifax Street Campus, Private Bag 2, Nelson 7042, New Zealand.
| |
Collapse
|
39
|
Lyu Y, Richlen ML, Sehein TR, Chinain M, Adachi M, Nishimura T, Xu Y, Parsons ML, Smith TB, Zheng T, Anderson DM. LSU rDNA based RFLP assays for the routine identification of Gambierdiscus species. HARMFUL ALGAE 2017; 66:20-28. [PMID: 28602250 DOI: 10.1016/j.hal.2017.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
The Gambierdiscus genus is a group of benthic dinoflagellates commonly associated with ciguatera fish poisoning (CFP), which is generally found in tropical or sub-tropical regions around the world. Morphologically similar species within the genus can vary in toxicity; however, species identifications are difficult or sometimes impossible using light microscopy. DNA sequencing of ribosomal RNA genes (rDNA) is thus often used to identify and describe Gambierdiscus species and ribotypes, but the expense and time can be prohibitive for routine culture screening and/or large-scale monitoring programs. This study describes a restriction fragment length polymorphism (RFLP) typing method based on analysis of the large subunit rDNA that can successfully identify at least nine of the described Gambierdiscus species and two Fukuyoa species. The software programs DNAMAN 6.0 and Restriction Enzyme Picker were used to identify a set of restriction enzymes (SpeI, HpyCH4IV, and TaqαI) capable of distinguishing most of the known Gambierdiscus species for which DNA sequences were available. This assay was tested using in silico analysis and cultured isolates, and species identifications of isolates assigned by RFLP typing were confirmed by DNA sequencing. To verify the assay and assess intra-specific heterogeneity in RFLP patterns, identifications of 63 Gambierdiscus isolates comprising ten Gambierdiscus species, one ribotype, and two Fukuyoa species were confirmed using RFLP typing, and this method was subsequently employed in the routine identification of isolates collected from the Caribbean Sea. The RFLP assay presented here reduces the time and cost associated with morphological identification via scanning electron microscopy and/or DNA sequencing, and provides a phylogenetically sensitive method for routine Gambierdiscus species assignment.
Collapse
Affiliation(s)
- Yihua Lyu
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou 510300, China
| | - Mindy L Richlen
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | - Taylor R Sehein
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Mireille Chinain
- Laboratoire des Microalgues Toxiques, Institut Louis Malardé, UMR 241-EIO, BP 30, 98713 Papeete Tahiti, French Polynesia
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Tomohiro Nishimura
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Yixiao Xu
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Teachers Education University, Nanning 530001, China
| | - Michael L Parsons
- Coastal Watershed Institute, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| | - Tyler B Smith
- Center for Marine and Environmental Studies, University of the Virgin Islands, St Thomas, U.S. Virgin Islands 00802, USA
| | - Tianling Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Science, Xiamen University, Xiamen 361102, China
| | - Donald M Anderson
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
40
|
Sparrow L, Momigliano P, Russ GR, Heimann K. Effects of temperature, salinity and composition of the dinoflagellate assemblage on the growth of Gambierdiscus carpenteri isolated from the Great Barrier Reef. HARMFUL ALGAE 2017; 65:52-60. [PMID: 28526119 DOI: 10.1016/j.hal.2017.