1
|
Fan J, Du X, Zhao H, Yao W. Allelochemicals-mediated interaction between algae and bacteria: Direct and indirect contact. BIORESOURCE TECHNOLOGY 2024; 398:130525. [PMID: 38437966 DOI: 10.1016/j.biortech.2024.130525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Secondary metabolites with bioactivity are allelochemicals. This study adopted direct contact (R0) and indirect contact (separated by 0.45 µm membrane, R1-A for algae, R1-S for sludge) to reveal the role of metabolites especially allelochemicals on interaction of bacteria and algae. Direct contact exhibited better nutrients removal than indirect contact, due to less antibacterial allelochemicals and oxidative stress. Bacterial signaling molecules were not detected. The major algae-derived allelochemicals were 13-Docosenamide, 9-Octadecenamide, n-Hexadecanoic acid, erucic acid, octadecanoic acid, β-sitosterol, and E,E,Z-1,3,12-Nonadecatriene-5,14-diol. Furthermore, presence of 13-Docosenamide and 9-Octadecenamide was associated with succession of Flavobacterium and suppression of nitrifying bacteria (Nitrosomonas, Ellin6067, and Nitrospira). Direct contact stimulated denitrifying bacteria Saccharimonadales and algae Scenedesmus, whereas indirect contact is friendly to Dechloromonas, Competibacter, nitrifying bacteria, algae Desmodesmus and Dictyosphaerium. This study highlights the essentiality of cell contact of bacteria-algae in establishing synergy, as cell contact mitigates antagonistic effect induced by metabolites.
Collapse
Affiliation(s)
- Jie Fan
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xingyu Du
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huangbo Zhao
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Weiguo Yao
- Center for commercialization of scientific and technological achievements, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
2
|
De Gregorio MA, Zengin G, Alp-Turgut FN, Elbasan F, Ozfidan-Konakci C, Arikan B, Yildiztugay E, Zhang L, Lucini L. Glutamate, Humic Acids and Their Combination Modulate the Phenolic Profile, Antioxidant Traits, and Enzyme-Inhibition Properties in Lettuce. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091822. [PMID: 37176879 PMCID: PMC10181196 DOI: 10.3390/plants12091822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Lettuce (Lactuca sativa L., Asteraceae) is a popular vegetable leafy crop playing a relevant role in human nutrition. Nowadays, novel strategies are required to sustainably support plant growth and elicit the biosynthesis of bioactive molecules with functional roles in crops including lettuce. In this work, the polyphenolic profile of lettuce treated with glutamic acid (GA), humic acid (HA), and their combination (GA + HA) was investigated using an untargeted metabolomics phenolic profiling approach based on high-resolution mass spectrometry. Both aerial and root organ parts were considered, and a broad and diverse phenolic profile could be highlighted. The phenolic profile included flavonoids (anthocyanins, flavones, flavanols, and flavonols), phenolic acids (both hydroxycinnamics and hydroxybenzoics), low molecular weight phenolics (tyrosol equivalents), lignans and stilbenes. Overall, GA and HA treatments significantly modulated the biosynthesis of flavanols, lignans, low molecular weight phenolics, phenolic acids, and stilbene. Thereafter, antioxidant capacity was evaluated in vitro with 2,2-diphenyln-1-picrylhydrazyl (DPPH), 2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and cupric ion reducing antioxidant capacity (CUPRAC) assays. In addition, this study examined the inhibitory properties of enzymes, including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), tyrosinase, alpha-amylase, and alpha-glucosidase. Compared to individual treatments, the combination of GA + HA showed stronger antioxidant abilities in free radical scavenging and reducing power assays in root samples. Moreover, this combination positively influenced the inhibitory effects of root samples on AChE and BChE and the tyrosinase inhibitory effect of leaf samples. Concerning Pearson's correlations, antioxidant and enzyme inhibition activities were related to phenolic compounds, and lignans in particular correlated with radical scavenging activities. Overall, the tested elicitors could offer promising insights for enhancing the functional properties of lettuce in agricultural treatments.
