1
|
Xu Z, Jiang H, Liu S, Ying J, Jiang Y, Jiang H, Xu J. Behavioral adaptations of cruise-feeding copepods to harmful algal blooms: Insights from the East China Sea. MARINE ENVIRONMENTAL RESEARCH 2025; 205:107005. [PMID: 39947070 DOI: 10.1016/j.marenvres.2025.107005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 03/08/2025]
Abstract
Harmful algal blooms (HABs) have become a global environmental concern, significantly impacting marine life and the fishing industry. However, the tolerance and adaptive mechanisms of zooplankton to HABs remain poorly understood. This study examines the behavioral and feeding responses of the cruise-feeding copepod Centropages dorsispinatus to summer HABs in the East China Sea (ECS), focusing on interactions with the blooming diatom (Skeletonema costatum) and dinoflagellates (Prorocentrum donghaiense, Karenia mikimotoi, and Alexandrium tamarense). Using short-term incubations and high-speed filming, we compared the ingestion rates and behaviors of C. dorsispinatus fed mono-algal diets and mixed diets containing neutral distraction particles (polystyrene beads). The results revealed that C. dorsispinatus obtained limited carbon from each algal diet (1.02-7.02 μg C cop.-1 day-1). The presence of distraction particles reduced carbon intake from S. costatum, P. donghaiense, and A. tamarense, but significantly increased intake from the healthy control, Platymonas helgolandica. Behavioral responses varied among algal diets: compared to P. helgolandica, C. dorsispinatus exhibited more frequent but shorter swims in S. costatum diets and less frequent swims in K. mikimotoi, and A. tamarense diets. These algal-specific responses were generally mitigated when copepods simultaneously exposed to the neutral distraction particles. Copepods achieved higher carbon intake with lower mechanical energy expenditure when grazing on large dinoflagellates compared to diatoms. We suggest that cruise-feeding copepods can actively adjust their behavior to adapt to varying food conditions, including the density, morphologic characteristics, and toxicity of algae. It allows copepods to better survive and forage in dinoflagellate HABs than in diatom HABs. However, the low ingestion rates observed limit the potential for cruise-feeding copepods to exert top-down control on HABs.
Collapse
Affiliation(s)
- Zhongheng Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Hainan Institute, East China Normal University, Sanya, 572025, China.
| | - Huihuang Jiang
- Nantong Marine Center, Ministry of Natural Resources, Nantong, 226002, China.
| | - Shouhai Liu
- East China Sea Ecology Center, Ministry of Natural Resources, Shanghai, 201206, China; Key Laboratory of Marine Ecological Monitoring and Restoration Technologies, Ministry of Natural Resources, Shanghai, 201206, China.
| | - Jiawen Ying
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Hainan Institute, East China Normal University, Sanya, 572025, China.
| | - Yining Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Hainan Institute, East China Normal University, Sanya, 572025, China
| | - Huimin Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Hainan Institute, East China Normal University, Sanya, 572025, China.
| | - Jiayi Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Hainan Institute, East China Normal University, Sanya, 572025, China.
| |
Collapse
|
2
|
Wu X, Yang Y, Xie S, Zhong P, Xu N. Grazing rate of the mixotrophic dinoflagellate Akashiwo sanguinea is associated with hemolytic activity under varying irradiance and nutrient levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178835. [PMID: 39952216 DOI: 10.1016/j.scitotenv.2025.178835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Harmful algal blooms formed by the mixotrophic dinoflagellate Akashiwo sanguinea are toxic to multiple aquatic organisms, although the relationship between toxicity and grazing is unknown. In this study, the effects of irradiance and nutrient levels on the grazing rate of A. sanguinea on the cryptophyte Rhodomonas salina were investigated using an optimized stable isotope method. Under light-limited conditions (0-30 μmol photons m-2 s-1), A. sanguinea exhibited higher hemolytic activity and grazing rate. Under the same level of irradiance, the growth and respiration rates were higher in co-culture treatments, while the oxygen release rate was higher in monoculture treatments. The growth rate, hemolytic activity, and grazing rate of A. sanguinea increased significantly with higher nutrient levels or an unbalanced N:P ratio. The hemolytic activity and grazing rate were higher in urea treatment, while the growth rate was higher in ammonia treatment. This study suggests that toxicity is involved in the feeding process of the mixotrophic dinoflagellate A. sanguinea; the unique feeding flexibility adapting to low irradiance, increased nutrients, unbalanced N:P ratio, and organic nitrogen urea gains an advantage in interspecific competition among phytoplankton.
Collapse
Affiliation(s)
- Xiaoer Wu
- Institute of Hydrobiology/Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, 510632 Guangzhou, PR China
| | - Ying Yang
- Institute of Hydrobiology/Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, 510632 Guangzhou, PR China
| | - Shuang Xie
- Institute of Hydrobiology/Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, 510632 Guangzhou, PR China
| | - Ping Zhong
- Institute of Hydrobiology/Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, 510632 Guangzhou, PR China.
| | - Ning Xu
- Institute of Hydrobiology/Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, 510632 Guangzhou, PR China.
| |
Collapse
|
3
|
Geng C, Zhou B, Calabrese EJ, Agathokleous E. Stimulation of Microcystis aeruginosa by subtoxic concentrations of contaminants: A meta-analysis. ENVIRONMENTAL RESEARCH 2025; 271:121105. [PMID: 39947381 DOI: 10.1016/j.envres.2025.121105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 02/19/2025]
Abstract
There is growing evidence for hormetic stimulation of Microcystis aeruginosa, a harmful algal bloom (HAB)-forming cyanobacterium, by subtoxic contaminant concentrations. Hence, the first meta-analysis of approximately 4000 dose responses was conducted to evaluate the underlying biological mechanisms, identify variation determinants, and reveal potential implications for algaecides effectiveness. Approximately 30 chemical contaminants caused significant stimulation (95% CI: 72-153%), which persisted in mixtures, regardless the level of mixture complexity. Stimulation by subtoxic antibiotic contamination occurred in the presence or absence of algaecides, highlighting the potential of chemical contamination to lower algaecide efficiency to control the cyanobacterium. The significant stimulation spanned a wide range of contaminant concentrations, from ≤0.0001 to 200 mg L-1, and the response amplitude varied with concentration and exposure duration, increasing from 16% in less than one day to 27% on average within 2-4 weeks. Various mechanisms regulating the defense system (39-46%) and photosynthetic physiology (10-12%) and determining productivity and yields (19-22%) were enhanced, ultimately resulting in increased population growth (cell density; 21%), growth rate (15%), and survival (39%). Importantly, intracellular and extracellular microcystins (MC-LR, MC-LW, MC-RR, MC-YR) and their release are enriched by 26-29% in tandem with mcyB over-expression (24%) and N (26%) and Ca (17%) enhancement. However, the stimulation degree depended on the specific MC. The findings not only close a significant gap in the scientific understanding of the underlying mechanisms of contaminant-induced stimulation but also provide critical information to improve HAB management and remediation strategies.
Collapse
Affiliation(s)
- Caiyu Geng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, 210044, PR China; School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, PR China
| | - Boya Zhou
- School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, PR China; Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Evgenios Agathokleous
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, 210044, PR China; School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, PR China; Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, PR China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, 210044, Jiangsu, PR China.
| |
Collapse
|
4
|
Wu S, Ni Y, Yan S, Yu Y, Wang Y. A comprehensive RNA virome identified in the oyster Magallana gigas reveals the intricate network of virus sharing between seawater and mollusks. MICROBIOME 2024; 12:263. [PMID: 39707493 DOI: 10.1186/s40168-024-01967-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/04/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND As a globally farmed oyster species, Magallana gigas has garnered significant attention due to the contaminated RNA viruses that have caused illness in humans. However, limited knowledge is available on the bioaccumulation status and overall diversity of RNA virome in the M. gigas digestive tissues (DTs). Moreover, there is a lack of understanding regarding the shared community of RNA virome among intertidal mollusks. To address these knowledge gaps, we performed a comprehensive meta-transcriptomic analysis of 173 M. gigas samples from the East China Sea and compared the viral sequences to the meta-transcriptomes of other mollusks and seawater (i.e., the oyster Magallana hongkongensis, bivalves, gastropods, cephalopods, and Yangshan Harbor) through RdRP identification and reads mapping. RESULTS Our results indicate that 154 viral RdRPs were confidently identified in the M. gigas DT, with 94% (144/154) showing less than 90% amino acid identity. This indicates the presence of at least 144 putative novel RNA virus species in M. gigas DT. All viruses belonged to the phyla Lenarviricota, Pisuviricota, and Kitrinoviricota, and the marna-like viruses constituted the most diverse assemblage among these newly identified viruses. Furthermore, members of marna-like, picobirna-like, and noda-like virus groups comprise the most prevalent viruses in the M. gigas meta-transcriptome, with 14 RdRP-bearing sequences accounting for at least 1% of the overall aligned reads. M. hongkongensis has been found to harbor the most diverse viruses found in M. gigas, while 37 and 25 newly identified RNA viruses in oysters were discovered in an octopus meta-transcriptome and seawater virome, respectively. CONCLUSIONS The findings provide insights into the cryptic and hitherto unstudied virus-sharing network across the marine food web. Moreover, the viruses identified in oysters have the potential to serve as indicators for identifying the circulation of marine RNA viruses. Video Abstract.
Collapse
Affiliation(s)
- Shuang Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Yimin Ni
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shuling Yan
- Entwicklungsgenetik Und Zellbiologie Der Tiere, Philipps-Universität Marburg, Marburg, Germany
| | - Yongxin Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
5
|
Hu J, Zheng J, Lu D, Dai X, Wang R, Zhu Y, Park BS, Li C, Kim JH, Guo R, Wang P. Mapping the main harmful algal species in the East China Sea (Yangtze River estuary) and their possible response to the main ecological status and global climate change via a global vision. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175527. [PMID: 39153617 DOI: 10.1016/j.scitotenv.2024.175527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
The Yangtze River Estuary (YRE) is one of the areas in China most severely affected by harmful algal blooms (HABs). This study explored the distributive patterns of HABs in the YRE and how they are influenced by the El Niño-Southern Oscillation (ENSO) and other environmental factors. Quantitative real-time PCR (qPCR) was employed to detect and quantify the four predominant HAB species in the YRE, Karenia mikimotoi, Margalefidinium polykrikoides, Prorocentrum donghaiense, and Heterosigma akashiwo. Additionally, the study analyzed how turbidity, pH, salinity, and temperature influence these algae. Distribution of the four HAB species in the YRE area shows clear geographical variations: K. mikimotoi is predominantly found in the northwest and central sea areas, M. polykrikoides (East Asian Ribotype, EAR) is mainly distributed in the southeastern part, P. donghaiense is abundant in the northern regions, and H. akashiwo is especially prevalent at stations S26 and S27 in the northeastern part of the study area. HABs dominated by H. akashiwo and P. donghaiense were observed in the northeastern sea area of the YRE on July 22, 2020. Our study reveals that K. mikimotoi, M. polykrikoides (EAR), and P. donghaiense are mainly affected by turbidity, pH, and salinity, while temperature predominantly influences the blooms of H. akashiwo. Moreover, runoff in the YRE has a certain correlation with ENSO events, which may also impact the nutrient content of the region. The findings of this study illustrate the distributive patterns of the four HAB species under various ecological conditions in the YRE and emphasize the importance of establishing practical cases for future warning systems. To better understand how climate change affects HABs, exploring the link between ENSO and HABs is essential.
