1
|
Cui X, Yang N, Cui H, Yang Q, Wu Z, Shao B, Zhao Y, Tong Y. Interspecific competition enhances microcystin production by Microcystis aeruginosa under the interactive influences of temperature and nutrients. WATER RESEARCH 2024; 265:122308. [PMID: 39180952 DOI: 10.1016/j.watres.2024.122308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Global warming and eutrophication contribute to frequent occurrences of toxic algal blooms in freshwater systems globally, while there is a limited understanding of their combined impacts on toxin-producing algal species under interspecific competitions. This study investigated the influences of elevated temperatures, lights, nutrient enrichments and interspecific interactions on growth and microcystin (MC) productions of Microcystis aeruginosa in laboratory condition. Our results indicated that elevated temperatures and higher nutrient levels significantly boosted biomass and specific growth rates of Microcystis aeruginosa, which maintained a competitive edge over Chlorella sp. Specifically, with phosphorus levels between 0.10 and 0.70 mg P L-1, the growth rate of Microcystis aeruginosa in mixed cultures increased by 23 %-52 % compared to mono-cultures, while the growth rate of Chlorella sp. shifted from positive in mono-cultures to negative in mixed cultures. Redundancy and variance partition analyses suggested that Chlorella sp. stimulate MC production in Microcystis aeruginosa and nutrient levels outshine temperature for toxin productions during competition. Lotka‒Volterra model revealed a positive correlation between the intensities of competitions and MC concentration. Our findings indicate that future algal bloom mitigation strategies should consider combined influence of temperature, nutrients, and interspecific competition due to their synergistic effects on MC productions.
Collapse
Affiliation(s)
- Xiaoyu Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Ning Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Hongyang Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Qing Yang
- School of Ecology and Environment, Tibet University, Lhasa 850000, PR China
| | - Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Bo Shao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China; School of Ecology and Environment, Tibet University, Lhasa 850000, PR China.
| |
Collapse
|
2
|
Veerman J, Mishra DR, Kumar A, Karidozo M. Environmental drivers behind the exceptional increase in cyanobacterial blooms in Okavango Delta, Botswana. HARMFUL ALGAE 2024; 137:102677. [PMID: 39003028 DOI: 10.1016/j.hal.2024.102677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/15/2024]
Abstract
The Okavango Delta region in Botswana experienced exceptionally intense landscape-wide cyanobacterial harmful algal blooms (CyanoHABs) in 2020. In this study, the drivers behind CyanoHABs were determined from thirteen independent environmental variables, including vegetation indices, climate and meteorological parameters, and landscape variables. Annual Land Use Land Cover (LULC) maps were created from 2017 to 2020, with ∼89% accuracy to compute landscape variables such as LULC change. Generalized Additive Models (GAM) and Structural Equation Models (SEM) were used to determine the most important drivers behind the CyanoHABs. Normalized Difference Chlorophyll Index (NDCI) and Green Line Height (GLH) algorithms served as proxies for chlorophyll-a (green algae) and phycocyanin (cyanobacteria) concentrations. GAM models showed that seven out of the thirteen variables explained 89.9% of the variance for GLH. The models showcased that climate variables, including monthly precipitation (8.8%) and Palmer Severity Drought Index- PDSI (3.2%), along with landscape variables such as changes in Wetlands area (7.5%), and Normalized Difference Vegetation Index (NDVI) (5.4%) were the determining drivers behind the increased cyanobacterial activity within the Delta. Both PDSI and NDVI showed negative correlations with GLH, indicating that increased drought conditions could have led to large increases in toxic CyanoHAB activity within the region. This study provides new information about environmental drivers which can help monitor and predict regions at risk of future severe CyanoHABs outbreaks in the Okavango Delta, Botswana, and other similar data-scarce and ecologically sensitive areas in Africa. Plain Language Summary: The waters of the Okavango Delta in Northern Botswana experienced an exceptional increase in toxic cyanobacterial activity in recent years. Cyanobacterial blooms have been shown to affect local communities and wildlife in the past. To determine the drivers behind this increased bloom activity, we analyzed the effects of thirteen independent environmental variables using two different statistical models. Within this research, we focused on vegetation indices, meteorological, and landscape variables, as previous studies have shown their effect on cyanobacterial activity in other parts of the world. While driver determination for cyanobacteria has been done before, the environmental conditions most important for cyanobacterial growth can be specific to the geographic setting of a study site. The statistical analysis indicated that the increases in cyanobacterial bloom activity within the region were mainly driven by persistent drier conditions. To our knowledge, this is the first study to determine the driving factors behind cyanobacterial activity in this region of the world. Our findings will help to predict and monitor areas at risk of future severe cyanobacterial blooms in the Okavango Delta and other similar African ecosystems.
