1
|
Liu K, Kinouchi T, Tan R, Heng S, Chhuon K, Zhao W. Unraveling urban hydro-environmental response to climate change and MCDA-based area prioritization in a data-scarce developing city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174389. [PMID: 38960170 DOI: 10.1016/j.scitotenv.2024.174389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Climate change leads to more frequent and intense heavy rainfall events, posing significant challenges for urban stormwater management, particularly in rapidly urbanizing cities of developing countries with constrained infrastructure. However, the quantitative assessment of urban stormwater, encompassing both its volume and quality, in these regions is impeded due to the scarcity of observational data and resulting limited understanding of drainage system dynamics. This study aims to elucidate the present and projected states of urban flooding, with a specific emphasis on fecal and organic contamination caused by combined sewer overflow (CSO). Leveraging a hydrological model incorporating physical and biochemical processes validated against invaluable observational data, we undertake simulations to estimate discharge, flood volume, and concentrations of suspended solids (SS), Escherichia coli (E. coli), and chemical oxygen demand (COD) within the drainage channel network of Phnom Penh City, Cambodia. Alterations in flood volumes, and pollutant concentrations and loads in overflow under two representative concentration pathways (RCPs 4.5 and 8.5) for extreme rainfall events are projected. Furthermore, we employ a multi-criteria decision analysis (MCDA) framework to evaluate flood risk, incorporating diverse indicators encompassing physical, social, and ecological dimensions. Our results demonstrate the exacerbating effects of climate change on flood volumes, expansion of flooded areas, prolonged durations of inundation, elevated vulnerability index, and heightened susceptibility to pollutant contamination under both scenarios, underscoring increased risks of flooding and fecal contamination. Spatial analysis identifies specific zones exhibiting heightened vulnerability to flooding and climate change, suggesting priority zones for investment in flood mitigation measures. These findings provide crucial insights for urban planning and stormwater management in regions with limited drainage infrastructure, offering essential guidance for decision-making in locales facing similar challenges.
Collapse
Affiliation(s)
- Kexin Liu
- School of Environment and Society, Tokyo Institute of Technology, 4259 Nagatsuta Cho, Yokohama City, Kanagawa Prefecture 226-8503, Japan.
| | - Tsuyoshi Kinouchi
- School of Environment and Society, Tokyo Institute of Technology, 4259 Nagatsuta Cho, Yokohama City, Kanagawa Prefecture 226-8503, Japan
| | - Reasmey Tan
- Research and Innovation Center, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia
| | - Sokchhay Heng
- Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia
| | - Kong Chhuon
- Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia
| | - Wenpeng Zhao
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China; Modern Rural Water Resources Research Institute, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Yazdi MS, Ardalan MA, Hosseini M, Yousefi Zoshk M, Hami Z, Heidari R, Mosaed R, Chamanara M. Infectious Diarrhea Risks as a Public Health Emergency in Floods; a Systematic Review and Meta-Analysis. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2024; 12:e46. [PMID: 38962364 PMCID: PMC11221827 DOI: 10.22037/aaem.v12i1.2284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Introduction Infectious diarrhea, a significant global health challenge, is exacerbated by flooding, a consequence of climate change and environmental disruption. This comprehensive study aims to quantify the association between flooding events and the incidence of infectious diarrhea, considering diverse demographic, environmental, and pathogen-specific factors. Methods In this systematic review and meta-analysis, adhering to PROSPERO protocol (CRD42024498899), we evaluated observational studies from January 2000 to December 2023. The analysis incorporated global data from PubMed, Scopus, Embase, Web of Science, and ProQuest, focusing on the relative risk (RR) of diarrhea post-flooding. The study encompassed diverse variables like age, sex, pathogen type, environmental context, and statistical modeling approaches. Results The meta-analysis, involving 42 high-quality studies, revealed a substantial increase (RR = 1.40, 95% CI [1.29-1.52]) in the incidence of diarrhea following floods. Notably, bacterial and parasitic diarrheas demonstrated higher RRs (1.82 and 1.35, respectively) compared to viral etiologies (RR = 1.15). A significant sex disparity was observed, with women exhibiting a higher susceptibility (RR = 1.55) than men (RR = 1.35). Adults (over 15 years) faced a greater risk than younger individuals, highlighting age-dependent vulnerability. Conclusion This extensive analysis confirms a significant correlation between flood events and increased infectious diarrhea risk, varying across pathogens and demographic groups. The findings highlight an urgent need for tailored public health interventions in flood-prone areas, focusing on enhanced sanitation, disease surveillance, and targeted education to mitigate this elevated risk. Our study underscores the critical importance of integrating flood-related health risks into global public health planning and climate change adaptation strategies.
