1
|
Yang S, Ma Y, Gao J, Wang X, Weng F, Zhang Y, Xu Y. Exploring the response and prediction of phytoplankton to environmental factors in eutrophic marine areas using interpretable machine learning methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175600. [PMID: 39159687 DOI: 10.1016/j.scitotenv.2024.175600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/10/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Coastal marine areas are frequently affected by human activities and face ecological and environmental threats, such as algal blooms and climate change. The community structure of phytoplankton-primary producers in marine ecosystems-is highly sensitive to environmental factors, such as temperature, salinity, and nutrients. However, traditional methods for exploring the relationship between phytoplankton communities and environmental factors in eutrophic marine areas are limited by various factors. Therefore, this study employed interpretable machine learning models, integrating high-dimensional data analysis and complex system modeling, to quantitatively and thoroughly analyze the dynamic relationship between phytoplankton communities and environmental variables in high-frequency samples collected over 53 weeks from eutrophic marine areas. The cell abundance of phytoplankton exhibited a distinct "two-peak pattern" variation. Interpretable machine learning model analysis revealed the dynamic contributions of different environmental factors during changes in the phytoplankton community structure. The results showed that temperature was a key environmental factor that affected phytoplankton growth during peak periods. In addition, the contribution of salinity increased during the second peak in phytoplankton abundance, highlighting its central role in the ecological dynamics of this phase. During green tide outbreaks, particularly in Area 01, the contributions of factors such as temperature and salinity increased, whereas those of phosphates and silicates decreased, indicating that green tide outbreaks substantially altered the nutritional dynamics of the ecosystem. Furthermore, different phytoplankton species, such as Skeletonema costatum, Thalassiosira spp., and Nitzschia spp., exhibit varying responses to environmental factors. Hence, the predictions made using random forest and generalized additive models for phytoplankton cell abundance in two marine areas revealed complex nonlinear relationships between environmental factors, such as temperature, salinity, and phytoplankton abundance.
Collapse
Affiliation(s)
- Shimin Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yuanting Ma
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Jie Gao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiajie Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Futian Weng
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China; Data Mining Research Center, Xiamen University, Xiamen 361005, China
| | - Yan Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yan Xu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Li BH, Gong JC, Li CX, Liu T, Hu JW, Li PF, Liu CY, Yang GP. Regulation of seawater dissolved carbon pools by environmental changes in Ulva prolifera originating sites: A new perspective on the contribution of U. prolifera to the seawater carbon sink function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124679. [PMID: 39116923 DOI: 10.1016/j.envpol.2024.124679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/11/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
The Ulva prolifera bloom is considered one of the most serious ecological disasters in the Yellow Sea in the past decade, forming a carbon sink in its source area within a short period but becoming a carbon source at its destination. To explore the effects of different environmental changes on seawater dissolved carbon pools faced by living U. prolifera in its originating area, U. prolifera were cultured in three sets with different light intensity (54, 108, and 162 μmol m-2 s-1), temperature (12, 20, and 28 °C) and nitrate concentration gradients (25, 50, and 100 μmol L-1). The results showed that moderate light (108 μmol m-2 s-1), temperature (20 °C), and continuous addition of exogenous nitrate significantly enhanced the absorption of dissolved inorganic carbon (DIC) in seawater by U. prolifera and most promoted its growth. Under the most suitable environment, the changes in the seawater carbonate system were mainly dominated by biological production and denitrification, with less influence from aerobic respiration. Facing different environmental changes, U. prolifera continuously changed its carbon fixation mode according to tissue δ13C results, with the changes in the concentrations of various components of DIC in seawater, especially the fluctuation of HCO3- and CO2 concentrations. Enhanced light intensity of 108 μmol m-2 s-1 could shift the carbon fixation pathway of U. prolifera towards the C4 pathway compared to temperature and nitrate stimulation. Environmental conditions at the origin determined the amount of dissolved carbon fixed by U. prolifera. Therefore, more attention should be paid to the changes in marine environmental conditions at the origin of U. prolifera, providing a basis for scientific management of U. prolifera.
Collapse
Affiliation(s)
- Bing-Han Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Jiang-Chen Gong
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Cheng-Xuan Li
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Tao Liu
- College for Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Jing-Wen Hu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Pei-Feng Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Chun-Ying Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
3
|
Liu N, Yu J, Wang Q, Zhang K, Jiang C, Tian S. Network and evolutionary analysis of green tide management policies in the Yellow Sea, China. MARINE POLLUTION BULLETIN 2024; 206:116755. [PMID: 39059218 DOI: 10.1016/j.marpolbul.2024.116755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Since 2007, persistent green tides in the Yellow Sea of China (YSC) have inflicted substantial economic and social losses. In response, the Chinese government has enacted various policies to mitigate these impacts. This study introduced an evolutionary-multiple streams framework and employed Social Network Analysis (SNA) and Text Analysis from 2007 to 2023, tracing three phases of policy development: growth (2007-2012), stability (2013-2017), and explosion (2018-2023). Findings indicated that during the growth phase, the most of the policy themes were "monitoring" and "emergency"; in the stability phase, policy issuance by provincial and municipal agencies began to increase; in the explosion phase, a basic consensus was reached on source control and intergovernmental cooperation in the management of green tides. Themes such as "ecology", "extreme weather", and "green tide exploitation" have been emphasized. This analysis provides insights for future policy formulation in green tide control and broader marine environmental governance.
