1
|
Yan W, Wang G, Ji Y, Qiu J, Zhou C, Li A. Influence of nitrate and salinity on growth and toxin production of Prymnesium parvum. HARMFUL ALGAE 2024; 140:102760. [PMID: 39613368 DOI: 10.1016/j.hal.2024.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 12/01/2024]
Abstract
Fish-killing events caused by haptophyte Prymnesium parvum have been reported in aquatic environments worldwide. This haptophyte could produce diverse prymnesins (PRMs) that harm to aquatic organisms like fishes. In this study, the components of prymnesins in the strain of P. parvum (NMBjih029) isolated from the coast of Ningbo city, China, were elucidated by a high-resolution mass spectrometer (HRMS), and the influence of nitrate levels and salinity on growth and toxin production of P. parvum were also explored. Results showed that the P. parvum produced C-type prymnesins with structure variations in saturation, chlorination, and sugar modifications. The growth and toxin production were significantly affected by nitrate levels in the batch cultures. At the lowest level of nitrate (N:P = 4:1), growth of P. parvum was inhibited but toxin quotas per cell increased up to approximately 4 times of that in control group (N:P = 16:1) during the exponential growth stage. Growth of P. parvum was not obviously affected by different salinities, but the biosynthesis of prymnesins increased with decreasing salinity from 32 to 14 in the culture media. The proportion of high chlorination of prymnesins (tetrachloride) increased in P. parvum under nitrogen limitation stress and low salinity. And the toxin quotas per cell also markedly increased with the extension of culture period in P. parvum under nitrogen limitation and different salinity conditions. This study provides some important cues for toxin profile and environmental impacts on the biosynthesis of prymnesins in the strain of P. parvum isolated from Chinese aquatic environments.
Collapse
Affiliation(s)
- Wenhui Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao, 266100, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao, 266100, China.
| |
Collapse
|
2
|
Chávez Montes RA, Mary MA, Rashel RH, Fokar M, Herrera-Estrella L, Lopez-Arredondo D, Patiño R. Hormetic and transcriptomic responses of the toxic alga Prymnesium parvum to glyphosate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176451. [PMID: 39317257 DOI: 10.1016/j.scitotenv.2024.176451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Growth of the toxic alga Prymnesium parvum is hormetically stimulated with environmentally relevant concentrations of glyphosate. The mechanisms of glyphosate hormesis in this species, however, are unknown. We evaluated the transcriptomic response of P. parvum to glyphosate at concentrations that stimulate maximum growth and where growth is not different from control values, the zero-equivalent point (ZEP). Maximum growth occurred at 0.1 mg l-1 and the ZEP was 2 mg l-1. At 0.1 mg l-1, upregulated transcripts outnumbered downregulated transcripts by one order of magnitude. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that the upregulated transcriptome is primarily associated with metabolism and biosynthesis. Transcripts encoding heat shock proteins and co-chaperones were among the most strongly upregulated, and several others were associated with translation, Redox homeostasis, cell replication, and photosynthesis. Although most of the same transcripts were also upregulated at concentrations ≥ZEP, the proportion of downregulated transcripts greatly increased as glyphosate concentrations increased. At the ZEP, downregulated transcripts were associated with photosynthesis, cell replication, and anion transport, indicating that specific interference with these processes is responsible for the nullification of hormetic growth. Transcripts encoding the herbicidal target of glyphosate, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), were upregulated at concentrations ≥ZEP but not at 0.1 mg l-1, indicating that disruption of EPSPS activity occurred at high concentrations and that nullification of hormetic growth involves the direct interaction of glyphosate with this enzyme. Results of this study may contribute to a better understanding of glyphosate hormesis and of anthropogenic factors that influence P. parvum biogeography and bloom formation.
