1
|
Zhao H, Chen J, Fan S, He X, Tan L, Wang J. Spatiotemporal variations of domoic acid: New findings in the sedimentary environment of a typical nearshore mariculture bay, China. ENVIRONMENTAL RESEARCH 2024; 261:119646. [PMID: 39032622 DOI: 10.1016/j.envres.2024.119646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Domoic acid (DA) is a neurotoxin produced by marine microalgae. It tends to accumulate in marine shellfish and fish, posing a threat to aquaculture and seafood consumers' health. In this study, DA in the surface and bottom seawater, sediment, and porewater of the Jiaozhou Bay, a typical mariculture bay in China, was systematically investigated for the first time over different seasons. Surprisingly, a high concentration of DA was discovered in the marine sediment porewater (maximum detected concentration: 289.49 ng/L) for the first time. DA was found to be extensively distributed in the water body and sedimentary environment of the Jiaozhou Bay. DA in the surface and bottom seawater of Jiaozhou Bay in spring was uniformly distributed, whereas DA showed obvious spatial variations in summer and winter. The high concentration areas of DA are located in the north of Jiaozhou Bay and decreased to the south areas. DA was also distributed in the sediment (spring mean: 316.57 ng/kg; summer mean: 10.22 ng/kg; winter mean: 237.08 ng/kg) and porewater (spring mean: 129.70 ng/L; summer mean: 53.54 ng/L; winter mean: 19.90 ng/L) of Jiaozhou Bay. The DA concentrations in the surface sediment and porewater were higher in the spring than in the winter and summer, contrary to the seasonal variation pattern observed in the surface and bottom seawater. The DA concentration in porewater was significantly higher than in the surface and bottom seawater, indicating that the risk of pollution contamination from DA to benthic fishery organisms may be underestimated. Overall, DA is widely distributed in the seawater and also in the benthic environment of Jiaozhou Bay and exhibited potential harm to fishery organisms varied greatly with seasons. It is an important discovery for marine algae toxins and has important guiding significance and important indicative role for the routine monitoring and management of DA pollution in water and benthic environment.
Collapse
Affiliation(s)
- Hao Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Junhui Chen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
| | - Shengqing Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Xiuping He
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266071, China.
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
2
|
He Z, Xu Q, Chen Y, Liu S, Song H, Wang H, Leaw CP, Chen N. Acquisition and evolution of the neurotoxin domoic acid biosynthesis gene cluster in Pseudo-nitzschia species. Commun Biol 2024; 7:1378. [PMID: 39443678 PMCID: PMC11499653 DOI: 10.1038/s42003-024-07068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Of the hitherto over 60 taxonomically identified species in the genus of Pseudo-nitzschia, 26 have been confirmed to be toxigenic. Nevertheless, the acquisition and evolution of the toxin biosynthesis (dab) genes by this extensive group of Pseudo-nitzschia species remains unclear. Through constructing chromosome-level genomes of three Pseudo-nitzschia species and draft genomes of ten additional Pseudo-nitzschia species, putative genomic integration sites for the dab genes in Pseudo-nitzschia species were explored. A putative breakpoint was observed in syntenic regions in the dab gene cluster-lacking Pseudo-nitzschia species, suggesting potential independent losses of dab genes. The breakpoints between this pair of conserved genes were also identified in some dab genes-possessing Pseudo-nitzschia species, suggesting that the dab gene clusters transposed to other loci after the initial integration. A "single acquisition, multiple independent losses (SAMIL)" model is proposed to explain the acquisition and evolution of the dab gene cluster in Pseudo-nitzschia species.
Collapse
Affiliation(s)
- Ziyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- College of Marine Science, University of Chinese Academy of Sciences, 10039, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Qing Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- College of Marine Science, University of Chinese Academy of Sciences, 10039, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Huiyin Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hui Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
3
|
Costas-Selas C, Martínez-García S, Pinhassi J, Fernández E, Teira E. Unveiling interactions mediated by B vitamins between diatoms and their associated bacteria from cocultures. JOURNAL OF PHYCOLOGY 2024. [PMID: 39413213 DOI: 10.1111/jpy.13515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/13/2024] [Accepted: 09/14/2024] [Indexed: 10/18/2024]
Abstract
Unveiling the interactions among phytoplankton and bacteria at the level of species requires axenic isolates to experimentally demonstrate their mutual effects. In this study, we describe the interactions among the diatoms Pseudo-nitzschia granii and Chaetoceros tenuissimus and their associated bacterial species, isolated from surface water of a coastal upwelling system using coculture experiments. Microalgae growth was assessed in axenic monocultures or in coculture with each of their co-isolated bacteria in the presence or absence of B vitamins. Pseudo-nitzschia granii growth was limited by B-vitamin supply, except when cultured with the bacteria Jannaschia cystaugens, which seemed to provide adequate levels of B vitamins to the diatom. Chaetoceros tenuissimus growth was reduced in the absence of B vitamins. Moreover, the growth of C. tenuissimus was stimulated by Alteromonas sp. and Celeribacter baekdonensis during the exponential growth. These results show a diversity of specific interactions between the diatoms and co-isolated bacteria, ranging from allelopathy to commensalism. Understanding how interactions between phytoplankton and bacteria modulate the structure and function of marine microbial plankton communities will contribute to a greater knowledge of plankton ecology and improve our ability to predict nutrient fluxes in marine ecosystems or the formation of blooms in a context of global change.
Collapse
Affiliation(s)
- Cecilia Costas-Selas
- Departamento de Ecoloxía e Bioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Sandra Martínez-García
- Departamento de Ecoloxía e Bioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems-EEMiS, Linnaeus University, Kalmar, Sweden
| | - Emilio Fernández
- Departamento de Ecoloxía e Bioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Eva Teira
- Departamento de Ecoloxía e Bioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
4
|
Alexander H. Molecular forecasting of toxic bloom events. Proc Natl Acad Sci U S A 2024; 121:e2417139121. [PMID: 39374401 PMCID: PMC11494339 DOI: 10.1073/pnas.2417139121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Affiliation(s)
- Harriet Alexander
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| |
Collapse
|
5
|
Bian Y, Feng XS, Zhang Y, Du C, Wen YQ. Marine toxins in environment: Recent updates on depuration techniques. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116990. [PMID: 39236658 DOI: 10.1016/j.ecoenv.2024.116990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Marine toxins pose a significant safety risk, leading to human intoxications and causing substantial economic losses in seafood-producing regions. The development of rapid, cost-effective, efficient, and reliable approaches for the containment of these substances is therefore crucial in order to mitigate the adverse impact of marine toxins. This research conducted a comprehensive review on the toxicity and influencing factors of marine toxins production. Additionally, depuration technologies, including adsorption, advanced oxidation processes, biodegradation, heating treatment, temporary maintenance and purification, and drug inhibition, were systematically summarized. The study also provided a comparative analysis of the advantages and disadvantages of various depuration technologies and proposed strategies for future development.
Collapse
Affiliation(s)
- Yu Bian
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Cheng Du
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Yan-Qing Wen
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
6
|
Zheng X, Li A, Qiu J, Yan G, Ji Y, Wang G. β-N-methylamino-L-alanine production, photosynthesis and transcriptional expression in a possible mutation strain and a wild strain of Thalassiosira minima. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135301. [PMID: 39053058 DOI: 10.1016/j.jhazmat.2024.135301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) produced by marine diatoms has been implicated as an important environmental trigger of neurodegenerative diseases in humans. However, the biosynthesis mechanism of BMAA in marine diatoms is still unknown. In the present study, the strain of diatom Thalassiosira minima almost lost the biosynthesis ability for BMAA after a long-term subculture in our laboratory. The production of BMAA-containing proteins in the mutant strain of T. minima reduced to 18.2 % of that in the wild strain, meanwhile the cell size decreased but pigment content increased in the mutant strain. Take consideration of our previous transcriptional data on the mixed diatom and cyanobacterium cultures, the current transcriptome analysis showed four identical and highly correlated KEGG pathways associated with the accumulation of misfolded proteins in diatom, including ribosome, proteasome, SNARE interactions in vesicle transport, and protein processing in the endoplasmic reticulum. Analysis of amino acids and transcriptional information suggested that amino acid synthesis and degradation are associated with the biosynthesis of BMAA-containing proteins. In addition, a reduction in the precision of ubiquitination-mediated protein hydrolysis and vesicular transport by the COPII system will exacerbate the accumulation of BMAA-containing proteins in diatoms.
Collapse
Affiliation(s)
- Xianyao Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Guowang Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
7
|
García-Corona JL, Fabioux C, Hégaret H. The queen scallop Aequipecten opercularis: A slow domoic acid depurator? HARMFUL ALGAE 2024; 138:102708. [PMID: 39244226 DOI: 10.1016/j.hal.2024.102708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
Domoic acid (DA) is a dangerous phycotoxin produced by several strains of diatoms of the genus Pseudo-nitzschia, and responsible for Amnesic Shellfish Poisoning (ASP) in humans. The increasingly intense ASP-outbreaks along the English Channel over the last three decades have forced persistent harvest closures of economically important and highly contaminated bivalve stocks exhibiting slow DA-depuration rates, like the king scallop Pecten maximus. Under this scenario, other pectinid species, such as the queen scallop Aequipecten opercularis have been empirically proposed as alternative resources to redress the high economic losses due to the banning of the exploitation of P. maximus. Nevertheless, the kinetics of DA depuration in A. opercularis have not been assessed so far, and its direct extraction after ASP-episodes could represent a serious threat to public health. Hence, the main objective of this work was to estimate the DA-depuration rate in the digestive gland (DG) of naturally contaminated scallops A. opercularis after a toxic Pseudo-nitzschia australis bloom subjected to experimental depuration in the laboratory for 30 days. This study also intended to go further in the knowledge about the anatomical distribution of DA in scallop tissues, and corroborate the implications of autophagy in DA-sequestration in the DG of this species as recently hypothesized. In the DG, the DA-depuration rate (0.018 day-1) suggested that even with toxin burdens as low as 40 mg⋅kg-1 in the DG, queen scallops may remain contaminated for about 70 days, thus longer under intensely contamination scenarios. The subcellular analyses corroborated DA-sequestration mainly through late-autophagy within residual bodies in the DG, without differences in the frequencies of anti-DA labeled residual bodies across the entire depuration process. These results revealed that A. opercularis cannot be considered a fast DA-depurator, and represent a baseline knowledge for decision-making about harvesting natural beds of queen scallops after toxic Pseudo-nitzschia blooms. The findings of this work also represent a cornerstone for further research to accelerate DA-depuration in this species.
Collapse
Affiliation(s)
- José Luis García-Corona
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 LEMAR (UBO/CNRS/IRD/Ifremer). Institut Universitaire Européen de la Mer, Rue Dumont d'Urville, Technopộle Brest-Iroise, Plouzané 29280, France
| | - Caroline Fabioux
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 LEMAR (UBO/CNRS/IRD/Ifremer). Institut Universitaire Européen de la Mer, Rue Dumont d'Urville, Technopộle Brest-Iroise, Plouzané 29280, France
| | - Hélène Hégaret
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 LEMAR (UBO/CNRS/IRD/Ifremer). Institut Universitaire Européen de la Mer, Rue Dumont d'Urville, Technopộle Brest-Iroise, Plouzané 29280, France.
| |
Collapse
|
8
|
Agarwal V, Sonnet V, Inomura K, Ciochetto AB, Mouw CB. Image-derived indicators of phytoplankton community responses to Pseudo-nitzschia blooms. HARMFUL ALGAE 2024; 138:102702. [PMID: 39244237 DOI: 10.1016/j.hal.2024.102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
Phytoplankton populations in the natural environment interact with each other. Despite rising global concern with Pseudo-nitzschia blooms, which can produce the potent neurotoxin domoic acid, we still do not fully understand how other phytoplankton genera respond to the presence of Pseudo-nitzschia. Here, we used a 4-year high-resolution imaging dataset for 9 commonly found phytoplankton genera in Narragansett Bay, alongside environmental data, to identify potential interactions between phytoplankton genera and their response to elevated Pseudo-nitzschia abundance. Our results indicate that Pseudo-nitzschia tends to bloom either concurrently with or right after other phytoplankton genera. Such bloom periods coincide with higher water temperatures and lower salinity. Pseudo-nitzschia image abundance tends to increase the most from March-May and peaks during May-Jun, whereas the image-derived biovolume and width of Pseudo-nitzschia chains increase the most during Jan-Feb. For most phytoplankton genera, their relationship with Pseudo-nitzschia abundance is noticeably different from their relationship with Pseudo-nitzschia image features. Despite the complexity in the phytoplankton community, our analysis suggests several ecological indicators that may be used to determine the risk of harmful algal blooms.
Collapse
Affiliation(s)
- Vitul Agarwal
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA.
| | - Virginie Sonnet
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA; Laboratoire d'Océanographie de Villefanche, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Keisuke Inomura
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA
| | - Audrey B Ciochetto
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA
| | - Colleen B Mouw
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA.
| |
Collapse
|
9
|
Kim JH, Cho CH, Park TJ, Park JP. Rapid and sensitive detection of domoic acid in shellfish using a magnetic bead-based competitive ELISA with a high-affinity peptide as a molecular binder. CHEMOSPHERE 2024; 364:143274. [PMID: 39243896 DOI: 10.1016/j.chemosphere.2024.143274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Addressing the critical health concerns posed by domoic acid (DA), a neurotoxic compound produced by toxic marine algae and bioaccumulated in shellfish, necessitates the development of a rapid, precise, and robust detection system. Traditional DA detection methods have stability and sensitivity issues, which hinder effective toxin detection. To overcome these limitations, we developed a novel direct competitive enzyme-linked immunosorbent assay (dc-ELISA) platform that utilizes peptide-immobilized magnetic beads (MGBs/peptide). The affinity peptides identified through phage display and chemically synthesized with biotin labels present an innovative alternative to conventional antibodies for ELISA applications. Streptavidin-modified MGBs were used as the bioreceptor carriers to facilitate magnetic separation and simplify sample preparation, making the MGB/peptide-based dc-ELISA platform an ideal tool for comprehensive monitoring efforts. The developed platform exhibits a detection range of 0.5-10 ng mL-1 and a low limit of detection of 0.29 ng mL-1, offering enhanced sensitivity and cost-effectiveness. Moreover, our developed dc-ELISA demonstrated a high recovery rate when validated with DA-spiked CRM-mussel samples. This method overcomes the limitations of traditional detection techniques and offers a scalable and efficient approach to marine toxin surveillance with improved marine environmental monitoring and public health management.