Collapse
Affiliation(s)
- Na Liu
- Management College, Ocean University of China, Qingdao 266100, China; Institute of Marine Development, Ocean University of China, Qingdao 266100, China
| | - Jing Yu
- Institute of Marine Development, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Quanbin Wang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266100, China
| | - Kuncheng Zhang
- Institute of Marine Development, Ocean University of China, Qingdao 266100, China; School of Marxism, Ocean University of China, Qingdao 266100, China.
| | - Chong Jiang
- Management College, Ocean University of China, Qingdao 266100, China; Institute of Marine Development, Ocean University of China, Qingdao 266100, China
| | - Shizheng Tian
- School of Marxism, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
4
|
Xia Z, Yang Y, Zeng Y, Sun Y, Cui Q, Chen Z, Liu J, Zhang J, He P. Temporal succession of micropropagules during accumulation and dissipation of green tide algae: A case study in Rudong coast, Jiangsu Province. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106719. [PMID: 39226784 DOI: 10.1016/j.marenvres.2024.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
Over the past 18 years, green tides have persistently occurred in the Yellow Sea. Micropropagules of these algae are key to bloom formation, yet their species composition and succession during dissipation remain underexplored. During the dissipation process of accumulated green tide algae, a large number of micropropagules are released. This study monitored the dissipation of green tide algae at a coastal site, tracking micropropagules in water and sediment using an internal transcribed spacer (ITS) and 5S rDNA primers. Results showed that the dissipation lasted about one month, with significant micropropagule release. Initially, micropropagules matched 5S-II Ulva prolifera, but later species like Ulva torta, Ulva simplex, Ulva flexuosa, and Ulva meridionalis emerged. Ulva meridionalis dominated sediment in July and August, while U. torta was prevalent in water, and U. flexuosa was dominant in other months. Accumulated U. prolifera in the intertidal zone may not contribute to the seeding of the next year's bloom. This study sheds light on the dissipation process and succession patterns of micropropagules in coastal environments.
Collapse
Affiliation(s)
- Zhangyi Xia
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; College of Ocean and Earth Science, Xiamen University, Xiamen, 361100, China
| | - Yiting Yang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yinqing Zeng
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yuqing Sun
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qianwen Cui
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zehua Chen
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jinlin Liu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China; Project Management Office of China National Scientific Seafloor Observatory, Tongji University, Shanghai, 200092, China.
| | - Jianheng Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China.
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
5
|
Li Y, Jiang J, Zhang R, Qie W, Shao J, Zhu W, Xu N. Effects of photoperiod on the growth and physiological responses in Ulva prolifera under constant and diurnal temperature difference conditions. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106477. [PMID: 38554488 DOI: 10.1016/j.marenvres.2024.106477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
Photoperiod and temperature are two main factors in the growth of macroalgae, and changes in photoperiod and diurnal temperature difference exist in natural condition. In order to study the effects of photoperiod and diurnal temperature difference on the growth of green algae Ulva prolifera, we cultured this species under three light/dark cycles (light: dark = 10:14, 12:12 and 16:08) with constant (22 °C for light and dark period, noted as 22-22 °C) and diurnal temperature difference (22 °C and 16 °C for light and dark period, respectively, noted as 22-16 °C) conditions. The results showed that: 1) Compared with 10:14 light/dark cycle, the growth of U. prolifera under 12:12 light/dark cycle was significantly enhanced by 39% and 16% for 22-22 °C and 22-16 °C treatments, respectively, while the increase proportion decreased when the daylength increase from 12 h to 16 h. 2) The enhancement in growth induced by diurnal temperature difference was observed under 10:14 light/dark cycle, but not for 12:12 and 16:08 light/dark cycle treatments. 3) The Chl a content and photosynthetic rate increased under short light period and 22-22 °C conditions, while under 22-16 °C conditions, higher photosynthetic rate was observed under 12:12 light/dark cycle and no significant difference in Chl a content was observed. 4) Under 22-22 °C conditions, compared with 10:14 (L:D) treatment, the expression levels of proteins in light-harvesting complexes, PSII and carbon fixation were down regulated, while the photorespiration and pentose phosphate pathway (PPP) were up regulated by 16:08 light dark cycle. Then we speculate that the higher photosynthetic rate may be one compensation mechanism in short photoperiod, and under long light period condition the up regulations of photorespiration and PPP can be in charge of the decrease in enhancement growth induced by longer daylength.