Collapse
Affiliation(s)
- Jiarong Hu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; School of Marine Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Junjie Zheng
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Douding Lu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Xinfeng Dai
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Ruifang Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Yuanli Zhu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Bum Soo Park
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Changpeng Li
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resource, Hangzhou 310012, China
| | - Jin Ho Kim
- Department of Earth and Marine Science, College of Ocean Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Ruoyu Guo
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China.
| |
Collapse
|
6
|
Zhang H, Chen X, Sun H, Bai J, Chen T. Physiological and transcriptomic analyses to determine the responses of the harmful algae Akashiwo sanguinea to phosphorus utilization. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106753. [PMID: 39303654 DOI: 10.1016/j.marenvres.2024.106753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Phosphorus (P) is an essential nutrient driving algal growth in aquatic ecosystems. Dissolved inorganic and organic P (DIP and DOP) are the main components in the marine P pools and are closely related to harmful algal blooms. The dinoflagellate Akashiwo sanguinea is a cosmopolitan species which frequently causes dense blooms in estuaries and coasts worldwide, while the availability of P to A. sanguinea still remain unclear. Herein, the physiological and transcriptomic responses of A. sanguinea grown under P-deficient, DIP-replete and DOP-replete conditions were compared. P-deficient adversely suppressed the growth and photosynthesis of A. sanguinea, while genes associated with P transport, DOP utilization, sulfolipid synthesis, and energy production, were markedly elevated. Three forms of DOP, namely, glucose-6-phosphate (G-6-P), adenosine 5-triphosphate (ATP), and β-Glycerol phosphate (SG-P), supported A. sanguinea growth as efficiently as DIP (NaH2PO4), and no significant difference was observed in biochemical compositions and photosynthesis of A. sanguinea between the DIP and DOP treatments. While the genes related to P transporter were markedly suppressed in DOP groups compared with the DIP group. Our results indicated that A. sanguinea is a good growth strategist under P-deficient/replete conditions, and this species had evolved a comprehensive strategy to cope with P deficiency, which might be a crucial factor driving bloom formation in a low inorganic P environment.
Collapse
Affiliation(s)
- Han Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China
| | - Xi Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Huichen Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China
| | - Tiantian Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
7
|
Wang X, Qiu J, Li D, Li A. Prevalence and distribution of dissolved paralytic shellfish toxins in seawater in the Yellow Sea and the Bohai Sea, China. HARMFUL ALGAE 2024; 139:102730. [PMID: 39567084 DOI: 10.1016/j.hal.2024.102730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 11/22/2024]
Abstract
Paralytic shellfish toxins (PSTs) could be secreted by PSTs-producing microalgae or released by ruptured cells in seawater. In this study, the distribution of dissolved PSTs in the Yellow Sea and the Bohai Sea, China, was investigated by two cruises in April and July 2023. Seawater samples were collected from the surface, middle and bottom layers, and the profiles of PSTs were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the spatial distribution characteristics of dissolved PSTs and their correlation with environmental factors were explored. Results showed that C1/2, GTX1/4, GTX2/3 and dcGTX2/3, were detected in seawater samples in both spring and summer, with the detection rates 100 % and 97.6 %, respectively. The total PST (ΣPSTs) concentrations ranged in 12 ∼ 590 pmol L-1, 9.3 ∼ 546 pmol L-1, 12 ∼ 2,452 pmol L-1, and not detected (nd) ∼ 188 pmol L-1 in seawater samples collected from the surface, middle and bottom layers in spring, and the surface layer in summer, respectively. Concentrations of PSTs markedly varied in the vertical water column in different sea regions. Generally, concentrations of ΣPSTs in the bottom seawater were higher than those in the surface and middle layers in the Bohai Sea and the North Yellow Sea, but no significant difference in the different water layers in the South Yellow Sea. In addition, concentrations of ΣPSTs in surface waters were much lower in summer than those in spring. In both spring and summer, dissolved PSTs in surface seawater were mainly distributed in the South Yellow Sea. These results indicate that PSTs were prevalent in the Yellow Sea and the Bohai Sea, of which the potential hazard to marine organisms should be highly concerned.
Collapse
Affiliation(s)
- Xiaoyun Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Dongyue Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
8
|
Chen H, Yin X, Chen Y, Wang Y, Li Q, Ji N, Zhou L, Hu G, Shen X. Characterization of a Levanderina fissa Bloom in Aquaculture Ponds and Its Utilization of Dissolved Organic Phosphorus. Microorganisms 2024; 12:2202. [PMID: 39597591 PMCID: PMC11596488 DOI: 10.3390/microorganisms12112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Harmful algal blooms (HABs) pose significant threats to ecosystems and human health worldwide, with their frequency and intensity increasing substantially. The present study reports an algal bloom observed in an aquaculture pond near Haizhou Bay in July 2022. The causative species, identified through morphological observation and DNA barcoding analysis, was the dinoflagellate Levanderina fissa (Levander) Moestrup, Hakanen, Gert Hansen, Daugbjerg & M. Ellegaard, 2014, known for causing extensive HAB events in the coastal waters of China. A sharp decline in phytoplankton species diversity was observed during the transition from the pre-bloom to the bloom phase. Furthermore, the uptake of four types of dissolved organic phosphorus (DOP), including glucose-6-phosphate (G6P), adenosine-5-triphosphate (ATP), sodium tripolyphosphate (TPP), and glyphosate, by isolated L. fissa was investigated in the laboratory. The results showed that G6P, ATP, and TPP supported L. fissa growth as effectively as orthophosphate. Additionally, the elevated concentrations of dissolved inorganic phosphorus in the media of the three treatments indicated the involvement of extracellular hydrolysis. However, alkaline phosphatase was not responsible for the hydrolysis of these three forms of DOP. This study demonstrates that the ability of L. fissa to utilize DOP may confer a competitive advantage within phytoplankton communities, potentially leading to algal blooms in aquaculture ponds.
Collapse
Affiliation(s)
- Honglin Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.C.); (X.Y.); (Y.C.); (Y.W.); (Q.L.); (G.H.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xueyao Yin
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.C.); (X.Y.); (Y.C.); (Y.W.); (Q.L.); (G.H.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yujiao Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.C.); (X.Y.); (Y.C.); (Y.W.); (Q.L.); (G.H.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yinghao Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.C.); (X.Y.); (Y.C.); (Y.W.); (Q.L.); (G.H.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qiuping Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.C.); (X.Y.); (Y.C.); (Y.W.); (Q.L.); (G.H.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Nanjing Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.C.); (X.Y.); (Y.C.); (Y.W.); (Q.L.); (G.H.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lingjie Zhou
- Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA;
| | - Guangwei Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.C.); (X.Y.); (Y.C.); (Y.W.); (Q.L.); (G.H.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.C.); (X.Y.); (Y.C.); (Y.W.); (Q.L.); (G.H.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
9
|
Ouyang H, Chen J, Lin L, Zheng H, Xie C, Wang C, Wang Z. Metabarcoding and co-occurrence network reveal significant effects of mariculture on benthic eukaryotic microalgal community: A case study in Daya Bay of the South China Sea. MARINE POLLUTION BULLETIN 2024; 207:116832. [PMID: 39128232 DOI: 10.1016/j.marpolbul.2024.116832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Benthic eukaryotic microalgae were analyzed by metabarcoding the partial 18S rRNA gene in Daya Bay bi-monthly in 2021. Altogether 941 eukaryotic microalgal OTUs were detected, belonging to 27 classes of 8 phyla. Dinophyta and Chlorophyta were the dominant phyla. Microalgal community in the mariculture zone differed significantly from those in non-mariculture zone, reflected by low alpha diversity indexes and increasing abundance and richness of chlorophytes and correspondingly decreasing of dinoflagellates. The abundant occurrences of the pico- and nano-sized taxa such as the chlorophyte Picochlorum in the mariculture zone suggested that nutrient enrichment might result in the miniaturization of the benthic eukaryotic microalgae. The co-occurrence network suggested more negative interactions between taxa in the mariculture zone. A total of 41 algal bloom and/or harmful algal bloom (HAB) species were detected in this study, suggesting a high potential risk of HABs in Daya Bay, especially for the recurrent bloom species Scrippsiella acuminata.
Collapse
Affiliation(s)
- Hong Ouyang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiazhuo Chen
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lanping Lin
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hu Zheng
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Changliang Xie
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Chaofan Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhaohui Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Aboualaalaa H, Rijal Leblad B, Elkbiach ML, Ibghi M, Boutaib R, Maamour N, Savar V, Masseret E, Abadie E, Rolland JL, Amzil Z, Laabir M. Effect of temperature, salinity and nutrients on the growth and toxin content of the dinoflagellate Gymnodinium catenatum from the southwestern Mediterranean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174094. [PMID: 38906288 DOI: 10.1016/j.scitotenv.2024.174094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
The dinoflagellate Gymnodinium catenatum is considered the primary cause of recurrent paralytic shellfish toxins (PSTs) in shellfish on the Moroccan Mediterranean coasts. The impacts of key environmental factors on the growth, cell yield, cell size and PST content of G. catenatum were determined. Results indicated that increasing salinity from 32 to 39 and nitrate concentrations from 441 μM to 1764 μM did not significantly (ANOVA, P-value >0.63) modify the growth rate of the studied species. Gymnodinium catenatum exhibited the highest growth rate at 24 °C. Cells arrested their division at 15 °C and at ammonium concentration above 441 μM, suggesting that this nitrogen form is toxic for G. catenatum. Furthermore, G. catenatum was unable to assimilate urea as a nitrogen source. In G. catenatum cells, eight analogues of saxitoxin were detected, belonging to the N-sulfocarbamoyl (C1-4, B1 and B2) and decarbamoyl (dc-GTX2/3) toxins. C-toxins contributed 92 % to 98 % of the molar composition of the PSTs. During the exponential growth, C2 tended to dominate, while C3 prevailed during the stationary phase. Toxin content per cell (ranging from 5.5 pg STXeq.cell-1 to 22.4 pg STXeq.cell-1) increased during the stationary growth phase. Cell toxin content increased with the concentrations of nitrate, ranging from 12.1 pg STXeq.cell-1 at 441 μM to 22.4 pg STXeq.cell-1 at 1764 μM during the stationary growth phase. The toxin content of G. catenatum showed the highest values measured at the highest tested temperatures, especially during the stationary phase, where toxicity reached 17.8 pg STXeq.cell-1 and 16.4 pg STXeq.cell-1 at 24 °C and 29 °C, respectively. The results can help understand the fluctuations in the growth and PST content of G. catenatum in its habitat in response to changing environmental variables in the Mediterranean Sea when exposed to increases in warming pressure and eutrophication.