Collapse
Affiliation(s)
- Ji Hong Kim
- Department of Food Science and Technology, and GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Chae Hwan Cho
- Department of Food Science and Technology, and GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jong Pil Park
- Department of Food Science and Technology, and GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
10
|
Lin YC, Nien YH, Chiang KP, Chin CP, Chen WT, Gong GC, Chou WC, Shih CY, Chen KS. The impact of flooding from the Minjiang River on the succession of harmful algal blooms (HABs) caused by diatoms in China's offshore waters. MARINE POLLUTION BULLETIN 2024; 205:116650. [PMID: 38981195 DOI: 10.1016/j.marpolbul.2024.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
This study examines diatom assemblages in the Matsu Archipelago, an area influenced by Minjiang River runoff. It focuses on harmful algal blooms (HABs) that occurred between August 2021 and July 2022. Utilizing 18S rRNA metabarcoding and microscopic analysis, we observed a significant diatom bloom during early summer runoff, peaking at 5 × 105 cells L-1. The research reveals dynamic community changes during the runoff season, with dominant genera including Pseudo-nitzschia, Chaetoceros, and Skeletonema. Skeletonema cell density correlated with NO3 levels, Chaetoceros had a slight PO4 affinity, and Pseudo-nitzschia showed a negative correlation with Skeletonema. Pseudo-nitzschia, which prefers high light and pH conditions, had notably high concentrations in the flood season and in the autumn. In both, it was dominated by potential toxin-producing species - P. multistriata and P. pungens during the flooding, and P. cuspidate in the autumn. These findings highlight the intricate relationship between diatom dynamics and environmental factors, providing essential insights for managing HABs, especially Pseudo-nitzschia species, amidst environmental changes.
Collapse
Affiliation(s)
- Yun-Chi Lin
- General Education Center, National Taiwan Ocean University, Keelung, Taiwan; Taiwan Ocean Genome Center, National Taiwan Ocean University, Keelung, Taiwan; Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan.
| | - Ya-Han Nien
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Kuo-Ping Chiang
- Taiwan Ocean Genome Center, National Taiwan Ocean University, Keelung, Taiwan; Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| | | | - Wei-Ting Chen
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Gwo-Ching Gong
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Wen-Chen Chou
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chi-Yu Shih
- Taiwan Ocean Genome Center, National Taiwan Ocean University, Keelung, Taiwan; Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Kuo-Shu Chen
- Marine Ecology and Conservation Research Center, National Academy of Marine Research, Kaohsiung, Taiwan; Marine Ecology and Conservation Research Center, National Academy of Marine Research, Ocean Affairs Council, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Bailey T, Ross L, Tiner N, Smith SMC, Pérez Santos IE, Ramos A, García Mendoza A, Miller D. Geomorphological controls on estuary hydrodynamics with implications for diatom blooms in deglaciated coastal areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174902. [PMID: 39053551 DOI: 10.1016/j.scitotenv.2024.174902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Understanding local hydraulic conditions is imperative to coastal harmful algal bloom (HAB) monitoring. The research summarized herein describes how the locations and tidal phases selected for coastal hazard sampling can influence measurement results used to guide management decisions for HABs. Our study was conducted in Frenchman Bay, Maine, known for its complex deglaciated coastline, strong tidal influence, and shellfishing activities that are susceptible to problematic HABs such as those produced by some species (spp.) of the diatom genus Pseudo-nitzschia. In-situ measurements of current velocity, density, and turbulence collected over a semidiurnal tidal cycle and a companion numerical model simulation of the study area provide concurrent evidence of two adjacent counter-rotating sub-mesoscale eddies (2-4 km diameter) that persist in the depth-averaged residual circulation. The eddies are generated in the wake of several islands in an area with abrupt bathymetric gradients, both legacy conditions partly derived from deglaciation ∼15 kya. Increased concentrations of Pseudo-nitzschia spp. measured during the semidiurnal survey follow a trend of elevated turbulent dissipation rates near the water surface, indicating that surface sampling alone might not adequately indicate species abundance. Additional measurements of Pseudo-nitzschia spp. from two years of weekly sampling in the region show that algal cell abundance is highest where residual eddies form. These findings provide incentive to examine current practices of HAB monitoring and management by linking coastal geomorphology to hydraulic conditions influencing HAB sampling outcomes, coastal morphometric features to material accumulation hotspots, and millennial time scales to modern hydraulic conditions.
Collapse
Affiliation(s)
- Taylor Bailey
- University of Maine, Department of Civil and Environmental Engineering, 5711 Boardman Hall, Orono, ME 04469, United States of America.
| | - Lauren Ross
- University of Maine, Department of Civil and Environmental Engineering, 5711 Boardman Hall, Orono, ME 04469, United States of America
| | - Nicholas Tiner
- University of Maine, Department of Civil and Environmental Engineering, 5711 Boardman Hall, Orono, ME 04469, United States of America
| | - Sean M C Smith
- University of Maine, Department of Civil and Environmental Engineering, 5711 Boardman Hall, Orono, ME 04469, United States of America; University of Maine, School of Earth & Climate Sciences, 5790 Bryand Global Sciences Center, Orono, ME 04469, United States of America; Senator George J. Mitchell Center for Sustainability Solutions, 5710 Norman Smith Hall, Orono, ME 04469, United States of America
| | | | - Antonio Ramos
- University Institute ECOAQUA, Faculty of Marine Sciences, Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain
| | - Alejandro García Mendoza
- University Institute ECOAQUA, Faculty of Marine Sciences, Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain
| | - David Miller
- Maine Department of Marine Resources, 22 Coaling Station Ln, Lamoine, ME 04605, United States of America
| |
Collapse
|
12
|
Maire Y, Schmitt FG, Kormas K, Vasileiadis S, Caruana A, Skouroliakou DI, Bampouris V, Courcot L, Hervé F, Crouvoisier M, Christaki U. Effects of turbulence on diatoms of the genus Pseudo-nitzschia spp. and associated bacteria. FEMS Microbiol Ecol 2024; 100:fiae094. [PMID: 38986513 PMCID: PMC11264304 DOI: 10.1093/femsec/fiae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024] Open
Abstract
Turbulence is one of the least investigated environmental factors impacting the ecophysiology of phytoplankton, both at the community and individual species level. Here, we investigated, for the first time, the effect of a turbulence gradient (Reynolds number, from Reλ = 0 to Reλ = 360) on two species of the marine diatom Pseudo-nitzschia and their associated bacterial communities under laboratory conditions. Cell abundance, domoic acid (DA) production, chain formation, and Chl a content of P. fraudulenta and P. multiseries were higher for intermediate turbulence (Reλ = 160 or 240). DA was detectable only in P. multiseries samples. These observations were supported by transcriptomic analyses results, which suggested the turbulence related induction of the expression of the DA production locus, with a linkage to an increased photosynthetic activity of the total metatranscriptome. This study also highlighted a higher richness of the bacterial community associated with the nontoxic strain of P. fraudulenta in comparison to the toxic strain of P. multiseries. Bacillus was an important genus in P. multiseries cultures (relative abundance 15.5%) and its highest abundances coincided with the highest DA levels. However, associated bacterial communities of both Pseudo-nitzschia species did not show clear patterns relative to turbulence intensity.
Collapse
Affiliation(s)
- Yanis Maire
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| | - François G Schmitt
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| | - Konstantinos Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, Fitoko st. 1, 38446 Volos, Greece
- Agricultural Development Institute, University Research and Innovation Centre “IASON”, Argonafton & Filellinon, 38221, Greece
| | - Sotirios Vasileiadis
- Agricultural Development Institute, University Research and Innovation Centre “IASON”, Argonafton & Filellinon, 38221, Greece
- Department of Biochemistry and Biotechnology, Viopolis 41500, University of Thessaly, Larissa, Greece
| | - Amandine Caruana
- IFREMER, PHYTOX, Laboratoire PHYSALG, BP21105, Rue de l'Ile d'Yeu, F-44300 Nantes, France
| | - Dimitra-Ioli Skouroliakou
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| | - Vasileios Bampouris
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, Fitoko st. 1, 38446 Volos, Greece
| | - Lucie Courcot
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| | - Fabienne Hervé
- IFREMER, PHYTOX, Laboratoire PHYSALG, BP21105, Rue de l'Ile d'Yeu, F-44300 Nantes, France
| | - Muriel Crouvoisier
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| | - Urania Christaki
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| |
Collapse
|
13
|
Li Z, Wang J, Yue H, Rehman A, Yousaf M, Du M, Zhang X. Applying metabolic modeling and multi-omics to elucidate the biotransformation mechanisms of marine algal toxin domoic acid (DA) in sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134541. [PMID: 38714055 DOI: 10.1016/j.jhazmat.2024.134541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/30/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Domoic acid (DA)-producing algal blooms are a global marine environmental issue. However, there has been no previous research addressing the question regarding the fate of DA in marine benthic environments. In this work, we investigated the DA fate in the water-sediment microcosm via the integrative analysis of a top-down metabolic model, metagenome, and metabolome. Results demonstrated that biodegradation is the leading mechanism for the nonconservative attenuation of DA. Specifically, DA degradation was prominently completed by the sediment aerobic community, with a degradation rate of 0.0681 ± 0.00954 d-1. The DA degradation pathway included hydration, dehydrogenation, hydrolysis, decarboxylation, automatic ring opening of hydration, and β oxidation reactions. Moreover, the reverse ecological analysis demonstrated that the microbial community transitioned from nutrient competition to metabolic cross-feeding during DA degradation, further enhancing the cooperation between DA degraders and other taxa. Finally, we reconstructed the metabolic process of microbial communities during DA degradation and confirmed that the metabolism of amino acid and organic acid drove the degradation of DA. Overall, our work not only elucidated the fate of DA in marine environments but also provided crucial insights for applying metabolic models and multi-omics to investigate the biotransformation of other contaminants.
Collapse
Affiliation(s)
- Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Hao Yue
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Arbaz Rehman
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Mariam Yousaf
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Miaomiao Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Xiuhong Zhang
- School of Chemistry, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
14
|
Marotta P, Sabatino V, Ambrosino L, Miralto M, Ferrante MI. De novo transcriptome assembly of a lipoxygenase knock-down strain in the diatom Pseudo-nitzschia arenysensis. Sci Data 2024; 11:522. [PMID: 38778120 PMCID: PMC11111692 DOI: 10.1038/s41597-024-03375-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Diatoms are microalgae that live in marine and freshwater environments and are responsible for about 20% of the world's carbon fixation. Population dynamics of these cells is finely regulated by intricate signal transduction systems, in which oxylipins are thought to play a relevant role. These are oxygenated fatty acids whose biosynthesis is initiated by a lipoxygenase enzyme (LOX) and are widely distributed in all phyla, including diatoms. Here, we present a de novo transcriptome obtained from the RNA-seq performed in the diatom species Pseudo-nitzschia arenysensis, using both a wild-type and a LOX-silenced strain, which will represent a reliable reference for comparative analyses within the Pseudo-nitzschia genus and at a broader taxonomic scale. Moreover, the RNA-seq data can be interrogated to go deeper into the oxylipins metabolic pathways.
Collapse
Affiliation(s)
- Pina Marotta
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, Naples, 80131, Italy
| | - Valeria Sabatino
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Luca Ambrosino
- Department of Research Infrastructures for marine biological resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Marco Miralto
- Department of Research Infrastructures for marine biological resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Maria Immacolata Ferrante
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
- Associate to the National Institute of Oceanography and Applied Geophysics, 34151, Trieste, Italy.
| |
Collapse
|
15
|
Deschler M, Boulangé-Lecomte C, Duflot A, Sauvey A, Arcanjo C, Coulaud R, Jolly O, Niquil N, Fauchot J. First evidence of the induction of domoic acid production in Pseudo-nitzschia australis by the copepod Temora longicornis from the French coast. HARMFUL ALGAE 2024; 135:102628. [PMID: 38830707 DOI: 10.1016/j.hal.2024.102628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 06/05/2024]
Abstract
Diatoms of the genus Pseudo-nitzschia are widespread in marine waters. Some of them can produce the toxin domoic acid (DA) which can be responsible for amnesic shellfish poisoning (ASP) when transferred into the food web. These ASP events are of major concern, due to their ecological and socio-economic repercussions, particularly on the shellfish industry. Many studies have focused on the influence of abiotic factors on DA induction, less on the role of biotic interactions. Recently, the presence of predators has been shown to increase DA production in several Pseudo-nitzschia species, in particular in Arctic areas. In order to investigate the relationship between Pseudo-nitzschia species and grazers from the French coast, exposures between one strain of three species (P. australis, P. pungens, P. fraudulenta) and the copepod Temora longicornis were conducted for 5 days. Cellular and dissolved DA content were enhanced by 1,203 % and 1,556 % respectively after the 5-days exposure of P.australis whereas no DA induction was observed in P. pungens and P. fraudulenta. T. longicornis consumed all three Pseudo-nitzschia species. The copepod survival was not related to DA content. This study is an essential first step to better understanding the interactions between planktonic species from the French coast and highlights the potential key role of copepods in the Pseudo-nitzschia bloom events in the temperate ecosystems.