Collapse
Affiliation(s)
- Yahe Li
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China; School of Marine Sciences, Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Xiangshan Xuwen Seaweed Development Co., Ltd., Ningbo, China
| | - Jianan Jiang
- School of Marine Sciences, Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Ruihong Zhang
- School of Marine Sciences, Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Wandi Qie
- School of Marine Sciences, Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jianzhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China.
| | - Wenrong Zhu
- Xiangshan Xuwen Seaweed Development Co., Ltd., Ningbo, China
| | - Nianjun Xu
- School of Marine Sciences, Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| |
Collapse
|
6
|
Zeng Y, Chen Z, Cao J, Li S, Xia Z, Sun Y, Zhang J, He P. Revolutionizing early-stage green tide monitoring: eDNA metabarcoding insights into Ulva prolifera and microecology in the South Yellow Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169022. [PMID: 38043827 DOI: 10.1016/j.scitotenv.2023.169022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Green tides, characterized by excessive Ulva prolifera blooms, pose significant ecological and economic challenges, especially in the South Yellow Sea. We successfully employed 18S environmental DNA (eDNA) metabarcoding to detect Ulva prolifera micropropagules, confirming the technique's reliability and introducing a rapid green tide monitoring method. Our investigation revealed notable disparities in the eukaryotic microbial community composition within Ulva prolifera habitats across different regions. Particularly, during the early stages of the South Yellow Sea green tide outbreak, potential interactions emerged between Ulva prolifera micropropagules and certain previously undocumented microorganisms from neighboring waters. These findings enhance our comprehension of early-stage green tide ecosystem dynamics, underscoring the value of merging advanced molecular techniques with conventional ecological methods to gain a comprehensive understanding of the impact of green tide on the local ecosystem. Overall, our study advances our understanding of green tide dynamics, offering novel avenues for control, ecological restoration, and essential scientific support for sustainable marine conservation and management.
Collapse
Affiliation(s)
- Yinqing Zeng
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Zehua Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jiaxing Cao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Shuang Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Zhangyi Xia
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yuqing Sun
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jianheng Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
7
|
Luo H, Yang Y, Xie S. The ecological effect of large-scale coastal natural and cultivated seaweed litter decay processes: An overview and perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118091. [PMID: 37150170 DOI: 10.1016/j.jenvman.2023.118091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Seaweeds are important components of marine ecosystems and can form a large biomass in a few months. The decomposition of seaweed litter provides energy and material for primary producers and consumers and is an important link between material circulation and energy flow in the ecosystem. However, during the growth process, part of the seaweed is deposited on the sediment surface in the form of litter. Under the joint action of the environment and organisms, elements enriched in seaweed can be released back into the environment in a short time, causing pollution problems. The cultivation yield of seaweed worldwide reached 34.7 million tons in 2019, but the litter produced during the growth and harvest process has become a vital bottleneck that restricts the further improvement of production and sustainable development of the seaweed cultivation industry. Seaweed outbreaks worldwide occur frequently, producing a mass of litter and resulting in environmental pollution on coasts and economic losses, which have negative effects on coastal ecosystems. The objective of this review is to discuss the decomposition process and ecological environmental effects of seaweed litter from the aspects of the research progress on seaweed litter; the impact of seaweed litter on the environment; and its interaction with organisms. Understanding the decomposition process and environmental impact of seaweed litter can provide theoretical support for coastal environmental protection, seaweed resource conservation and sustainable development of the seaweed cultivation industry worldwide. This review suggests that in the process of large-scale seaweed cultivation and seaweed outbreaks, ageing or falling litter should be cleared in a timely manner, mature seaweed should be harvested in stages, and dried seaweed produced after harvest and washed up on shore should be handled properly to ensure the benefits of environmental protection provided by seaweed growth and sustainable seaweed resource development.
Collapse
Affiliation(s)
- Hongtian Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Institute of Hydrobiology, Key Laboratory of Philosophy and Social Science in Guangdong Province of Jinan University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510632, China
| | - Yufeng Yang
- Institute of Hydrobiology, Key Laboratory of Philosophy and Social Science in Guangdong Province of Jinan University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510632, China.
| | - Songguang Xie
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| |
Collapse
|
8
|
Li C, Tang Y, Sun W, Xia J, Xia Z, Zhang J, He P, Liu J, Zhao S. Physiological responses of Ampithoe valida and its feeding potential on Ulva prolifera. MARINE ENVIRONMENTAL RESEARCH 2023; 186:105942. [PMID: 36924535 DOI: 10.1016/j.marenvres.2023.105942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/21/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Large numbers of Amphipoda feed on floating green tide macroalgae in the Yellow Sea, among which Ampithoe valida has a high abundance in the stable and decline periods. Amphipoda preferentially feed on Ulva. Under different temperatures, salinities, and pH, the physiological responses of A. valida and its feeding potential on Ulva prolifera were investigated, along with its physiological responses during green tide blooms in the Southern Yellow Sea. Ampithoe valida could survive within a temperature range of 5-30 °C, salinity of 5-40, and pH of 4-10. Optimal environmental conditions for growth were temperature 15-25 °C, salinity 10-40, and pH 6-10. At temperatures of 5-30 °C, salinities of 5-35, and pH of 4-9, A. valida could effectively reduce U. prolifera biomass. The feeding ability of A. valida was greatest in 25-30 °C, 10-25 salinity, and neutral seawater, exceeding 5 mg·ind.-1·d-1. During green tide outbreaks in the Southern Yellow Sea from May to August, the monthly average sea surface temperature, salinity, and pH range is 17.5-27.3 °C, 23.8-29.6, and 7.87-8.17, respectively, within which A. valida showed well growth and could effectively reduce U. prolifera biomass. Finally, this study further discussed the possibility of A. valida as a biological method to control green tide.