Collapse
Affiliation(s)
- Jan Veerman
- Center for Geospatial Research, Department of Geography, University of Georgia, Athens, GA, 30602, USA.
| | - Deepak R Mishra
- Center for Geospatial Research, Department of Geography, University of Georgia, Athens, GA, 30602, USA
| | - Abhishek Kumar
- Center for Geospatial Research, Department of Geography, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Conservation, University of Massachusetts, Amherst, MA, 01003, USA
| | - Malvern Karidozo
- Connected Conservation Trust, 516 Jacaranda Crescent, Victoria Falls, ZW
| |
Collapse
|
3
|
Li H, Yuan Y, Yang H, Xu X, Wang W, Chen Y, Kan C, Zhufu H, Gong C. Consumption of toxic benthic cyanobacteria by two common demersal fish: Growth, antioxidant and liver histopathology responses. Toxicon 2024; 242:107703. [PMID: 38522586 DOI: 10.1016/j.toxicon.2024.107703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/07/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
Benthic freshwater cyanobacteria have the potential to produce toxins. Compared with more extensively studied plankton species, little is known about the impact of harmful benthic cyanobacteria on aquatic organisms. As demersal fish are usually in direct contact with benthic cyanobacteria, it is important to understand their interactive effects. This study investigated the physio-chemical responses of two demersal fish (Xenocypris davidi and Crucian carp) after exposure to benthic Oscillatoria (producing cylindrospermopsin, 2 × 106 cells/mL) for 7 days. Interestingly, benthic Oscillatoria had less adverse effects on X. davidi than C. carp. The two demersal fish effectively ingested Oscillatoria, but Oscillatoria cell sheathes could not be fully digested in C. carp intestines and led to growth inhibition. Oscillatoria consumption induced oxidative stress and triggered alterations in detoxification enzyme activities in the X. davidi liver. Superoxide dismutase (SOD) and glutathione reductase (GR) activities significantly increased in the C. carp liver, but catalase (CAT) and detoxification enzymes glutathione S-transferase (GST) and glutathione (GSH) activities were insignificantly changed. This suggested that C. carp may have a relatively weak detoxification capacity for toxic Oscillatoria. Oscillatoria ingestion led to more pronounced liver pathological changes in C. carp, including swelling, deformation, and loss of cytoskeleton structure. Simultaneously, fish consumption of Oscillatoria increased extracellular cylindrospermopsin concentration. These results provide valuable insights into the ecological risks associated with benthic cyanobacteria in aquatic ecosystems.