Collapse
Affiliation(s)
| | - Gökhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Selcuklu, 42130 Konya, Turkey
| | - Fatma Nur Alp-Turgut
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130 Konya, Turkey
| | - Fevzi Elbasan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130 Konya, Turkey
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090 Konya, Turkey
| | - Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130 Konya, Turkey
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130 Konya, Turkey
| | - Leilei Zhang
- Department of Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department of Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
- CRAST Research Centre, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
3
|
Wang Z, Xu Y, Yang J, Li Y, Sun Y, Zhang L, Yang Z. Adverse role of colonial morphology and favorable function of microcystins for Microcystis to compete with Scenedesmus. HARMFUL ALGAE 2022; 117:102293. [PMID: 35944955 DOI: 10.1016/j.hal.2022.102293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
In eutrophic freshwaters, Microcystis usually becomes dominant in phytoplankton communities due to the synergistic effects of its special eco-physiological traits and environmental factors. Colonial morphology can protect Microcystis from zooplankton grazing, which indirectly favors Microcystis to outcompete other phytoplankton, although the colonial form is not conducive to the absorption of nutrients. Moreover, unicellular Microcystis usually has competitive advantages over other phytoplankton due to its efficient absorption capacity for nutrients and releasing microcystins. However, the consequence of direct competition between toxic colonial Microcystis and green algae without external grazing pressure still remained unknown. In this study, the competition between toxic colonial Microcystis aeruginosa and a common green alga Scenedesmus obliquus was explored. Results showed that: (1) colonial M. aeruginosa had a higher requirement for key macro-nutrient phosphorus than S. obliquus, and thus its population declined and was replaced by S. obliquus eventually; (2) microcystins released by colonial M. aeruginosa inhibited the photosynthetic activity and growth of S. obliquus at early stage of the competition; (3) the photosynthetic potential of colonial M. aeruginosa was stimulated in response to the competitive stress from S. obliquus, although the population of colonial M. aeruginosa declined eventually; (4) microcystin production of colonial M. aeruginosa was enhanced by phosphorus limitation due to S. obliquus competition and was positively related to photosynthetic potential of colonial M. aeruginosa. These results indicated that, in the absence of complex natural environment, colonial Microcystis cannot outcompete Scenedesmus in a pure competition, although microcystins can play a favorable role in the competition, which clarified the opposite role of colonies and microcystins in the competition of colonial Microcystis against other phytoplankton.
Collapse
Affiliation(s)
- Zeshuang Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yang Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jiajun Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yapeng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
4
|
Ma X, Li M, Jiang E, Pan B, Gao L. Humic acid inhibits colony formation of the cyanobacterium Microcystis at high level of iron. CHEMOSPHERE 2021; 281:130742. [PMID: 34000652 DOI: 10.1016/j.chemosphere.2021.130742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Colony formation is a key process for the occurrence of Microcystis blooms. In order to inhibit colony formation of Microcystis at high level of iron using humic acid, unicellular Microcystis aeruginosa was cultivated in laboratory treated with varying concentrations of iron and humic acid. Our results showed that the extracellular polysaccharides (EPS) content and average colony size increased from 0.57 pg cells-1 and 4.0 μm to 0.93 pg cells-1 and 26.1 μm, respectively, while iron concentration increased from 0.68 mg L-1 to 6.8 mg L-1, suggesting that high level of iron stimulated EPS secretion and induced unicellular Microcystis to form colonies. Transcriptome analysis showed that two genes described as glycosyltransferases (BH695-2217 and BH695-3696) were significantly up-regulated while EPS content increased with increasing iron concentration indicating that iron may regulate the expression of genes involved in polysaccharide synthesis. When treated with 10 mg C L-1 humic acid at high level of iron, the EPS content and average colony size decreased by 35.5% and 56.3%, respectively, revealing that humic acid inhibited EPS secretion under high level of iron condition, and ultimately inhibited colony formation of Microcystis. Our results suggested that humic acid could be used as an agentia inhibiting large colony formation of Microcystis and thereby reducing the occurrence of Microcystis blooms.