Collapse
Affiliation(s)
- Marie Deschler
- Université Caen Normandie, MNHN, SU, UA, CNRS UMR 8067, IRD 207, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), 14000, Caen, France; Université Le Havre Normandie, Normandie Univ, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Le Havre, F-76600, Le Havre, France
| | - Céline Boulangé-Lecomte
- Université Le Havre Normandie, Normandie Univ, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Le Havre, F-76600, Le Havre, France.
| | - Aurélie Duflot
- Université Le Havre Normandie, Normandie Univ, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Le Havre, F-76600, Le Havre, France
| | - Aurore Sauvey
- Université Caen Normandie, MNHN, SU, UA, CNRS UMR 8067, IRD 207, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), 14000, Caen, France
| | - Caroline Arcanjo
- Université Le Havre Normandie, Normandie Univ, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Le Havre, F-76600, Le Havre, France
| | - Romain Coulaud
- Université Le Havre Normandie, Normandie Univ, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Le Havre, F-76600, Le Havre, France
| | - Orianne Jolly
- Normandie Université, UNICAEN, Centre de Recherches en Environnement Côtier (CREC), Station Marine, Université de Caen Normandie, 14530, Luc-sur-Mer, France
| | - Nathalie Niquil
- Université Caen Normandie, MNHN, SU, UA, CNRS UMR 8067, IRD 207, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), 14000, Caen, France
| | - Juliette Fauchot
- Université Caen Normandie, MNHN, SU, UA, CNRS UMR 8067, IRD 207, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), 14000, Caen, France
| |
Collapse
|
16
|
Huang S, Wang X, Zhang B, Xia L, Chen Y, Li G. Room-temperature fabrication of fluorinated covalent organic polymer @ Attapulgite composite for in-syringe membrane solid-phase extraction and analysis of domoic acid in aquatic products. J Chromatogr A 2024; 1721:464849. [PMID: 38564930 DOI: 10.1016/j.chroma.2024.464849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
A novel fluorinated covalent organic polymer @ attapulgite composite (F-COP@ATP) was prepared at room temperature for in-syringe membrane solid-phase extraction (SM-SPE) of domoic acid (DA) in aquatic products. Natural ore ATP has the advantages of low cost, good mechanical strength and abundant hydroxyl group on its surface, and in-situ modified F-COP layer can provide abundant adsorption sites. F-COP@ATP combining the advantages of F-COP and ATP, becomes an ideal adsorbent for DA extracting. Moreover, a high-throughput sample preparation strategy was carried out by using the F-COP@ATP membrane as syringe filter and assembling syringes with a ten-channel injection pump. In addition, the experimental factors were optimized, such as pH of extract, amount of adsorbent, velocity of extraction and desorption, type and volume of desorption solvent. The DA analytical method was established by SM-SPE-HPLC/tandem mass spectrometry. The method had a wide linear range with low limit of detection (0.344 ng/kg) and low limit of quantification (1.14 ng/kg). F-COP@ATP membrane can be reused more than five times. The method realized the analysis of DA in scallop and razor clam samples, which shows its application prospect in practical analysis. This study provided an efficient, low-energy and mild idea for preparing other reusable natural mineral ATP-based composite materials for separation and enrichment, which reduces the experimental cost and is closer to environmental protection and green chemistry to a certain extent.
Collapse
Affiliation(s)
- Simin Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoqian Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Bo Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yi Chen
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223001, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
17
|
Wang H, Liu K, He Z, Chen Y, Hu Z, Chen W, Leaw CP, Chen N. Extensive intragenomic variations of the 18S rDNA V4 region in the toxigenic diatom species Pseudo-nitzschia multistriata revealed through high-throughput sequencing. MARINE POLLUTION BULLETIN 2024; 201:116198. [PMID: 38428045 DOI: 10.1016/j.marpolbul.2024.116198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Metabarcoding analysis is an effective technique for monitoring the domoic acid-producing Pseudo-nitzschia species in marine environments, uncovering high-levels of molecular diversity. However, such efforts may result in the overinterpretation of Pseudo-nitzschia species diversity, as molecular diversity not only encompasses interspecies and intraspecies diversities but also exhibits extensive intragenomic variations (IGVs). In this study, we analyzed the V4 region of the 18S rDNA of 30 strains of Pseudo-nitzschia multistriata collected from the coasts of China. The results showed that each P. multistriata strain harbored about a hundred of unique 18S rDNA V4 sequence varieties, of which each represented by a unique amplicon sequence variant (ASV). This study demonstrated the extensive degree of IGVs in P. multistriata strains, suggesting that IGVs may also present in other Pseudo-nitzschia species and other phytoplankton species. Understanding the scope and levels of IGVs is crucial for accurately interpreting the results of metabarcoding analysis.
Collapse
Affiliation(s)
- Hui Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Kuiyan Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ziyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhangxi Hu
- Department of Aquaculture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Weizhou Chen
- Institution of Marine Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
18
|
Zhao J, Zhao B, Kong N, Li M, Li F, Liu J, Wang L, Song L. Water stratification alters phytoplankton assemblages in scallop farming waters of the North Yellow Sea in China. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106399. [PMID: 38387226 DOI: 10.1016/j.marenvres.2024.106399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
As evaluation indicators of the primary productivity, the phytoplankton biomass and community structure are of great significance to the fishery industry, which can be driven by ocean currents, nutrients and water stratification. In the present study, the characteristics of phytoplankton assemblages in different water layers of a typical Yesso scallop farming area in Zhangzi Island, the North Yellow Sea were investigated from March 2021 to January 2022. According to the vertical distribution of temperature, water stratification was observed from June to August (stratification period), and disappeared in March, October and the following January with vertical homogeneity (mixing period). 18S rRNA gene sequencing results revealed that Pyrrophyta was the most dominant phylum during the sampling period, with high gene proportions in the stratification (63.36%) and mixing periods (77.35%). The gene proportion of Bacillariophyta in the stratification period was 5.44%, which was significantly lower than that in the mixing period of 8.93% (p < 0.05). Moreover, Pseudo-nitzschia, a toxin-producing taxon affiliated with Bacillariophyta, exhibited a significantly higher proportion in the stratification period than in the mixing period. During the stratification period, a number of toxin-producing taxa such as Pseudo-nitzschia and Karlodinium were enriched in the bottom layer, which was 1.29-fold and 1.37-fold of that in the surface layer, respectively. Redundancy analysis showed that phosphate and water temperature were major environmental factors driving the vertical distribution of phytoplankton assemblages. The phosphate (0.11 μM) and silicate (2.09 μM) concentrations in the surface layer approached the minimum threshold for phytoplankton growth, and the stoichiometric limitation of phosphate was detected in the surface and middle layers. Collectively, these results indicated that the decreased proportion ratio of Bacillariophyta to Pyrrophyta and unfavorable community composition of Bacillariophyta for scallops were observed during summer, which might result from the phosphate limitation driven by water stratification. The results will further our understanding of the dynamics of phytoplankton communities under the background of intensifying ocean stratification and provide ecological guidance for mollusc mariculture.
Collapse
Affiliation(s)
- Junyan Zhao
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Bao Zhao
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Ning Kong
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Ming Li
- Zhangzidao Group Co., LTD., Dalian, 116503, China
| | - Fuzhe Li
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jinyu Liu
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Linsheng Song
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
19
|
Tang J, He X, Chen J, Cao W, Han T, Xu Q, Sun C. Occurrence and distribution of phycotoxins in the Antarctic Ocean. MARINE POLLUTION BULLETIN 2024; 201:116250. [PMID: 38479322 DOI: 10.1016/j.marpolbul.2024.116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/07/2024]
Abstract
Lipophilic phycotoxins (LPTs) and domoic acid (DA) in Antarctic seawater, as well as parts of the South Pacific and the Southern Indian Oceans were systematically investigated. DA and six LPTs, namely pectenotoxin-2 (PTX2), okadaic acid (OA), yessotoxin (YTX), homo-yessotoxin (h-YTX), 13-desmethyl spirolide C (SPX1), and gymnodimine (GYM), were detected. PTX2, as the dominant LPTs, was widely distributed in seawater surrounding Antarctica, whereas OA, YTX, and h-YTX were irregularly distributed across the region. The total concentration of LPTs in surface seawater ranged from 0.10 to 13.57 ng/L (mean = 2.20 ng/L). ∑LPT levels were relatively higher in the eastern sea areas of Antarctica than in the western sea areas. PTX2 was the main LPT in the vertical profiles, and the PTX2 concentration was significantly higher in the epipelagic zone than water depths below 200 m. The predominant sources of PTX2 and OA in Antarctic sea areas are likely to be Dinophysis.
Collapse
Affiliation(s)
- Jiale Tang
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xiuping He
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071,China
| | - Junhui Chen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071,China.
| | - Wei Cao
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Tongzhu Han
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Qinzeng Xu
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Chengjun Sun
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|
20
|
Zhang S, Zheng T, Zhou M, Niu B, Li Y. Exposure to the mixotrophic dinoflagellate Lepidodinium sp. and its cues increase toxin production of Pseudo-nitzschia multiseries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169812. [PMID: 38181942 DOI: 10.1016/j.scitotenv.2023.169812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
The present study examined the defense responses of toxigenic Pseudo-nitzschia species (P. multiseries) to a mixotrophic dinoflagellate, Lepidodinium sp., and its associated cues. We evaluated their responses to different predation risks, including direct physical contact and indirect interactions facilitated by cues from Lepidodinium sp. during active feeding on heterospecific prey (Rhodonomas salina), limited feeding on conspecific prey (P. multiseries) and non-feeding (autotrophic growth in f/2 medium) states. This study is the first investigation of these trophic interactions. Our results demonstrated a significant increase in cellular domoic acid (cDA) in P. multiseries when exposed to Lepidodinium sp. and its associated cues, which was 1.38 to 2.42 times higher than the non-induced group. Notably, this increase was observed regardless of Lepidodinium sp. feeding on this toxic diatom and nutritional modes. However, the most significant increase occurred when they directly interacted. These findings suggest that P. multiseries evaluates predation risk and increases cDA production as a defensive strategy against potential grazing threats. No morphological changes were observed in P. multiseries in response to Lepidodinium sp. or its cues. P. multiseries cultured in flasks of Group L+P-P showed a decrease in growth, but Group L-P and Group L+R-P did not exhibit any decrease. These results suggest a lack of consistent trade-offs between the defense response and growth, thus an increase in cDA production may be a sustainable and efficient defense strategy for P. multiseries. Furthermore, our findings indicate that P. multiseries had no significant impact on the fitness (cell size, growth and/or grazing) of Lepidodinium sp. and R. salina, which suggests no evident toxic or allelopathic impacts on these two phytoplankton species. This study enhances our understanding of the trophic interactions between toxic diatoms and mixotrophic dinoflagellates and helps elucidate the dynamics of Harmful Algal Blooms, toxin transmission, and their impact on ecosystem health.
Collapse
Affiliation(s)
- Shuwen Zhang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, PR China
| | - Tingting Zheng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, PR China
| | - Muyao Zhou
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, PR China
| | - Biaobiao Niu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, PR China
| | - Yang Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
21
|
García-Corona JL, Fabioux C, Vanmaldergem J, Petek S, Derrien A, Terre-Terrillon A, Bressolier L, Breton F, Hegaret H. The amnesic shellfish poisoning toxin, domoic acid: The tattoo of the king scallop Pecten maximus. HARMFUL ALGAE 2024; 133:102607. [PMID: 38485441 DOI: 10.1016/j.hal.2024.102607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Domoic acid (DA) is a potent neurotoxin produced by diatoms of the genus Pseudo-nitzschia and is responsible for Amnesic Shellfish Poisoning (ASP) in humans. Some fishery resources of high commercial value, such as the king scallop Pecten maximus, are frequently exposed to toxic Pseudo-nitzschia blooms and are capable of accumulating high amounts of DA, retaining it for months or even a few years. This poses a serious threat to public health and a continuous economical risk due to fishing closures of this resource in the affected areas. Recently, it was hypothesized that trapping of DA within autophagosomic-vesicles could be one reason explaining the long retention of the remaining toxin in P. maximus digestive gland. To test this idea, we follow the kinetics of the subcellular localization of DA in the digestive glands of P. maximus during (a) the contamination process - with sequential samplings of scallops reared in the field during 234 days and naturally exposed to blooms of DA-producing Pseudo-nitzschia australis, and (b) the decontamination process - where highly contaminated scallops were collected after a natural bloom of toxic P. australis and subjected to DA-depuration in the laboratory for 60 days. In the digestive gland, DA-depuration rate (0.001 day-1) was much slower than contamination kinetics. The subcellular analyses revealed a direct implication of early autophagy in DA sequestration throughout contamination (r = 0.8, P < 0.05), while the presence of DA-labeled residual bodies (late autophagy) appeared to be strongly and significantly related to slow DA-depuration (r = -0.5) resembling an analogous DA-tattooing in the digestive glands of P. maximus. This work provides new evidence about the potential physiological mechanisms involved in the long retention of DA in P. maximus and represents the baseline to explore procedures to accelerate decontamination in this species.
Collapse
Affiliation(s)
- José Luis García-Corona
- Laboratoire des Sciences de l'Environnement Marin, Institut Universitaire Européen de la Mer, UMR 6539 LEMAR UBO, CNRS, IRD, Ifremer, Plouzané F-29280, France
| | - Caroline Fabioux
- Laboratoire des Sciences de l'Environnement Marin, Institut Universitaire Européen de la Mer, UMR 6539 LEMAR UBO, CNRS, IRD, Ifremer, Plouzané F-29280, France
| | - Jean Vanmaldergem
- Laboratoire des Sciences de l'Environnement Marin, Institut Universitaire Européen de la Mer, UMR 6539 LEMAR UBO, CNRS, IRD, Ifremer, Plouzané F-29280, France
| | - Sylvain Petek
- Laboratoire des Sciences de l'Environnement Marin, Institut Universitaire Européen de la Mer, UMR 6539 LEMAR UBO, CNRS, IRD, Ifremer, Plouzané F-29280, France
| | - Amélie Derrien
- Littoral Ler Bo, Ifremer, Station de Biologie Marine, Place de la Croix, BP40537, Concarneau 29900 CEDEX, France
| | - Aouregan Terre-Terrillon
- Littoral Ler Bo, Ifremer, Station de Biologie Marine, Place de la Croix, BP40537, Concarneau 29900 CEDEX, France
| | - Laura Bressolier
- Laboratoire des Sciences de l'Environnement Marin, Institut Universitaire Européen de la Mer, UMR 6539 LEMAR UBO, CNRS, IRD, Ifremer, Plouzané F-29280, France
| | - Florian Breton
- Écloserie du Tinduff, 148 rue de l'écloserie, Port du Tinduff, Plougastel-Daoulas 29470, France
| | - Hélène Hegaret
- Laboratoire des Sciences de l'Environnement Marin, Institut Universitaire Européen de la Mer, UMR 6539 LEMAR UBO, CNRS, IRD, Ifremer, Plouzané F-29280, France.
| |
Collapse
|
22
|
Norambuena-Subiabre L, Carbonell P, Salgado P, Zamora C, Espinoza-González O. Sources and profiles of toxins in shellfish from the south-central coast of Chile (36°‒ 43° S). HARMFUL ALGAE 2024; 133:102608. [PMID: 38485442 DOI: 10.1016/j.hal.2024.102608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
The study of marine toxins in shellfish is of the utmost importance to ensure people's food safety. Marine toxins in shellfish and microalgae in the water column off the south-central coast of Chile (36°‒43° S) were studied in a network of 64 stations over a 14-month period. The relative abundance of harmful species Alexandrium catenella, Alexandrium ostenfeldii, Protoceratium reticulatum, Dinophysis acuminata, Dinophysis acuta, Pseudo-nitzschia seriata group and P. delicatissima group was analyzed. The detection and quantification of lipophilic toxins and domoic acid (DA) in shellfish was determined by UHPLC-MS/MS, and for Paralytic Shellfish Toxins (PSTs) by HPLC-FD with post-column oxidation, while for a culture of A. ostenfeldii a Hylic-UHPLC-MS/MS was used. Results showed that DA, gonyautoxin (GTX)-2, GTX-3 and pectenotoxin (PTX)-2 were detected below the permitted limits, while Gymnodimine (GYM)-A and 13-desmethylespirolide C (SPX-1) were below the limit of quantitation. According to the distribution and abundance record of microalgae, DA would be associated to P. seriata and P. delicatissima-groups, PTX-2 to D. acuminata, and GTX-2, GTX-3, GYM-A, and SPX-1 to A. ostenfeldii. However, the toxin analysis of an A. ostenfeldii culture from the Biobío region only showed the presence of the paralytic toxins C2, GTX-2, GTX-3, GTX-5 and saxitoxin, therefore, the source of production of GYM and SPX is still undetermined.