Collapse
Affiliation(s)
- Hongmin Li
- School of Geography and Tourism, Qufu Normal University, Rizhao, 276826, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Yuan Yuan
- School of Geography and Tourism, Qufu Normal University, Rizhao, 276826, China
| | - Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyue Xu
- School of Geography and Tourism, Qufu Normal University, Rizhao, 276826, China
| | - Wenxia Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Life Sciences, Linyi University, Linyi, Shandong, 276000, China
| | - Yanfeng Chen
- School of Geography and Tourism, Qufu Normal University, Rizhao, 276826, China
| | - Changlin Kan
- School of Geography and Tourism, Qufu Normal University, Rizhao, 276826, China
| | - Hengji Zhufu
- School of Geography and Tourism, Qufu Normal University, Rizhao, 276826, China
| | - Chen Gong
- School of Geography and Tourism, Qufu Normal University, Rizhao, 276826, China
| |
Collapse
|
4
|
Yang S, Zuo J, Grossart HP, Dai G, Liu J, Song L, Gan N. Evaluating microcystinase A-based approach on microcystins degradation during harvested cyanobacterial blooms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123878. [PMID: 38548158 DOI: 10.1016/j.envpol.2024.123878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
Addressing notorious and worldwide Microcystis blooms, mechanical algae harvesting is an effective emergency technology for bloom mitigation and removal of nutrient loads in waterbodies. However, the absence of effective methods for removal of cyanobacterial toxins, e.g., microcystins (MCs), poses a challenge to recycle the harvested Microcystis biomass. In this study, we therefore introduced a novel approach, the "captured biomass-MlrA enzymatic MC degradation", by enriching microcystinase A (MlrA) via fermentation and spraying it onto salvaged Microcystis slurry to degrade all MCs. After storing the harvested Microcystis slurry, a rapid release of extracellular MCs occurred within the initial 8 h, reaching a peak concentration of 5.33 μg/mL at 48 h during the composting process. Upon spraying the recombinant MlrA crude extract (about 3.36 U) onto the Microcystis slurry in a ratio of 0.1% (v/v), over 95% of total MCs were degraded within a 24-h period. Importantly, we evaluated the reliability and safety of using MlrA extracts to degrade MCs. Results showed that organic matter/nutrient contents, e.g. soluble proteins, polysaccharides, phycocyanin and carotenoids, were not significantly altered. Furthermore, the addition of MlrA extracts did not significantly change the bacterial community composition and diversity in the Microcystis slurry, indicating that the MlrA extracts did not increase the risk of pathogenic bacteria. Our study provides an effective and promising method for the pre-treatment of harvested Microcystis biomass, highlighting an ecologically sustainable framework for addressing Microcystis blooms.
Collapse
Affiliation(s)
- Siyu Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jun Zuo
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou, 325035, China.
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries IGB, Stechlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Guofei Dai
- Jiangxi Academy of Water Science and Engineering, Nanchang, 330029, China
| | - Jin Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lirong Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Nanqin Gan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
5
|
Huang S, Zuo L, Zhang L, Guo X, Cheng C, He Y, Cheng G, Yu J, Liu Y, Chen R, Tang G, Fan Y, Feng L. Design, Synthesis, and Mode of Action of Thioacetamide Derivatives as the Algicide Candidate Based on Active Substructure Splicing Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7021-7032. [PMID: 38501582 DOI: 10.1021/acs.jafc.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Lakes and reservoirs worldwide are experiencing a growing problem with harmful cyanobacterial blooms (HCBs), which have significant implications for ecosystem health and water quality. Algaecide is an effective way to control HCBs effectively. In this study, we applied an active substructure splicing strategy for rapid discovery of algicides. Through this strategy, we first optimized the structure of the lead compound S5, designed and synthesized three series of thioacetamide derivatives (series A, B, C), and then evaluated their algicidal activities. Finally, compound A3 with excellent performance was found, which accelerated the process of discovering and developing new algicides. The biological activity assay data showed that A3 had a significant inhibitory effect on M. aeruginosa. FACHB905 (EC50 = 0.46 μM) and Synechocystis sp. PCC6803 (EC50 = 0.95 μM), which was better than the commercial algicide prometryn (M. aeruginosa. FACHB905, EC50 = 6.52 μM; Synechocystis sp. PCC6803, EC50 = 4.64 μM) as well as better than lead compound S5 (M. aeruginosa. FACHB905, EC50 = 8.80 μM; Synechocystis sp. PCC6803, EC50 = 7.70 μM). The relationship between the surface electrostatic potential, chemical reactivity, and global electrophilicity of the compounds and their activities was discussed by density functional theory (DFT). Physiological and biochemical studies have shown that A3 might affect the photosynthesis pathway and antioxidant system in cyanobacteria, resulting in the morphological changes of cyanobacterial cells. Our work demonstrated that A3 might be a promising candidate for the development of novel algicides and provided a new active skeleton for the development of subsequent chemical algicides.