Collapse
Affiliation(s)
- Hicham Aboualaalaa
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco; Equipe de Biotechnologie Végétale, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco; Univ Montpellier, IRD, CNRS, IFREMER, MARBEC laboratory, Place Eugène Bataillon, 34095 Montpellier, France
| | - Benlahcen Rijal Leblad
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco.
| | | | - Mustapha Ibghi
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco; Equipe de Biotechnologie Végétale, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco; Univ Montpellier, IRD, CNRS, IFREMER, MARBEC laboratory, Place Eugène Bataillon, 34095 Montpellier, France
| | - Rachid Boutaib
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco
| | - Niama Maamour
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco
| | | | - Estelle Masseret
- Univ Montpellier, IRD, CNRS, IFREMER, MARBEC laboratory, Place Eugène Bataillon, 34095 Montpellier, France
| | - Eric Abadie
- IFREMER, Biodivenv, 79 Route de Pointe Fort, 97231 Martinique, France
| | - Jean Luc Rolland
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, 87 Avenue Jean Monnet, 34200 Sète, France
| | | | - Mohamed Laabir
- Univ Montpellier, IRD, CNRS, IFREMER, MARBEC laboratory, Place Eugène Bataillon, 34095 Montpellier, France.
| |
Collapse
|
11
|
Huang J, Zhao H, Wang W, Qin X, Wang P, Hou Q, Chen Q, Jiang G, Dong K, Jiang T, Pu Y, Li N. Harmful Microalgae Exhibit Broad Environmental Adaptability in High-Salinity Area Across the Dafengjiang River Estuary. Ecol Evol 2024; 14:e70455. [PMID: 39445184 PMCID: PMC11496773 DOI: 10.1002/ece3.70455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Harmful algal blooms (HABs) often occur in estuaries due to their unique environmental heterogeneity, posing significant environmental and human health risks. However, there is limited understanding of the community composition and community-level change points (thresholds) of harmful microalgae in subtropical estuaries. This study explored harmful microalgae community structure and thresholds in the Dafengjiang River estuary using a metabarcoding approach. The results revealed 63 harmful microalgae species, and major species included Guinardia flaccida, Prorocentrum cordatum, Thalassiosira punctigera, Pseudo-nitzschia galaxiae and T. gravida. Nonparametric change-point analysis and threshold indicator taxa analysis (TITAN) showed threshold responses of harmful microalgae community structure to ammonium (57.5-60 μg·L-1), total phosphorus (27.8-28.5 μg·L-1) and dissolved inorganic phosphorus (14.5-28 μg·L-1) along the salinity gradient. Wider environmental thresholds were also found in hypersaline areas. Additionally, Pyrodinium bahamense, Pfiesteria piscicida, Skeletonema tropicum and T. punctigera were sensitive to environmental changes and thus could be used as bioindicators. Overall, our study unveiled diverse abrupt transitions of harmful microalgal communities, providing a risk assessment for human health and ecological safety in subtropical estuary ecosystems.
Collapse
Affiliation(s)
- Jiongqing Huang
- School of AgricultureLudong UniversityYantaiChina
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
| | - Huaxian Zhao
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong ProvinceGuangdong Ocean UniversityZhanjiangChina
| | - WeiJun Wang
- School of AgricultureLudong UniversityYantaiChina
| | - Xinyi Qin
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong ProvinceGuangdong Ocean UniversityZhanjiangChina
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of EducationNanning Normal UniversityNanningChina
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem DynamicsSecond Institute of Oceanography, Ministry of Natural ResourcesHangzhouChina
| | - Qinghua Hou
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong ProvinceGuangdong Ocean UniversityZhanjiangChina
| | - Qingxiang Chen
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong ProvinceGuangdong Ocean UniversityZhanjiangChina
| | - Gonglingxia Jiang
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong ProvinceGuangdong Ocean UniversityZhanjiangChina
| | - Ke Dong
- Department of Biological SciencesKyonggi UniversitySuwonSouth Korea
| | - Tao Jiang
- School of OceanYantai UniversityYantaiChina
| | - Yang Pu
- School of AgricultureLudong UniversityYantaiChina
| | - Nan Li
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong ProvinceGuangdong Ocean UniversityZhanjiangChina
| |
Collapse
|
12
|
Huang X, Li Y, Du H, Chen N. Comparative assessment of the intragenomic variations of dinoflagellate Tripos species through single-cell sequencing. MARINE POLLUTION BULLETIN 2024; 206:116690. [PMID: 39024906 DOI: 10.1016/j.marpolbul.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Tripos is a large dinoflagellate genus widely distributed in the world's oceans. Morphology-based species identification is inconclusive due to high morphological intraspecific variability. Metabarcoding analysis has been demonstrated to be effective for species identification and tracking their spatiotemporal dynamics. However, accumulating evidence suggests high levels of intragenomic variations (IGVs) are common in many algae, leading to concerns about overinterpretation of molecular diversity in metabarcoding studies. In this project, we evaluated and compared IGVs in Tripos species by conducting the first high-throughput sequencing (HTS) of 18S rDNA V4 of Tripos single cells. High numbers of haplotypes (19-172) were identified in each of the 30 Tripos cells. Each cell contained one dominant haplotype with high relative abundance and many haplotypes with lower abundances. Thus, the presence of multiple minor haplotypes substantially overestimate the molecular diversity identified in metabarcoding analysis, which encompass not only interspecific and intraspecific diversities, but high levels of IGVs.
Collapse
Affiliation(s)
- Xianliang Huang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yingchao Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Haina Du
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
13
|
Zhang S, Fu Z, Dong X, Zheng X, Gu H. Diversity and seasonal occurrence of haptophyta in northern South China Sea through size-fractionated metabarcoding. MARINE POLLUTION BULLETIN 2024; 205:116609. [PMID: 38905736 DOI: 10.1016/j.marpolbul.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
Haptophyta plays a key role in marine pico-nanoeukaryote communities but information on their diversity and ecology is extremely limited. A total of 103 water samples were collected in northern South China Sea to assess the diversity of haptophyta through metabarcoding targeting 18S V4 rDNA. Furthermore, we investigated the potential genetic differentiation among seasonal occurring Phaeocystis globosa using the high resolution molecular marker pgcp1. 18S V4 rDNA metabarcoding dataset revealed 41 species of haptophytes, with 16 of them as the first record in this region. Notably, six harmful species were detected, including Chrysochromulina leadbeateri, Phaeocystis globosa, and Prymnesium parvum. The pgcp1 marker revealed two clades of Phaeocystis globosa and both of them were present around the year. Clade I was found to predominate in warm season, while Clade III tended to bloom in cold waters. Our results highlight the risk potential of harmful haptophytes in the northern South China Sea.
Collapse
Affiliation(s)
- Shiya Zhang
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; Department of Marine Ecology Conservation, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zhengxu Fu
- Department of Marine Ecology Conservation, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xu Dong
- Department of Marine Ecology Conservation, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xinqing Zheng
- Department of Marine Ecology Conservation, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Haifeng Gu
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; Department of Marine Ecology Conservation, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China.
| |
Collapse
|
14
|
Li D, Qiu J, Wang X, Li A, Wu G, Yin C, Yang Y. Spatial distribution of lipophilic shellfish toxins in seawater and sediment in the Bohai Sea and the Yellow Sea, China. CHEMOSPHERE 2024; 362:142780. [PMID: 38971437 DOI: 10.1016/j.chemosphere.2024.142780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Lipophilic shellfish toxins (LSTs) are widely distributed in marine environments worldwide, potentially threatening marine ecosystem health and aquaculture safety. In this study, two large-scale cruises were conducted in the Bohai Sea and the Yellow Sea, China, in spring and summer 2023 to clarify the composition, concentration, and spatial distribution of LSTs in the water columns and sediments. Results showed that okadaic acid (OA), dinophysistoxin-1 (DTX1) and/or pectenotoxin-2 (PTX2) were detected in 249 seawater samples collected in spring and summer. The concentrations of ∑LSTs in seawater were ranging of ND (not detected) -13.86, 1.60-17.03, 2.73-17.39, and 1.26-30.21 pmol L-1 in the spring surface, intermediate, bottom water columns and summer surface water layers, respectively. The detection rates of LSTs in spring and summer seawater samples were 97% and 100%, respectively. The high concentrations of ∑LSTs were mainly distributed in the north Yellow Sea and the northeast Bohai Sea in spring, and in the northeast Yellow Sea, the waters around Laizhou Bay and Rongcheng Bay in summer. Similarly, only OA, DTX1 and PTX2 were detected in the surface sediments. Overall, the concentration of ∑LSTs in the surface sediments of the northern Yellow Sea was higher than that in other regions. In sediment cores, PTX2 was mainly detected in the upper sediment samples, whereas OA and DTX1 were detected in deeper sediments, and LSTs can persist in the sediments for a long time. Overall, OA, DTX1 and PTX2 were widely distributed in the water column and surface sediments in the Bohai Sea and the Yellow Sea, China. The results of this study contribute to the understanding of spatial distribution of LSTs in seawater and sediment environmental media and provide basic information for health risk assessment of phycotoxins.
Collapse
Affiliation(s)
- Dongyue Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Xiaoyun Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Guangyao Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chao Yin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yongmeng Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
15
|
Zeng K, Gokul EA, Gu H, Hoteit I, Huang Y, Zhan P. Spatiotemporal Expansion of Algal Blooms in Coastal China Seas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13076-13086. [PMID: 38782718 PMCID: PMC11271660 DOI: 10.1021/acs.est.4c01877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The coastal seas of China are increasingly threatened by algal blooms, yet their comprehensive spatiotemporal mapping and understanding of underlying drivers remain challenging due to high turbidity and heterogeneous water conditions. We developed a singular value decomposition-based algorithm to map these blooms using two decades of MODIS-Aqua satellite data, spanning from 2003 to 2022. Our findings indicate significant algal activity along the Chinese coastline, impacting an average annual area of approximately 1.8 × 105 km2. The blooms exhibit peak intensity in August, while the maximum affected area occurs in September, featuring multifrequency outbreaks in spring, and pronounced large-scale events in summer and autumn. Notably, our analysis demonstrates a robust 67% increase in bloom occurrences over the study period. This expansion is primarily attributed to increased nutrient inflow from terrestrial sources linked to human activity and precipitation, compounded by rising global sea surface temperatures. These spatiotemporal insights are critical for devising effective management strategies and policies to mitigate the impacts of algal blooms.