Collapse
Affiliation(s)
- Ricardo A Chávez Montes
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, USA
| | - Mousumi A Mary
- Department of Biological Sciences and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX, USA
| | - Rakib H Rashel
- Department of Biological Sciences and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX, USA
| | - Mohamed Fokar
- Center for Biotechnology and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, USA
| | - Damar Lopez-Arredondo
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, USA
| | - Reynaldo Patiño
- U.S. Geological Survey and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
3
|
Sonmez ME, Gumus NE, Eczacioglu N, Develi EE, Yücel K, Yildiz HB. Enhancing microalgae classification accuracy in marine ecosystems through convolutional neural networks and support vector machines. MARINE POLLUTION BULLETIN 2024; 205:116616. [PMID: 38936001 DOI: 10.1016/j.marpolbul.2024.116616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
Accurately classifying microalgae species is vital for monitoring marine ecosystems and managing the emergence of marine mucilage, which is crucial for monitoring mucilage phenomena in marine environments. Traditional methods have been inadequate due to time-consuming processes and the need for expert knowledge. The purpose of this article is to employ convolutional neural networks (CNNs) and support vector machines (SVMs) to improve classification accuracy and efficiency. By employing advanced computational techniques, including MobileNet and GoogleNet models, alongside SVM classification, the study demonstrates significant advancements over conventional identification methods. In the classification of a dataset consisting of 7820 images using four different SVM kernel functions, the linear kernel achieved the highest success rate at 98.79 %. It is followed by the RBF kernel at 98.73 %, the polynomial kernel at 97.84 %, and the sigmoid kernel at 97.20 %. This research not only provides a methodological framework for future studies in marine biodiversity monitoring but also highlights the potential for real-time applications in ecological conservation and understanding mucilage dynamics amidst climate change and environmental pollution.
Collapse
Affiliation(s)
- Mesut Ersin Sonmez
- Department of Bioengineering, Faculty of Engineering, Karamanoglu Mehmetbey University, Karaman, Türkiye
| | - Numan Emre Gumus
- Department of Environmental Protection Technology, Kazım Karabekir Vocational School, Karamanoglu Mehmetbey University, Karaman, Türkiye.
| | - Numan Eczacioglu
- Department of Bioengineering, Faculty of Engineering, Karamanoglu Mehmetbey University, Karaman, Türkiye
| | | | - Kamile Yücel
- Department of Medical Biochemistry, Faculty of Medicine, KTO, Karatay University, Konya, Türkiye
| | | |
Collapse
|
4
|
Mora D, Schlüsener M, Fischer H, Kleinteich J, Schulz M, Ternes T, Thiel J, Wick A, Krenek S. From genes to toxins: Profiling Prymnesium parvum during a riverine harmful algal bloom. HARMFUL ALGAE 2024; 136:102644. [PMID: 38876525 DOI: 10.1016/j.hal.2024.102644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/19/2024] [Accepted: 05/12/2024] [Indexed: 06/16/2024]
Abstract
Blooms of Prymnesium parvum, a unicellular alga globally distributed in marine and brackish environments, frequently result in massive fish kills due to the production of toxins called prymnesins by this haptophyte. In August 2022, a harmful algal bloom (HAB) of this species occurred in the lower Oder River (Poland and Germany), which caused mass mortalities of fish and other organisms. This HAB was linked to low discharge of the Oder and mining activities that caused a significant increase in salinity. In this context, we report on the molecular detection and screening of this haptophyte and its toxins in environmental samples and clonal cultures derived thereof. Both conventional PCR and droplet digital PCR assays reliably detected P. parvum in environmental samples. eDNA metabarcoding using the V4 region of the 18S rRNA gene revealed a single Prymnesium sequence variant, but failed to identify it to species level. Four clonal cultures established from environmental samples were unambiguously identified as P. parvum by molecular phylogenetics (near full-length 18S rRNA gene) and light microscopy. Phylogenetic analysis (ITS1-5.8S-ITS2 marker region) placed the cultured phylotype within a clade containing other P. parvum strains known to produce B-type prymnesins. Toxin-screening of the cultures using liquid chromatography-electrospray ionization - time of flight mass spectrometry identified B-type prymnesins, which were also detected in extracts of filter residues from water samples of the Oder collected during the HAB. Overall, our investigation provides a detailed characterization of P. parvum, including their prymnesins, during this HAB in the Oder River, contributing valuable insights into this ecological disaster. In addition, the droplet digital PCR assay established here will be useful for future monitoring of low levels of P. parvum on the Oder River or any other salt-impacted and brackish water bodies.