Collapse
Affiliation(s)
- Shi Huang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lingzi Zuo
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Liexiong Zhang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiaoliang Guo
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Cai Cheng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanlin He
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Guonian Cheng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jie Yu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanyang Liu
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
| | - Ruiqing Chen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Guangmei Tang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yuxuan Fan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lingling Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
| |
Collapse
|
6
|
Yang Q, Huang L, Yang N, Cui H, Zhao Y, Li Z, Tong Y. Transgenerational effects of extracts containing Microcystin-LR exposure on reproductive toxicity and offspring growth inhibition in a model organism zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106860. [PMID: 38354462 DOI: 10.1016/j.aquatox.2024.106860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/16/2024]
Abstract
Cyanobacteria cell lysates release numerous toxic substances (e.g., cyanotoxins) into the water, posing a serious threat to human health and aquatic ecosystems. Microcystins (MCs) are among the most abundant cyanotoxins in the cell lysates, with microcystin-LR (MC-LR) being one of the most common and highly toxic congeners. In this study, zebrafish (Danio rerio) were exposed to different levels MC-LR that from extracts of Microcystis aeruginosa. Changes in the MC-LR accumulations, organ coefficients, and antioxidant enzyme activities in the zebrafish were analyzed. Transgenerational reproductive toxicity of MC-LR in the maternal and paternal generations was further investigated, as well as the influences of extracts containing MC-LR exposures of the F1 on the growth of zebrafish. The study found that high levels of MC-LR could be detected in the major organs of adult zebrafish, particularly in spleen. Notably, concentration of MC-LR in the spermary was significantly higher than that in the ovarium. MC-LR could induce oxidative damage by affecting the activities of catalase and superoxide dismutase. Inherited from F0, MC-LR led to impaired development in the F1 generation. Difference in offspring survival rates could be observed in the groups with different MC-LR levels of maternal and paternal exposures. This study reveals transgenerational effects of MC-LR on the reproductive toxicity and offspring growth inhibition to the aquatic organisms, which should be emphasized in the future ecological risk assessment.
Collapse
Affiliation(s)
- Qing Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300000, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Lanlan Huang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300000, China
| | - Ning Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300000, China
| | - Hongyang Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300000, China
| | - Yanbin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zipeng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300000, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300000, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China.
| |
Collapse
|
7
|
Ge K, Du X, Liu H, Meng R, Wu C, Zhang Z, Liang X, Yang J, Zhang H. The cytotoxicity of microcystin-LR: ultrastructural and functional damage of cells. Arch Toxicol 2024; 98:663-687. [PMID: 38252150 DOI: 10.1007/s00204-023-03676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Microcystin-LR (MC-LR) is a toxin produced by cyanobacteria, which is widely distributed in eutrophic water bodies and has multi-organ toxicity. Previous cytotoxicity studies have mostly elucidated the effects of MC-LR on intracellular-related factors, proteins, and DNA at the molecular level. However, there have been few studies on the adverse effects of MC-LR on cell ultrastructure and function. Therefore, research on the cytotoxicity of MC-LR in recent years was collected and summarized. It was found that MC-LR can induce a series of cytotoxic effects, including decreased cell viability, induced autophagy, apoptosis and necrosis, altered cell cycle, altered cell morphology, abnormal cell migration and invasion as well as leading to genetic damage. The above cytotoxic effects were related to the damage of various ultrastructure and functions such as cell membranes and mitochondria. Furthermore, MC-LR can disrupt cell ultrastructure and function by inducing oxidative stress and inhibiting protein phosphatase activity. In addition, the combined toxic effects of MC-LR and other environmental pollutants were investigated. This review explored the toxic targets of MC-LR at the subcellular level, which will provide new ideas for the prevention and treatment of multi-organ toxicity caused by MC-LR.