Collapse
Affiliation(s)
- Kai Zeng
- Department
of Ocean Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, China
| | - Elamurugu Alias Gokul
- Earth
Science and Engineering, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Haifeng Gu
- Third
Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Ibrahim Hoteit
- Earth
Science and Engineering, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Ye Huang
- Key
Laboratory of Geographic Information Science of the Ministry of Education,
School of Geographic Sciences, East China
Normal University, Shanghai 200241, China
| | - Peng Zhan
- Department
of Ocean Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
16
|
Xia J, Hu H, Gao X, Kan J, Gao Y, Li J. Phytoplankton Diversity, Spatial Patterns, and Photosynthetic Characteristics Under Environmental Gradients and Anthropogenic Influence in the Pearl River Estuary. BIOLOGY 2024; 13:550. [PMID: 39056742 PMCID: PMC11273628 DOI: 10.3390/biology13070550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
The Pearl River Estuary (PRE) is one of the world's most urbanized subtropical coastal systems. It presents a typical environmental gradient suitable for studying estuarine phytoplankton communities' dynamics and photosynthetic physiology. In September 2018, the maximum photochemical quantum yield (Fv/Fm) of phytoplankton in different salinity habitats of PRE (oceanic, estuarine, and freshwater zones) was studied, revealing a complex correlation with the environment. Fv/Fm of phytoplankton ranged from 0.16 to 0.45, with taxa in the upper Lingdingyang found to be more stressed. Community composition and structure were analyzed using 18S rRNA, accompanied by a pigment analysis utilized as a supplementary method. Nonmetric multidimensional scaling analysis indicated differences in the phytoplankton spatial distribution along the estuarine gradients. Specificity-occupancy plots identified different specialist taxa for each salinity habitat. Dinophyta and Haptophyta were the predominant taxa in oceanic areas, while Chlorophyta and Cryptophyta dominated freshwater. Bacillariophyta prevailed across all salinity gradients. Canonical correlation analysis and Mantel tests revealed that temperature, salinity, and elevated nutrient levels (i.e., NO3--N, PO43--P, and SiO32--Si) associated with anthropogenic activities significantly influenced the heterogeneity of community structure. The spatial distribution of phytoplankton, along with in situ photosynthetic characteristics, serves as a foundational basis to access estuarine primary productivity, as well as community function and ecosystem health.
Collapse
Affiliation(s)
- Jing Xia
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China; (J.X.); (H.H.); (X.G.)
| | - Haojie Hu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China; (J.X.); (H.H.); (X.G.)
| | - Xiu Gao
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China; (J.X.); (H.H.); (X.G.)
| | - Jinjun Kan
- Stroud Water Research Center, 970 Spencer Rd., Avondale, PA 19311, USA;
| | - Yonghui Gao
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China
| | - Ji Li
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China
| |
Collapse
|
17
|
Li J, Wang J, He X, Gu H, Xu X, Liang C, Wang Y, Xu X, Jia L, Chen J, Jiang M, Chen J. The ciliate Euplotes balteatus is resistant to Paralytic Shellfish Toxins from Alexandrium minutum (Dinophyceae). WATER RESEARCH X 2024; 23:100229. [PMID: 39099803 PMCID: PMC11294722 DOI: 10.1016/j.wroa.2024.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 08/06/2024]
Abstract
Research on interactions between grazers and toxigenic algae is fundamental for understanding toxin dynamics within aquatic ecosystems and developing biotic approaches to mitigate harmful algal blooms. The dinoflagellate Alexandrium minutum is a well-known microalga responsible for paralytic shellfish toxins (PSTs) contamination in many coastal regions worldwide. This study investigated the impact of the ciliate Euplotes balteatus on cell density and PSTs transfer in simulated A. minutum blooms under controlled conditions. E. balteatus exhibited resistance to the PSTs produced by A. minutum with a density of up to 10,000 cells/mL, sustaining growth and reproduction while eliminating algal cells within a few days. The cellular PSTs content of A. minutum increased in response to the grazing pressure from E. balteatus. However, due to the substantial reduction in density, the overall toxicity of the algal population decreased to a negligible level. Most PSTs contained within algal cells were temporarily accumulated in E. balteatus before being released into the water column, suggesting unclear mechanisms for PSTs excretion in unicellular grazers. In principle, the grazing of E. balteatus on A. minutum promotes the transfer of the majority of intracellular PSTs into extracellular portions, thereby mitigating the risk of their accumulation and contamination through marine trophic pathways. However, this process also introduces an increase in the potential environmental hazards posed by extracellular PSTs to some extent.
Collapse
Affiliation(s)
- Jing Li
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Jinrong Wang
- The Second Geological Institute, China Metallurgical Geology Bureau, Fuzhou, 350108, China
| | - Xiuping He
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266071, China
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Xin Xu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Chen Liang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou, 350001, China
| | - Yongchao Wang
- The Second Geological Institute, China Metallurgical Geology Bureau, Fuzhou, 350108, China
| | - Xiao Xu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Linxuan Jia
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Junhui Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Miaohua Jiang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Jianming Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| |
Collapse
|
18
|
Li S, Luo N, Li C, Mao S, Huang H. Diversity and distribution analysis of eukaryotic communities in the Xiangshan Bay, East China sea by metabarcoding approach. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106451. [PMID: 38492505 DOI: 10.1016/j.marenvres.2024.106451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/04/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Eukaryotic communities play an important role in the coastal ecosystem of Xiangshan Bay, a narrow semi-closed bay famous for fisheries and marine farming. However, information on the diversity and composition of eukaryotic communities in Xiangshan Bay remains unclear. In this study, the metabarcoding approach was utilized to comprehensively investigate the eukaryotic plankton community structure and dominant taxa, particularly eukaryotic microalgae, in the Xiangshan Bay over a period of four months in 2018. The results showed that the three major phyla were Arthropoda, Chlorophyta, and Bacillariophyta. The richness indices revealed that species richness peaked in February and was at its lowest in May. Diversity indices showed that the samples collected in May had the lowest diversity. Centropages was detected in the samples of all months, however, its highest dominance was observed in the samples collected in February. In addition, compared to other months, a greater proportion of eukaryotic microalgae was witnessed in March. The three eukaryotic algae with highest abundances in March were Cyclotella, Prorocentrum, and Thalassiosira. Moreover, high diversity of pico-sized (0.2-2.0 μm) phytoplankton (which are often easily missed by microscopy) was discovered in this study by using metabarcoding approach. This study highlights the strength and significance of the metabarcoding approach to uncover a large number of eukaryotic species which remains undetectable during application of conventional approaches. The findings of this study reveals that the eukaryotic community structure varies noticeably in both time and space throughout sampling period, with temperature being the most important environmental factor influencing these changes. This study lays a solid foundation to understand eukaryotic plankton composition, temporal and spatial dynamics and the distribution mechanism of eukaryotic plankton community in Xiangshan Bay, providing theoretical reference for further studies related to marine ecology.
Collapse
Affiliation(s)
- Shuangqing Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Ningjian Luo
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Chuang Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Shuoqian Mao
- Ningbo Institute of Oceanography, Ningbo, 315832, China.
| | - Hailong Huang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
19
|
Pan X, Liu H, Feng L, Zong Y, Cao Z, Guo L, Yang G. Full-length transcriptome analysis of a bloom-forming dinoflagellate Prorocentrum shikokuense (Dinophyceae). Sci Data 2024; 11:430. [PMID: 38664437 PMCID: PMC11045741 DOI: 10.1038/s41597-024-03269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Prorocentrum shikokuense (formerly P. donghaiense) is a pivotal dinoflagellate species associating with the HABs in the East China Sea. The complexity of its large nuclear genome hindered us from understanding its genomic characteristics. Full-length transcriptome sequencing offers a practical solution to decipher the physiological mechanisms of a species without the reference genome. In this study, we employed single-molecule real-time (SMRT) sequencing technology to sequence the full-length transcriptome of Prorocentrum shikokuense. We successfully generated 41.73 Gb of clean SMRT sequencing reads and isolated 105,249 non-redundant full-length non-chimeric reads. Our trial has led to the identification of 11,917 long non-coding RNA transcripts, 514 alternative splicing events, 437 putative transcription factor genes from 17 TF gene families, and 34,723 simple sequence repeats. Additionally, a total of 78,265 open reading frames were identified, of them 15,501 were the protein coding sequences. This dataset is valuable for annotating P. shikokuense genome, and will contribute significantly to the in-depth studies on the molecular mechanisms underlining the dinoflagellate bloom formation.
Collapse
Affiliation(s)
- Xiaohui Pan
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Hang Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Leili Feng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Yanan Zong
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Zihao Cao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Li Guo
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China.
| | - Guanpin Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China.
- Key Laboratory of Evolution and Marine Biodiversity of Ministry of Education, Ocean University of China (OUC), Qingdao, 266003, P. R. China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, P. R. China.
| |
Collapse
|
20
|
Liu S, Chen N. Chromosome-level genome assembly of marine diatom Skeletonema tropicum. Sci Data 2024; 11:403. [PMID: 38643276 PMCID: PMC11032307 DOI: 10.1038/s41597-024-03238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
Skeletonema tropicum is a marine diatom of the genus Skeletonema that also includes many well-known species including S. marinoi. S. tropicum is a high temperature preferring species thriving in tropical ocean regions or temperate ocean regions during summer-autumn. However, mechanisms of ecological adaptation of S. tropicum remain poorly understood due partially to the lack of a high-quality whole genome assembly. Here, we report the first high-quality chromosome-scale genome assembly for S. tropicum, using cutting-edge technologies including PacBio single molecular sequencing and high-throughput chromatin conformation capture. The assembled genome has a size of 78.78 Mb with a scaffold N50 of 3.17 Mb, anchored to 23 pseudo-chromosomes. In total, 20,613 protein-coding genes were predicted, of which 17,757 (86.14%) genes were functionally annotated. Collinearity analysis of the genomes of S. tropicum and S. marinoi revealed that these two genomes were highly homologous. This chromosome-level genome assembly of S. tropicum provides a valuable genomic platform for comparative analysis of mechanisms of ecological adaption.
Collapse
Affiliation(s)
- Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
21
|
Lee TCH, Lam W, Tam NFY, Xu SJL, Chung WL, Lee FWF. Revealing the algicidal characteristics of Maribacter dokdonensis: An investigation into bacterial strain P4 isolated from Karenia mikimotoi bloom water. JOURNAL OF PHYCOLOGY 2024; 60:541-553. [PMID: 38517088 DOI: 10.1111/jpy.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/28/2023] [Accepted: 01/17/2024] [Indexed: 03/23/2024]
Abstract
Harmful algal blooms (HABs) are a global environmental concern, causing significant economic losses in fisheries and posing risks to human health. Algicidal bacteria have been suggested as a potential solution to control HABs, but their algicidal efficacy is influenced by various factors. This study aimed to characterize a novel algicidal bacterium, Maribacter dokdonensis (P4), isolated from a Karenia mikimotoi (Hong Kong strain, KMHK) HAB and assess the impact of P4 and KMHK's doses, growth phase, and algicidal mode and the axenicity of KMHK on P4's algicidal effect. Our results demonstrated that the algicidal effect of P4 was dose-dependent, with the highest efficacy at a dose of 25% v/v. The study also determined that P4's algicidal effect was indirect, with the P4 culture and the supernatant, but not the bacterial cells, showing significant effects. The algicidal efficacy was higher when both P4 and KMHK were in the stationary phase. Furthermore, the P4 culture at the log phase could effectively kill KMHK cells at the stationary phase, with higher algicidal efficacy in the bacterial culture than that of the supernatant alone. Interestingly, P4's algicidal efficacy was significantly higher when co-culturing with xenic KMHK (~90% efficacy at day 1) than that with the axenic KMHK (~50% efficacy at day 1), suggesting the presence of other bacteria could regulate P4's algicidal effect. The bacterial strain P4 also exhibited remarkable algicidal efficacy on four other dinoflagellate species, particularly the armored species. These results provide valuable insights into the algicidal effect of M. dokdonensis on K. mikimotoi and on their interactions.