Collapse
Affiliation(s)
- Luis Norambuena-Subiabre
- Instituto de Fomento Pesquero (IFOP), Centro de Estudios de Algas Nocivas (CREAN), Padre Harter 574, Puerto Montt, Chile.
| | - Pamela Carbonell
- Instituto de Fomento Pesquero (IFOP), Centro de Estudios de Algas Nocivas (CREAN), Padre Harter 574, Puerto Montt, Chile
| | - Pablo Salgado
- Instituto de Fomento Pesquero (IFOP), Centro de Estudios de Algas Nocivas (CREAN), Enrique Abello 0552, Punta Arenas, Chile
| | - Claudia Zamora
- Instituto de Fomento Pesquero (IFOP), Centro de Estudios de Algas Nocivas (CREAN), Enrique Abello 0552, Punta Arenas, Chile
| | - Oscar Espinoza-González
- Instituto de Fomento Pesquero (IFOP), Centro de Estudios de Algas Nocivas (CREAN), Padre Harter 574, Puerto Montt, Chile
| |
Collapse
|
23
|
Mollerup IM, Bjørneset J, Krock B, Jensen TH, Galatius A, Dietz R, Teilmann J, van den Brand JMA, Osterhaus A, Kokotovic B, Lundholm N, Olsen MT. Did algal toxin and Klebsiella infections cause the unexplained 2007 mass mortality event in Danish and Swedish marine mammals? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169817. [PMID: 38184244 DOI: 10.1016/j.scitotenv.2023.169817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
An unusual mass mortality event (MME) of harbour seals (Phoca vitulina) and harbour porpoises (Phocoena phocoena) occurred in Denmark and Sweden in June 2007. Prior to this incident, the region had experienced two MMEs in harbour seals caused by Phocine Distemper Virus (PDV) in 1988 and 2002. Although epidemiology and symptoms of the 2007 MME resembled PDV, none of the animals examined for PDV tested positive. Thus, it has been speculated that another - yet unknown - pathogen caused the June 2007 MME. To shed new light on the likely cause of death, we combine previously unpublished veterinary examinations of harbour seals with novel analyses of algal toxins and algal monitoring data. All harbour seals subject to pathological examination showed pneumonia, but were negative for PDV, influenza and coronavirus. Histological analyses revealed septicaemia in multiple animals, and six animals tested positive for Klebsiella pneumonia. Furthermore, we detected the algal Dinophysis toxin DTX-1b (1-115 ng g-1) in five seals subject to toxicology, representing the first time DTX-1b has been detected in marine vertebrates. However, no animals tested positive for both Klebsiella and toxins. Thus, while our relatively small sample size prevent firm conclusions on causative agents, we speculate that the unexplained MME may have been caused by a chance incidence of multiple pathogens acting in parallel in June 2007, including Dinophysis toxin and Klebsiella. Our study illustrates the complexity of wildlife MMEs and highlights the need for thorough sampling during and after MMEs, as well as additional research on and monitoring of DTX-1b and other algal toxins in the region.
Collapse
Affiliation(s)
- Ida-Marie Mollerup
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark; Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Juni Bjørneset
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark; Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Bernd Krock
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Trine Hammer Jensen
- Aalborg Zoo/Section of Biology and Environmental Science, University of Aalborg, Fredrik Bajers Vej 7, H, 9220 Aalborg, Denmark
| | - Anders Galatius
- Section for Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Rune Dietz
- Section for Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Jonas Teilmann
- Section for Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | | | - Albert Osterhaus
- Research Center Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
| | - Branko Kokotovic
- Reference Laboratory for Antimicrobial Resistance, Department of Bacteria, Parasites & Fungi, Statens Seruminstitut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark.
| | - Morten Tange Olsen
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark; Section for Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
24
|
Niu B, Pang J, Lundholm N, Liang C, Teng ST, Zheng Q, Guo X, Li Y. A Pseudo-nitzschia metabarcoding approach with a calibrated ITS1 reference sequence database applied in the Taiwan Strait. HARMFUL ALGAE 2024; 133:102602. [PMID: 38485439 DOI: 10.1016/j.hal.2024.102602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
Pseudo-nitzschia is a cosmopolitan phytoplankton genus of which some species can form blooms and produce the neurotoxin domoic acid (DA). Identification of Pseudo-nitzschia is generally based on field material or strains followed by morphological and/or molecular characterization. However, this process is time-consuming and laborious, and can not obtain a relatively complete and reliable profile of the Pseudo-nitzschia community, because species with low abundance in the field or potentially unavailable for culturing may easily be overlooked. In the present study, specific ITS primer sets were designed and evaluated using in silico matching. The primer set ITS-84F/456R involving the complete ITS1 region was found optimal. Based on matching with a Pseudo-nitzschia ITS1 reference sequence database carefully-calibrated in this study, a metabarcoding approach using annotated amplicon sequence variants (ASV) was applied in the Taiwan Strait of the East China Sea during two cruises in the spring and summer of 2019. In total, 48 Pseudo-nitzschia species/phylotypes including 36 known and 12 novel were uncovered, and verified by haplotype networks, ITS2 secondary structure comparisons and divergence analyses. Correlation analyses revealed that temperature was a key factor affecting the seasonal variation of the Pseudo-nitzschia community. This study provides an overview of the Pseudo-nitzschia community in the Taiwan Strait, with new insights into the diversity. The developed metabarcoding approach may be used elsewhere as a standard reference for accurate annotation of Pseudo-nitzschia.
Collapse
Affiliation(s)
- Biaobiao Niu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China
| | - Jinxiu Pang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Cuiwen Liang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China
| | - Sing Tung Teng
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Qixiang Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China
| | - Xin Guo
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China.
| |
Collapse
|
25
|
Cadaillon AM, Mattera B, Albizzi A, Montoya N, Maldonado S, Raya Rey A, Riccialdelli L, Almandoz GO, Schloss IR. Multispecies mass mortality in the Beagle Channel associated with paralytic shellfish toxins. HARMFUL ALGAE 2024; 132:102581. [PMID: 38331545 DOI: 10.1016/j.hal.2024.102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/06/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
The Beagle Channel is a Subantarctic semi-estuarine environment at the southern tip of South America, where intoxication events associated with harmful algal blooms have been reported since 1886, including a world record in toxicity due to Alexandrium catenella in 1992. Toxic algae affect public health and ecosystem services, particularly mussel aquaculture and fisheries management. During the austral summer of 2022, an intense bloom of A. catenella (5 × 104 cells L-1) occurred in the Beagle Channel, leading to the second most toxic event in the area, with mussel toxicity reaching 197,266 µg STXeq kg-1. This event was synchronous with the mortality of marine organisms from different trophic levels and terrestrial fauna, i.e., two Fuegian red foxes and a southern caracara. Stomach content and liver samples from dead kelp gulls (Larus dominicanus), Magellanic penguins (Spheniscus magellanicus), papua penguins (Pygoscelis papua), and imperial cormorants (Leucocarbo atriceps), presented variable paralytic shellfish toxins (PST) levels (up to 3427 µg STXeq kg-1) as measured by high performance liquid chromatography (HPLC), suggesting that deaths were associated with high PST toxicity level. The different toxin profiles found in phytoplankton, zooplankton, squat lobsters (Grimothea gregaria), Fuegian sprat (Sprattus fuegensis), and seabirds evidenced possible toxin transformation along the food web and the possible transfer vectors. The unexpected detection of PST in terrestrial fauna (up to 2707 µg STXeq kg-1) suggested intoxication by scavenging on squat lobsters, which had high toxicity (26,663 µg STXeq kg-1). PST trace levels were also detected in a liver sample of a dead false killer whale (Pseudorca crassidens), an oceanic odontocete stranded on the coast during the bloom. Overall, our results denote the exceptional nature of the toxic, multispecies mortality event and that toxins may propagate to several levels of the food web in this Subantarctic environment.
Collapse
Affiliation(s)
- A M Cadaillon
- Centro Austral de Investigaciones Científicas (CADIC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Argentina; Instituto de Desarrollo Económico e Innovación (IDEI), Universidad Nacional de Tierra del Fuego, Antártida e Islas del Atlántico Sur (UNTDF), Yrigoyen 879, Ushuaia 9410, Argentina.
| | - B Mattera
- Instituto Nacional de Investigación y Desarrollo Pesquero, Paseo Victoria Ocampo N°1, Mar del Plata 7600, Argentina
| | - A Albizzi
- Centro Austral de Investigaciones Científicas (CADIC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Argentina
| | - N Montoya
- Instituto Nacional de Investigación y Desarrollo Pesquero, Paseo Victoria Ocampo N°1, Mar del Plata 7600, Argentina
| | - S Maldonado
- Dirección General de Laboratorio de Toxinas y Microbiología, Secretaría de Pesca y Acuicultura, Ministerio de Produccion y Ambiente. Gobierno de la Provincia de Tierra del Fuego, Antártida e Islas del Atlántico Sur, Argentina
| | - A Raya Rey
- Centro Austral de Investigaciones Científicas (CADIC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Argentina; Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA), UNTDF, Yrigoyen 879, Ushuaia 9410, Argentina; Wildlife Conservation Society, Amenábar 1595, Office 19, C1426AKC CABA, Buenos Aires, Argentina
| | - L Riccialdelli
- Centro Austral de Investigaciones Científicas (CADIC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Argentina
| | - G O Almandoz
- División Ficología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA La Plata, Argentina; CONICET, Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina
| | - I R Schloss
- Centro Austral de Investigaciones Científicas (CADIC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Argentina; Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA), UNTDF, Yrigoyen 879, Ushuaia 9410, Argentina; Instituto Antártico Argentino, Buenos Aires, Argentina
| |
Collapse
|
26
|
Yao Y, Luo N, Zong Y, Jia M, Rao Y, Huang H, Jiang H. Recombinase Polymerase Amplification Combined with Lateral Flow Dipstick Assay for the Rapid and Sensitive Detection of Pseudo-nitzschia multiseries. Int J Mol Sci 2024; 25:1350. [PMID: 38279350 PMCID: PMC10816074 DOI: 10.3390/ijms25021350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/03/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
The harmful algal bloom (HAB) species Pseudo-nitzschia multiseries is widely distributed worldwide and is known to produce the neurotoxin domoic acid, which harms marine wildlife and humans. Early detection and preventative measures are more critical than late management. However, the major challenge related to early detection is the accurate and sensitive detection of microalgae present in low abundance. Therefore, developing a sensitive and specific method that can rapidly detect P. multiseries is critical for expediting the monitoring and prediction of HABs. In this study, a novel assay method, recombinase polymerase amplification combined with lateral flow dipstick (RPA-LFD), is first developed for the detection of P. multiseries. To obtain the best test results, several important factors that affected the amplification effect were optimized. The internal transcribed spacer sequence of the nuclear ribosomal DNA from P. multiseries was selected as the target region. The results showed that the optimal amplification temperature and time for the recombinase polymerase amplification (RPA) of P. multiseries were 37 °C and 15 min. The RPA products could be visualized directly using the lateral flow dipstick after only 3 min. The RPA-LFD assay sensitivity for detection of recombinant plasmid DNA (1.9 × 100 pg/μL) was 100 times more sensitive than that of RPA, and the RPA-LFD assay sensitivity for detection of genomic DNA (2.0 × 102 pg/μL) was 10 times more sensitive than that of RPA. Its feasibility in the detection of environmental samples was also verified. In conclusion, these results indicated that the RPA-LFD detection of P. multiseries that was established in this study has high efficiency, sensitivity, specificity, and practicability. Management measures made based on information gained from early detection methods may be able to prevent certain blooms. The use of a highly sensitive approach for early warning detection of P. multiseries is essential to alleviate the harmful impacts of HABs on the environment, aquaculture, and human health.
Collapse
Affiliation(s)
- Yuqing Yao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Ningjian Luo
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Yujie Zong
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Meng Jia
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Yichen Rao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Hailong Huang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Haibo Jiang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
27
|
García-Corona JL, Hegaret H, Lassudrie M, Derrien A, Terre-Terrillon A, Delaire T, Fabioux C. Comparative study of domoic acid accumulation, isomer content and associated digestive subcellular processes in five marine invertebrate species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106793. [PMID: 38071899 DOI: 10.1016/j.aquatox.2023.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/02/2024]
Abstract
Despite the deleterious effects of the phycotoxin domoic acid (DA) on human health, and the permanent threat of blooms of the toxic Pseudo-nitzschia sp. over commercially important fishery-resources, knowledge regarding the physiological mechanisms behind the profound differences in accumulation and depuration of this toxin in contaminated invertebrates remain very scarce. In this work, a comparative analysis of accumulation, isomer content, and subcellular localization of DA in different invertebrate species was performed. Samples of scallops Pecten maximus and Aequipecten opercularis, clams Donax trunculus, slippersnails Crepidula fornicata, and seasquirts Asterocarpa sp. were collected after blooms of the same concentration of toxic Pseudo-nitzschia australis. Differences (P < 0.05) in DA accumulation were found, wherein P. maximus showed up to 20-fold more DA in the digestive gland than the other species. Similar profiles of DA isomers were found between P. maximus and A. opercularis, whereas C. fornicata was the species with the highest biotransformation rate (∼10 %) and D. trunculus the lowest (∼4 %). DA localization by immunohistochemical analysis revealed differences (P < 0.05) between species: in P. maximus, DA was detected mainly within autophagosome-like vesicles in the cytoplasm of digestive cells, while in A. opercularis and C. fornicata significant DA immunoreactivity was found in post-autophagy residual bodies. A slight DA staining was found free within the cytoplasm of the digestive cells of D. trunculus and Asterocarpa sp. The Principal Component Analysis revealed similarities between pectinids, and a clear distinction of the rest of the species based on their capabilities to accumulate, biotransform, and distribute the toxin within their tissues. These findings contribute to improve the understanding of the inter-specific differences concerning the contamination-decontamination kinetics and the fate of DA in invertebrate species.