Collapse
Affiliation(s)
- Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Haohao Liu
- Department of Public Health, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunrui Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Liang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
8
|
Jiang J, Zeng J, Wang J, Zuo J, Wei N, Song L, Shan K, Gan N. Changes in CO 2 concentration drive a succession of toxic and non-toxic strains of Microcystis blooms. WATER RESEARCH 2024; 250:121056. [PMID: 38171175 DOI: 10.1016/j.watres.2023.121056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/30/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The dynamic changes between toxic and non-toxic strains of Microcystis blooms have always been a hot topic. Previous studies have found that low CO2 favors toxic strains, but how changing dissolved CO2 (CO2 [aq]) in water body influences the succession of toxic and non-toxic strains in Microcystis blooms remains uncertain. Here, we combined laboratory competition experiments, field observations, and a machine learning model to reveal the links between CO2 changes and the succession. Laboratory experiments showed that under low CO2 conditions (100-150 ppm), the toxic strains could make better use of CO2 (aq) and be dominant. The non-toxic strains demonstrated a growth advantage as CO2 concentration increased (400-1000 ppm). Field observations from June to November in Lake Taihu showed that the percentage of toxic strains increased as CO2 (aq) decreased. Machine learning highlighted links between the inorganic carbon concentration and the proportion of advantageous strains. Our findings provide new insights for cyanoHABs prediction and prevention.
Collapse
Affiliation(s)
- Jingyu Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,; University of Chinese Academy of Sciences, Beijing, China
| | - Jiaying Zeng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,; University of Chinese Academy of Sciences, Beijing, China
| | - Jingkai Wang
- University of Chinese Academy of Sciences, Beijing, China,; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jun Zuo
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, China
| | - Nian Wei
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Lirong Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,; University of Chinese Academy of Sciences, Beijing, China
| | - Kun Shan
- University of Chinese Academy of Sciences, Beijing, China,; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China,.
| | - Nanqin Gan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,; University of Chinese Academy of Sciences, Beijing, China,.
| |
Collapse
|
9
|
Bashir F, Bashir A, Bouaïcha N, Chen L, Codd GA, Neilan B, Xu WL, Ziko L, Rajput VD, Minkina T, Arruda RS, Ganai BA. Cyanotoxins, biosynthetic gene clusters, and factors modulating cyanotoxin biosynthesis. World J Microbiol Biotechnol 2023; 39:241. [PMID: 37394567 DOI: 10.1007/s11274-023-03652-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/17/2023] [Indexed: 07/04/2023]
Abstract
Cyanobacterial harmful algal blooms (CHABs) are a global environmental concern that encompasses public health issues, water availability, and water quality owing to the production of various secondary metabolites (SMs), including cyanotoxins in freshwater, brackish water, and marine ecosystems. The frequency, extent, magnitude, and duration of CHABs are increasing globally. Cyanobacterial species traits and changing environmental conditions, including anthropogenic pressure, eutrophication, and global climate change, together allow cyanobacteria to thrive. The cyanotoxins include a diverse range of low molecular weight compounds with varying biochemical properties and modes of action. With the application of modern molecular biology techniques, many important aspects of cyanobacteria are being elucidated, including aspects of their diversity, gene-environment interactions, and genes that express cyanotoxins. The toxicological, environmental, and economic impacts of CHABs strongly advocate the need for continuing, extensive efforts to monitor cyanobacterial growth and to understand the mechanisms regulating species composition and cyanotoxin biosynthesis. In this review, we critically examined the genomic organization of some cyanobacterial species that lead to the production of cyanotoxins and their characteristic properties discovered to date.