Collapse
Affiliation(s)
- Chongxiang Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361104, China
| | - Yiyuan Tang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenhui Sun
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Xia
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhangyi Xia
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianheng Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Jinlin Liu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; The Key Laboratory of Zoological Systematics and Application, Hebei University, Baoding, 071002, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Shuang Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
9
|
Bao M, Xing Q, Park JS, He P, Zhang J, Yarish C, Kim JK. Temperature and high nutrients enhance hypo-salinity tolerance of the bloom forming green alga, Ulva prolifera. HARMFUL ALGAE 2023; 123:102402. [PMID: 36894208 DOI: 10.1016/j.hal.2023.102402] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The response of seaweeds to environmental stressors can be population-specific, and be related to the regime of their habitats. To explore the growth and physiological responses of Ulva prolifera, two strains of this alga (Korean and Chinese strains) were studied under an interaction of temperature (20 and 25 °C), nutrients (low nutrients: 50 μM of nitrate and 5 μM of phosphate; high nutrients: 500 μM of nitrate and 50 μM of phosphate) and salinity (20, 30 and 40 psu). The lowest growth rates of both strains were observed at 40 psu of salinity, independent of temperature and nutrient levels. At 20 °C and low nutrients condition, the carbon: nitrogen (C: N) ratio and growth rate in the Chinese strain were increased by 31.1% and 21.1% at a salinity of 20 psu in comparison to the salinity of 30 psu, respectively. High nutrients decreased the ratio of C:N in both strains with increasing tissue N content. At the same time, high nutrients also increased soluble protein and pigments contents, as well as photosynthetic and growth rates in both strains at the same salinity levels at 20 °C. Under 20 °C and high nutrients conditions, the growth rates and C:N ratio of both strains were significantly decreased with increasing salinity. The pigment, soluble protein and tissue N showed an inverse trend with the growth rate at all conditions. Moreover, the higher temperature of 25 °C inhibited the growth in both strains regardless of nutrients levels. The temperature of 25 °C enhanced the contents of tissue N and pigments in the Chinese strain only at the low nutrients level. The interaction of high nutrients and 25 °C led to the accumulation of tissue N and pigment contents in both strains under all salinity conditions compared to the 20 °C and high nutrients level. The temperature of 25 °C and high nutrients decreased the growth rate in the Chinese strain at both salinities of 30 and 40 psu more than the 20 °C, and low nutrients level at the same salinity. These results suggest that the Ulva blooms caused by the Chinese strain were more impacted at hypo-salinity levels compared to the Korean strain. Eutrophic or high nutrients level enhanced the salinity tolerance in both strains of U. prolifera. There will be a decline of U. prolifera blooms of the Chinese strain at hyper-salinity levels.
Collapse
Affiliation(s)
- Menglin Bao
- School of Life Science, Ludong University, Yantai, 264025, China; Department of Marine Science, Incheon National University, Incheon, 22012, Korea
| | - Qikun Xing
- Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, Korea
| | - Ji-Sook Park
- Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, Korea
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Jianheng Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Charles Yarish
- Department of Ecology and Evolutionary Biology, University of Connecticut, Stamford, Connecticut, 06901, United States of America
| | - Jang K Kim
- Department of Marine Science, Incheon National University, Incheon, 22012, Korea; Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, Korea.
| |
Collapse
|
10
|
Bermejo R, Galindo-Ponce M, Golden N, Linderhoff C, Heesch S, Hernández I, Morrison L. Two bloom-forming species of Ulva (Chlorophyta) show different responses to seawater temperature and no antagonistic interaction. JOURNAL OF PHYCOLOGY 2023; 59:167-178. [PMID: 36371650 DOI: 10.1111/jpy.13302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The generalized use of molecular identification tools indicated that multispecific green tides are more common than previously thought. Temporal successions between bloom-forming species on a seasonal basis were also revealed in different cold temperate estuaries, suggesting a key role of photoperiod and temperature controlling bloom development and composition. According to the Intergovernmental Panel on Climate Change, water temperatures are predicted to increase around 4°C by 2100 in Ireland, especially during late spring coinciding with early green tide development. Considering current and predicted temperatures, and photoperiods during bloom development, different eco-physiological experiments were developed. These experiments indicated that the growth of Ulva lacinulata was controlled by temperature, while U. compressa was unresponsive to the photoperiod and temperatures assayed. Considering a scenario of global warming for Irish waters, an earlier development of bloom is expected in the case of U. lacinulata. This could have significant consequences for biomass balance in Irish estuaries and the maximum accumulated biomass during peak bloom. The observed seasonal patterns and experiments also indicated that U. compressa may facilitate U. lacinulata development. When both species were co-cultivated, the culture performance showed intermediate responses to experimental treatments in comparison with monospecific cultures of both species.