Collapse
Affiliation(s)
- Thomas Chun-Hung Lee
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Winnie Lam
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Nora Fung-Yee Tam
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Steven Jing-Liang Xu
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Wing Lam Chung
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Fred Wang-Fat Lee
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
22
|
Yu Z, Wang Z, Liu L. Electrophysiological techniques in marine microalgae study: A new perspective for harmful algal bloom (HAB) research. HARMFUL ALGAE 2024; 134:102629. [PMID: 38705615 DOI: 10.1016/j.hal.2024.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Electrophysiological techniques, by measuring bioelectrical signals and ion channel activities in tissues and cells, are now widely utilized to study ion channel-related physiological functions and their underlying mechanisms. Electrophysiological techniques have been extensively employed in the investigation of animals, plants, and microorganisms; however, their application in marine algae lags behind that in other organisms. In this paper, we present an overview of current electrophysiological techniques applicable to algae while reviewing the historical usage of such techniques in this field. Furthermore, we explore the potential specific applications of electrophysiological technology in harmful algal bloom (HAB) research. The application prospects in the studies of stress tolerance, competitive advantage, nutrient absorption, toxin synthesis and secretion by HAB microalgae are discussed and anticipated herein with the aim of providing novel perspectives on HAB investigations.
Collapse
Affiliation(s)
- Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Zhongshi Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lidong Liu
- The Djavad Mowafaghian Centre for Brian Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Dong L, Zuo X, Xiong Y. Prediction of hydrological and water quality data based on granular-ball rough set and k-nearest neighbor analysis. PLoS One 2024; 19:e0298664. [PMID: 38394115 PMCID: PMC10889668 DOI: 10.1371/journal.pone.0298664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Hydrological and water quality datasets usually encompass a large number of characteristic variables, but not all of these significantly influence analytical outcomes. Therefore, by wisely selecting feature variables with rich information content and removing redundant features, it not only can the analysis efficiency be improved, but the model complexity can also be simplified. This paper considers introducing the granular-ball rough set algorithm for feature variable selection and combining it with the k-nearest neighbor method and back propagation network to analyze hydrological and water quality data, thus promoting overall and fused inspection. The results of hydrological water quality data analysis show that the proposed method produces better results compared to using a standalone k-nearest neighbor regressor.
Collapse
Affiliation(s)
- Limei Dong
- Upper Changjiang River Bureau of Hydrological and Water Resources Survey, Chongqing, China
| | - Xinyu Zuo
- Upper Changjiang River Bureau of Hydrological and Water Resources Survey, Chongqing, China
| | - Yiping Xiong
- College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| |
Collapse
|
24
|
Zhang W, Ye Z, Qu P, Li D, Gao H, Liang Y, He Z, Tong M. Using solid phase adsorption toxin tracking and extended local similarity analysis to monitor lipophilic shellfish toxins in a mussel culture ranch in the Yangtze River Estuary. MARINE POLLUTION BULLETIN 2024; 199:116027. [PMID: 38217914 DOI: 10.1016/j.marpolbul.2024.116027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Harmful algal blooms (HABs) and their associated phycotoxins are increasing globally, posing great threats to local coastal ecosystems and human health. Nutrients have been carried by the freshwater Yangtze River and have entered the estuary, which was reported to be a biodiversity-rich but HAB-frequent region. Here, in situ solid phase adsorption toxin tracking (SPATT) was used to monitor lipophilic shellfish toxins (LSTs) in seawaters, and extended local similarity analysis (eLSA) was conducted to trace the temporal and special regions of those LSTs in a one-year trail in a mussel culture ranch in the Yangtze River Estuary. Nine analogs of LSTs, including okadaic acid (OA), dinophysistoxin-1 (DTX1), yessotoxin (YTX), homoyessotoxin (homoYTX), 45-OH-homoYTX, pectenotoxin-2 (PTX2), 7-epi-PTX2 seco acid (7-epi-PTX2sa), gymnodimine (GYM) and azaspiracids-3 (AZA3), were detected in seawater (SPATT) or rope farmed mussels. The concentrations of OA + DTX1 and homoYTX in mussels were positively correlated with those in SPATT samplers (Pearson test, p < 0.05), indicating that SPATT (with resin HP20) would be a good monitoring tool and potential indicator for OA + DTX1 and homoYTX in mussel Mytilus coruscus. The eLSA results indicated that late summer and early autumn were the most phycotoxin-contaminated seasons in the Yangtze River Estuary. OA + DTX1, homoYTX, PTX2 and GYM were most likely driven by the local growing HAB species in spring and summer, while Yangtze River diluted water may impact the accumulation of HAB species, causing potential phycotoxin contamination in the Yangtze River Estuary in autumn and winter. Together, the results showed that the mussel harvesting season, late summer and early autumn, would be the season with the greatest phycotoxin risk and would be the most contaminated by local growing toxic algae. Routine monitoring sites should be set up close to the local seawaters.
Collapse
Affiliation(s)
- Wenguang Zhang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Zi Ye
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Peipei Qu
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Dongmei Li
- Ocean College, Zhejiang University, Zhoushan 316021, China; Dalian Phycotoxins Key Laboratory, National Marine Environmental Monitoring Center, Ministry of Ecological Environment, Dalian 116023, China
| | - Han Gao
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yubo Liang
- Dalian Phycotoxins Key Laboratory, National Marine Environmental Monitoring Center, Ministry of Ecological Environment, Dalian 116023, China
| | - Zhiguo He
- Ocean College, Zhejiang University, Zhoushan 316021, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan 316021, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| |
Collapse
|
25
|
Xia X, Cheung S, Zhang S, Lu Y, Leung SK, Shi Z, Xu H, Gu B, Tan Y, Zeng H, Li Y, Liu H. Noctiluca scintillans bloom alters the composition and carbohydrate utilization of associated bacterial community and enriches potential pathogenic bacterium Vibrio anguillarum. WATER RESEARCH 2024; 249:120974. [PMID: 38101044 DOI: 10.1016/j.watres.2023.120974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Noctiluca scintillans (red) is a widely distributed heterotrophic dinoflagellate and a prominent red tide forming species. This study investigated the effects of Noctiluca blooms on marine microbial diversity and functionality using multi-omics approaches. Our findings revealed significant differences in the community composition of Noctiluca-associated bacteria compared to those associated with autotrophic plankton and free-living bacteria in the surrounding seawater. The dominant bacterial groups within the Noctiluca-associated community shifted at various bloom stages, which could be attributed to changes in prey composition of Noctiluca. During the non-bloom stage, Burkholderiaceae, Carnobacteriaceae, and Pseudomonadaceae dominated the community, while Vibrionaceae became dominant during the bloom stage, and Saprospiraceae, Crocinitomicaceae, and Pirellulaceae thrived during the post-bloom stage. Compared to the non-bloom stage, Noctiluca-associated bacterial community at the bloom stage exhibited significant down-regulation of genes related to complex carbohydrate metabolism, while up-regulation of genes related to glucose transportation and utilization. Furthermore, we identified Vibrio anguillarum, a potential pathogenic bacterium to marine fish, as a major component of the Vibrionaceae family during the bloom stage. The occurrence of V. anguillarum associated with Noctiluca blooms may be attributed to the increased availability of its preferred carbon sources and its high capabilities in glucose transportation, motility and chemotaxis. Moreover, the presence of Vibrio infection genes (hap, hlyA, rtxA) encoding vibriolysin, hemolysin, and RTX (Repeats-in-toxin) toxin in the V. anguillarum genome, with the hap gene showing high expression levels during Noctiluca blooms, indicates an elevated risk of infection. This study underscores the unique composition of the bacterial community associated with red tide forming heterotrophic dinoflagellates and suggests that Noctiluca cells may serve as reservoirs and vectors for pathogenic bacteria, potentially posing a threat to fish-farming and the health of other marine organisms.
Collapse
Affiliation(s)
- Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| | - Shunyan Cheung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Shuwen Zhang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou, China.
| | - Yanhong Lu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Sze Ki Leung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Zhiyuan Shi
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Huo Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Bowei Gu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yehui Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Huijun Zeng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou, China
| | - Yang Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou, China
| | - Hongbin Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
| |
Collapse
|
26
|
Yao Y, Luo N, Zong Y, Jia M, Rao Y, Huang H, Jiang H. Recombinase Polymerase Amplification Combined with Lateral Flow Dipstick Assay for the Rapid and Sensitive Detection of Pseudo-nitzschia multiseries. Int J Mol Sci 2024; 25:1350. [PMID: 38279350 PMCID: PMC10816074 DOI: 10.3390/ijms25021350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/03/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
The harmful algal bloom (HAB) species Pseudo-nitzschia multiseries is widely distributed worldwide and is known to produce the neurotoxin domoic acid, which harms marine wildlife and humans. Early detection and preventative measures are more critical than late management. However, the major challenge related to early detection is the accurate and sensitive detection of microalgae present in low abundance. Therefore, developing a sensitive and specific method that can rapidly detect P. multiseries is critical for expediting the monitoring and prediction of HABs. In this study, a novel assay method, recombinase polymerase amplification combined with lateral flow dipstick (RPA-LFD), is first developed for the detection of P. multiseries. To obtain the best test results, several important factors that affected the amplification effect were optimized. The internal transcribed spacer sequence of the nuclear ribosomal DNA from P. multiseries was selected as the target region. The results showed that the optimal amplification temperature and time for the recombinase polymerase amplification (RPA) of P. multiseries were 37 °C and 15 min. The RPA products could be visualized directly using the lateral flow dipstick after only 3 min. The RPA-LFD assay sensitivity for detection of recombinant plasmid DNA (1.9 × 100 pg/μL) was 100 times more sensitive than that of RPA, and the RPA-LFD assay sensitivity for detection of genomic DNA (2.0 × 102 pg/μL) was 10 times more sensitive than that of RPA. Its feasibility in the detection of environmental samples was also verified. In conclusion, these results indicated that the RPA-LFD detection of P. multiseries that was established in this study has high efficiency, sensitivity, specificity, and practicability. Management measures made based on information gained from early detection methods may be able to prevent certain blooms. The use of a highly sensitive approach for early warning detection of P. multiseries is essential to alleviate the harmful impacts of HABs on the environment, aquaculture, and human health.