Collapse
Affiliation(s)
- Xiao Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China.
| | - Enli Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Li Gao
- Institute for Sustainable Industries and Liveable Cities, Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia
| |
Collapse
|
5
|
Sukenik A, Kaplan A. Cyanobacterial Harmful Algal Blooms in Aquatic Ecosystems: A Comprehensive Outlook on Current and Emerging Mitigation and Control Approaches. Microorganisms 2021; 9:1472. [PMID: 34361909 PMCID: PMC8306311 DOI: 10.3390/microorganisms9071472] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/31/2022] Open
Abstract
An intensification of toxic cyanobacteria blooms has occurred over the last three decades, severely affecting coastal and lake water quality in many parts of the world. Extensive research is being conducted in an attempt to gain a better understanding of the driving forces that alter the ecological balance in water bodies and of the biological role of the secondary metabolites, toxins included, produced by the cyanobacteria. In the long-term, such knowledge may help to develop the needed procedures to restore the phytoplankton community to the pre-toxic blooms era. In the short-term, the mission of the scientific community is to develop novel approaches to mitigate the blooms and thereby restore the ability of affected communities to enjoy coastal and lake waters. Here, we critically review some of the recently proposed, currently leading, and potentially emerging mitigation approaches in-lake novel methodologies and applications relevant to drinking-water treatment.
Collapse
Affiliation(s)
- Assaf Sukenik
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, P.O. Box 447, Migdal 14950, Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel;
| |
Collapse
|
6
|
UF fouling behavior of allelopathy of extracellular organic matter produced by mixed algae co-cultures. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118297] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
García G, Sosa-Hernández JE, Rodas-Zuluaga LI, Castillo-Zacarías C, Iqbal H, Parra-Saldívar R. Accumulation of PHA in the Microalgae Scenedesmus sp. under Nutrient-Deficient Conditions. Polymers (Basel) 2020; 13:polym13010131. [PMID: 33396913 PMCID: PMC7795905 DOI: 10.3390/polym13010131] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023] Open
Abstract
Traditional plastics have undoubted utility and convenience for everyday life; but when they are derived from petroleum and are non-biodegradable, they contribute to two major crises today's world is facing: fossil resources depletion and environmental degradation. Polyhydroxyalkanoates are a promising alternative to replace them, being biodegradable and suitable for a wide variety of applications. This biopolymer accumulates as energy and carbon storage material in various microorganisms, including microalgae. This study investigated the influence of glucose, N, P, Fe, and salinity over the production of polyhydroxyalkanoate (PHA) by Scenedesmus sp., a freshwater microalga strain not previously explored for this purpose. To assess the effect of the variables, a fractional Taguchi experimental design involving 16 experimental runs was planned and executed. Biopolymer was obtained in all the experiments in a wide range of concentrations (0.83-29.92%, w/w DW), and identified as polyhydroxybutyrate (PHB) by FTIR analysis. The statistical analysis of the response was carried out using Minitab 16, where phosphorus, glucose, and iron were identified as significant factors, together with the P-Fe and glucose-N interactions. The presence of other relevant macromolecules was also quantified. Doing this, this work contributes to the understanding of the critical factors that control PHA production and present Scenedesmus sp. as a promising species to produce bio-resources in commercial systems.
Collapse
|
8
|
Abstract
In this study, we attempted to synthesize visible light active nano-sized photocatalysts using metal oxides such as zinc oxide, zirconium oxide, tungsten oxide, and strontium titanium oxide with (MoCl5)2 as a dopant by the simple ball-milling method. Fourier-transform infrared spectroscopy data confirmed the presence of M-O-Mo linkage (M = Zn, Zr, W, and SrTi) in all the molybdenum-doped metal oxides (MoMOs), but only MoZnO inhibited the growth of the bloom-forming Microcystis aeruginosa under visible light in a concentration-dependent manner up to 10 mg/L. Further, structural characterization of MoZnO using FESEM and XRD exhibited the formation of typical hexagonal wurtzite nanocrystals of approximately 4 nm. Hydroxyl radical (·OH), reactive oxygen species (ROS), and lipid peroxidation assays revealed ·OH generated by MoZnO under the visible light seemed to cause peroxidation of the lipid membrane of M. aeruginosa, which led to an upsurge of intracellular ROS and consequently introduced the agglomeration of cyanobacteria. These results demonstrated that nano-sized MoZnO photocatalyst can be easily synthesized in a cost-effective ball-mill method and utilized for biological applications such as the reduction of harmful algal blooms. Further, our study implies that a simple ball-milling method can provide an easy, green, and scalable route for the synthesis of visible light active doped metal oxides.
Collapse
|