1
|
Abdul Manaff AHN, Hii KS, Luo Z, Liu M, Law IK, Teng ST, Akhir MF, Gu H, Leaw CP, Lim PT. Mapping harmful microalgal species by eDNA monitoring: A large-scale survey across the southwestern South China Sea. HARMFUL ALGAE 2023; 129:102515. [PMID: 37951609 DOI: 10.1016/j.hal.2023.102515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/02/2023] [Accepted: 09/23/2023] [Indexed: 11/14/2023]
Abstract
A large-scale sampling was undertaken during a research cruise across the South China Sea in August 2016, covering an area of about 100,000 km2 to investigate the molecular diversity and distributions of micro-eukaryotic protists, with a focus on the potentially harmful microalgal (HAB) species along the east coast of Peninsular Malaysia. Environmental DNAs from 30 stations were extracted and DNA metabarcoding targeting the V4 and V9 markers in the 18S rDNA was performed. Many protistan molecular units, including previously unreported HAB taxa, were discovered for the first time in the water. Our findings also revealed interesting spatial distribution patterns, with a marked signal of compositional turnover between latitudinal regimes of water masses, where dinophytes and diatom compositions were among the most strongly enhanced at the fronts, leading to distinct niches. Our results further confirmed the widespread distribution of HAB species, such as the toxigenic Alexandrium tamiyavaichii and Pseudo-nitzschia species, and the fish-killing Margalefidinium polykrikoides and Karlodinium veneficum. The molecular information obtained from this study provides an updated HAB species inventory and a toolset that could facilitate existing HAB monitoring schemes in the region to better inform management decisions.
Collapse
Affiliation(s)
| | - Kieng Soon Hii
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia
| | - Zhaohe Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Minlu Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Ing Kuo Law
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia
| | - Sing Tung Teng
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Mohd Fadzil Akhir
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia.
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia.
| |
Collapse
|
2
|
Klemm K, Cembella A, Clarke D, Cusack C, Arneborg L, Karlson B, Liu Y, Naustvoll L, Siano R, Gran-Stadniczeñko S, John U. Apparent biogeographical trends in Alexandrium blooms for northern Europe: identifying links to climate change and effective adaptive actions. HARMFUL ALGAE 2022; 119:102335. [PMID: 36344194 DOI: 10.1016/j.hal.2022.102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 09/15/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
The marine dinoflagellate Alexandrium Halim represents perhaps the most significant and intensively studied genus with respect to species diversity, life history strategies, toxigenicity, biogeographical distribution, and global magnitude and consequences harmful algal blooms (HABs). The socioeconomic impacts, environmental and human health risks, and mitigation strategies for toxigenic Alexandrium blooms have also been explored in recent years. Human adaptive actions based on future scenarios of bloom dynamics and shifts in biogeographical distribution under climate-change parameters remain under development and not yet implemented on a regional scale. In the CoCliME (Co-development of climate services for adaptation to changing marine ecosystems) project these issues were addressed with respect to past, current and anticipated future status of key HAB genera and expected benefits of enhanced monitoring. Data on the distribution and frequency of Alexandrium blooms related to paralytic shellfish toxin (PST) events from key CoCliME Case Study areas, comprising the North Sea and adjacent Kattegat-Skagerrak, Norwegian Sea, and Baltic Sea, and eastern North Atlantic marginal seas, were evaluated in a contemporary and historical context over the past several decades. The first evidence of possible biogeographical expansion of Alexandrium taxa into eastern Arctic gateways was provided from DNA barcoding signatures. Various key climate change indicators, such as salinity, temperature, and water-column stratification, relevant to Alexandrium bloom initiation and development were identified. The possible influence of changing variables on bloom dynamics, magnitude, frequency and spatial and temporal distribution were interpreted in the context of regional ocean climate models. These climate change impact indicators may play key roles in selecting for the occurrence and diversity of Alexandrium species within the broader microeukaryote communities. For example, shifts to higher temperature and lower salinity regimes predicted for the southern North Sea indicate the potential for increased Alexandrium blooms, currently absent from this area. Ecological and socioeconomic impacts of Alexandrium blooms and effects on fisheries and aquaculture resources and coastal ecosystem function are evaluated, and, where feasible, effective adaptation strategies are proposed herein as emerging climate services.