Collapse
Affiliation(s)
- Yuqing Yao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Ningjian Luo
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Yujie Zong
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Meng Jia
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Yichen Rao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Hailong Huang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Haibo Jiang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
27
|
Feng Y, Xiong Y, Hall-Spencer JM, Liu K, Beardall J, Gao K, Ge J, Xu J, Gao G. Shift in algal blooms from micro- to macroalgae around China with increasing eutrophication and climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17018. [PMID: 37937464 DOI: 10.1111/gcb.17018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/15/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023]
Abstract
Blooms of microalgal red tides and macroalgae (e.g., green and golden tides caused by Ulva and Sargassum) have caused widespread problems around China in recent years, but there is uncertainty around what triggers these blooms and how they interact. Here, we use 30 years of monitoring data to help answer these questions, focusing on the four main species of microalgae Prorocentrum donghaiense, Karenia mikimotoi, Noctiluca scintillans, and Skeletonema costatum) associated with red tides in the region. The frequency of red tides increased from 1991 to 2003 and then decreased until 2020, with S. costatum red tides exhibiting the highest rate of decrease. Green tides started to occur around China in 1999 and the frequency of green tides has since been on the increase. Golden tides were first reported to occur around China in 2012. The frequency of macroalgal blooms has a negative linear relationship with the frequency and coverage of red tides around China, and a positive correlation with total nitrogen and phosphorus loads as well as with atmospheric CO2 and sea surface temperature (SST). Increased outbreaks of macroalgal blooms are very likely due to worsening levels of eutrophication, combined with rising CO2 and SST, which contribute to the reduced frequency of red tides. The increasing grazing rate of microzooplankton also results in the decline in areas affected by red tides. This study shows a clear shift of algal blooms from microalgae to macroalgae around China over the past 30 years driven by the combination of eutrophication, climate change, and grazing stress, indicating a fundamental change in coastal systems in the region.
Collapse
Affiliation(s)
- Yuan Feng
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yonglong Xiong
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jason M Hall-Spencer
- Marine Institute, University of Plymouth, Plymouth, UK
- Shimoda Marine Research Center, Tsukuba University, Tsukuba, Japan
| | - Kailin Liu
- College of the Environment & Ecology, Xiamen University, Xiamen, China
| | - John Beardall
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jingke Ge
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Juntian Xu
- Jiangsu Key Laboratory for Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Guang Gao
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
28
|
Duan Y, Liu F, Zhang C, Wang Y, Chen G. Screen and Optimization of an Aptamer for Alexandrium tamarense-A Common Toxin-Producing Harmful Alga. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:935-950. [PMID: 37743437 DOI: 10.1007/s10126-023-10251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Among all the paralytic shellfish toxins (PSTs)-producing algae, Alexandrium tamarense is one of the most widespread harmful species posing a serious threat to marine resources and human health. Therefore, it is extremely important to establish a rapid and accurate monitoring method for A. tamarense that can provide early warnings of harmful algal blooms (HABs) caused by this alga and limit the contamination due to PSTs. In this study, an ssDNA library was first obtained by whole cell systematic evolution of ligands by exponential enrichment after 18 consecutive rounds of iterative screening. After sequencing in combination with subsequent multiple alignment of sequences and secondary structure simulation, the library could be classified into 2 families, namely, Family1 and Family2, according to sequence similarity. Flow cytometry was used to test the affinity and cross-reactivity of Ata19, Ata6, Ata25 and Ata29 belonging to Family2. Ata19 was selected to be modified by truncation, through which a new resultant aptamer named as Ata19-1-1 was obtained. Ata19-1-1 with a KD of 75.16 ± 11.10 nM displayed a much higher affinity than Ata19. The specificity test showed that Ata19-1-1 has the same discrimination ability as Ata19 and can at least distinguish the target microalga from other microalgae. The observation under a fluorescence microscopy showed that the A. tamarense cells labeled with Ata19-1-1 are exhibiting bright green fluorescence and could be easily identified, factually confirming the binding of the aptamer with target cells. In summary, the aptamer Ata19-1-1 produced in this study may serve as an ideal molecular recognition element for A. tamarense, which has the potential to be developed into a novel detection method for this harmful alga in the future.
Collapse
Affiliation(s)
- Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China
- School of Environment, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China
- School of Environment, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China.
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China.
- School of Environment, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|
29
|
Wang X, Liu C, Zhang QC, Chen JF, Wang JX, Zhao QY, Yan T, Yu RC. A dinoflagellate bloom caused by multiple species of Kareniaceae in the coastal waters of Fujian in June 2022 and its adverse impacts on Brachionus plicatilis and Artemia salina. MARINE POLLUTION BULLETIN 2023; 196:115685. [PMID: 37864862 DOI: 10.1016/j.marpolbul.2023.115685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Recently, dinoflagellate blooms have frequently occurred in the coastal waters of Fujian, East China Sea. In June 2022, a fish-killing bloom of Kareniaceae species occurred in this region. In this study, four species of Kareniaceae, namely, Karenia longicanalis, K. papilionacea, Karlodinium veneficum, and Karl. digitatum were identified from this bloom event based on the results of single-cell PCR and clone libraries, and intraspecies genetic diversity was found in the Karl. veneficum population. The results of acute toxicity assays of the bloom water to two zooplankton species (Brachionus plicatilis and Artemia salina) demonstrated this bloom event strongly inhibited their swimming capacities and survival. The results of this study suggested that the bloom events caused by multiple species of Kareniaceae in the Fujian coastal waters had adverse impacts on the local fishery resources and zooplankton community.
Collapse
Affiliation(s)
- Xin Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chao Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qing-Chun Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Jin-Fei Chen
- Putian Ocean and Fisheries Environmental Monitoring Station, China
| | - Jin-Xiu Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qi-Yu Zhao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Tian Yan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ren-Cheng Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
30
|
Yu Z, Tang Y, Gobler CJ. Harmful algal blooms in China: History, recent expansion, current status, and future prospects. HARMFUL ALGAE 2023; 129:102499. [PMID: 37951615 DOI: 10.1016/j.hal.2023.102499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 11/14/2023]
Abstract
The impacts of harmful algal blooms (HABs) on economies, public health, ecosystems, and aquaculture across the globe have all increased in recent decades, and this has been acutely the case in China. Here, we review the history of HABs and HABs research in China, as well as recent trends in HABs and future prospects of HAB science in China. The most updated analyses demonstrated that the number of HAB events, the number of HAB species, the aerial coverage of HABs, and the impacts of HABs in Chinese waters during the 21st century were all higher than that during the last two decades of the 20th century. The increase in the number of HABs in China has been significantly correlated with the increased discharge of ammonium and total phosphorus into coastal waters (p < 0.01 for both). Notable newly recognized events this century have included chronic HABs caused by Prorocentrum donghaiense and Karenia mikimotoi, a paralytic shellfish poisoning event caused by Gymnodinium catenatum that sickened 80 people, brown tides caused by Aureococcus anophagefferens, green tides caused by Ulva prolifera, golden tides caused by Sargassum horneri, and the disruption of a nuclear power plant caused by a bloom of Phaeocystis globosa. A series of key discoveries regarding HABs has been made this century including documentation of nearly all known HAB toxins in Chinese waters, discovery of novel cyst-formation and/or life stages of multiple HABs-causing species, identification of the chemical and physical oceanographic drivers of multiple HABs including those formed by P. donghaiense, K. mikimotoi, and U. prolifera, and the successful mitigation of HABs via the use of modified clay approaches. Future research prospects highlighted include the use of macroalgae as a means to prevent, mitigate, and control (PCM) HABs and the process by which multi-disciplinary studies involving molecular approaches (omics), remote in situ detection, artificial intelligence, and mega-data analyses might be used to develop refined and realistic HAB forecasting platforms. Collectively, this review demonstrates the significant evolution of HAB science since the 20th century in China and demonstrates that while HABs in China are complex and widespread, recent and on-going discoveries make the development of detailed understanding and effective measures to mitigate the negative effects of HABs a hopeful outcome in the coming years.
Collapse
Affiliation(s)
- Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Yingzhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11790, United States of America
| |
Collapse
|
31
|
Zheng JW, He GH, Xu RX, Wang X, Li HY, Yang WD. Systematic exploration of transcriptional responses of interspecies interaction between Karenia mikimotoi and Prorocentrum shikokuense. HARMFUL ALGAE 2023; 126:102441. [PMID: 37290889 DOI: 10.1016/j.hal.2023.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 06/10/2023]
Abstract
Karenia mikimotoi and Prorocentrum shikokuense (also identified as P. donghaiense Lu and P. obtusidens Schiller) are two important harmful algal species which often form blooms in the coasts of China. Studies have shown that the allelopathy of K. mikimotoi and P. shikokuense plays an important role in inter-algal competition, though the underlying mechanisms remain largely unclear. Here, we observed reciprocal inhibitory effects between K. mikimotoi and P. shikokuense under co-cultures. Based on the reference sequences, we isolated RNA sequencing reads of K. mikimotoi and P. shikokuense from co-culture metatranscriptome, respectively. We found the genes involved in photosynthesis, carbon fixation, energy metabolism, nutrients absorption and assimilation were significantly up-regulated in K. mikimotoi after co-cultured with P. shikokuense. However, genes involved in DNA replication and cell cycle were significantly down-regulated. These results suggested that co-culture with P. shikokuense stimulated cell metabolism and nutrients competition activity of K. mikimotoi, and inhibited cell cycle. In contrast, genes involved in energy metabolism, cell cycle and nutrients uptake and assimilation were dramatically down-regulated in P. shikokuense under co-culture with K. mikimotoi, indicating that K. mikimotoi could highly affect the cellular activity of P. shikokuense. In addition, the expression of PLA2G12 (Group XII secretory phospholipase A2) that can catalyze the accumulation of linoleic acid or linolenic acid, and nitrate reductase that may be involved in nitric oxide production were significantly increased in K. mikimotoi, suggesting that PLA2G12 and nitrate reductase may play important roles in the allelopathy of K. mikimotoi. Our findings shed new light on the interspecies competition between K. mikimotoi and P. shikokuense, and provide a novel strategy for studying interspecific competition in complex systems.