Collapse
Affiliation(s)
- Ricardo Bermejo
- Department of Ecology and Geology, University of Malaga. Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), University Campus of Teatinos, E29010, Malaga, Spain
| | - Maria Galindo-Ponce
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, E11510, Puerto Real, Spain
| | - Nessa Golden
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, University of Galway, Galway, H91 TK33, Ireland
| | | | - Svenja Heesch
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, 29688, Roscoff cedex, France
| | - Ignacio Hernández
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, E11510, Puerto Real, Spain
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, University of Galway, Galway, H91 TK33, Ireland
| |
Collapse
|
11
|
The sporogenesis is partly regulated by oxidative signal in Ulva prolifera: A physiological and transcriptomic perspective. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Sun Y, Yao L, Liu J, Tong Y, Xia J, Zhao X, Zhao S, Fu M, Zhuang M, He P, Zhang J. Prevention strategies for green tides at source in the Southern Yellow Sea. MARINE POLLUTION BULLETIN 2022; 178:113646. [PMID: 35427815 DOI: 10.1016/j.marpolbul.2022.113646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/15/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
As global ecological disasters, green tide outbreaks have been observed in the Southern Yellow Sea (SYS) of China since 2007, resulting in considerable economic losses and environmental damage to the coastal cities of Jiangsu and Shandong Provinces. Therefore, prevention of green tides is crucial. Previous studies have revealed that a relatively small green tide outbreak scale in the SYS was observed in 2018 and 2020, with the green tides covering areas of 193 km2 and 192 km2 and durations of 91 days and 64 days, respectively. Killing green macroalgae attached to cultivation ropes in Neopyropia aquaculture areas, which has been considered a primary source of the blooms, early removal of Neopyropia aquaculture rafts, and green tide prevention in the SYS are the key reasons for the decrease in green tides in 2018 and 2020. Furthermore, to address the challenges associated with the current green tide source prevention measures, we proposed a comprehensive control method that combines ecological farming, early green tide prevention, and resource utilization. Potential secondary pollution caused by the chemicals used to control Ulva prolifera can be minimized. Conversely, Neopyropia yezoensis quality may be enhanced through continuous improvement of its culturing process, which in turn, could reduce the green tide blooming scale.
Collapse
Affiliation(s)
- Yuqing Sun
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Lulu Yao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jinlin Liu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao 266061, China; The Key Laboratory of Zoological Systematics and Application, Hebei University, Baoding 071002, China.
| | - Yichao Tong
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xia
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaohui Zhao
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Shuang Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China.
| | - Meilin Fu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Minmin Zhuang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China.
| | - Jianheng Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
13
|
Pan Z, Yu Y, Chen Y, Yu C, Xu N, Li Y. Combined effects of biomass density and low-nighttime temperature on the competition for growth and physiological performance of Gracilariopsis lemaneiformis and Ulva prolifera. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Hiraoka M. Massive Ulva Green Tides Caused by Inhibition of Biomass Allocation to Sporulation. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112482. [PMID: 34834845 PMCID: PMC8622161 DOI: 10.3390/plants10112482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
The green seaweed Ulva spp. constitute major primary producers in marine coastal ecosystems. Some Ulva populations have declined in response to ocean warming, whereas others cause massive blooms as a floating form of large thalli mostly composed of uniform somatic cells even under high temperature conditions-a phenomenon called "green tide". Such differences in population responses can be attributed to the fate of cells between alternative courses, somatic cell division (vegetative growth), and sporic cell division (spore production). In the present review, I attempt to link natural population dynamics to the findings of physiological in vitro research. Consequently, it is elucidated that the inhibition of biomass allocation to sporulation is an important key property for Ulva to cause a huge green tide.