Collapse
Affiliation(s)
- José Luis García-Corona
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 LEMAR (UBO/CNRS/IRD/Ifremer). Institut Universitaire Européen de la Mer, rue Dumont d'Urville, Technopôle Brest-Iroise, Plouzané 29280, France
| | - Hélène Hegaret
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 LEMAR (UBO/CNRS/IRD/Ifremer). Institut Universitaire Européen de la Mer, rue Dumont d'Urville, Technopôle Brest-Iroise, Plouzané 29280, France
| | - Malwenn Lassudrie
- Ifremer, LITTORAL LER BO, Station de Biologie Marine, Place de la Croix, BP 40537, Cedex, Concarneau 29900, France
| | - Amélie Derrien
- Ifremer, LITTORAL LER BO, Station de Biologie Marine, Place de la Croix, BP 40537, Cedex, Concarneau 29900, France
| | - Aouregan Terre-Terrillon
- Ifremer, LITTORAL LER BO, Station de Biologie Marine, Place de la Croix, BP 40537, Cedex, Concarneau 29900, France
| | - Tomé Delaire
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 LEMAR (UBO/CNRS/IRD/Ifremer). Institut Universitaire Européen de la Mer, rue Dumont d'Urville, Technopôle Brest-Iroise, Plouzané 29280, France
| | - Caroline Fabioux
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 LEMAR (UBO/CNRS/IRD/Ifremer). Institut Universitaire Européen de la Mer, rue Dumont d'Urville, Technopôle Brest-Iroise, Plouzané 29280, France.
| |
Collapse
|
28
|
Di Costanzo F, Di Dato V, Romano G. Diatom-Bacteria Interactions in the Marine Environment: Complexity, Heterogeneity, and Potential for Biotechnological Applications. Microorganisms 2023; 11:2967. [PMID: 38138111 PMCID: PMC10745847 DOI: 10.3390/microorganisms11122967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Diatom-bacteria interactions evolved during more than 200 million years of coexistence in the same environment. In this time frame, they established complex and heterogeneous cohorts and consortia, creating networks of multiple cell-to-cell mutualistic or antagonistic interactions for nutrient exchanges, communication, and defence. The most diffused type of interaction between diatoms and bacteria is based on a win-win relationship in which bacteria benefit from the organic matter and nutrients released by diatoms, while these last rely on bacteria for the supply of nutrients they are not able to produce, such as vitamins and nitrogen. Despite the importance of diatom-bacteria interactions in the evolutionary history of diatoms, especially in structuring the marine food web and controlling algal blooms, the molecular mechanisms underlying them remain poorly studied. This review aims to present a comprehensive report on diatom-bacteria interactions, illustrating the different interplays described until now and the chemical cues involved in the communication and exchange between the two groups of organisms. We also discuss the potential biotechnological applications of molecules and processes involved in those fascinating marine microbial networks and provide information on novel approaches to unveiling the molecular mechanisms underlying diatom-bacteria interactions.
Collapse
Affiliation(s)
| | - Valeria Di Dato
- Stazione Zoologica Anton Dohrn Napoli, Ecosustainable Marine Biotechnology Department, Via Ammiraglio Ferdinando Acton 55, 80133 Napoli, Italy; (F.D.C.); (G.R.)
| | | |
Collapse
|
29
|
von Dassow P, Mikhno M, Percopo I, Orellana VR, Aguilera V, Álvarez G, Araya M, Cornejo-Guzmán S, Llona T, Mardones JI, Norambuena L, Salas-Rojas V, Kooistra WHCF, Montresor M, Sarno D. Diversity and toxicity of the planktonic diatom genus Pseudo-nitzschia from coastal and offshore waters of the Southeast Pacific, including Pseudo-nitzschia dampieri sp. nov. HARMFUL ALGAE 2023; 130:102520. [PMID: 38061816 DOI: 10.1016/j.hal.2023.102520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 12/18/2023]
Abstract
To expand knowledge of Pseudo-nitzschia species in the Southeast Pacific, we isolated specimens from coastal waters of central Chile (36°S-30°S), the Gulf of Corcovado, and the oceanic Robinson Crusoe Island (700 km offshore) and grew them into monoclonal strains. A total of 123 Pseudo-nitzschia strains were identified to 11 species based on sequencing of the ITS region of the nuclear rDNA and on ultrastructural and morphometric analyses of the frustule in selected representatives of each clade: P. australis, P. bucculenta, P. cf. chiniana, P. cf. decipiens, P. fraudulenta, P. hasleana, P. multistriata, P. plurisecta, P. cf. sabit, the new species P. dampieri sp. nov., and one undescribed species. Partial 18S and 28S rDNA sequences, including the hypervariable V4 and D1-D3 regions used for barcoding, were gathered from representative strains of each species to facilitate future metabarcoding studies. Results showed different levels of genetic, and at times ultrastructural, diversity among the above-mentioned entities, suggesting morphological variants (P. bucculenta), rapidly radiating complexes with ill-defined species boundaries (P. cf. decipiens and P. cf. sabit), and the presence of new species (P. dampieri sp. nov., Pseudo-nitzschia sp. 1, and probably P. cf. chiniana). Domoic acid (DA) was detected in 18 out of 82 strains tested, including those of P. australis, P. plurisecta, and P. multistriata. Toxicity varied among species mostly corresponding to expectations from previous reports, with the prominent exception of P. fraudulenta; DA was not detected in any of its 10 strains tested. In conclusion, a high diversity of Pseudo-nitzschia exists in Chilean waters, particularly offshore.
Collapse
Affiliation(s)
- Peter von Dassow
- Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile; Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Marta Mikhno
- Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Isabella Percopo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Valentina Rubio Orellana
- Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile; Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile
| | - Víctor Aguilera
- Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile; Laboratorio de Oceanografía Desértico Costera (LODEC), Centro de Estudios Avanzados en Zonas Áridas, Larrondo 1281, Coquimbo, 1781421, Chile
| | - Gonzalo Álvarez
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile; Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile
| | - Sebastián Cornejo-Guzmán
- Departamento de Geofísica, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112 Chile
| | - Tomás Llona
- Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile
| | - Jorge I Mardones
- Centro de Estudio de Algas Nocivas (CREAN), Instituto de Fomento Pesquero, Padre Harter 574, Puerto Montt, 5501679, Chile; Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O´Higgins, Santiago 8370993, Chile
| | - Luis Norambuena
- Centro de Estudio de Algas Nocivas (CREAN), Instituto de Fomento Pesquero, Padre Harter 574, Puerto Montt, 5501679, Chile
| | - Victoria Salas-Rojas
- Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile; Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile
| | | | - Marina Montresor
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Diana Sarno
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
30
|
Li Z, Wang J, Yue H, Du M, Jin Y, Fan J. Marine toxin domoic acid alters nitrogen cycling in sediments. Nat Commun 2023; 14:7873. [PMID: 38036528 PMCID: PMC10689436 DOI: 10.1038/s41467-023-43265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
As a red tide algal toxin with intense neurotoxicity distributed worldwide, domoic acid (DA) has attracted increasing concerns. In this work, the integrative analysis of metagenome and metabolome are applied to investigate the impact of DA on nitrogen cycling in coastal sediments. Here we show that DA can act as a stressor to induce the variation of nitrogen (N) cycling by altering the abundance of functional genes and electron supply. Moreover, microecology theory revealed that DA can increase the role of deterministic assembly in microbial dynamic succession, resulting in the shift of niches and, ultimately, the alteration in N cycling. Notably, denitrification and Anammox, the important process for sediment N removal, are markedly limited by DA. Also, variation of N cycling implies the modification in cycles of other associated elements. Overall, DA is capable of ecosystem-level effects, which require further evaluation of its potential cascading effects.
Collapse
Affiliation(s)
- Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China.
| | - Hao Yue
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Miaomiao Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Yuan Jin
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Jingfeng Fan
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, PR China.
| |
Collapse
|
31
|
Guzmán EA, Peterson TA, Winder PL, Francis KT, McFarland M, Roberts JC, Sandle J, Wright AE. An Assessment of Potential Threats to Human Health from Algae Blooms in the Indian River Lagoon (USA) 2018-2021: Unique Patterns of Cytotoxicity Associated with Toxins. Toxins (Basel) 2023; 15:664. [PMID: 37999526 PMCID: PMC10675324 DOI: 10.3390/toxins15110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
The Indian River Lagoon (IRL), a 156-mile-long estuary located on the eastern coast of Florida, experiences phytoplankton bloom events due to increased seasonal temperatures coupled with anthropogenic impacts. This study aimed to gather data on the toxicity to human cells and to identify secondary metabolites found in water samples collected in the IRL. Water samples from 20 sites of the IRL were collected during the wet and dry seasons over a three-year period. A panel of cell lines was used to test cytotoxicity. Hemagglutination, hemolysis, and inhibition of protein phosphatase 2A (PP2A) were also measured. Cytotoxic blooms were seen both in the south (Microcystis) and the north (Pyrodinium) of the IRL. Each toxin induced a consistent pattern of cytotoxicity in the panel of human cell lines assayed. During blooms, cytotoxicity due to a single type of toxin is obvious from this pattern. In the absence of blooms, the cytotoxicity seen reflected either a mixture of toxins or it was caused by an unidentified toxin. These observations suggest that other toxins with the potential to be harmful to human health may be present in the IRL. Moreover, the presence of toxins in the IRL is not always associated with blooms of known toxin-producing organisms.
Collapse
Affiliation(s)
- Esther A. Guzmán
- The Florida Center for Coastal and Human Health, Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL 34946, USA; (T.A.P.); (P.L.W.); (K.T.F.); (M.M.); (J.C.R.); (J.S.); (A.E.W.)
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Brunson JK, Thukral M, Ryan JP, Anderson CR, Kolody BC, James C, Chavez FP, Leaw CP, Rabines AJ, Venepally P, Zheng H, Kudela RM, Smith GJ, Moore BS, Allen AE. Molecular Forecasting of Domoic Acid during a Pervasive Toxic Diatom Bloom. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565333. [PMID: 37961417 PMCID: PMC10635071 DOI: 10.1101/2023.11.02.565333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In 2015, the largest recorded harmful algal bloom (HAB) occurred in the Northeast Pacific, causing nearly 100 million dollars in damages to fisheries and killing many protected marine mammals. Dominated by the toxic diatom Pseudo-nitzschia australis , this bloom produced high levels of the neurotoxin domoic acid (DA). Through molecular and transcriptional characterization of 52 near-weekly phytoplankton net-tow samples collected at a bloom hotspot in Monterey Bay, California, we identified active transcription of known DA biosynthesis ( dab ) genes from the three identified toxigenic species, including P. australis as the primary origin of toxicity. Elevated expression of silicon transporters ( sit1 ) during the bloom supports the previously hypothesized role of dissolved silica (Si) exhaustion in contributing to bloom physiology and toxicity. We find that co-expression of the dabA and sit1 genes serves as a robust predictor of DA one week in advance, potentially enabling the forecasting of DA-producing HABs. We additionally present evidence that low levels of iron could have co-limited the diatom population along with low Si. Iron limitation represents a previously unrecognized driver of both toxin production and ecological success of the low iron adapted Pseudo-nitzschia genus during the 2015 bloom, and increasing pervasiveness of iron limitation may fuel the escalating magnitude and frequency of toxic Pseudo-nitzschia blooms globally. Our results advance understanding of bloom physiology underlying toxin production, bloom prediction, and the impact of global change on toxic blooms. Significance Pseudo-nitzschia diatoms form oceanic harmful algal blooms that threaten human health through production of the neurotoxin domoic acid (DA). DA biosynthetic gene expression is hypothesized to control DA production in the environment, yet what regulates expression of these genes is yet to be discovered. In this study, we uncovered expression of DA biosynthesis genes by multiple toxigenic Pseudo-nitzschia species during an economically impactful bloom along the North American West Coast, and identified genes that predict DA in advance of its production. We discovered that iron and silica co-limitation restrained the bloom and likely promoted toxin production. This work suggests that increasing iron limitation due to global change may play a previously unrecognized role in driving bloom frequency and toxicity.
Collapse
|
33
|
Lewis NI, Yu R, Rafuse C, Quilliam MA. Seasonal occurrence of toxic phytoplankton and phycotoxins at a mussel aquaculture site in Nova Scotia, Canada. HARMFUL ALGAE 2023; 129:102528. [PMID: 37951613 DOI: 10.1016/j.hal.2023.102528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 11/14/2023]
Abstract
A three-year field study at a mussel (Mytilus edulis) aquaculture site in Ship Harbour, Nova Scotia, Canada was carried out between 2004 and 2006 to detect toxic phytoplankton species and dissolved lipophilic phycotoxins and domoic acid. A combination of plankton monitoring and solid phase adsorption toxin tracking (SPATT) techniques were used. Net tow and pipe phytoplankton samples were taken weekly to determine the abundance of potentially toxic species and SPATT samplers were deployed weekly for phycotoxin analysis. Mussels were also collected for toxin analysis in 2005. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyse the samples for spirolides (SPXs), pectenotoxins (PTXs), okadaic acid group toxins (OA, DTXs) and domoic acid (DA). Phycotoxins were detected with SPATT samplers beginning from the time of deployment until after the producing organisms were no longer observed in pipe samples. Seasonal changes in toxin composition occurred over the sampling period and were related to changes in cell concentrations of Alexandrium Halim, Dinophysis Ehrenberg and Pseudo-nitzschia (Hasle) Hasle. Spirolides peaked in late spring and early summer, followed by DA in mid-July. Okadaic acid, DTX1 and PTXs occurred throughout the field season but peaked in late summer. Concentrations of some phycotoxins detected in SPATT samplers deployed within the area where mussels were suspended on lines were lower than in those deployed outside the mussel farm. The SPATT samplers provided a useful tool to detect the presence of phycotoxins and to establish trends in their appearance in the Ship Harbour estuary.