Collapse
Affiliation(s)
- Demetrio Mora
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany; Current address: Observatory for Climate, Environment and Biodiversity (OCEB), Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, 4422 Belvaux, Luxembourg
| | - Michael Schlüsener
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Helmut Fischer
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Julia Kleinteich
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Manoj Schulz
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Thomas Ternes
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Joana Thiel
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Arne Wick
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Sascha Krenek
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany.
| |
Collapse
|
5
|
Wisecaver JH, Auber RP, Pendleton AL, Watervoort NF, Fallon TR, Riedling OL, Manning SR, Moore BS, Driscoll WW. Extreme genome diversity and cryptic speciation in a harmful algal-bloom-forming eukaryote. Curr Biol 2023; 33:2246-2259.e8. [PMID: 37224809 PMCID: PMC10247466 DOI: 10.1016/j.cub.2023.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Harmful algal blooms of the toxic haptophyte Prymnesium parvum are a recurrent problem in many inland and estuarine waters around the world. Strains of P. parvum vary in the toxins they produce and in other physiological traits associated with harmful algal blooms, but the genetic basis for this variation is unknown. To investigate genome diversity in this morphospecies, we generated genome assemblies for 15 phylogenetically and geographically diverse strains of P. parvum, including Hi-C guided, near-chromosome-level assemblies for two strains. Comparative analysis revealed considerable DNA content variation between strains, ranging from 115 to 845 Mbp. Strains included haploids, diploids, and polyploids, but not all differences in DNA content were due to variation in genome copy number. Haploid genome size between strains of different chemotypes differed by as much as 243 Mbp. Syntenic and phylogenetic analyses indicate that UTEX 2797, a common laboratory strain from Texas, is a hybrid that retains two phylogenetically distinct haplotypes. Investigation of gene families variably present across the strains identified several functional categories associated with metabolic and genome size variation in P. parvum, including genes for the biosynthesis of toxic metabolites and proliferation of transposable elements. Together, our results indicate that P. parvum comprises multiple cryptic species. These genomes provide a robust phylogenetic and genomic framework for investigations into the eco-physiological consequences of the intra- and inter-specific genetic variation present in P. parvum and demonstrate the need for similar resources for other harmful algal-bloom-forming morphospecies.
Collapse
Affiliation(s)
- Jennifer H Wisecaver
- Department of Biochemistry, Purdue University, 175 S University St, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, 175 S University St, West Lafayette, IN 47907, USA.
| | - Robert P Auber
- Department of Biochemistry, Purdue University, 175 S University St, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, 175 S University St, West Lafayette, IN 47907, USA
| | - Amanda L Pendleton
- Department of Biochemistry, Purdue University, 175 S University St, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, 175 S University St, West Lafayette, IN 47907, USA
| | - Nathan F Watervoort
- Department of Biochemistry, Purdue University, 175 S University St, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, 175 S University St, West Lafayette, IN 47907, USA
| | - Timothy R Fallon
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California San Diego, 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
| | - Olivia L Riedling
- Department of Biochemistry, Purdue University, 175 S University St, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, 175 S University St, West Lafayette, IN 47907, USA
| | - Schonna R Manning
- Department of Biological Sciences, Institute of Environment, Florida International University, 3000 NE 151st Street, MSB 250B, North Miami, FL 33181, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California San Diego, 9500 Gilman Dr #0204, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
| | - William W Driscoll
- Department of Biology, Penn State Harrisburg, 777 W. Harrisburg Pike, Middletown, PA 17057, USA
| |
Collapse
|
6
|
Caron DA, Lie AAY, Buckowski T, Turner J, Frabotta K. The Effect of pH and Salinity on the Toxicity and Growth of the Golden Alga, Prymnesium parvum. Protist 2023; 174:125927. [PMID: 36565615 DOI: 10.1016/j.protis.2022.125927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Bioassays using cultures of the toxic haptophyte Prymnesium parvum and the ciliate Cyclidium sp. as prey were conducted to test the effect of pH (range = 6.5 - 8.5), salinity (range = 1.50 - 7.50‰), and a combination of pH and salinity on the toxicity of P. parvum. pH had a significant effect on P. parvum toxicity. Toxicity was rapidly (within 24 hr) induced by increasing pH of the medium, or reduced by lowering pH. Conversely, lowering salinity reduced toxicity, albeit less effectively compared to pH, and P. parvum cells remained toxic at the lowest values tested (1.50‰ at pH 7.5). An additional effect between pH and salinity was also observed: low salinity combined with low pH led to not only decreased toxicity, but also resulted in lower P. parvum growth rates. Such effects of pH and salinity on P. parvum growth and toxicity provide insight into the environmental factors supporting community dominance and toxic blooms of the alga.