Collapse
Affiliation(s)
- Masanori Hiraoka
- Usa Marine Biological Institute, Kochi University, Inoshiri, Usa, Tosa, Kochi 781-1164, Japan
| |
Collapse
|
15
|
Xia L, Qin Y, Liu J, Zhang H, Wu L, Gao S, Zhuang M, Xia J, Zhao S, Xu Y, Fu M, Sun Y, Tong Y, Zhang J, He P. Complete chloroplast genome of Ulva compressa (Ulvales: Ulvaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:720-722. [PMID: 33763560 PMCID: PMC7954497 DOI: 10.1080/23802359.2020.1860696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ulva compressa is one of the causal green macroalgae in many countries. In this study, complete chloroplast genome sequence of U. compressa was reported, and the total length of this species was 94,226 bp (GenBank accession number MT916929). The overall base composition of chloroplast genome was A (37.2%), T (37.0%), C (12.7%) and G (13.1%), and the percentage of A + T (74.2%) was higher than C + G (25.8%). U. compressa chloroplast genome encoded 90 genes, including 63 protein-coding genes, 23 transfer RNAs genes, and 4 ribosomal RNAs genes. The maximum likelihood phylogenetic analysis showed that U. compressa is the closest sister species of U. linza. This study will be helpful to understand the genetic diversity of Ulva species.
Collapse
Affiliation(s)
- Lihua Xia
- East China Sea Environmental Monitoring Center, State Oceanic Administration, Shanghai, China.,Ministry of Natural Resources, Key Laboratory of Marine Ecological Monitoring and Restoration Technology, Shanghai, China
| | - Yutao Qin
- East China Sea Environmental Monitoring Center, State Oceanic Administration, Shanghai, China.,Ministry of Natural Resources, Key Laboratory of Marine Ecological Monitoring and Restoration Technology, Shanghai, China
| | - Jinlin Liu
- East China Sea Environmental Monitoring Center, State Oceanic Administration, Shanghai, China.,College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Haofei Zhang
- East China Sea Environmental Monitoring Center, State Oceanic Administration, Shanghai, China.,Ministry of Natural Resources, Key Laboratory of Marine Ecological Monitoring and Restoration Technology, Shanghai, China
| | - Lingjuan Wu
- North China Sea Marine Forecasting Center, State Oceanic Administration, Qingdao, China
| | - Song Gao
- North China Sea Marine Forecasting Center, State Oceanic Administration, Qingdao, China
| | - Minmin Zhuang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Jing Xia
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Shuang Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Yang Xu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Meilin Fu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Yuqing Sun
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Yichao Tong
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Jianheng Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
16
|
Zhang H, Wang G, Zhang C, Su R, Shi X, Wang X. Characterization of the development stages and roles of nutrients and other environmental factors in green tides in the Southern Yellow Sea, China. HARMFUL ALGAE 2020; 98:101893. [PMID: 33129451 DOI: 10.1016/j.hal.2020.101893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Large-scale floating green tides in the Southern Yellow Sea (SYS) caused by the macroalgal species Ulva prolifera have been recurring for 13 years and have become one of the greatest marine ecological disasters in the world. In this study, we attempt to explore the development pattern of green tides and find its key environmental influencing factors. The satellite remote sensing data of the development process of green tides fit the logistic growth curve (R2 = 0.93, P < 0.01) well, showing three distinct growth phases (lag, exponential growth, and short plateau phases). Correspondingly, the green tide-drifting area from the coast of Jiangsu to the nearshore waters of the Shandong Peninsula was divided into three sections: the lag phase zone (A), the exponential growth phase zone (B), and the plateau phase zone (C). Zone A in the south of Jiangsu coastal waters had abundant inorganic nutrients that were indispensable to the green tide initiation. Zone B was mainly located out of Haizhou Bay, south of 34.5° N and north of 35.5° N, where approximately 80% of the green tide biomass was generated. The rich bioavailable nutrient sources, suitable temperature, and irradiance in this area were the main promotion factors for the rapid growth and scale expansion of green tides. Wet precipitation in zone B in May and June also played an important role in the final scale of green tides. Zone C had poor nutrients, increasing temperature, and irradiance (high transparency), which limited the continued expansion of green tides, and organic nutrients might be an important support to green tides development in this region. The study based on the growth phases of green tides could help us further understand the eutrophication mechanism in the green tide outbreaks in SYS.
Collapse
Affiliation(s)
- Haibo Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Guoshan Wang
- National Marine Hazard Mitigation Service, Beijing, 100194, China
| | - Chuansong Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Rongguo Su
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Xiaoyong Shi
- National Marine Hazard Mitigation Service, Beijing, 100194, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Xiulin Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
17
|
Hao Y, Qu T, Guan C, Zhao X, Hou C, Tang X, Wang Y. Competitive advantages of Ulva prolifera from Pyropia aquaculture rafts in Subei Shoal and its implication for the green tide in the Yellow Sea. MARINE POLLUTION BULLETIN 2020; 157:111353. [PMID: 32658704 DOI: 10.1016/j.marpolbul.2020.111353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
The physiological characteristics of Ulva prolifera and Blidingia sp. during two pre-bloom stages (March & May) were compared to evaluate the competitive advantage of U. prolifera on Pyropia aquaculture rafts in Subei Shoal. (1) Compared to Blidingia sp., U. prolifera had a lower growth rate, chlorophyll content, photosynthetic efficiency, and antioxidant capacity in March. (2) In May, various indicators of U. prolifera's physiological function improved significantly, while the antioxidant capacity of Blidingia sp. decreased significantly. Large lipidic globules in U. prolifera cells became scattered small lipidic globules in May, which indicated a decrease in lipid membrane peroxidation. (3) In U. prolifera, the ratio of buoyancy to gravity of per unit volume was 1.73, and the bubbles inside the thalli provided 60% of the total buoyancy. Buoyancy generated by the inflatable structure of U. prolifera allowed this species to float after being separated from the rafts.