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Increases in reported incidence of ciguatera fish poisoning (hereafter ciguatera) have been linked to warmer sea temperatures that are known to trigger coral bleaching events. The drivers that trigger blooms of ciguatera-causing dinoflagellates on the Great Barrier Reef (GBR) are poorly understood. This study investigated the effects of increased temperatures and lowered salinities, often associated with environmental disturbance events, on the population growth of two strains of the potentially ciguatera-causing dinoflagellate, Gambierdiscus carpenteri (NQAIF116 and NQAIF380). Both strains were isolated from the central GBR with NQAIF116 being an inshore strain and NQAIF380 an isolate from a stable environment of a large coral reef aquarium exhibit in ReefHQ, Townsville, Australia. Species of Gambierdiscus are often found as part of a mixed assemblage of benthic toxic dinoflagellates on macroalgal substrates. The effect of assemblage structure of dinoflagellates on the growth of Gambierdiscus populations has, however, not been explored. The study, therefore investigated the growth of G. carpenteri within mixed assemblages of benthic dinoflagellates. Population growth was monitored over a period of 28days under three salinities (16, 26 and 36) and three temperature (24, 28 and 34°C) conditions in a fully crossed experimental design. Temperature and salinity had a significant effect on population growth. Strain NQAIF380 exhibited significantly higher growth at 28°C compared to strain NQAIF116, which had highest growth at 24°C. When strain NQAIF116 was co-cultured with the benthic dinoflagellates, Prorocentrum lima and Ostreopsis sp., inhibitory effects on population growth were observed at a salinity of 36. In contrast, growth stimulation of G. carpenteri (strain NQAIF116) was observed at a salinity of 26 and particularly at 16 when co-cultured with Ostreopsis-dominated assemblages. Range expansion of ciguatera-causing dinoflagellates could lead to higher frequency of reported ciguatera illness in populated temperate Australian regions, outside the tropical range of the GBR. Therefore, the findings on salinity and temperature tolerance of two strains of G. carpenteri indicates potential adaptability to different local environmental conditions. These are baseline data for future investigations into the potential southward range expansion of ciguatera-causing dinoflagellates originating from the GBR.
Collapse
Affiliation(s)
- Leanne Sparrow
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Centre of Sustainable Tropical Fisheries & Aquaculture, James Cook University, Townsville, QLD 4811, Australia.
| | - Paolo Momigliano
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Garry R Russ
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Kirsten Heimann
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Centre of Sustainable Tropical Fisheries & Aquaculture, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
41
|
Rhodes L, Smith KF, Verma A, Curley BG, Harwood DT, Murray S, Kohli GS, Solomona D, Rongo T, Munday R, Murray SA. A new species of Gambierdiscus (Dinophyceae) from the south-west Pacific: Gambierdiscus honu sp. nov. HARMFUL ALGAE 2017; 65:61-70. [PMID: 28526120 DOI: 10.1016/j.hal.2017.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
Two isolates of a new tropical, epiphytic dinoflagellate species, Gambierdiscus honu sp. nov., were obtained from macroalgae sampled in Rarotonga, Cook Islands, and from North Meyer Island, Kermadec Islands. Gambierdiscus honu sp. nov. had the common Gambierdiscus Kofoidian plate formula: Po, 3', 6″, 6C?, 6 or 7S, 5‴, 1p and 2⁗. The characteristic morphological features of this species were its relatively small short dorsoventral length and width and the shape of individual plates, in particular the combination of the hatchet-shaped 2' and pentagonal 3' plates and the length to width ratio of the antapical 1p plate. The combination of these characteristics plus the smooth thecal surface and equal sized 1⁗ and 2⁗ plates differentiated this species from other Gambierdiscus species. The phylogenetic analyses supported the unique description. Both isolates of G. honu produced the putative maitotoxin (MTX)-3 analogue, but neither produced ciguatoxin (CTX) or MTX. Extracts of G. honu were shown to be highly toxic to mice by intraperitoneal injection (0.2mg/kg), although less toxic by gavage. It is possible that toxins other than putative MTX-3 are produced.
Collapse
Affiliation(s)
- Lesley Rhodes
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand.