Collapse
Affiliation(s)
- Kerstin Klemm
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, Bremerhaven 27570, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstraße 231, Oldenburg 26129, Germany
| | - Allan Cembella
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, Bremerhaven 27570, Germany
| | - Dave Clarke
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | | | - Lars Arneborg
- Swedish Meteorological and Hydrological Institute, Research and development, oceanography, Sven Källfelts gata 15, Västra Frölunda, SE-426 71, Sweden
| | - Bengt Karlson
- Swedish Meteorological and Hydrological Institute, Research and development, oceanography, Sven Källfelts gata 15, Västra Frölunda, SE-426 71, Sweden
| | - Ye Liu
- Swedish Meteorological and Hydrological Institute, Research and development, oceanography, Sven Källfelts gata 15, Västra Frölunda, SE-426 71, Sweden
| | - Lars Naustvoll
- Institute of Marine Research, PO Box 1870 Nordnes, Bergen NO-5817, Norway
| | | | - Sandra Gran-Stadniczeñko
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, Oslo 0316, Norway
| | - Uwe John
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, Bremerhaven 27570, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstraße 231, Oldenburg 26129, Germany.
| |
Collapse
|
3
|
Liu M, Krock B, Yu R, Leaw CP, Lim PT, Ding G, Wang N, Zheng J, Gu H. Co-occurrence of Alexandrium minutum (Dinophyceae) ribotypes from the Chinese and Malaysian coastal waters and their toxin production. HARMFUL ALGAE 2022; 115:102238. [PMID: 35623696 DOI: 10.1016/j.hal.2022.102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/03/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
The bloom-forming dinophyte Alexandrium minutum comprises biogeographic inferred, global and Pacific clades with both toxic and nontoxic strains reported. A. minutum has a wide distribution in the Western Pacific, but to date only a few strains have available DNA sequences. To fully understand its genetic diversity, sampling was undertaken from the Yellow Sea, the East and South China Sea, and five strains of A. minutum and two strains of its sister species, A. tamutum, were established. Their morphology was examined by light and scanning electron microscopy. In addition, sequences were obtained from both large subunit (LSU) ribosomal DNA and/or internal transcribed spacer (ITS) region. Strains of A. minutum are morphologically indistinguishable, characterized by a smaller cell size and a narrow sixth precingular plate. In contrast, A. tamutum has a wider sixth precingular plate. High nucleotide divergences of LSU (D1-D3) rDNA and ITS were revealed amongst strains of A. minutum (10% and 25%, respectively), and A. tamutum (3% and 13%, respectively). Molecular phylogenies based on LSU rDNA and ITS revealed three ribotypes (B-D) of A. minutum, and two ribotypes of A. tamutum in the Western Pacific. Seasonal sampling in the East China Sea to detect A. minutum using the DNA metabarcoding targeting ITS1 region was also performed. Our results showed that the ribotypes B and C of A. minutum co-occurred in the water. Paralytic shellfish toxin (PSTs) of all seven strains was analysed using liquid chromatography with tandem mass spectrometry (LC-MS/MS). PSTs were detected only in A. minutum ribotypes B and C with predominance of gonyautoxins 1/4. Our results suggest high diversity and risk potential of this toxic species in this region.