Collapse
Affiliation(s)
- David A Caron
- Aquatic EcoTechnologies, LLC, Santa Cruz, CA 95065, USA; Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Alle A Y Lie
- Aquatic EcoTechnologies, LLC, Santa Cruz, CA 95065, USA
| | - Tom Buckowski
- Lake Mission Viejo Association, Mission Viejo, CA 92692, USA
| | - Jim Turner
- Lake Mission Viejo Association, Mission Viejo, CA 92692, USA
| | - Kevin Frabotta
- Lake Mission Viejo Association, Mission Viejo, CA 92692, USA
| |
Collapse
|
7
|
Tábora-Sarmiento S, Patiño R, Portillo-Quintero C, Coldren C. Air, land, and water variables associated with the first appearance and current spatial distribution of toxic Prymnesium parvum blooms in reservoirs of the Southern Great Plains, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155567. [PMID: 35504372 DOI: 10.1016/j.scitotenv.2022.155567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
This study examined the association of air, land, and water variables with the first historical occurrence and current distribution of toxic Prymnesium parvum blooms in reservoirs of the Brazos River and Colorado River, Texas (USA). One impacted and one reference reservoir were selected per basin. Land cover and use variables were estimated for the whole watershed (WW) and a 0.5-km zone on either side of streams (near field, NF). Variables were expressed in annual values. Principal component and trend analyses were used to determine (1) differences in environmental conditions before and after the 2001 onset of toxic blooms in impacted reservoirs (study period, 1992-2017), and (2) traits that uniquely discriminate impacted from reference reservoirs (2001-2017). Of thirty-three variables examined, two positively aligned with the reoccurring appearance of blooms in impacted reservoirs (air CO2 and herbicide Glyphosate) and another two negatively aligned (insecticides Terbufos and Malathion). Glyphosate use was observed throughout the study period but a turning point for an upward trend occurred near the year of first bloom occurrence. While the relevance of the decreased use of insecticides is uncertain, prior experimental studies reported that increasing concentrations of air CO2 and water Glyphosate can enhance P. parvum growth. Consistent with prior findings, impacted reservoirs were of higher salinity than reference reservoirs. In addition, their watersheds had far lower wetland cover at NF and WW scales. The value of wetlands in reducing harmful algal bloom incidence by reducing nutrient inputs has been previously recognized, but wetlands can also capture pesticides. Therefore, a diminished wetland cover could magnify Glyphosate loads flowing into impacted reservoirs. These observations are consistent with a scenario where rising levels of air CO2 and Glyphosate use contributed to the establishment of P. parvum blooms in reservoirs of relatively high salinity and minimal wetland cover over their watersheds.