Collapse
Affiliation(s)
- Fahim Bashir
- Department of Environmental Science, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Arif Bashir
- Department of Clinical Biochemistry and Biotechnology, Government College for Women, Nawa-Kadal, Srinagar, Jammu & Kashmir, India
| | - Noureddine Bouaïcha
- Laboratory Ecology, Systematic, and Evolution, UMR 8079 Univ. Paris-Sud, CNRS, AgroParisTech, University Paris-Saclay, 91190, Gif-sur-Yvette, France.
| | - Liang Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science (SEES), Yunnan University (YNU), 650500, Kunming, China.
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China.
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Geoffrey A Codd
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Brett Neilan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Wen-Li Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China
| | - Laila Ziko
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Renan Silva Arruda
- Laboratory of Ecology and Physiology of Phytoplankton, Department of Plant Biology, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Bashir Ahmad Ganai
- Center of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| |
Collapse
|
10
|
Gugger M, Boullié A, Laurent T. Cyanotoxins and Other Bioactive Compounds from the Pasteur Cultures of Cyanobacteria (PCC). Toxins (Basel) 2023; 15:388. [PMID: 37368689 DOI: 10.3390/toxins15060388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
In tribute to the bicentenary of the birth of Louis Pasteur, this report focuses on cyanotoxins, other natural products and bioactive compounds of cyanobacteria, a phylum of Gram-negative bacteria capable of carrying out oxygenic photosynthesis. These microbes have contributed to changes in the geochemistry and the biology of Earth as we know it today. Furthermore, some bloom-forming cyanobacterial species are also well known for their capacity to produce cyanotoxins. This phylum is preserved in live cultures of pure, monoclonal strains in the Pasteur Cultures of Cyanobacteria (PCC) collection. The collection has been used to classify organisms within the Cyanobacteria of the bacterial kingdom and to investigate several characteristics of these bacteria, such as their ultrastructure, gas vacuoles and complementary chromatic adaptation. Thanks to the ease of obtaining genetic and further genomic sequences, the diversity of the PCC strains has made it possible to reveal some main cyanotoxins and to highlight several genetic loci dedicated to completely unknown natural products. It is the multidisciplinary collaboration of microbiologists, biochemists and chemists and the use of the pure strains of this collection that has allowed the study of several biosynthetic pathways from genetic origins to the structures of natural products and, eventually, their bioactivity.
Collapse
Affiliation(s)
- Muriel Gugger
- Institut Pasteur, Université Paris Cité, Collection of Cyanobacteria, 75015 Paris, France
| | - Anne Boullié
- Institut Pasteur, Université Paris Cité, Collection of Cyanobacteria, 75015 Paris, France
| | - Thierry Laurent
- Institut Pasteur, Université Paris Cité, Collection of Cyanobacteria, 75015 Paris, France
| |
Collapse
|
11
|
Zi Y, Barker JR, MacIsaac HJ, Zhang R, Gras R, Chiang YC, Zhou Y, Lu F, Cai W, Sun C, Chang X. Identification of neurotoxic compounds in cyanobacteria exudate mixtures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159257. [PMID: 36208737 DOI: 10.1016/j.scitotenv.2022.159257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Release of toxic cyanobacterial secondary metabolites threatens biosecurity, foodwebs and public health. Microcystis aeruginosa (Ma), the dominant species in global freshwater cyanobacterial blooms, produces exudates (MaE) that cause adverse outcomes including nerve damage. Previously, we identified > 300 chemicals in MaE. It is critical to investigate neurotoxicity mechanisms of active substances among this suite of Ma compounds. Here, we screened 103 neurotoxicity assays from the ToxCast database to reveal targets of action of MaE using machine learning. We then built a potential Adverse Outcome Pathway (AOP) to identify neurotoxicity mechanisms of MaE as well as key targets. Finally, we selected potential neurotoxins matched with those targets using molecular docking. We found 38 targets that were inhibited and eight targets that were activated, collectively mainly related to neurotransmission (i.e. cholinergic, dopaminergic and serotonergic neurotransmitter systems). The potential AOP of MaE neurotoxicity could be caused by blocking calcium voltage-gated channel (CACNA1A), because of antagonizing neurotransmitter receptors, or because of inhibiting solute carrier transporters. We identified nine neurotoxic MaE compounds with high affinity to those targets, including LysoPC(16:0), 2-acetyl-1-alkyl-sn-glycero-3-phosphocholine, egonol glucoside, polyoxyethylene (600) monoricinoleate, and phytosphingosine. Our study enhances understanding of neurotoxicity mechanisms and identifies neurotoxins in cyanobacterial bloom exudates, which may help identify priority compounds for cyanobacteria management.