Collapse
Affiliation(s)
- Minlu Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Bernd Krock
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, Bremerhaven, D-27570 Germany
| | - Rencheng Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| | - Guangmao Ding
- Fishery Resources Monitoring Center of Fujian Province, Fuzhou 350003, China
| | - Na Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jing Zheng
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, China.
| |
Collapse
|
4
|
Drouet K, Jauzein C, Gasparini S, Pavaux AS, Berdalet E, Marro S, Davenet-Sbirrazuoli V, Siano R, Lemée R. The benthic toxic dinoflagellate Ostreopsis cf. ovata in the NW Mediterranean Sea: Relationship between sea surface temperature and bloom phenology. HARMFUL ALGAE 2022; 112:102184. [PMID: 35144819 DOI: 10.1016/j.hal.2022.102184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/24/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Blooms of the toxic benthic dinoflagellate Ostreopsis cf. ovata can induce ecological and human health issues in certain temperate areas. In order to prevent these negative effects, long-term monitoring studies of O. cf. ovata blooms have been conducted in several impacted areas to have a comprehensive understanding of bloom dynamics and efficient tools for risk management. O. cf. ovata blooms were monitored every summer (from mid-June to the end of August) on five identified sites in Larvotto beach (Monaco, NW Mediterranean Sea), between 2007 and 2019. This time-series represents one of the largest time-series in the world describing blooms of this species. Bloom phenological features (timing, duration, maximum cell abundance and growth rate), were found to be highly variable throughout the studied period, and were analyzed as a function of different hydroclimatic parameters, including sea surface temperature (SST). The highest net growth rates were related to temperatures ranging between 21°C and 25°C, and did not coincide with maximal temperature records (27.5°C). Such results suggest that, although global warming possibly influences the expansion of O. cf. ovata from tropical to temperate waters, the definite impact of temperature on bloom dynamics might be more complex than a simple facilitation factor for algal growth, at least in NW Mediterranean waters. Furthermore, monthly SST anomalies calculated over this 13-year survey showed a strong positive correlation between spring SST positive anomalies and the bloom starting date, indicating that blooms occurred earlier in the season when spring SSTs were warmer than usual. Overall results provide tools to modelers and managers who are facing crucial challenges to predict the distribution and phenology of O. cf. ovata blooms in European coastal waters, moreover in a context of global warming.
Collapse
Affiliation(s)
- K Drouet
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche (UMR 7093), Villefranche-sur-Mer, FRANCE; Ifremer, DYNECO Pelagos, F-29280 Plouzané, FRANCE.
| | - C Jauzein
- Ifremer, DYNECO Pelagos, F-29280 Plouzané, FRANCE
| | - S Gasparini
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche (UMR 7093), Villefranche-sur-Mer, FRANCE
| | - A-S Pavaux
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche (UMR 7093), Villefranche-sur-Mer, FRANCE
| | - E Berdalet
- Institut de Ciènces del Mar (CSIC), Barcelona, SPAIN
| | - S Marro
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche (UMR 7093), Villefranche-sur-Mer, FRANCE
| | | | - R Siano
- Ifremer, DYNECO Pelagos, F-29280 Plouzané, FRANCE
| | - R Lemée
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche (UMR 7093), Villefranche-sur-Mer, FRANCE
| |
Collapse
|
5
|
Hii KS, Mohd-Din M, Luo Z, Tan SN, Lim ZF, Lee LK, Leong SCY, Teng ST, Gu H, Cao X, Lim PT, Leaw CP. Diverse harmful microalgal community assemblages in the Johor Strait and the environmental effects on its community dynamics. HARMFUL ALGAE 2021; 107:102077. [PMID: 34456026 DOI: 10.1016/j.hal.2021.102077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/15/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Coastal ecosystems are often subjected to anthropogenic disturbances that lead to water quality deterioration and an increase in harmful algal bloom (HAB) events. Using the next-generation molecular tool of 18S rDNA metabarcoding, we examined the community assemblages of HAB species in the Johor Strait, Malaysia between May 2018 and September 2019, covering 19 stations across the strait. The molecular operational taxonomic units (OTUs) of HAB taxa retrieved from the dataset (n = 194) revealed a much higher number of HAB taxa (26 OTUs) than before, with 12 taxa belong to new records in the strait. As revealed in the findings of this study, the diversity and community structure of HAB taxa varied significantly over time and space. The most common and abundant HAB taxa in the strait (frequency of occurrence >70%) comprised Heterosigma akashiwo, Fibrocapsa japonica, Pseudo-nitzschia pungens, Dinophysis spp., Gymnodinium catenatum, Alexandrium leei, and A. tamiyavanichii. Also, our results demonstrated that the HAB community assemblages in the strait were dependent on the interplay of environmental variables that influence by the monsoonal effects. Different HAB taxa, constitute various functional types, occupied and prevailed in different environmental niches across space and time, leading to diverse community assemblages and population density. This study adds to the current understandings of HAB dynamics and provides a robust overview of temporal-spatial changes in HAB community assemblages along the environmental gradients in a tropical eutrophic coastal ecosystem.