Collapse
Affiliation(s)
- Nancy I Lewis
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St., Halifax, Nova Scotia, B3H 3Z1, Canada.
| | - Rencheng Yu
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St., Halifax, Nova Scotia, B3H 3Z1, Canada
| | - Cheryl Rafuse
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St., Halifax, Nova Scotia, B3H 3Z1, Canada
| | - Michael A Quilliam
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St., Halifax, Nova Scotia, B3H 3Z1, Canada
| |
Collapse
|
34
|
Perry RI, Nemcek N, Hennekes M, Sastri A, Ross ARS, Shannon H, Shartau RB. Domoic acid in Canadian Pacific waters, from 2016 to 2021, and relationships with physical and chemical conditions. HARMFUL ALGAE 2023; 129:102530. [PMID: 37951625 DOI: 10.1016/j.hal.2023.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Abstract
Domoic acid, a phycotoxin produced by species of the marine diatom Pseudo-nitzschia, can cause deleterious impacts to marine food webs and human health. Domoic acid and Pseudo-nitzschia spp. were surveyed from 2016 to 2021 in the Pacific waters of Canada to assess their occurrences, concentrations, and relationships with physical and chemical conditions. Domoic acid was common, occurring in measurable concentrations in 73 % of the 454 samples. It occurred in all regions (west coast of Vancouver Island, Salish Sea, Queen Charlotte Sound / Hecate Strait, deep oceanic NE Pacific), in all years and all seasons. Median concentrations were highest along the west coast of Vancouver Island, and lowest in the oceanic waters of the NE Pacific. Winter had the lowest concentrations; no significant differences occurred between spring, summer, and autumn. High domoic acid concentrations equal to or above 100 ng/L were not common, occurring in about 5 % of samples, but in all seasons and all years except 2019. All six Pseudo-nitzschia taxa identified had similar median concentrations, but different frequencies of occurrence. P. cf. australis appeared to be the major contributor to high concentrations of domoic acid. Physico-chemical conditions were described by ten variables: temperature, salinity, density difference between 30 m and the surface (a proxy for vertical stability), chlorophyll a, nitrate, phosphate, silicate, and the ratios nitrate:phosphate, nitrate:silicate, and silicate:phosphate. Statistical analyses, using general linear models, of their relationships with the absence/presence of Pseudo-nitzschia spp. found silicate (negative) to be the most influential variable common in both the west coast of Vancouver Island and Salish Sea regions. Temperature and chlorophyll a were the most influential variables which determined the log10 abundance of Pseudo-nitzschia spp. in both regions. Analyses of the absence/presence of particulate domoic acid per Pseudo-nitzschia cell (excluding P. americana) found chlorophyll a to be the most influential variable common in both regions, whereas no common influential variable determined the log10 concentration of particulate domoic acid per Pseudo-nitzschia cell (excluding P. americana). These results were generally similar to those of other studies from this area, although this study extends these findings to all seasons and all regions of Canada's Pacific waters. The results provide important background information against which major outbreaks and unusual events can be compared. A domoic acid surveillance program during synoptic oceanographic surveys can help to understand where and when it reaches high concentrations at sea and the potential impacts to the marine ecosystem.
Collapse
Affiliation(s)
- R Ian Perry
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, B.C., V9T 6N7, Canada; Fisheries and Oceans Canada, Institute of Ocean Sciences, Sidney, B.C., V8L 4B2, Canada.
| | - Nina Nemcek
- Fisheries and Oceans Canada, Institute of Ocean Sciences, Sidney, B.C., V8L 4B2, Canada
| | - Melissa Hennekes
- Fisheries and Oceans Canada, Institute of Ocean Sciences, Sidney, B.C., V8L 4B2, Canada
| | - Akash Sastri
- Fisheries and Oceans Canada, Institute of Ocean Sciences, Sidney, B.C., V8L 4B2, Canada
| | - Andrew R S Ross
- Fisheries and Oceans Canada, Institute of Ocean Sciences, Sidney, B.C., V8L 4B2, Canada
| | - Hayleigh Shannon
- Fisheries and Oceans Canada, Institute of Ocean Sciences, Sidney, B.C., V8L 4B2, Canada
| | - Ryan B Shartau
- The University of Texas at Tyler, Department of Biology, Tyler, TX, 75799, USA
| |
Collapse
|
35
|
Cembella A, Klemm K, John U, Karlson B, Arneborg L, Clarke D, Yamanaka T, Cusack C, Naustvoll L, Bresnan E, Šupraha L, Lundholm N. Emerging phylogeographic perspective on the toxigenic diatom genus Pseudo-nitzschia in coastal northern European waters and gateways to eastern Arctic seas: Causes, ecological consequences and socio-economic impacts. HARMFUL ALGAE 2023; 129:102496. [PMID: 37951606 DOI: 10.1016/j.hal.2023.102496] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 11/14/2023]
Abstract
The diatom Pseudo-nitzschia H. Peragallo is perhaps the most intensively researched genus of marine pennate diatoms, with respect to species diversity, life history strategies, toxigenicity, and biogeographical distribution. The global magnitude and consequences of harmful algal blooms (HABs) of Pseudo-nitzschia are particularly significant because of the high socioeconomic impacts and environmental and human health risks associated with the production of the neurotoxin domoic acid (DA) among populations of many (although not all) species. This has led to enhanced monitoring and mitigation strategies for toxigenic Pseudo-nitzschia blooms and their toxins in recent years. Nevertheless, human adaptive actions based on future scenarios of bloom dynamics and proposed shifts in biogeographical distribution under climate-change regimes have not been implemented on a regional scale. In the CoCliME (Co-development of climate services for adaptation to changing marine ecosystems) program these issues were addressed with respect to past, current and anticipated future status of key HAB genera such as Pseudo-nitzschia and expected benefits of enhanced monitoring. Data on the distribution and frequency of Pseudo-nitzschia blooms in relation to DA occurrence and associated amnesic shellfish toxin (AST) events were evaluated in a contemporary and historical context over the past several decades from key northern CoCliME Case Study areas. The regional studies comprised the greater North Sea and adjacent Kattegat-Skagerrak and Norwegian Sea, eastern North Atlantic marginal seas and Arctic gateways, and the Baltic Sea. The first evidence of possible biogeographical expansion of Pseudo-nitzschia taxa into frontier eastern Arctic gateways was provided from DNA barcoding signatures. Key climate change indicators, such as salinity, temperature, and water-column stratification were identified as drivers of upwelling and advection related to the distribution of regional Pseudo-nitzschia blooms. The possible influence of changing variables on bloom dynamics, magnitude, frequency and spatial and temporal distribution were interpreted in the context of regional ocean climate models. These climate change indicators may play key roles in selecting for the occurrence and diversity of Pseudo-nitzschia species within the broader microeukaryote communities. Shifts to higher temperature and lower salinity regimes predicted for the southern North Sea indicate the potential for high-magnitude Pseudo-nitzschia blooms, currently absent from this area. Ecological and socioeconomic impacts of Pseudo-nitzschia blooms are evaluated with reference to effects on fisheries and mariculture resources and coastal ecosystem function. Where feasible, effective adaptation strategies are proposed herein as emerging climate services for the northern CoCLiME region.
Collapse
Affiliation(s)
- Allan Cembella
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, Bremerhaven 27570, Germany; Departamento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada, Carr. Tijuana-Ensenada 3918, Zona Playitas, Ensenada, Baja California 22860, Mexico
| | - Kerstin Klemm
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, Bremerhaven 27570, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstraße 231, Oldenburg 26129, Germany
| | - Uwe John
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, Bremerhaven 27570, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstraße 231, Oldenburg 26129, Germany.
| | - Bengt Karlson
- Research and Development, Oceanography, Swedish Meteorological and Hydrological Institute, Sven Källfelts gata 15, Västra SE-426 71, Frölunda, Sweden
| | - Lars Arneborg
- Research and Development, Oceanography, Swedish Meteorological and Hydrological Institute, Sven Källfelts gata 15, Västra SE-426 71, Frölunda, Sweden
| | - Dave Clarke
- Marine Institute, Rinville, Oranmore, Co. Galway H91 R673, Ireland
| | - Tsuyuko Yamanaka
- Marine Institute, Rinville, Oranmore, Co. Galway H91 R673, Ireland
| | - Caroline Cusack
- Marine Institute, Rinville, Oranmore, Co. Galway H91 R673, Ireland
| | - Lars Naustvoll
- Institute of Marine Research, PO Box 1870 Nordnes, Bergen NO-5817, Norway
| | - Eileen Bresnan
- Marine Directorate of the Scottish Government, Science, Evidence, Digital and Data, 375 Victoria Rd, Aberdeen AB11 9DB, UK
| | - Luka Šupraha
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, Oslo 0316, Norway
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, Copenhagen K 1353, Denmark
| |
Collapse
|
36
|
Abdul Manaff AHN, Hii KS, Luo Z, Liu M, Law IK, Teng ST, Akhir MF, Gu H, Leaw CP, Lim PT. Mapping harmful microalgal species by eDNA monitoring: A large-scale survey across the southwestern South China Sea. HARMFUL ALGAE 2023; 129:102515. [PMID: 37951609 DOI: 10.1016/j.hal.2023.102515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/02/2023] [Accepted: 09/23/2023] [Indexed: 11/14/2023]
Abstract
A large-scale sampling was undertaken during a research cruise across the South China Sea in August 2016, covering an area of about 100,000 km2 to investigate the molecular diversity and distributions of micro-eukaryotic protists, with a focus on the potentially harmful microalgal (HAB) species along the east coast of Peninsular Malaysia. Environmental DNAs from 30 stations were extracted and DNA metabarcoding targeting the V4 and V9 markers in the 18S rDNA was performed. Many protistan molecular units, including previously unreported HAB taxa, were discovered for the first time in the water. Our findings also revealed interesting spatial distribution patterns, with a marked signal of compositional turnover between latitudinal regimes of water masses, where dinophytes and diatom compositions were among the most strongly enhanced at the fronts, leading to distinct niches. Our results further confirmed the widespread distribution of HAB species, such as the toxigenic Alexandrium tamiyavaichii and Pseudo-nitzschia species, and the fish-killing Margalefidinium polykrikoides and Karlodinium veneficum. The molecular information obtained from this study provides an updated HAB species inventory and a toolset that could facilitate existing HAB monitoring schemes in the region to better inform management decisions.
Collapse
Affiliation(s)
| | - Kieng Soon Hii
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia
| | - Zhaohe Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Minlu Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Ing Kuo Law
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia
| | - Sing Tung Teng
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Mohd Fadzil Akhir
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia.
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia.
| |
Collapse
|
37
|
McClain AM, Field CL, Norris TA, Borremans B, Duignan PJ, Johnson SP, Whoriskey ST, Thompson-Barbosa L, Gulland FMD. The symptomatology and diagnosis of domoic acid toxicosis in stranded California sea lions ( Zalophus californianus): a review and evaluation of 20 years of cases to guide prognosis. Front Vet Sci 2023; 10:1245864. [PMID: 37850065 PMCID: PMC10577433 DOI: 10.3389/fvets.2023.1245864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/04/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Domoic acid (DA) is a glutaminergic excitatory neurotoxin that causes the morbidity and mortality of California sea lions (Zalophus californianus; CSL) and other marine mammals due to a suite of effects mostly on the nervous and cardiac systems. Between 1998 and 2019, 11,737 live-stranded CSL were admitted to The Marine Mammal Center (TMMC; Sausalito, CA, USA), over 2,000 of which were intoxicated by DA. A plethora of clinical research has been performed over the past 20 years to characterize the range of toxic effects of DA exposure on CSLs, generating the largest dataset on the effects of natural exposure to this toxin in wildlife. Materials and methods In this study, we review published methods for diagnosing DA intoxication, clinical presentation, and treatment of DA-intoxicated CSL and present a practical, reproducible scoring system called the neuroscore (NS) to help assess whether a DA-affected CSL is fit for release to the wild following rehabilitation. Logistic regression models were used to assess the relationships between outcome (released vs. euthanized or died) and multiple variables to predict the outcome for a subset of 92 stranded CSLs. Results The largest proportion of DA-intoxicated CSLs was adult females (58.6%). The proportions of acute and chronic cases were 63.5 and 36.5% respectively, with 44% of affected CSL released and 56% either dying naturally or euthanized. The average time in rehabilitation was 15.9 days (range 0-169) for all outcomes. The best-performing model (85% accuracy; area under the curve = 0.90) assessing the relationship between outcome and predictor variables consisted of four variables: final NS, change in NS over time, whether the animal began eating in rehabilitation, and the state of nutrition on admission. Discussion Our results provide longitudinal information on the symptomatology of CSL intoxicated by domoic acid and suggest that a behavioral scoring system is a useful tool to assess the fitness for the release of DA-intoxicated CSL.
Collapse
Affiliation(s)
| | - Cara L. Field
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Benny Borremans
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
38
|
Li Z, Wang J, Fan J, Yue H, Zhang X. Marine toxin domoic acid alters protistan community structure and assembly process in sediments. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106131. [PMID: 37579703 DOI: 10.1016/j.marenvres.2023.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Domoic acid (DA)-producing algal blooms have been the issue of worldwide concerns in recent decades, but there has never been any attempt to investigate the effects of DA on microbial ecology in marine environments. Protists are considered to be key regulators of microbial activity, community structure and evolution, we therefore explore the effect of DA on the ecology of protists via metagenome in this work. The results indicate that trace amounts of DA can act as a stressor to alter alpha and beta diversity of protistan community. Among trophic functional groups, consumers and phototrophs are negative responders of DA, implying DA is potentially capable of functional-level effects in the ocean. Moreover, microecological theory reveals that induction of DA increases the role of deterministic processes in microbial community assembly, thus altering the biotic relationships and successional processes in symbiotic patterns. Finally, we demonstrate that the mechanism by which DA shapes protistan ecological network is by acting on phototrophs, which triggers cascading effects in networks and eventually leading to shifts in ecological succession of protists. Overall, our results present the first perspective regarding the effects of DA on marine microbial ecology, which will supplement timely information on the ecological impacts of DA in the ocean.