Collapse
Affiliation(s)
- Yuanyan Zi
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, PR China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9 B 3P4, Canada
| | - Justin R Barker
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9 B 3P4, Canada
| | - Hugh J MacIsaac
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, PR China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9 B 3P4, Canada
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Robin Gras
- School of Computer Science, University of Windsor, ON N9B 3P4, Canada
| | - Ying-Chih Chiang
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Science, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Yuan Zhou
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, PR China
| | - Fangchi Lu
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Science, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Wenwen Cai
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, PR China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9 B 3P4, Canada
| | - Chunxiao Sun
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, PR China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9 B 3P4, Canada
| | - Xuexiu Chang
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9 B 3P4, Canada; College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China.
| |
Collapse
|
12
|
Yin L, Wang J, Shi K, Zhang Y, Xu Y, Kong D, Ni L, Li S. Interactions between tannins allelochemicals and extracellular polymeric substance (EPS) of Microcystis aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83211-83219. [PMID: 35763143 DOI: 10.1007/s11356-022-21661-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The protective mechanism of extracellular polymeric substance (EPS) secreted by a harmful cyanobacteria against tannins allelochemicals was explored in this study. The binding properties of soluble EPS (SEPS) and bound EPS (BEPS) of Microcystis aeruginosa to tannic acid (TA) were investigated via fluorescence spectroscopy. The results suggested that TA interacted with the proteins in SEPS and BEPS mainly with binding constants of 5.26 and 7.93 L/mol, respectively; TA interacted with the humic acids in SEPS and BEPS mainly with binding constants of 5.12 and 5.24 L/mol, respectively. Thermodynamic experiments confirmed that the binding was mainly controlled by the hydrophobic force. Combined with Fourier transform infrared spectroscopy, it was found that the amine, carbonyl, carboxyl, and hydroxyl groups in EPS were the main functional groups contributing to the interaction of TA with EPS. The existence of EPS reduced the toxicity of TA to algal cells, with the 96 h inhibition rate of 40 mg L-1 TA on algal cells decreasing by 48.95%. The results of this study may improve our understanding of the protective mechanism of cyanobacteria against tannins allelochemicals.
Collapse
Affiliation(s)
- Li Yin
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Juan Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Kaipian Shi
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Ying Xu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Desheng Kong
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes of Ministry of Education, School of Environment, Hohai University, Nanjing, 210098, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| |
Collapse
|
13
|
Cai W, MacIsaac HJ, Xu R, Zhang J, Pan X, Zhang Y, Yang J, Dixon B, Li J, Zi Y, Chang X. Abnormal neurobehavior in fish early life stages after exposure to cyanobacterial exudates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114119. [PMID: 36174318 DOI: 10.1016/j.ecoenv.2022.114119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacterial harmful algal blooms (cHABs) pose a risk to exposed aquatic and terrestrial species. Numerous studies have addressed effects of single toxins while much less attention has been devoted to mixtures of cHAB metabolites that are continually released by living cyanobacteria. Neuro-impairment associated with cHABs has been reported in fish, though the mechanism remains unclear. Here we exposed embryos of Sinocyclocheilus grahami, an endangered fish, to Microcystis aeruginosa exudates (MaE) to evaluate neurotoxicity and the toxicity mechanism(s). We found that MaE affected embryonic development by increasing malformation and mortality rates and decreasing the fertilization rate. MaE also inhibited fish neurobehavior including touch response, social frequency, swimming distance, and aggravated light-stimulation response. Neurobehavior suppression resulted from a decrease in excitatory neurotransmitters acetylcholine and dopamine, even though receptors increased. MaE also affected gene and protein expression of neurotransmitters, synthetic and/or degrading enzymes, and receptors. Our findings shed light on specific mechanisms by which MaE induces neurotoxicity in early life stages in fish and contributes to improvement of the conservation strategy for this species.