Collapse
Affiliation(s)
- Ya Hao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Tongfei Qu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Chen Guan
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Xinyu Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Chengzong Hou
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
18
|
Zhang H, Su R, Shi X, Zhang C, Yin H, Zhou Y, Wang G. Role of nutrients in the development of floating green tides in the Southern Yellow Sea, China, in 2017. MARINE POLLUTION BULLETIN 2020; 156:111197. [PMID: 32510359 DOI: 10.1016/j.marpolbul.2020.111197] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/12/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
The largest-scale green tides in the world caused by Ulva prolifera have been recurring annually in the Southern Yellow Sea since 2007. In this study, spatio-temporal variations of green tides and nutrients were investigated in the spring and summer of 2017, and the roles of different nutrients in the development of green tides are discussed. The results showed that the development of green tides could be divided into two parts according to the distinct growth phases of green tides: (1) the development area (DA), which was located south of 35°N and characterised by the quick expansion of green tide and high-content nutrient; (2) the accumulation area (AA), which was located north of 35°N and characterised by high U. prolifera coverage area and low-content inorganic nutrients. Through calculation of nutrient reductions, we found that DA provided 96% of nitrogen and 87% of phosphorus for the development of green tides in 2017, and the dominant nutrient species were dissolved inorganic nitrogen and dissolved organic phosphorus. Regarding AA, the dominant nitrogen component was dissolved organic nitrogen. Thus, we conclude that reducing the level of nutrient input in order to alleviate the eutrophication of seawater in the Jiangsu coastal area may be an important measure for reducing the scale of green tides.
Collapse
Affiliation(s)
- Haibo Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Rongguo Su
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaoyong Shi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Chuansong Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Hang Yin
- School of Marine and Atmospheric Sciences, Stony Brook University, NY 11790, USA
| | - Yanlei Zhou
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Guoshan Wang
- National Marine Hazard Mitigation Service, Beijing 100194, China
| |
Collapse
|
19
|
Liu J, Yang X, Cui J, Zhuang M, Zhao L, Li J, Liu Y, Wen Q, Fu M, Zhao S, Zhang J, He P. Complete chloroplast genome of Ulva meridionalis (Ulvales: Ulvaceae): an extremely fast-growing green macroalgae. MITOCHONDRIAL DNA PART B 2020. [DOI: 10.1080/23802359.2020.1735967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jinlin Liu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
- North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, China
| | - Xiaoqian Yang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Jianjun Cui
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Minmin Zhuang
- State Key Lab of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Lijuan Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Jiye Li
- North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, China
| | - Yikai Liu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Qinlin Wen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Meilin Fu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Shuang Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Jianheng Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
- Department of Marine Sciences, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, China
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
- Department of Marine Sciences, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, China
| |
Collapse
|
20
|
Good news: we can identify Ulva species erupted in the Yellow Sea more easily and cheaply now. CONSERV GENET RESOUR 2019. [DOI: 10.1007/s12686-019-01114-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Zhao X, Cui J, Zhang J, Shi J, Kang X, Liu J, Wen Q, He P. Reproductive strategy of the floating alga Ulva prolifera in blooms in the Yellow Sea based on a combination of zoid and chromosome analysis. MARINE POLLUTION BULLETIN 2019; 146:584-590. [PMID: 31426196 DOI: 10.1016/j.marpolbul.2019.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Green algal blooms have occurred in the Yellow Sea for 13 consecutive years since 2007. However, little is known about the reproductive strategy of the dominant species Ulva prolifera in the field. In particular, it is not clear whether the floating Ulva species are sporophytes or gametophytes, and if their life history is sexual or asexual. In this study, the life history type was determined based on the size, phototactic response, and flagella number for the zoids in at least two successive generations. In addition, chromosome observations were conducted to distinguish the gametophytes and sporophytes in the floating Ulva species. The results showed that the floating Ulva species were all sporophytes with sexual reproductive patterns, thereby indicating that this Ulva species always maintains vegetative growth from April to June during the early stage of the blooms. In addition, we found that the chromosome numbers were 18 for the diploid sporophytes and nine for the haploid male and female gametophytes. These results provide useful information to help understand the explosive growth of these green algal blooms.