Collapse
Affiliation(s)
- Kieng Soon Hii
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| | - Monaliza Mohd-Din
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia; Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Zhaohe Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Suh Nih Tan
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| | - Zhen Fei Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| | - Li Keat Lee
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| | - Sandric Chee Yew Leong
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, S2S Building, Singapore, 119227 Singapore
| | - Sing Tung Teng
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Xiuyun Cao
- Institute of Hydrobiologia, Chinese Academic of Science, Wuhan, China
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia.
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia.
| |
Collapse
|
6
|
Yñiguez AT, Lim PT, Leaw CP, Jipanin SJ, Iwataki M, Benico G, Azanza RV. Over 30 years of HABs in the Philippines and Malaysia: What have we learned? HARMFUL ALGAE 2021; 102:101776. [PMID: 33875175 DOI: 10.1016/j.hal.2020.101776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 06/12/2023]
Abstract
In the Southeast Asian region, the Philippines and Malaysia are two of the most affected by Harmful Algal Blooms (HABs). Using long-term observations of HAB events, we determined if these are increasing in frequency and duration, and expanding across space in each country. Blooms of Paralytic Shellfish Toxin (PST)-producing species in the Philippines did increase in frequency and duration during the early to mid-1990s, but have stabilized since then. However, the number of sites affected by these blooms continue to expand though at a slower rate than in the 1990s. Furthermore, the type of HABs and causative species have diversified for both toxic blooms and fish kill events. In contrast, Malaysia showed no increasing trend in the frequency of toxic blooms over the past three decades since Pyrodinium bahamense was reported in 1976. However, similar to the Philippines, other PST producers such as Alexandrium minutum and Alexandrium tamiyavanichii have become a concern. No amnesic shellfish poisoning (ASP) has been confirmed in either Philippines or Malaysia thus far, while ciguatera fish poisoning cases are known from the Philippines and Malaysia but the causative organisms remain poorly studied. Since the 1990s and early 2000s, recognition of the distribution of other PST-producing species such as species of Alexandrium and Gymnodinium catenatum in Southeast Asia has grown, though there has been no significant expansion in the known distributions within the last decade. A major more recent problem in the two countries and for Southeast Asia in general are the frequent fish-killing algal blooms of various species such as Prorocentrum cordatum, Margalefidinium polykrikoides, Chattonella spp., and unarmored dinoflagellates (e.g., Karlodinium australe and Takayama sp.). These new sites affected and the increase in types of HABs and causative species could be attributed to various factors such as introduction through mariculture and eutrophication, and partly because of increased scientific awareness. These connections still need to be more concretely investigated. The link to the El Niño Southern Oscillation (ENSO) should also be better understood if we want to discern how climate change plays a role in these patterns of HAB occurrences.
Collapse
Affiliation(s)
- Aletta T Yñiguez
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines.