Collapse
Affiliation(s)
- Wenwen Cai
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Hugh J MacIsaac
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Runbing Xu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jinlong Zhang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Xiaofu Pan
- Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yuanwei Zhang
- Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Junxing Yang
- Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jiaojiao Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Yuanyan Zi
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Xuexiu Chang
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada; College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China.
| |
Collapse
|
14
|
Maniyar CB, Kumar A, Mishra DR. Continuous and Synoptic Assessment of Indian Inland Waters for Harmful Algae Blooms. HARMFUL ALGAE 2022; 111:102160. [PMID: 35016766 DOI: 10.1016/j.hal.2021.102160] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/02/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Cyanobacterial Harmful Algal Blooms (CyanoHABs) are progressively becoming a major water quality, socioeconomic, and health hazard worldwide. In India, there are frequent episodes of severe CyanoHABs, which are left untreated due to a lack of awareness and monitoring infrastructure, affecting the economy of the country gravely. In this study, for the first time, we present a country-wide analysis of CyanoHABs in India by developing a novel interactive cloud-based dashboard called "CyanoKhoj" in Google Earth Engine (GEE) which uses Sentinel-3 Ocean and Land Colour Instrument (OLCI) remotely sensed datasets. The main goal of this study was to showcase the utility of CyanoKhoj for rapid monitoring and discuss the widespread CyanoHABs problems across India. We demonstrate the utility of Cyanokhoj by including select case studies of lakes and reservoirs geographically spread across five states: Bargi and Gandhisagar Dams in Madhya Pradesh, Hirakud Reservoir in Odisha, Ukai Dam in Gujarat, Linganamakki Reservoir in Karnataka, and Pulicat Lake in Tamil Nadu. These sites were studied from September to November 2018 using CyanoKhoj, which is capable of near-real-time monitoring and country-wide assessment of CyanoHABs. We used CyanoKhoj to prepare spatiotemporal maps of Chlorophyll-a (Chl-a) content and Cyanobacterial Cell Density (CCD) to study the local spread of the CyanoHABs and their phenology in these waterbodies. A first-ever all-India CCD map is also presented for the year 2018, which highlights the spatial spread of CyanoHABs throughout the country (32 large waterbodies across India with severe bloom: CCD>2,500,000). Results indicate that CyanoHABs are most prevalent in nutrient-rich waterbodies prone to industrial and other nutrient-rich discharges. A clear temporal evolution of the blooms showed that they are dominant during the post-monsoon season (September-October) when the nutrient concentrations in the waterbodies are at their peak, and they begin to decline towards winter (November-December). CyanoKhoj is an open-source tool that can have a significant broader impact in mapping CyanoHABs not only throughout cyanobacteria data-scarce India, but on a global level using archived and future Sentinel-3A/B OLCI data.
Collapse
Affiliation(s)
- Chintan B Maniyar
- Photogrammetry and Remote Sensing Department, Indian Institute of Remote Sensing (IIRS), ISRO, India; Department of Geography, University of Georgia, GA, USA
| | - Abhishek Kumar
- Department of Geography, University of Georgia, GA, USA; Department of Environmental Conservation, University of Massachusetts Amherst, MA, USA.
| | | |
Collapse
|