| | - Kirsty F Smith
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Arjun Verma
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Belinda G Curley
- Sydney Institute of Marine Sciences, Chowder Bay Rd, Mosman 2088, New South Wales, Australia
| | - D Tim Harwood
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Sam Murray
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Gurjeet S Kohli
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Driver, SBS-01N-27, Singapore 637551, Singapore
| | - Dorothy Solomona
- Ministry of Marine Resources, Private Bag, Avarua, Rarotonga, Cook Islands
| | - Teina Rongo
- Climate Change Cook Islands, Office of the Prime Minister, Private Bag, Avarua, Rarotonga, Cook Islands
| | - Rex Munday
- AgResearch, Ruakura Research Centre, 10 Bisley Road, Private Bag 3240, Hamilton 3214, New Zealand
| | - Shauna A Murray
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia; Sydney Institute of Marine Sciences, Chowder Bay Rd, Mosman 2088, New South Wales, Australia
| |
Collapse
|
42
|
Pisapia F, Holland WC, Hardison DR, Litaker RW, Fraga S, Nishimura T, Adachi M, Nguyen-Ngoc L, Séchet V, Amzil Z, Herrenknecht C, Hess P. Toxicity screening of 13 Gambierdiscus strains using neuro-2a and erythrocyte lysis bioassays. HARMFUL ALGAE 2017; 63:173-183. [PMID: 28366392 DOI: 10.1016/j.hal.2017.02.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 06/07/2023]
Abstract
Species in the epi-benthic dinoflagellate genus Gambierdiscus produce ciguatoxins (CTXs) and maitotoxins (MTXs), which are among the most potent marine toxins known. Consumption of fish contaminated with sufficient quantities of CTXs causes Ciguatera Fish Poisoning (CFP), the largest cause of non-bacterial food poisoning worldwide. Maitotoxins, which can be found in the digestive system of fish, could also contribute to CFP if such tissues are consumed. Recently, an increasing number of Gambierdiscus species have been identified; yet, little is known about the variation in toxicity among Gambierdiscus strains or species. This study is the first assessment of relative CTX- and MTX-toxicity of Gambierdiscus species from areas as widespread as the North-Eastern Atlantic Ocean, Pacific Ocean and the Mediterranean Sea. A total of 13 strains were screened: (i) seven Pacific strains of G. australes, G. balechii, G. caribaeus, G. carpenteri, G. pacificus, G. scabrosus and one strain of an undetermined species (Gambierdiscus sp. Viet Nam), (ii) five strains from the North-Eastern Atlantic Ocean (two G. australes, a single G. excentricus and two G. silvae strains), and (iii) one G. carolinianus strain from the Mediterranean Sea. Cell pellets of Gambierdiscus were extracted with methanol and the crude extracts partitioned into a CTX-containing dichloromethane fraction and a MTX-containing aqueous methanol fraction. CTX-toxicity was estimated using the neuro-2a cytoxicity assay, and MTX-toxicity via a human erythrocyte lysis assay. Different species were grouped into different ratios of CTX- and MTX-toxicity, however, the ratio was not related to the geographical origin of species (Atlantic, Mediterranean, Pacific). All strains showed MTX-toxicity, ranging from 1.5 to 86pg MTX equivalents (eq) cell-1. All but one of the strains showed relatively low CTX-toxicity ranging from 0.6 to 50 fg CTX3C eq cell-1. The exception was the highly toxic G. excentricus strain from the Canary Islands, which produced 1426 fg CTX3C eq cell-1. As was true for CTX, the highest MTX-toxicity was also found in G. excentricus. Thus, the present study confirmed that at least one species from the Atlantic Ocean demonstrates similar toxicity as the most toxic strains from the Pacific, even if the metabolites in fish have so far been shown to be more toxic in the Pacific Ocean.
Collapse
Affiliation(s)
- Francesco Pisapia
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - William C Holland
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research (CCFHR),101 Pivers Island Road, Beaufort, NC 28516, USA
| | - D Ransom Hardison
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research (CCFHR),101 Pivers Island Road, Beaufort, NC 28516, USA
| | - R Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research (CCFHR),101 Pivers Island Road, Beaufort, NC 28516, USA
| | - Santiago Fraga
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Tomohiro Nishimura
- LAQUES (Laboratory of Aquatic Environmental Science), Faculty of Agriculture, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Masao Adachi
- LAQUES (Laboratory of Aquatic Environmental Science), Faculty of Agriculture, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Lam Nguyen-Ngoc
- Institute of Oceanography, VAST, Cauda 01, Vinh Nguyen, Nha Trang, Viet Nam
| | - Véronique Séchet
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France
| | - Zouher Amzil
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France
| | - Christine Herrenknecht
- LUNAM, University of Nantes, MMS EA2160, Pharmacy Faculty, 9 rue Bias, F-44035 Nantes, France
| | - Philipp Hess
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France
| |
Collapse
|