Collapse
Affiliation(s)
- Jian-Wei Zheng
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; College of Food Science and Engineering, Foshan University of Science and Technology, Foshan 528231, China
| | - Guo-Hui He
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Rui-Xia Xu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiang Wang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
32
|
He L, Yu Z, Xu X, Zhu J, Yuan Y, Cao X, Song X. Metabarcoding analysis identifies high diversity of harmful algal bloom species in the coastal waters of the Beibu Gulf. Ecol Evol 2023; 13:e10127. [PMID: 37223313 PMCID: PMC10202623 DOI: 10.1002/ece3.10127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Harmful algal blooms (HABs) have occurred more frequently in recent years. In this study, to investigate their potential impact in the Beibu Gulf, short-read and long-read metabarcoding analyses were combined for annual marine phytoplankton community and HAB species identification. Short-read metabarcoding showed a high level of phytoplankton biodiversity in this area, with Dinophyceae dominating, especially Gymnodiniales. Multiple small phytoplankton, including Prymnesiophyceae and Prasinophyceae, were also identified, which complements the previous lack of identifying small phytoplankton and those unstable after fixation. Of the top 20 phytoplankton genera identified, 15 were HAB-forming genera, which accounted for 47.3%-71.5% of the relative abundance of phytoplankton. Based on long-read metabarcoding, a total of 147 OTUs (PID > 97%) belonging to phytoplankton were identified at the species level, including 118 species. Among them, 37 species belonged to HAB-forming species, and 98 species were reported for the first time in the Beibu Gulf. Contrasting the two metabarcoding approaches at the class level, they both showed a predominance of Dinophyceae, and both included high abundances of Bacillariophyceae, Prasinophyceae, and Prymnesiophyceae, but the relative contents of the classes varied. Notably, the results of the two metabarcoding approaches were quite different below the genus level. The high abundance and diversity of HAB species were probably due to their special life history and multiple nutritional modes. Annual HAB species variation revealed in this study provided a basis for evaluating their potential impact on aquaculture and even nuclear power plant safety in the Beibu Gulf.
Collapse
Affiliation(s)
- Liyan He
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xin Xu
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Jianan Zhu
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Yongquan Yuan
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Xihua Cao
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Xiuxian Song
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
33
|
Expansion risk of the toxic dinoflagellate Gymnodinium catenatum blooms in Chinese waters under climate change. ECOL INFORM 2023. [DOI: 10.1016/j.ecoinf.2023.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
34
|
Huang H, Xu S, Li S, Wang X, Guo K, Yan R, Xie W, Yin K, Hou S, Jiang H. Diversity and Distribution of Harmful Algal Bloom Species from Seamount to Coastal Waters in the South China Sea. Microbiol Spectr 2023; 11:e0416922. [PMID: 36815795 PMCID: PMC10100961 DOI: 10.1128/spectrum.04169-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/26/2023] [Indexed: 02/24/2023] Open
Abstract
Mount Xianbei is one of the largest shallow seamounts located in the middle of the South China Sea (SCS), which might play a role in shaping the biodiversity of surrounding continental coastal waters, particularly the diversity of phytoplankton species causing frequent harmful algal blooms (HABs) in northern SCS. However, the diversity, composition, and distribution of phytoplankton species in the seamount regions of Xianbei remain largely unexplored. In this study, samples around and outside the seamount regions were collected during a late summer cruise of 2021 to test whether seamounts play a role in HAB species propagation. In total, we identified 19 HAB species across all samples using the ASV-based DNA metabarcoding approach, 6 of which had not been reported previously in the SCS, suggesting a diverse HAB species in the SCS. Specifically, 16 HAB species were found in the seamount region of Xianbei, and 5 of them were also found in the coastal waters, indicating a close connection between seamount and coastal waters. This study was the first attempt to explore HAB species' spatial diversity and vertical distribution in the seamount region of Xianbei at single-nucleotide resolution, which provides a novel explanation for the coastal HAB occurrence in the northern SCS. IMPORTANCE There are a number of seamounts under the water of the South China Sea (SCS). The seamounts might play a role in shaping the biodiversity of surrounding continental coastal waters. However, there is no direct evidence revealing the relationship of the biodiversity of phytoplankton between seamounts and coastal waters in the SCS, especially those species having the potential to form harmful algal blooms (HABs). Some HAB species might proliferate in certain geographic locations, while others may be broadly distributed across oceanic provinces. In this study, we provided a detailed analysis of phytoplankton composition and molecular detection of HAB species from seamount to coastal waters in the SCS, which suggested a strong interaction in the HAB species between the two areas. This finding provides new insights into the diversity and distribution of HABs in seamounts and their role in shaping the composition and the occurrence of HABs in coastal water.
Collapse
Affiliation(s)
- Hailong Huang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China
| | - Shuaishuai Xu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shuangqing Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xinwei Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Kangli Guo
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Rongman Yan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Wei Xie
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kedong Yin
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shengwei Hou
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Haibo Jiang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Cao Y, Qiu J, Li A, Zhang L, Yan G, Ji Y, Zhang J, Zhao P, Wu X. Occurrence and spatial distribution of paralytic shellfish toxins in seawater and marine organisms in the coastal waters of Qinhuangdao, China. CHEMOSPHERE 2023; 315:137746. [PMID: 36608885 DOI: 10.1016/j.chemosphere.2023.137746] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
In recent years, paralytic shellfish toxins (PSTs) have been prevalent in the coastal waters of Qinhuangdao, the west coast of the Bohai Sea, China. The content of PSTs in shellfish often exceeded the regulatory limit of 800 μg STX equivalent (eq.) kg-1, which poses a serious threat to human health. In this study, two surveys were conducted in May 2021 and May 2022 to investigate the distribution of PSTs in the coastal waters of Qinhuangdao. Seawater, surface sediment, phytoplankton, zooplankton, and other marine organism samples were collected, and the composition and concentration of PSTs were analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Results showed that multiple PST components were detected in all seawater samples collected at different depths, mainly including GTX1/4, GTX2/3, dcGTX2, STX and C1/2, and the highest concentration of PSTs reached 244 ng STX eq. L-1. The sediment samples also contained low levels of C1/2 and GTX2/3. Trace amounts of C1/2 and GTX1-4 were detected in phytoplankton and zooplankton. Moreover, all bivalve shellfish samples were found to contain PSTs, and the scallop Azumapecten farreri and the ark clam Anadara kagoshimensis showed relatively high concentrations of 607 and 497 μg STX eq. kg-1, respectively. In addition, low levels of PSTs were also found in some non-traditional PST vectors, including whelk Rapana venosa, octopus Amphioctopus ovulum, goby Ctenotrypauchen chinensis, and greenling Hexagrammos agrammus. Results of this study improve the understanding of the distribution of PSTs in seawater and marine organisms and the potential risk of persistent PSTs in seawater to marine ecosystems and human health.
Collapse
Affiliation(s)
- Yadong Cao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao, 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao, 266100, China.
| | - Lei Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Guowang Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jingrui Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Peng Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xizhen Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
36
|
Qiu J, Zhang J, Li A. Cytotoxicity and intestinal permeability of phycotoxins assessed by the human Caco-2 cell model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114447. [PMID: 38321666 DOI: 10.1016/j.ecoenv.2022.114447] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2024]
Abstract
Phycotoxins are a class of multiple natural metabolites produced by microalgae in marine and freshwater ecosystems that bioaccumulate in food webs, particularly in shellfish, having a great impact on human health. Phycotoxins are mainly leached and absorbed in the small intestine when human consumers accidentally ingest toxic aquatic products contaminated by them. To assess the intestinal uptake and damage of phycotoxins, a typical in vitro model was developed and widely applied using the human colorectal adenocarcinoma Caco-2 cell line. In this review, the application cases were summarized for multiple phycotoxins, including microcystins (MCs), cylindrospermopsins (CYNs), domoic acids (DAs), saxitoxins (STXs), palytoxins (PLTXs), okadaic acids (OAs), pectenotoxins (PTXs) and azaspiracids (AZAs). The results of the previous studies showed that each group of phycotoxins presented different cytotoxicity and mechanisms to Caco-2 cells, and significant discrepancies in the transport of phycotoxin across the Caco-2 cell monolayers. Therefore, this review describes the evaluation assays of the Caco-2 cell monolayer model, illustrates the principles of several primary cytotoxicity evaluation assays, and summarizes the cytotoxicity of each group of phycotoxins to Caco-2 cells line and their cellular transport, and finally proposes the development of multicellular intestinal models for future comprehensive studies on the toxicity and absorption of phycotoxins in the intestine. It will improve the understanding of Caco-2 cell monolayer models in the toxicology studies on phycotoxins and the potentially detrimental effects of microalgal toxins on the human intestine.
Collapse
Affiliation(s)
- Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Jingrui Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
37
|
Fang J, Li S, Liu X, He W, Li L, Zhang J, Zhang C, Zhou K. Development of a test strip for rapid detection of Gymnodinium catenatum. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:83. [PMID: 36344623 DOI: 10.1007/s10661-022-10708-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Harmful algal blooms (HABs) are major ecological and environmental problems in China's coastal waters and seriously threaten the stability of the marine ecosystem and human health. Gymnodinium catenatum is a toxic red tide dinoflagellate. It can produce paralytic shellfish toxins (PSP), which cause serious hazards to marine organisms, public health, and safety. In this paper, a test strip based on colloidal gold immunochromatography (GICG) was developed for the rapid detection of Gymnodinium catenatum. The experimental results showed that the test strip has good specificity and sensitivity. It not only detects the different components of Gymnodinium catenatum but also may detect algal toxins. The lowest density of Gymnodinium catenatum that can be detected by this test strip is approximately 120 cells/mL. Cross-reaction indicated that the test strip had a high specificity for Gymnodinium catenatum. This test strip provides a rapid method for in situ detection of Gymnodinium catenatum and a reference method for the monitoring of other harmful algae to serve as an early warning of upcoming red tides. It also provides a new way to prepare more detection methods for toxic algal toxins.
Collapse
Affiliation(s)
- Junhua Fang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Shuyue Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Xiaoxiao Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Weixin He
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Lingyue Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Jiazhao Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Changgong Zhang
- Xiamen Boson Biotech Co., Ltd, Xiamen, 361021, Fujian, People's Republic of China
| | - Kefu Zhou
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| |
Collapse
|
38
|
Wang Z, Yu Z, He L, Zhu J, Liu L, Song X. Establishment and preliminary study of electrophysiological techniques in a typical red tide species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156698. [PMID: 35710000 DOI: 10.1016/j.scitotenv.2022.156698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Electrophysiology studies the electrical properties of cells and tissues including bioelectrical signals and membrane ion channel activities. As an important means to reveal ion channel related physiological functions and the underlying mechanisms, electrophysiological techniques have been widely used in studies of animals, higher plants and algae that are closely related to higher plants. However, few electrophysiological studies have been carried out in red tide organisms, especially in dinoflagellates, which is mainly due to the complex surface structure of dinoflagellate amphiesma. In this study, the surface amphiesma of Alexandrium pacificum, a typical red tide species, was removed by centrifugation, low-temperature treatment and enzymatic treatment. In all three treatments, low-temperature treatment with 4 °C for 2 h had high ecdysis rate and high fixation rate, and the treated cells were easy to puncture, so low-temperature treatment was used as a preprocessing treatment for subsequent current recording. Acquired protoplasts of A. pacificum were identified by calcofluor fluorescence and immobilized by poly-lysine. A modified "puncture" single-electrode voltage-clamp recording was first applied to dinoflagellates, and voltage-gated currents, which had the characteristics of outward K+ current and inward Cl- current, were recorded and confirmed by ion replacement, indicating the voltage-gated currents were mixed. This method can be used as a technical basis for the electrophysiological study of dinoflagellates and provides a new perspective for the study of stress tolerance, red tide succession, and the regulation of physiological function of dinoflagellates.