Collapse
Affiliation(s)
- Shisbeth Tábora-Sarmiento
- Department of Natural Resources Management and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX 79409-2120, USA
| | - Reynaldo Patiño
- U.S. Geological Survey, Texas Cooperative Fish and Wildlife Research Unit and Departments of Natural Resources Management and Biological Sciences, Texas Tech University, Lubbock, TX 79409-2120, USA.
| | | | - Cade Coldren
- Department of Plant and Soil Sciences, Texas Tech University, Lubbock, TX 79409-2120, USA
| |
Collapse
|
8
|
Richardson ET, Patiño R. Growth of the harmful alga, Prymnesium parvum (Prymnesiophyceae), after gradual and abrupt increases in salinity. JOURNAL OF PHYCOLOGY 2021; 57:1335-1344. [PMID: 33786824 DOI: 10.1111/jpy.13172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Prymnesium parvum is a euryhaline, toxin-producing microalga. Although its abundance in inland waters and growth potential in the laboratory is reduced at high salinity (>20), the ability of inland strains to adjust their growth after long-term residence in high salinity is uncertain. An inland strain of P. parvum maintained at salinity of 5 in modified artificial seawater medium (ASM-5) was subjected to the following treatments over five sequential batch culture rounds: ASM-5 (control); modified ASM at salinity of 30, raised with NaCl; modified ASM at salinity incrementally increased to 30 with NaCl; and Instant Ocean® at salinity of 30 (IO-30). Exponential growth rate (r) was reduced when salinity was increased from 5 to 30 in ASM but returned to control values during the second round. When salinity was incrementally increased, a reduction in r still occurred when salinity reached 25-30. Maximum density was reduced at salinity of 30 in ASM upon abrupt transfer or incremental increase, and compensation did not occur. Growth performance in IO-30 was comparable to control values. In conclusion, (i) long-term compensation for acute inhibitory effects of high salinity occurred for r but not maximum density, (ii) incremental increases in salinity did not prevent growth inhibition, suggesting the existence of a salinity threshold of 25-30 for onset of salinity stress, and (iii) the presence of a seawater-like salt mixture prevented growth inhibition by high salinity. These findings provide new insights on P. parvum's long-term ability to adjust its growth in environments of different salinity and ionic composition.
Collapse
Affiliation(s)
- Emily T Richardson
- Department of Natural Resources Management and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, Texas, USA
| | - Reynaldo Patiño
- Texas Cooperative Fish and Wildlife Research Unit and Departments of Natural Resources Management and Biological Sciences, U.S. Geological Survey, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
9
|
Clayton JB, Patiño R, Rashel RH, Tábora-Sarmiento S. Water quality associations and spatiotemporal distribution of the harmful alga Prymnesium parvum in an impounded urban stream system. JOURNAL OF URBAN ECOLOGY 2021. [DOI: 10.1093/jue/juab011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
The Jim Bertram Lake System consists of several stream impoundments within the City of Lubbock, Texas (USA). Baseflow in the upstream reach is dominated by nitrogen-rich-treated wastewater. While toxic blooms of Prymnesium parvum have occurred in this system for ∼2 decades during fall or winter-spring, little is known about water quality variables that facilitate blooms or the alga’s spatiotemporal distribution. Water quality associations were examined monthly over a 1-year period. Total phosphorus was largely below the detection limit, suggesting that the system is phosphorus limited. Algal abundance was low during the assessment period and associations were determined using multiple logistic regression. Algal incidence was negatively associated with temperature and positively with organic nitrogen and calcium hardness. These findings conform with earlier reports but positive associations with the latter two variables are noteworthy because they have not been widely confirmed. Spatiotemporal distribution was evaluated in fall and winter-spring of three consecutive years. Prymnesium parvum incidence was higher in the upper than in the lower reach, and detections in the lower reach occurred only after a dense bloom developed in the upper reach contemporaneously with stormwater runoff-associated flooding. Thus, the upstream reach is a major source of propagules for downstream sites. Because urban runoff is a source of phosphorus and its nitrogen: phosphorus ratio is lower than prevailing ratios in the upper reach, what triggered the bloom was likely relief from phosphorus limitation. This study provided water quality, geographic and hydrological indices that may inform prevention and control methods for harmful algae in nitrogen-enriched urban systems.