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia
| | - Steffiana J Jipanin
- Department of Fisheries Sabah, Likas Fisheries Complex, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Mitsunori Iwataki
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | - Garry Benico
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | - Rhodora V Azanza
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| |
Collapse
|
7
|
Mohd-Din M, Abdul-Wahab MF, Mohamad SE, Jamaluddin H, Shahir S, Ibrahim Z, Hii KS, Tan SN, Leaw CP, Gu H, Lim PT. Prolonged high biomass diatom blooms induced formation of hypoxic-anoxic zones in the inner part of Johor Strait. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42948-42959. [PMID: 32725555 DOI: 10.1007/s11356-020-10184-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
The Johor Strait has experienced rapid development of various human activities and served as the main marine aquaculture area for the two countries that bordered the strait. Several fish kill incidents in 2014 and 2015 have been confirmed, attributed to the algal blooms of ichthyotoxic dinoflagellates; however, the cause of fish kill events after 2016 was not clarified and the causative organisms remained unknown. To clarify the potential cause of fish kills along the Johor Strait, a 1-year field investigation was conducted with monthly sampling between May 2018 and April 2019. Monthly vertical profiles of physical water parameters (temperature, salinity, and dissolved oxygen levels) were measured in situ at different depths (subsurface, 1 m, 5 m, and 8 m) depending on the ambient depth of the water column at the sampling stations. The spatial-temporal variability of macronutrients and chlorophyll a content was analyzed. Our results showed that high chlorophyll a concentration (up to 48.8 μg/L) and high biomass blooms of Skeletonema, Chaetoceros, Rhizosolenia, and Thalassiosira were observed seasonally at the inner part of the strait. A hypoxic to anoxic dead zone, with the dissolved oxygen levels ranging from 0.19 to 1.7 mg/L, was identified in the inner Johor Strait, covering an estimated area of 10.3 km2. The occurrence of high biomass diatom blooms and formation of the hypoxic-anoxic zone along the inner part Johor Strait were likely the culprits of some fish kill incidents after 2016.
Collapse
Affiliation(s)
- Monaliza Mohd-Din
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mohd Firdaus Abdul-Wahab
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- Taiwan-Malaysia Innovation Center for Clean Water and Sustainable Energy (WISE Centre), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Shaza Eva Mohamad
- Department of Environmental and Green Technology (EGT), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, 54100, Kuala Lumpur, Malaysia
| | - Haryati Jamaluddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Shafinaz Shahir
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Zaharah Ibrahim
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Kieng Soon Hii
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Suh Nih Tan
- Institute of Oceanography and Environment, University Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen City, China
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia.
| |
Collapse
|
8
|
Transcriptional and physiological responses to inorganic nutrition in a tropical Pacific strain of Alexandrium minutum: Implications for nutrient uptakes and assimilation. Gene 2019; 711:143950. [PMID: 31255736 DOI: 10.1016/j.gene.2019.143950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 11/22/2022]
Abstract
The marine dinoflagellate Alexandrium minutum is known to produce saxitoxins that cause paralytic shellfish poisoning in human worldwide through consumption of the contaminated shellfish mollusks. Despite numerous studies on the growth physiology and saxitoxin production of this species, the knowledge on the molecular basis of nutrient uptakes in relation to toxin production in this species is limited. In this study, relative expressions of the high-affinity transporter genes of nitrate, ammonium, and phosphate (AmNrt2, AmAmt1 and AmPiPT1) and the assimilation genes, nitrate reductase (AmNas), glutamine synthase (AmGSIII) and carbamoyl phosphate synthase (AmCPSII) from A. minutum were studied in batch clonal culture condition with two nitrogen sources (nitrate: NO3- or ammonium: NH4+) under different N:P ratios (high-P: N:P of 14 and 16, and low-P: N:P of 155). The expression of AmAmt1 was suppressed in excess NH4+-grown condition but was not observed in AmNrt2 and AmNas. Expressions of AmAmt1, AmNrt2, AmNas, AmGSIII, AmCPSII, and AmPiPT1 were high in P-deficient condition, showing that A. minutum is likely to take up nutrients for growth under P-stress condition. Conversely, relative expression of AmCPSII was incongruent with cell growth, but was well correlated with toxin quota, suggesting that the gene might involve in arginine metabolism and related toxin production pathway. The expression of AmGSIII is found coincided with higher toxin production and is believed to involve in mechanism to detoxify the cells from excess ammonium stress. The gene regulation observed in this study has provided better insights into the ecophysiology of A. minutum in relation to its adaptive strategies in unfavorable environments.