Collapse
Affiliation(s)
| | - Mohammad Afshar Ardalan
- Clinical Biomechanics and Ergonomics Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Hosseini
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi Zoshk
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Zahra Hami
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Heidari
- Cancer Epidemiology Research Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
- 7Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Infectious Diseases Research Center, AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Beggs PJ, Trueck S, Linnenluecke MK, Bambrick H, Capon AG, Hanigan IC, Arriagada NB, Cross TJ, Friel S, Green D, Heenan M, Jay O, Kennard H, Malik A, McMichael C, Stevenson M, Vardoulakis S, Dang TN, Garvey G, Lovett R, Matthews V, Phung D, Woodward AJ, Romanello MB, Zhang Y. The 2023 report of the MJA-Lancet Countdown on health and climate change: sustainability needed in Australia's health care sector. Med J Aust 2024; 220:282-303. [PMID: 38522009 DOI: 10.5694/mja2.52245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/06/2023] [Indexed: 03/25/2024]
Abstract
The MJA-Lancet Countdown on health and climate change in Australia was established in 2017 and produced its first national assessment in 2018 and annual updates in 2019, 2020, 2021 and 2022. It examines five broad domains: health hazards, exposures and impacts; adaptation, planning and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. In this, the sixth report of the MJA-Lancet Countdown, we track progress on an extensive suite of indicators across these five domains, accessing and presenting the latest data and further refining and developing our analyses. Our results highlight the health and economic costs of inaction on health and climate change. A series of major flood events across the four eastern states of Australia in 2022 was the main contributor to insured losses from climate-related catastrophes of $7.168 billion - the highest amount on record. The floods also directly caused 23 deaths and resulted in the displacement of tens of thousands of people. High red meat and processed meat consumption and insufficient consumption of fruit and vegetables accounted for about half of the 87 166 diet-related deaths in Australia in 2021. Correction of this imbalance would both save lives and reduce the heavy carbon footprint associated with meat production. We find signs of progress on health and climate change. Importantly, the Australian Government released Australia's first National Health and Climate Strategy, and the Government of Western Australia is preparing a Health Sector Adaptation Plan. We also find increasing action on, and engagement with, health and climate change at a community level, with the number of electric vehicle sales almost doubling in 2022 compared with 2021, and with a 65% increase in coverage of health and climate change in the media in 2022 compared with 2021. Overall, the urgency of substantial enhancements in Australia's mitigation and adaptation responses to the enormous health and climate change challenge cannot be overstated. Australia's energy system, and its health care sector, currently emit an unreasonable and unjust proportion of greenhouse gases into the atmosphere. As the Lancet Countdown enters its second and most critical phase in the leadup to 2030, the depth and breadth of our assessment of health and climate change will be augmented to increasingly examine Australia in its regional context, and to better measure and track key issues in Australia such as mental health and Aboriginal and Torres Strait Islander health and wellbeing.