Collapse
Affiliation(s)
- John B Clayton
- Texas Parks and Wildlife Department, Inland Fisheries Amarillo District Management Office, Canyon, TX 79015, USA
| | - Reynaldo Patiño
- Department of Natural Resources Management, U.S. Geological Survey, Texas Cooperative Fish and Wildlife Research Unit, Lubbock, TX 79409-2120, USA
- Department of Biological Sciences, U.S. Geological Survey, Texas Cooperative Fish and Wildlife Research Unit, Lubbock, TX 79409-2120, USA
| | - Rakib H Rashel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | | |
Collapse
|
10
|
Taylor RB, Hill BN, Langan LM, Chambliss CK, Brooks BW. Sunlight concurrently reduces Prymnesium parvum elicited acute toxicity to fish and prymnesins. CHEMOSPHERE 2021; 263:127927. [PMID: 32814137 PMCID: PMC8117398 DOI: 10.1016/j.chemosphere.2020.127927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/09/2020] [Accepted: 08/04/2020] [Indexed: 05/05/2023]
Abstract
Prymnesium parvum continues to spread globally, producing harmful algal blooms that release toxins known to cause fish kills. While previous work has identified possible P. parvum toxin(s) (e.g., prymnesins, fatty acids, fatty acid amides) and investigated treatment strategies targeted at minimizing cell abundance, studies examining efficacy of treatment approaches to remove toxins are lacking. To understand influences of sunlight on toxins stability and toxicity to fish, acutely toxic P. parvum cultures were exposed to three light scenarios (lab dark control, field dark, and field light) and then evaluated for acute toxicity to fish and prymnesins abundance. Previous work showed acute toxicity to fathead minnow larvae was ameliorated after 2 h of sunlight exposure, and results observed herein found an identical trend. Acute toxicity disappeared in light exposed filtrate, but filtrate exposed to 35 °C without sunlight remained acutely toxic to fish. Additionally, six prymnesins were identified through high-resolution mass spectrometry and abundance corresponded to acute toxicity levels. Prymnesins were present at the highest level in filtrate that was acutely toxic but diminished in filtrate that was exposed to light and correspondingly ameliorated acute toxicity to fish. These findings suggest prymnesins are responsible for measured acute toxicity and are photo-labile, which represents an important implication for treatment strategies.
Collapse
Affiliation(s)
- Raegyn B Taylor
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX, 76798, USA
| | - Bridgett N Hill
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX, 76798, USA
| | - Laura M Langan
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX, 76798, USA
| | - C Kevin Chambliss
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX, 76798, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX, 76798, USA; Institute of Biomedical Studies, Baylor University, One Bear Place #97224, Waco, TX, 76798, USA.
| |
Collapse
|
11
|
Lemley DA, Adams JB, Rishworth GM, Bouland C. Phytoplankton responses to adaptive management interventions in eutrophic urban estuaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133601. [PMID: 31374499 DOI: 10.1016/j.scitotenv.2019.133601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Upstream anthropogenic perturbations can dramatically affect estuarine water quality, especially in small systems where water retention times are high. Management of these modified ecosystems often requires direct interventions to prevent detrimental long-term effects. The heavily urbanized and temporarily closed Zandvlei Estuary in South Africa has a long history of anthropogenic manipulation, and therefore acts as an ideal case-study to gauge reactive management practices. Continued deterioration of estuarine water quality and ecological functioning prompted the adoption of an adaptive management approach. Subsequent management interventions to increase salinity variability and nutrient removal included the (1) adoption of a mouth management plan, (2) regular harvesting of submerged vegetation, and (3) removal of flow obstructions. Physico-chemical and nutrient monitoring data (2010-2018) were assessed to document the response of phytoplankton to these interventions. Time-series analysis indicated an upward trend in salinity throughout the estuary. This corresponded with a temporal decline in phytoplankton biomass levels and was supported by model results that highlighted a strongly inverse relationship with salinity. The frequency of high-biomass events (>80 μg Chl-a l-1) also declined in each of the designated estuarine zones. In April 2012, an extensive harmful algal bloom (HAB) of Prymnesium parvum (Prymnesiophyceae) was recorded (~530 μg Chl-a l-1) in the estuary, culminating in hypoxic conditions (O2 < 2 mg l-1) and fish kills. However, the subsequent mechanical breaching of the mouth has prevented reoccurrences of P. parvum. Similarly, more saline conditions arising from increased marine connectivity reduced the abundance of the previously dominant Bacillariophyceae and Chlorophyceae classes. The overall improvement in water quality validates the efficacy of management interventions aimed at restoring and conserving ecosystem functionality. Yet, these efforts are a deviation from natural estuarine functioning and thus a 'catchment to coast' approach that incorporates upstream nutrient mitigation measures is needed to achieve sustainable long-term management objectives.