Collapse
Affiliation(s)
- Xiaohui Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jianjun Cui
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Graduate School of Kuroshio Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan; College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524008, China
| | - Jianheng Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Department of Marine Sciences, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, Jiangsu 222005, China.
| | - Jinting Shi
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Graduate School of Kuroshio Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Xinyu Kang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jinlin Liu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Qinlin Wen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Department of Marine Sciences, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
22
|
Fu M, Fan S, Wang Z, Song W, Sun K, Han H, Xiao J, Shen S. Buoyancy potential of dominant green macroalgal species in the Yellow Sea's green tides, China. MARINE POLLUTION BULLETIN 2019; 140:301-307. [PMID: 30803648 DOI: 10.1016/j.marpolbul.2019.01.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/26/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Large-scale green tides caused by Ulva prolifera, occurred for 12 consecutive years in the Yellow Sea of China. To resolve the abrupt shift in species composition between attached and floating macroalgal assemblages, field experiments were conducted from May to July 2017 to quantify the net buoyancy force and compare the floating potential of the common green macroalgae from the red algal seaweed Pyropia yezoensis rafts. At the same time, U. prolifera from different sampling locations were tested to study variable buoyancy of this species and the associated influencing factors. Our results illustrated a stronger positive buoyant force and a proportionally greater buoyancy capacity of U. prolifera, compared to the other co-occurring species. Buoyancy is a dynamic trait and is closely correlated with light intensity, morphology and physiological status. The positive buoyancy of U. prolifera is an important factor that helps explain its predominance in the Yellow Sea's large-scale green tides.
Collapse
Affiliation(s)
- Mingzhu Fu
- Key Laboratory of Science and Engineering for the Marine Ecological Environment, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Shiliang Fan
- Key Laboratory of Science and Engineering for the Marine Ecological Environment, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zongling Wang
- Key Laboratory of Science and Engineering for the Marine Ecological Environment, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Wei Song
- Key Laboratory of Science and Engineering for the Marine Ecological Environment, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Kaiming Sun
- Key Laboratory of Science and Engineering for the Marine Ecological Environment, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Hongbin Han
- Key Laboratory of Science and Engineering for the Marine Ecological Environment, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jie Xiao
- Key Laboratory of Science and Engineering for the Marine Ecological Environment, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Songdong Shen
- Life Science School, Soochow University, Suzhou 215123, China
| |
Collapse
|
23
|
Bermejo R, Heesch S, Mac Monagail M, O'Donnell M, Daly E, Wilkes RJ, Morrison L. Spatial and temporal variability of biomass and composition of green tides in Ireland. HARMFUL ALGAE 2019; 81:94-105. [PMID: 30638503 DOI: 10.1016/j.hal.2018.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Although nutrient enrichment of estuarine and coastal waters is considered a key factor for the development of green tides, the extent, distribution, and species composition of blooms vary among systems of similar nutrient loading, which compromises our ability to predict these events based on information about nutrient status alone. Additional factors may play a role in the control and development of macroalgal blooms. The identification of relevant scales of variation is a necessary prerequisite before explanatory models can be proposed and tested. In this study spatial and temporal patterns of biomass distribution were assessed for two Ulva morphologies in two Irish estuaries heavily affected by green tides (wet biomass >1 kg m-2 during the peak bloom). Moreover, using genetic markers, the species composition of these green tides was assessed. Results revealed that these blooms were multi-specific, with Ulva prolifera, U. compressa and U.rigida the most frequent species. The species U. prolifera and U. compressa usually showed a tubular morphology, while U. rigida was mainly laminar. A seasonal succession common to both estuaries was also identified, with the bloom dominated by tubular species during spring and early summer, and co-dominated by tubular and laminar morphologies during late summer and autumn. Moreover, tubular and laminar morphologies exhibited different distribution patterns, with tubular morphologies varying at bigger spatial scales and higher biomass than the laminar. As tubular and laminar morphologies exhibited different distribution patterns, varying tubular morphologies along bigger spatial scales with higher biomass levels than the laminar. Considering that tubular morphologies were usually anchored to the sediment, while laminar Ulva were usually observed free-floating, these differences could explain a differential influence by water motion. An important annual and decadal variability in biomass levels of Ulva was observed, in the case of the Tolka estuary a noticeable increase over the last two decades. These findings should be considered for the development of management and monitoring strategies since the different habitat of laminar and tubular morphologies (anchored vs. free-floating) may play an important role in the balance of nutrients and biomass in the estuary, or determine the response to pollutant exposure. Furthermore, the presence of different species with different ecological requirements could favour the duration and extension of the bloom though temporal and spatial successions.
Collapse
Affiliation(s)
- Ricardo Bermejo
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, H91 TK33, Ireland.
| | - Svenja Heesch
- UMR 8227- Integrative Biology of Marine Models, CNRS, Station Biologique de Roscoff, Roscoff, France
| | - Michéal Mac Monagail
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, H91 TK33, Ireland
| | - Moya O'Donnell
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, H91 TK33, Ireland
| | - Eve Daly
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, H91 TK33, Ireland
| | - Robert J Wilkes
- Environmental Protection Agency, Castlebar, Co. Mayo, Ireland
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, H91 TK33, Ireland.
| |
Collapse
|