Collapse
Affiliation(s)
- Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China.
| | - Jingfeng Fan
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Hao Yue
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Xiuhong Zhang
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| |
Collapse
|
39
|
McCabe RM, Hickey BM, Trainer VL. The Pacific Northwest Harmful Algal Blooms Bulletin. HARMFUL ALGAE 2023; 127:102480. [PMID: 37544680 DOI: 10.1016/j.hal.2023.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 08/08/2023]
Abstract
A bulletin communicating risk of toxic Pseudo-nitzschia blooms to shellfish harvest along the open coast of the Pacific Northwest region of the United States (the northeast Pacific Ocean spanning Washington and Oregon) is discussed. This Pacific Northwest Harmful Algal Blooms (PNW HAB) Bulletin is designed for shellfish managers with a focus on the razor clam fishery, but may also be informative to managers of the Dungeness crab fishery since domoic acid accumulation in crabs tends to lag accumulation in razor clams by a couple of weeks. The Bulletin complements beach phytoplankton monitoring programs by alerting coastal shellfish managers about adverse environmental conditions that could be conducive to a toxic Pseudo-nitzschia bloom. Beach monitoring programs are effective at determining when toxins have arrived at shellfish beaches, but a risk forecast based on near real-time biophysical information can provide managers with additional forewarning about potential future toxin outbreaks. Here, the approaches taken in constructing the risk forecasts, along with the reasoning and research behind them are presented. Updates to a historical PNW HAB Bulletin are described, as are the current workflow and the individual components of the updated Bulletin. Some successes and failures realized throughout the process are also pointed out for the benefit of the broader community. A self-assessment suggests that when the necessary data sources are available, the PNW HAB Bulletin provides an accurate forecast of risk associated with toxic Pseudo-nitzschia blooms. The Bulletin has proven beneficial to coastal shellfish managers by better informing decisions on sample collection, and harvest limits, openings, extensions, and closures.
Collapse
Affiliation(s)
- Ryan M McCabe
- NOAA Pacific Marine Environmental Laboratory, 7600 Sand Point Way NE, Seattle, WA 98115, USA.
| | - Barbara M Hickey
- School of Oceanography, University of Washington, 1503 Boat Street, Box 357940, Seattle, WA 98195, USA
| | - Vera L Trainer
- Olympic Natural Resources Center, School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195, USA
| |
Collapse
|
40
|
Pućko M, Rourke W, Hussherr R, Archambault P, Eert J, Majewski AR, Niemi A, Reist J, Michel C. Phycotoxins in bivalves from the western Canadian Arctic: The first evidence of toxigenicity. HARMFUL ALGAE 2023; 127:102474. [PMID: 37544674 DOI: 10.1016/j.hal.2023.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 08/08/2023]
Abstract
This study presents the first evidence that a diverse suite of phycotoxins is not only being actively produced by the toxigenic algal communities in the Canadian Arctic waters, but is also entering the marine food web. We detected measurable amounts of Amnesic Shellfish Toxins (ASTs) and Paralytic Shellfish Toxins (PSTs), as well as trace amounts of other lipophilic toxin groups including pectenotoxins, yessotoxins, and cyclic imines, in bivalves collected from the Canadian Beaufort Sea in 2014 and 2018. There appear to be species-specific differences in accumulation and retention of AST by Arctic bivalves, with significantly higher concentrations recorded in Nuculanidae than Propeamussiidae, likely reflecting physiological and allometric differences. We further confirm the omnipresence of potentially toxic taxonomically-versatile phytoplankton communities in the western Canadian Arctic comprising Pseudo-nitzschia delicatissima group, P. obtusa, Dinophysis acuminata, Prorocentrum minimum, Alexandrium tamarense, and Gymnodinium spp. Although measurements of actual toxicity levels and profiles of these species at the time of sampling fall outside of the scope of this study, we show that high abundance and competitive success of known AST-producers, Pseudo-nitzschia spp., are possible in Canadian Arctic waters. In 2014, a strong dominance of Pseudo-nitzschia spp. was observed at a few shallow coastal stations, representing nearly 40% of the total phytoplankton cell abundances with > 106 cells/L at the depth of maximum chlorophyll a. We further describe oceanographic conditions conducive to high abundances of toxin-producing algae, indicating that temperature is likely a key factor. Even though measured AST and PST concentrations in bivalve tissue remained well below the Health Canada's levels at which monitored fisheries would close, i.e., 5% and 4%, respectively, their presence demonstrate that phycotoxin accumulation is occurring in food webs of the Canadian Beaufort Sea. Yet, the phycotoxin production controls and trophic transfer mechanisms remain unknown. Canadian Arctic marine ecosystems are rapidly changing and temperatures are expected to continue to increase. Given that these changes simultaneously affect multiple, and often co-occurring, species of primary producers, adaptive capacity is likely to play an important role in the structure of phytoplankton communities in the Canadian Arctic.
Collapse
Affiliation(s)
- Monika Pućko
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada.
| | - Wade Rourke
- Canadian Food Inspection Agency, Chemistry Laboratory, 1992 Agency Drive, Dartmouth, NS, B3B 1Y9, Canada
| | - Rachel Hussherr
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Philippe Archambault
- ArcticNet, Laval University, Department of Biology, 1045 Pavillon Alexandre Vachon, Québec City, QC, G1V 0A6, Canada
| | - Jane Eert
- Fisheries and Oceans Canada, Institute of Ocean Sciences, 9860 West Saanich Road, Sidney, BC, V8L 4B2, Canada
| | - Andrew R Majewski
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Andrea Niemi
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Jim Reist
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Christine Michel
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada.
| |
Collapse
|
41
|
Wang Z, Wang F, Wang C, Xie C, Tang T, Chen J, Ji S, Zhang S, Zhang Y, Jiang T. Annual variation in domoic acid in phytoplankton and shellfish samples from Daya Bay of the South China Sea. HARMFUL ALGAE 2023; 127:102438. [PMID: 37544665 DOI: 10.1016/j.hal.2023.102438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 08/08/2023]
Abstract
Domoic acid (DA) is a well-known phycotoxin that causes amnesic shellfish poisoning (ASP) and is mainly produced by diatom species belonging to the genus Pseudo-nitzschia. An annual survey was conducted monthly over the period of September 2020 to August 2021 in Daya Bay of the South China Sea to investigate the dynamics of particulate and shellfish DA and their relationships with the abundance of Pseudo-nitzschia spp. and environmental parameters. Pseudo-nitzschia spp. was one of the most dominant phytoplankton taxa, and a Pseudo-nitzschia bloom occurred during the survey with the highest abundance of 1.91 × 106 cells L-1. DA was detected in almost all plankton samples with the highest value of 120.7 ng L-1, and high DA concentrations coincided with the abundant presence of Pseudo-nitzschia. DA is prevalent in Daya Bay throughout the year, with detection rates of 98.3%, 82.6%, and 82.6% in plankton samples, in-situ and purchased shellfish, respectively. Higher DA concentrations were detected in the scallop (Chamys nobilis), with the highest concentration of 5.34 µg g-1. High water temperature and low DSi:DIN ratio promoted the growth of Pseudo-nitzschia and DA production. The results suggest that the increasing nitrogen loading and silicate limitation during Pseudo-nitzschia blooms together with the increase in water temperature may increase the risk of DA contamination in Daya Bay.
Collapse
Affiliation(s)
- Zhaohui Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Fan Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Chaofan Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Changliang Xie
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tao Tang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiazhuo Chen
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shuanghui Ji
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shuai Zhang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yuning Zhang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tianjian Jiang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
42
|
Ferrante MI, Broccoli A, Montresor M. The pennate diatom Pseudo-nitzschia multistriata as a model for diatom life cycles, from the laboratory to the sea. JOURNAL OF PHYCOLOGY 2023; 59:637-643. [PMID: 37256710 DOI: 10.1111/jpy.13342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023]
Abstract
Phytoplankton dynamics are regulated by external cues, such as light and nutrients, as well as by biotic interactions and endogenous controls linked to life cycle characteristics. The planktonic pennate diatom Pseudo-nitzschia multistriata, with a heterothallic mating system with two opposite mating types (MTs), represents a model for the study of diatom life cycles. P. multistriata is a toxic species, able to produce the neurotoxin domoic acid. First described in Japan in 1993, it was detected at the long-term monitoring station MareChiara (Gulf of Naples, Italy) in 1995. Since then, P. multistriata has been reported from several worldwide coastal sites. A large body of knowledge has been produced on its ecology, genetic diversity, and life cycle characteristics. The availability of these data, the ecological relevance of the Pseudo-nitzschia genus, and its controllable life cycle with a short generation time made it an ideal species to develop a genetic model system for diatoms. To enable functional studies, a 59 Mb genome sequence and several transcriptomic data were produced, and genetic transformation was optimized. These tools allowed the discovery of the first mating-type determining gene for diatoms. Gene expression studies and metabolomics analyses defined genes and molecules underpinning different phases of the process of sexual reproduction. This model system, developed to explore the genetics of diatom life cycles, offers the opportunity to parallel experimental observations in the laboratory using in situ meta-omics analyses along space and time, empowering knowledge on the biology and ecology of the genus.
Collapse
Affiliation(s)
- Maria Immacolata Ferrante
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- National Institute of Oceanography and Applied Geophysics, Trieste, Italy
| | - Andrea Broccoli
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Marina Montresor
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
43
|
Díaz PA, Álvarez G, Figueroa RI, Garreaud R, Pérez-Santos I, Schwerter C, Díaz M, López L, Pinto-Torres M, Krock B. From lipophilic to hydrophilic toxin producers: Phytoplankton succession driven by an atmospheric river in western Patagonia. MARINE POLLUTION BULLETIN 2023; 193:115214. [PMID: 37385183 DOI: 10.1016/j.marpolbul.2023.115214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Phytoplankton succession is related to hydroclimatic conditions. In this study we provide the first description of a toxic phytoplankton succession in the Patagonian Fjord System. The shift was modulated by atmospheric-oceanographic forcing and consisted of the replacement of the marine dinoflagellate Dinophysis acuta in a highly stratified water column during austral summer by the diatom Pseudo-nitzschia calliantha in a mixed water column during late summer and early autumn. This transition, accompanied by a change in the biotoxin profiles (from lipophilic dinophysis toxins to hydrophilic domoic acid), was induced by the arrival of an intense atmospheric river. The winds in Magdalena Sound may have been further amplified, due to its west-east orientation and its location within a tall, narrow mountain canyon. This work also documents the first known appearance of toxic P. calliantha in Northern Patagonian. The potential impacts of the biotoxins of this species on higher trophic levels are discussed.
Collapse
Affiliation(s)
- Patricio A Díaz
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile.
| | - Gonzalo Álvarez
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1281, Chile; Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile; Center for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Rosa I Figueroa
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Vigo, Spain
| | - René Garreaud
- Centro de Ciencia del Clima y la Resiliencia (CR2), Universidad de Chile, Chile; Departamento de Geofísica, Universidad de Chile, Santiago 8370449, Región Metropolitana, Chile
| | - Iván Pérez-Santos
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción, Chile; Centro de Investigaciones en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile
| | - Camila Schwerter
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Manuel Díaz
- Instituto de Acuicultura, Programa de Investigación Pesquera, Universidad Austral de Chile, Los Pinos S/N, Puerto Montt, Chile
| | - Loreto López
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Padre Harter 574, Puerto Montt, Chile
| | - Marco Pinto-Torres
- Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Los Pinos S/N, Puerto Montt, Chile; Centro FONDAP de Investigación de Ecosistemas de Altas Latitudes (IDEAL), Universidad Austral de Chile, Av. El Bosque 01789, Punta Arenas, Chile
| | - Bernd Krock
- Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción, Chile; Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
| |
Collapse
|
44
|
Kelly KJ, Mansour A, Liang C, Kim AM, Mancini LA, Bertin MJ, Jenkins BD, Hutchins DA, Fu FX. Simulated upwelling and marine heatwave events promote similar growth rates but differential domoic acid toxicity in Pseudo-nitzschia australis. HARMFUL ALGAE 2023; 127:102467. [PMID: 37544669 PMCID: PMC10404803 DOI: 10.1016/j.hal.2023.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 08/08/2023]
Abstract
Along the west coast of the United States, highly toxic Pseudo-nitzschia blooms have been associated with two contrasting regional phenomena: seasonal upwelling and marine heatwaves. While upwelling delivers cool water rich in pCO2 and an abundance of macronutrients to the upper water column, marine heatwaves instead lead to warmer surface waters, low pCO2, and reduced nutrient availability. Understanding Pseudo-nitzschia dynamics under these two conditions is important for bloom forecasting and coastal management, yet the mechanisms driving toxic bloom formation during contrasting upwelling vs. heatwave conditions remain poorly understood. To gain a better understanding of what drives Pseudo-nitzschia australis growth and toxicity during these events, multiple-driver scenario or 'cluster' experiments were conducted using temperature, pCO2, and nutrient levels reflecting conditions during upwelling (13 °C, 900 ppm pCO2, replete nutrients) and two intensities of marine heatwaves (19 °C or 20.5 °C, 250 ppm pCO2, reduced macronutrients). While P. australis grew equally well under both heatwave and upwelling conditions, similar to what has been observed in the natural environment, cells were only toxic in the upwelling treatment. We also conducted single-driver experiments to gain a mechanistic understanding of which drivers most impact P. australis growth and toxicity. These experiments indicated that nitrogen concentration and N:P ratio were likely the drivers that most influenced domoic acid production, while the impacts of temperature or pCO2 concentration were less pronounced. Together, these experiments may help to provide both mechanistic and holistic perspectives on toxic P. australis blooms in the dynamic and changing coastal ocean, where cells interact simultaneously with multiple altered environmental variables.
Collapse
Affiliation(s)
- Kyla J Kelly
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| | - Amjad Mansour
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| | - Chen Liang
- Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Andrew M Kim
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Narragansett, RI, United States
| | - Lily A Mancini
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Narragansett, RI, United States
| | - Matthew J Bertin
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Narragansett, RI, United States
| | - Bethany D Jenkins
- Department of Cell and Molecular Biology, University of Rhode Island, Narragansett, RI, United States; Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, United States
| | - David A Hutchins
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| | - Fei-Xue Fu
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
45
|
Schreiber S, Hanisak MD, Perricone CS, Fonnegra AC, Sullivan J, McFarland M. Pseudo-nitzschia species, toxicity, and dynamics in the southern Indian River Lagoon, FL. HARMFUL ALGAE 2023; 126:102437. [PMID: 37290891 DOI: 10.1016/j.hal.2023.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023]
Abstract
The Indian River Lagoon (IRL) spans approximately one-third of the east coast of Florida and, in recent years, has faced frequent harmful algal blooms (HABs). Blooms of the potentially toxic diatom, Pseudo-nitzschia, occur throughout the lagoon and were reported primarily from the northern IRL. The goal of this study was to identify species of Pseudo-nitzschia and characterize their bloom dynamics in the southern IRL system where monitoring has been less frequent. Surface water samples collected from five locations between October 2018 and May 2020 had Pseudo-nitzschia spp. present in 87% of samples at cell concentrations up to 1.9×103 cells mL-1. Concurrent environmental data showed Pseudo-nitzschia spp. were associated with relatively high salinity waters and cool temperatures. Six species of Pseudo-nitzschia were isolated, cultured, and characterized through 18S Sanger sequencing and scanning electron microscopy. All isolates demonstrated toxicity and domoic acid (DA) was present in 47% of surface water samples. We report the first known occurrence of P. micropora and P. fraudulenta in the IRL, and the first known DA production from P. micropora.