Collapse
Affiliation(s)
- Daniel A Lemley
- Botany Department, Nelson Mandela University, Port Elizabeth 6031, South Africa; DST/NRF Research Chair in Shallow Water Ecosystems, Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth 6031, South Africa.
| | - Janine B Adams
- Botany Department, Nelson Mandela University, Port Elizabeth 6031, South Africa; DST/NRF Research Chair in Shallow Water Ecosystems, Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Gavin M Rishworth
- DST/NRF Research Chair in Shallow Water Ecosystems, Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth 6031, South Africa; Zoology Department, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Candice Bouland
- Catchment, Stormwater and River Management, Water and Sanitation Department, City of Cape Town, Cape Town 8001, South Africa
| |
Collapse
|
12
|
Growth response of the ichthyotoxic haptophyte, Prymnesium parvum Carter, to changes in sulfate and fluoride concentrations. PLoS One 2019; 14:e0223266. [PMID: 31560717 PMCID: PMC6764746 DOI: 10.1371/journal.pone.0223266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/17/2019] [Indexed: 11/30/2022] Open
Abstract
Golden alga Prymnesium parvum Carter is a euryhaline, ichthyotoxic haptophyte (Chromista). Because of its presumed coastal/marine origin where SO42- levels are high, the relatively high SO42- concentration of its brackish inland habitats, and the sensitivity of marine chromists to sulfur deficiency, this study examined whether golden alga growth is sensitive to SO42- concentration. Fluoride is a ubiquitous ion that has been reported at higher levels in golden alga habitat; thus, the influence of F- on growth also was examined. In low-salinity (5 psu) artificial seawater medium, overall growth was SO42—dependent up to 1000 mg l-1 using MgSO4 or Na2SO4 as source; the influence on growth rate, however, was more evident with MgSO4. Transfer from 5 to 30 psu inhibited growth when salinity was raised with NaCl but in the presence of seawater levels of SO42-, these effects were fully reversed with MgSO4 as source and only partially reversed with Na2SO4. Growth inhibition was not observed after acute transfer to 30 psu in a commercial sea salt mixture. In 5-psu medium, F- inhibited growth at all concentrations tested. These observations support the hypothesis that spatial differences in SO42- –but not F-–concentration help drive the inland distribution and growth of golden alga and also provide physiological relevance to reports of relatively high Mg2+ concentrations in golden alga habitat. At high salinity, however, the ability of sulfate to maintain growth under osmotic stress was weak and overshadowed by the importance of Mg2+. A mechanistic understanding of growth responses of golden alga to SO42-, Mg2+ and other ions at environmentally relevant levels and under different salinity scenarios will be necessary to clarify their ecophysiological and evolutionary relevance.