Collapse
|
9
|
Lewis AM, Coates LN, Turner AD, Percy L, Lewis J. A review of the global distribution of Alexandrium minutum (Dinophyceae) and comments on ecology and associated paralytic shellfish toxin profiles, with a focus on Northern Europe. JOURNAL OF PHYCOLOGY 2018; 54:581-598. [PMID: 30047623 DOI: 10.1111/jpy.12768] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Alexandrium minutum is a globally distributed harmful algal bloom species with many strains that are known to produce paralytic shellfish toxins (PSTs) and consequently represent a concern to human and ecosystem health. This review highlights that A. minutum typically occurs in sheltered locations, with cell growth occurring during periods of stable water conditions. Sediment characteristics are important in the persistence of this species within a location, with fine sediments providing cyst deposits for ongoing inoculation to the water column. Toxic strains of A. minutum do not produce a consistent toxin profile, different populations produce a range of PSTs in differing quantities. Novel cluster analysis of published A. minutum toxin profiles indicates five PST profile clusters globally. Some clusters are grouped geographically (Northern Europe) while others are widely spread. Isolates from Taiwan have a range of toxin profile clusters and this area appears to have the most diverse set of PST producing A. minutum populations. These toxin profiles indicate that within the United Kingdom there are two populations of A. minutum grouping with strains from Northern France and Southern Ireland. There is a degree of interconnectivity in this region due to oceanic circulation and a high level of shipping and recreational boating. Further research into the interrelationships between the A. minutum populations in this global region would be of value.
Collapse
Affiliation(s)
- Adam Michael Lewis
- Cefas, The Nothe, Barrack Road, Weymouth, Dorset, DT48UB, UK
- Faculty of Science and Technology, The University of Westminster, 115 New Cavendish Street, London, W1W6UW, UK
| | | | - Andrew D Turner
- Cefas, The Nothe, Barrack Road, Weymouth, Dorset, DT48UB, UK
| | - Linda Percy
- Faculty of Science and Technology, The University of Westminster, 115 New Cavendish Street, London, W1W6UW, UK
| | - Jane Lewis
- Faculty of Science and Technology, The University of Westminster, 115 New Cavendish Street, London, W1W6UW, UK
| |
Collapse
|
10
|
Er HH, Lee LK, Lim ZF, Teng ST, Leaw CP, Lim PT. Responses of phytoplankton community to eutrophication in Semerak Lagoon (Malaysia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22944-22962. [PMID: 29858995 DOI: 10.1007/s11356-018-2389-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Effects of aquaculture activities on the environmental parameters and phytoplankton community structure were investigated in a semi-enclosed lagoon located at Semerak River, Malaysia. Elevated concentrations of phosphate and ammonia were observed at the aquaculture area and the inner lagoon. Relatively low dissolved oxygen, high total chlorophyll a, and high phytoplankton abundances but low species richness were recorded. Chaetoceros, Pseudo-nitzschia brasiliana, Blixaea quinquecornis, and Skeletonema blooms were observed, and some were associated with anoxia condition. Eutrophication level assessed by UNTRIX suggests that the water quality in the lagoon is deteriorating. Dissolved inorganic phosphorus and nitrogen at the impacted area were 15 and 12 times higher than the reference sites, respectively. Such trophic status indices could provide a useful guideline for optimal aquaculture management plan to reduce the environmental impact caused by aquaculture.
Collapse
Affiliation(s)
- Huey Hui Er
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Li Keat Lee
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Zhen Fei Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Sing Tung Teng
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia.
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia.
| |
Collapse
|