Collapse
Affiliation(s)
- Stephanie Schreiber
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, FL 34946, United States of America.
| | - M Dennis Hanisak
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, FL 34946, United States of America
| | - Carlie S Perricone
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, FL 34946, United States of America
| | - Andia Chaves Fonnegra
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, FL 34946, United States of America
| | - James Sullivan
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, FL 34946, United States of America
| | - Malcolm McFarland
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, FL 34946, United States of America
| |
Collapse
|
46
|
Sandoval-Belmar M, Smith J, Moreno AR, Anderson C, Kudela RM, Sutula M, Kessouri F, Caron DA, Chavez FP, Bianchi D. A cross-regional examination of patterns and environmental drivers of Pseudo-nitzschia harmful algal blooms along the California coast. HARMFUL ALGAE 2023; 126:102435. [PMID: 37290883 DOI: 10.1016/j.hal.2023.102435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 06/10/2023]
Abstract
Pseudo-nitzschia species with the ability to produce the neurotoxin domoic acid (DA) are the main cause of harmful algal blooms (HABs) along the U.S. West Coast, with major impacts on ecosystems, fisheries, and human health. While most Pseudo-nitzschia (PN) HAB studies to date have focused on their characteristics at specific sites, few cross-regional comparisons exist, and mechanistic understanding of large-scale HAB drivers remains incomplete. To close these gaps, we compiled a nearly 20-year time series of in situ particulate DA and environmental observations to characterize similarities and differences in PN HAB drivers along the California coast. We focus on three DA hotspots with the greatest data density: Monterey Bay, the Santa Barbara Channel, and the San Pedro Channel. Coastwise, DA outbreaks are strongly correlated with upwelling, chlorophyll-a, and silicic acid limitation relative to other nutrients. Clear differences also exist across the three regions, with contrasting responses to climate regimes across a north to south gradient. In Monterey Bay, PN HAB frequency and intensity increase under relatively nutrient-poor conditions during anomalously low upwelling intensities. In contrast, in the Santa Barbara and San Pedro Channels, PN HABs are favored under cold, nitrogen-rich conditions during more intense upwelling. These emerging patterns provide insights on ecological drivers of PN HABs that are consistent across regions and support the development of predictive capabilities for DA outbreaks along the California coast and beyond.
Collapse
Affiliation(s)
- Marco Sandoval-Belmar
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095-1565, United States of America.
| | - Jayme Smith
- Southern California Coastal Water Research Project, 3535 Harbor Blvd, Suite 110, Costa Mesa, CA 92626-1437, United States of America
| | - Allison R Moreno
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095-1565, United States of America
| | - Clarissa Anderson
- Southern California Coastal Ocean Observing System, Scripps Institution of Oceanography, La Jolla, CA, United States of America
| | - Raphael M Kudela
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Martha Sutula
- Southern California Coastal Water Research Project, 3535 Harbor Blvd, Suite 110, Costa Mesa, CA 92626-1437, United States of America
| | - Fayçal Kessouri
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095-1565, United States of America; Southern California Coastal Water Research Project, 3535 Harbor Blvd, Suite 110, Costa Mesa, CA 92626-1437, United States of America
| | - David A Caron
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089-0371, United States of America
| | - Francisco P Chavez
- Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | - Daniele Bianchi
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095-1565, United States of America
| |
Collapse
|
47
|
Giovannini M, Beken B, Buyuktiryaki B, Barni S, Liccioli G, Sarti L, Lodi L, Pontone M, Bartha I, Mori F, Sackesen C, du Toit G, Lopata AL, Muraro A. IgE-Mediated Shellfish Allergy in Children. Nutrients 2023; 15:2714. [PMID: 37375617 DOI: 10.3390/nu15122714] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Shellfish, including various species of mollusks (e.g., mussels, clams, and oysters) and crustaceans (e.g., shrimp, prawn, lobster, and crab), have been a keystone of healthy dietary recommendations due to their valuable protein content. In parallel with their consumption, allergic reactions related to shellfish may be increasing. Adverse reactions to shellfish are classified into different groups: (1) Immunological reactions, including IgE and non-IgE allergic reactions; (2) non-immunological reactions, including toxic reactions and food intolerance. The IgE-mediated reactions occur within about two hours after ingestion of the shellfish and range from urticaria, angioedema, nausea, and vomiting to respiratory signs and symptoms such as bronchospasm, laryngeal oedema, and anaphylaxis. The most common allergenic proteins involved in IgE-mediated allergic reactions to shellfish include tropomyosin, arginine kinase, myosin light chain, sarcoplasmic calcium-binding protein, troponin c, and triosephosphate isomerase. Over the past decades, the knowledge gained on the identification of the molecular features of different shellfish allergens improved the diagnosis and the potential design of allergen immunotherapy for shellfish allergy. Unfortunately, immunotherapeutic studies and some diagnostic tools are still restricted in a research context and need to be validated before being implemented into clinical practice. However, they seem promising for improving management strategies for shellfish allergy. In this review, epidemiology, pathogenesis, clinical features, diagnosis, and management of shellfish allergies in children are presented. The cross-reactivity among different forms of shellfish and immunotherapeutic approaches, including unmodified allergens, hypoallergens, peptide-based, and DNA-based vaccines, are also addressed.
Collapse
Affiliation(s)
- Mattia Giovannini
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Burcin Beken
- Department of Pediatric Allergy & Immunology, School of Medicine, Acibadem University, 34303 Istanbul, Turkey
| | - Betul Buyuktiryaki
- Division of Pediatric Allergy, Department of Pediatrics, School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - Simona Barni
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Giulia Liccioli
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Lucrezia Sarti
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Lorenzo Lodi
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
- Immunology Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Matteo Pontone
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Irene Bartha
- Pediatric Allergy Group, Department of Women and Children's Health, School of Life Course Sciences, King's College London, London SE1 9RT, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Francesca Mori
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Cansin Sackesen
- Division of Pediatric Allergy, Department of Pediatrics, School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - George du Toit
- Pediatric Allergy Group, Department of Women and Children's Health, School of Life Course Sciences, King's College London, London SE1 9RT, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London SE5 9NU, UK
| | - Andreas L Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Tropical Futures Institute, James Cook University, Singapore 387380, Singapore
| | - Antonella Muraro
- Food Allergy Referral Centre, Department of Mother and Child Health, University of Padua, 35128 Padua, Italy
| |
Collapse
|
48
|
Chen J, Yang J, He X, Wang J, Pan L, Xin M, Chen F, Liang S, Wang B. Prevalence of the neurotoxin domoic acid in the aquatic environments of the Bohai and Northern Yellow seas in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162732. [PMID: 36906020 DOI: 10.1016/j.scitotenv.2023.162732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Domoic acid (DA), a natural marine phytotoxin produced by toxigenic algae, is harmful to fishery organisms and the health of seafood consumers. In this study, we performed a whole-sea area investigation of DA in seawater, suspended particulate matter (SPM), and phytoplankton of the Bohai and Northern Yellow seas to clarify the occurrence, phase partitioning, spatial distribution, potential sources, and environmental influencing factors of DA in the aquatic environment. DA in different environmental media was identified using liquid chromatography-high resolution mass spectrometry and liquid chromatography-tandem mass spectrometry. DA was found to be predominantly in a dissolved phase (99.84 %) in seawater with only 0.16 % in SPM. Dissolved DA (dDA) was widely detected in nearshore and offshore areas of the Bohai Sea, Northern Yellow Sea, and Laizhou Bay with concentrations ranging from < limits of detection (LOD) to 25.21 ng/L (mean: 7.74 ng/L), < LOD to 34.90 ng/L (mean: 16.91 ng/L), and 1.74 ng/L to 38.20 ng/L (mean: 21.28 ng/L), respectively. dDA levels were relatively lower in the northern part than in the southern part of the study area. In particular, the dDA levels in the nearshore areas of Laizhou Bay were significantly higher than in other sea areas. This may be due to seawater temperature and nutrient levels exerting a crucial impact on the distribution of DA-producing marine algae in Laizhou Bay during early spring. Pseudo-nitzschia pungens may be the main source of DA in the study areas. Overall, DA was prevalent in the Bohai and Northern Yellow seas, especially in the nearshore aquaculture zone. Routine monitoring of DA in the mariculture zones of the northern seas and bays of China should be performed to warn shellfish farmers and prevent contamination.
Collapse
Affiliation(s)
- Junhui Chen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China; Qingdao Key Laboratory of Analytical Technology Development and Standardization of Chinese Medicines, Qingdao 266590, China
| | - Jianbo Yang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xiuping He
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China; Qingdao Key Laboratory of Analytical Technology Development and Standardization of Chinese Medicines, Qingdao 266590, China.
| | - Jiuming Wang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Lei Pan
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ming Xin
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China; Qingdao Key Laboratory of Analytical Technology Development and Standardization of Chinese Medicines, Qingdao 266590, China
| | - Farong Chen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Shengkang Liang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Baodong Wang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China; Qingdao Key Laboratory of Analytical Technology Development and Standardization of Chinese Medicines, Qingdao 266590, China
| |
Collapse
|
49
|
Houliez E, Schmitt FG, Breton E, Skouroliakou DI, Christaki U. On the conditions promoting Pseudo-nitzschia spp. blooms in the eastern English Channel and southern North Sea. HARMFUL ALGAE 2023; 125:102424. [PMID: 37220977 DOI: 10.1016/j.hal.2023.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/18/2023] [Accepted: 03/13/2023] [Indexed: 05/25/2023]
Abstract
This study investigated the drivers of the blooms of Pseudo-nitzschia seriata and Pseudo-nitzschia delicatissima complexes in the eastern English Channel and southern North Sea. Phytoplankton data series acquired from 1992 to 2020 were analyzed with a multivariate statistical approach based on Hutchinson's niche concept. P. seriata and P. delicatissima complexes were found to be typically present year round, but they bloomed at different periods because they occupied different realized ecological niches. P. delicatissima complex occupied a more marginal niche and was less tolerant than P. seriata complex. P. delicatissima complex typically bloomed in April-May at the same time as Phaeocystis globosa while P. seriata complex blooms were more frequently observed in June during the decline of low intensity P. globosa blooms. P. delicatissima and P. seriata complexes were both favored by low-silicate environments and relatively low turbulence but they responded differently to water temperature, light, ammonium, phosphate and nitrite + nitrate conditions. Niche shifts and biotic interactions played important roles in the control of the blooms of P. delicatissima and P. seriata complexes. The two complexes occupied different sub-niches during their respective low abundance and bloom periods. The phytoplankton community structure and the number of other taxa presenting a niche overlapping the niches of P. delicatissima and P. seriata complexes also differed between these periods. P. globosa was the taxa contributing the most to the dissimilarity in community structure. P. globosa interacted positively with P. delicatissima complex and negatively with P. seriata complex.
Collapse
Affiliation(s)
- Emilie Houliez
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France.
| | - François G Schmitt
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France
| | - Elsa Breton
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France
| | - Dimitra-Ioli Skouroliakou
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France
| | - Urania Christaki
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France
| |
Collapse
|
50
|
Cochlan WP, Bill BD, Cailipan AB, Trainer VL. Domoic acid production by Pseudo-nitzschia australis: Re-evaluating the role of macronutrient limitation on toxigenicity. HARMFUL ALGAE 2023; 125:102431. [PMID: 37220984 DOI: 10.1016/j.hal.2023.102431] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 05/25/2023]
Abstract
The toxigenic diatom Pseudo-nitzschia australis (Frenguelli), isolated from the California Current System (CCS), was examined in unialgal laboratory cultures to evaluate domoic acid (DA) production and cellular growth as a response to macronutrient limitation. Toxic blooms of P. australis are common in the coastal waters of eastern boundary upwelling systems (EBUS), including those of the CCS off the west coast of the United States where limitation by macronutrients, specifically silicon as silicic acid [Si(OH)4], or phosphorus as phosphate [PO43-], has been suggested to increase the production of DA by these diatoms. This study used batch cultures grown under conditions of macronutrient sufficiency and limitation, expected during and after a natural upwelling event, to determine whether PO43- or Si(OH)4 deficiency enhances the production of DA and the expected risk of DA toxicity in natural coastal ecosystems. These controlled lab studies demonstrate that despite increases in cell-specific DA concentrations found during the nutrient-limited stationary phase, DA production rates did not increase due to either PO43- or Si(OH)4 limitation, and total DA production rates were statistically greater during the nutrient-replete, exponential growth phase compared to the nutrient-limited, stationary phase. In addition, the relative contribution of particulate DA (pDA) and dissolved DA (dDA) varied markedly with growth phase, where the contribution of pDA to total DA (pDA + dDA) declined from an average of 70% under P- and Si-replete conditions to 49% under P-limited conditions and 39% under Si-limited conditions. These laboratory results demonstrate that macronutrient sufficiency does not regulate the biosynthetic production of DA by this strain of P. australis. This finding, together with a comparative analysis of the various equations employed to estimate DA production, suggests that the current paradigm of increased toxigenicity due to macronutrient limitation be carefully re-examined, particularly when attempting to forecast the toxic threat of DA to coastal ecosystems as a function of macronutrient availability.
Collapse
Affiliation(s)
- William P Cochlan
- Estuary and Ocean Science Center, San Francisco State University, 3150 Paradise Drive, Tiburon, California, 94920-1205, United States of America.
| | - Brian D Bill
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, United States of America
| | - Adrielle B Cailipan
- Estuary and Ocean Science Center, San Francisco State University, 3150 Paradise Drive, Tiburon, California, 94920-1205, United States of America
| | - Vera L Trainer
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, United States of America; Olympic Natural Resources Center, School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195, United States of America
| |
Collapse
|