Collapse
|
13
|
Dabney BL, Patiño R. Low-dose stimulation of growth of the harmful alga, Prymnesium parvum, by glyphosate and glyphosate-based herbicides. HARMFUL ALGAE 2018; 80:130-139. [PMID: 30502805 DOI: 10.1016/j.hal.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Glyphosate-based herbicides (GBH) are widely used around the globe. While generally toxic to phototrophs, organic phosphorus in glyphosate can become available to glyphosate-resistant phytoplankton and contribute to algal bloom development. Few studies have examined the effects of GBH on growth of eukaryotic microalgae and information for the toxic bloom-forming haptophyte, Prymnesium parvum, is limited. Using a batch-culture system, this study examined the effects on P. parvum growth of a single application of Roundup Weed and Grass Killer Super Concentrate Plus® (Roundup SC), Roundup Weed and Grass Killer Ready-to-Use III® (Roundup RtU), and technical-grade glyphosate at low concentrations [0-1000 μg glyphosate acid equivalent (ae) l-1]. Roundup formulations differ in the percent of glyphosate as active ingredient (Roundup SC, ∼50%; Roundup RtU, 2%), allowing indirect evaluation of the influence of inactive ingredients. Roundup SC enhanced exponential growth rate at 10-1000 μg glyphosate ae l-1, and a positive monotonic association was noted between Roundup SC concentration and early (pre-exponential growth) but not maximum cell density. Glyphosate and both Roundup formulations enhanced growth rate at 100 μg glyphosate l-1, but only Roundup SC and glyphosate significantly stimulated early and maximum density. This observation suggests the higher concentration of inactive ingredients and other compounds in Roundup RtU partially counteracts glyphosate-dependent growth stimulation. When phosphate concentration was varied while maintaining other conditions constant, addition of Roundup SC and glyphosate at 100 μg l-1 influenced growth more strongly than equivalent changes in phosphate-associated phosphorus. It appears, therefore, that low doses of glyphosate stimulate growth by mechanisms unrelated to the associated small increases in total phosphorus. In conclusion, glyphosate and GBH stimulate P. parvum growth at low, environmentally relevant concentrations. This finding raises concerns about the potential contribution to P. parvum blooms by glyphosate-contaminated runoff or by direct application of GBH to aquatic environments.
Collapse
Affiliation(s)
- Brittanie L Dabney
- Department of Environmental Toxicology and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX, 79409-1163, USA
| | - Reynaldo Patiño
- U.S. Geological Survey, Texas Cooperative Fish and Wildlife Research Unit and Departments of Natural Resources Management and Biological Sciences, Texas Tech University, Lubbock, TX, 79409-2120, USA.
| |
Collapse
|
14
|
Patiño R, Rashel RH, Rubio A, Longing S. Growth-suppressing and algicidal properties of an extract from Arundo donax, an invasive riparian plant, against Prymnesium parvum, an invasive harmful alga. HARMFUL ALGAE 2018; 71:1-9. [PMID: 29306391 DOI: 10.1016/j.hal.2017.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 06/07/2023]
Abstract
This study examined the ability of acidic and neutral/alkaline fractions of a methanolic extract from giant reed (Arundo donax) and of two of its constituents, gramine and skatole, to inhibit growth of the ichthyotoxic golden alga (Prymnesium parvum) in batch culture. For this study, growth suppression was defined as inhibition of maximum cell density, algicidal activity as early occurrence of negative growth, and algistatic activity as lack of net growth. The acidic fraction did not affect algal growth. The neutral/alkaline fraction showed growth-suppressing and algicidal activities but no signs of algistatic activity - namely, cells in cultures surviving a partial-algicidal exposure concentration (causing transient negative growth) were later able to initiate positive growth but at higher concentrations, algicidal activity was full and irreversible. Gramine suppressed growth more effectively than skatole and at the highest concentration tested, gramine also showed partial-algicidal and algistatic activity. While the partial-algicidal activities of the neutral/alkaline fraction and of gramine were short-lived (≤6days) and thus may share similar mechanisms, algistatic activity was unique to gramine and persisted for >3 weeks. Given gramine's reported concentration in the neutral/alkaline fraction, its corresponding level of algicidal activity is much lower than the fraction's suggesting the latter contains additional potent algicides. Inhibition of maximum cell density by all test compounds was associated with reductions in exponential growth rate, and in the case of the neutral/alkaline fraction and gramine also reductions in early (pre-exponential) growth. These results indicate that giant reed is a potential source of natural products to control golden alga blooms. Giant reed is an invasive species in North America, thus also providing incentive for research into strategies to couple management efforts for both species.
Collapse
Affiliation(s)
- Reynaldo Patiño
- U.S. Geological Survey, Texas Cooperative Fish and Wildlife Research Unit and Departments of Natural Resources Management and Biological Sciences, Texas Tech University, Lubbock, TX 79409-2120, USA.
| | - Rakib H Rashel
- Department of Biological Sciences and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX 79409-2120, USA
| | - Amede Rubio
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409-2122, USA
| | - Scott Longing
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409-2122, USA
| |
Collapse
|