Collapse
Affiliation(s)
- Zhongshi Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Liyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jianan Zhu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lidong Liu
- The Djavad Mowafaghian Centre for Brian Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Xiuxian Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
39
|
Wang Z, Peng L, Xie C, Wang W, Zhang Y, Xiao L, Tang Y, Yang Y. Metabarcoding of harmful algal bloom species in sediments from four coastal areas of the southeast China. Front Microbiol 2022; 13:999886. [PMID: 36118226 PMCID: PMC9471092 DOI: 10.3389/fmicb.2022.999886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
In the past three decades, harmful algal blooms (HAB) have become more frequent and widespread in southeast Chinese sea areas. Resting stages are regarded as the "seed bank" of algal blooms, and play an important role in initiating HABs. The distribution of resting stages in sediments especially those of HAB species can make good predictions about the potential risk of future blooms, however with limited reports. In this study, surface sediment samples were collected in the four sea areas along the southeast Chinese coasts, including Dafeng Port (DF) in the southern Yellow Sea, Xiangshan Bay (XS), Funing Bay (FN), and Dongshan Bay (DS) in the East China Sea. Diversity and community structure of eukaryotic microalgae in surface sediments were assessed by metabarcoding V4 region of the 18S rDNA, focusing on the distribution of HAB species. Biogenic elements including total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), biogenic silicon (BSi), and moisture content (MC) were analyzed. A total of 454 eukaryotic algal OTUs were detected, which belonged to 31 classes of 9 phyla. Altogether 149 algal species were detected in this study, and 59 taxa have been reported to form resting stages. Eukaryotic algal community was similar in XS, FN and DS of the East China Sea, which were predominated by dinoflagellates. However, algal community was different in DF of the Yellow Sea, and characterized by the dominance of chrysophytes and low OTU richness. The distribution of most abundant HAB species showed positive correlations with TN, BSi, and TOC, suggesting that eutrophication and consequent increase in diatom productivity may have a significant influence on the distribution of HAB species and facilitate the occurrence of HABs. Furthermore, HAB species occurred more abundantly and widely in FN. Our results suggest high potential risks of HABs in the southeast Chinese coast especially in Funing Bay.
Collapse
Affiliation(s)
- Zhaohui Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Liang Peng
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Changliang Xie
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wenting Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuning Zhang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lijuan Xiao
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yali Tang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yufeng Yang
- College of Life Science and Technology, Jinan University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
40
|
A Novel Algicidal Bacterium and Its Effects against the Toxic Dinoflagellate Karenia mikimotoi (Dinophyceae). Microbiol Spectr 2022; 10:e0042922. [PMID: 35616372 PMCID: PMC9241683 DOI: 10.1128/spectrum.00429-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The toxic dinoflagellate Karenia mikimotoi is a harmful algal bloom-forming species in coastal areas around the world. It produces ichthyotoxins and hemolytic toxins, with deleterious effects on marine ecosystems. In this study, the bacterium Pseudoalteromonas sp. FDHY-MZ2, with high algicidal efficiency against K. mikimotoi, was isolated from a bloom event. Based on the results, it completely lysed K. mikimotoi cells within 24 h 0.5% (vol/vol), with the algicidal activity of the supernatant of the bacterium culture. Algal cell wall fragmentation occurred, leading to cell death. There was a marked decline in various photochemical traits. When treated with the supernatant, cellulase, pheophorbide a oxygenase (PAO) and cyclin B genes were significantly increased, suggesting induced cell wall deterioration, chloroplast degradation and cell cycle regulation of K. mikimotoi cells. In addition, the expression levels of reactive oxygen species (ROS) scavenging gene was significantly inhibited, indicating that the ROS removal system was damaged. The bacterial culture was dried to obtain the spray-dried powder, which showed algicidal activity rates of 92.2 and 100% against a laboratory K. mikimotoi culture and a field microcosm of Karlodinium sp. bloom within 24 h with the addition of 0.04% mass fraction powder. Our results demonstrate that FDHY-MZ2 is a suitable strain for K. mikimotoi and Karlodinium sp. blooms management. In addition, this study provides a new strategy for the anthropogenic control of harmful algal bloom-forming species in situ. IMPORTANCE K. mikimotoi is a noxious algal bloom-forming species that cause damaging of the aquaculture industry and great financial losses. Bacterium with algicidal activity is an ideal agency to inhibit the growth of harmful algae. In this approach application, the bacterium with high algicidal activity is required and the final management material is ideal for easy-to-use. The algicidal characteristics are also needed to understand the effects of the bacterium for managing strategy exploration. In this study, we isolated a novel algicidal bacterium with extremely high lysis efficiency for K. mikimotoi. The algicidal characteristics of the bacterium as well as the chemical and molecular response of K. mikimotoi with the strain challenge were examined. Finally, the algicidal powder was explored for application. The results demonstrate that FDHY-MZ2 is suitable for K. mikimotoi and Karlodinium sp. blooms controlling, and this study provides a new strategy for algicidal bacterium application.
Collapse
|
41
|
Lu S, Ou L, Dai X, Cui L, Dong Y, Wang P, Li D, Lu D. An overview of Prorocentrum donghaiense blooms in China: Species identification, occurrences, ecological consequences, and factors regulating prevalence. HARMFUL ALGAE 2022; 114:102207. [PMID: 35550289 DOI: 10.1016/j.hal.2022.102207] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 01/18/2022] [Accepted: 02/18/2022] [Indexed: 06/15/2023]
Abstract
Prorocentrum donghaiense Lu (also identified as Prorocentrum shikokuense Hada and Prorocentrum obtusidens Schiller) is a bloom-forming dinoflagellate species distributed worldwide. Blooms of P. donghaiense occur annually in adjacent waters of the East China Sea (ECS), especially in the waters near the Changjiang River Estuary. Blooms of this species have also been reported in nearby Japanese and Korean waters. There has been an apparent bloom-forming species succession pattern in the ECS since 2000, with diatom blooms in the early spring, shifting to long-lasting and large-scale dinoflagellate blooms dominated by P. donghaiense during the spring, and finally ended by diatom and/or Noctiluca scintillans blooms in summer. These bloom succession patterns were closely correlated with changes in environmental factors, such as temperature increase and anthropogenic eutrophication. Decreasing silicate by the construction of the Three Gorges Dam and increasing dissolved inorganic nitrogen flux were mainly influenced by high intensity human activities in the Changjiang River watershed, resulting in low Si/N ratio and high N/P ratios, possibly accelerating outbreak of P. donghaiense blooms. Phosphorous deficiency might be the most critical factor controlling the succession of microalgal blooms from diatoms to dinoflagellates. Prorocentrum donghaiense is a nontoxic species, but it can disrupt marine ecosystem by decreasing phytoplankton biodiversity and changing the structure of the food chain. Prorocentrum donghaiense blooms in the ECS have been intensively studied during the last two decades. Several possible mechanisms that contribute or trigger the annual blooms of this species have been proposed, but further research is required particularly on the aspect of nutrient budget, ecosystem impacts, as well as social-economic impact assessment.
Collapse
Affiliation(s)
- Songhui Lu
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| | - Linjian Ou
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Xinfeng Dai
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Lei Cui
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Yuelei Dong
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Dongmei Li
- Dalian Phycotoxin Key laboratory, National Marine Environmental Monitoring Center, Ministry of Ecological Environment, Dalian 116023, China
| | - Douding Lu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China.
| |
Collapse
|
42
|
Liu S, Zhang M, Zhao Y, Chen N. Biodiversity and Spatial-Temporal Dynamics of Margalefidinium Species in Jiaozhou Bay, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11637. [PMID: 34770163 PMCID: PMC8582988 DOI: 10.3390/ijerph182111637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 01/04/2023]
Abstract
Many Margalefidinium species are cosmopolitan harmful algal bloom (HAB) species that have caused huge economic and ecological damage. Despite extensive research on Margalefidinium species, the biodiversity and spatial-temporal dynamics of these species remain obscure. Jiaozhou Bay is an ideal area for HAB research, being one of the earliest marine survey areas in China. In this study, we carried out the first metabarcoding study on the temporal and spatial dynamics of Margalefidinium species using the 18S rDNA V4 region as the molecular marker and samples collected monthly at 12 sampling sites in Jiaozhou Bay in 2019. Two harmful Margalefidinium species (M. polykrikoides and M. fulvescens) were identified with potentially high genetic diversity (although we cannot rule out the possibility of intra-genome sequence variations). Both M. polykrikoides and M. fulvescens demonstrated strong temporal preference with a sharp peak of abundance in early autumn (September), but without showing strong location preference in Jiaozhou Bay. Our results revealed that temperature might be the main driver for their temporal dynamics. Knowledge of biodiversity and spatial-temporal dynamics of the Margalefidinium species may shed light on the understanding of mechanisms underlying strongly biased occurrences of Margalefidinium blooms recorded globally.
Collapse
Affiliation(s)
- Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.L.); (M.Z.)
- Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengjia Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.L.); (M.Z.)
- Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China;
| | - Yongfang Zhao
- College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China;
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.L.); (M.Z.)
- Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
43
|
Proteome Response of Meretrix Bivalves Hepatopancreas Exposed to Paralytic Shellfish Toxins Producing Dinoflagellate Gymnodinium catenatum. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9091039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Paralytic shellfish toxins (PSTs) contamination of seafood has become a growing global problem. However, the molecular response of bivalves, some of the most popular seafoods, to PSP toxins has seldom been reported and the underlying molecular mechanisms of the interactions between Meretrix meretrix bivalves and PSTs-producing dinoflagellates are scarcely known. This study compared the protein expression profiles between PSP toxin-contaminated and non-PSP toxin contaminated M. meretrix, determined proteome responses and identified potential biomarkers based on feeding experiments. Results showed that the content of total PSP toxins in contaminated bivalves was 40.63 ± 4.08 μg saxitoxin (STX) equivalents per gram, with 95.3% in hepatopancreas, followed by gill (1.82%) and foot (1.79%). According to two-dimensional gel electrophoresis (2-DE), 15 differentially expressed proteins (at least 2-fold difference) between the hepatopancreas of bivalves with and without PSP toxins were detected. Eight of them were successfully identified by MALDI-TOF MS. These were catalase, protein ultraspiracle homolog, G2 and S phase-expression protein, paramyosin, Mn-superoxide dismutase, response regulator receiver domain-containing protein, sarcoplasmic calcium-binding protein and major facilitator superfamily transporters. The differences in the expression levels of the last three proteins involving in cell signaling, structure and membrane transport were 4.2, 5.3 and 4.9-fold, respectively. These proteins could be further developed as potential biomarkers. The other two up-regulated proteins, Mn-superoxide dismutase and catalase, were involved in cell defence mechanisms against oxidative stress, suggesting PSP toxin acts as xenobiotics and poses oxidative stress in bivalves. This study gives insights into the response of bivalves to PSP toxin-producing dinoflagellate at the proteomic level and the potential of using 2-DE to develop specific protein markers in bivalves.
Collapse
|