Collapse
Affiliation(s)
| | | | | | - Hilary Bambrick
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT
| | - Anthony G Capon
- Monash Sustainable Development Institute, Monash University, Melbourne, VIC
| | | | | | | | | | - Donna Green
- Climate Change Research Centre and ARC Centre of Excellence for Climate Extremes, UNSW, Sydney, NSW
| | - Maddie Heenan
- Australian Prevention Partnership Centre, Sax Institute, Sydney, NSW
- The George Institute for Global Health, Sydney, NSW
| | - Ollie Jay
- Thermal Ergonomics Laboratory, University of Sydney, Sydney, NSW
| | - Harry Kennard
- Center on Global Energy Policy, Columbia University, New York, NY, USA
| | | | | | - Mark Stevenson
- Transport, Health and Urban Design (THUD) Research Lab, University of Melbourne, Melbourne, VIC
| | - Sotiris Vardoulakis
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT
| | - Tran N Dang
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Raymond Lovett
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT
- Australian Institute of Aboriginal and Torres Strait Islander Studies, Canberra, ACT
| | - Veronica Matthews
- University Centre for Rural Health, University of Sydney, Sydney, NSW
| | | | | | | | | |
Collapse
|
4
|
Chen Y, Nguyet LA, Nhan LNT, Qui PT, Nhu LNT, Hong NTT, Ny NTH, Anh NT, Thanh LK, Phuong HT, Vy NHT, Thanh NTL, Khanh TH, Hung NT, Viet DC, Nam NT, Chau NVV, van Doorn HR, Tan LV, Clapham H. Age-time-specific transmission of hand-foot-and-mouth disease enterovirus serotypes in Vietnam: A catalytic model with maternal immunity. Epidemics 2024; 46:100754. [PMID: 38428358 PMCID: PMC10945305 DOI: 10.1016/j.epidem.2024.100754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/05/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024] Open
Abstract
Hand, foot and mouth disease (HFMD) is highly prevalent in the Asia Pacific region, particularly in Vietnam. To develop effective interventions and efficient vaccination programs, we inferred the age-time-specific transmission patterns of HFMD serotypes enterovirus A71 (EV-A71), coxsackievirus A6 (CV-A6), coxsackievirus A10 (CV-A10), coxsackievirus A16 (CV-A16) in Ho Chi Minh City, Vietnam from a case data collected during 2013-2018 and a serological survey data collected in 2015 and 2017. We proposed a catalytic model framework with good adaptability to incorporate maternal immunity using various mathematical functions. Our results indicate the high-level transmission of CV-A6 and CV-A10 which is not obvious in the case data, due to the variation of disease severity across serotypes. Our results provide statistical evidence supporting the strong association between severe illness and CV-A6 and EV-A71 infections. The HFMD dynamic pattern presents a cyclical pattern with large outbreaks followed by a decline in subsequent years. Additionally, we identify the age group with highest risk of infection as 1-2 years and emphasise the risk of future outbreaks as over 50% of children aged 6-7 years were estimated to be susceptible to CV-A16 and EV-A71. Our study highlights the importance of multivalent vaccines and active surveillance for different serotypes, supports early vaccination prior to 1 year old, and points out the potential utility for vaccinating children older than 5 years old in Vietnam.
Collapse
Affiliation(s)
- Yining Chen
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.
| | - Lam Anh Nguyet
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | | | - Phan Tu Qui
- Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | | | | | - Nguyen Thi Han Ny
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Nguyen To Anh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Le Kim Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Huynh Thi Phuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Nguyen Ha Thao Vy
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | | | | | | | - Do Chau Viet
- Children's Hospital 2, Ho Chi Minh City, Viet Nam
| | | | - Nguyen Van Vinh Chau
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam; Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Hanoi, Viet Nam; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Le Van Tan
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Hannah Clapham
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| |
Collapse
|
5
|
Linh Tran NQ, Cam Hong Le HT, Pham CT, Nguyen XH, Tran ND, Thi Tran TH, Nghiem S, Ly Luong TM, Bui V, Nguyen-Huy T, Doan VQ, Dang KA, Thuong Do TH, Thi Ngo HK, Nguyen TV, Nguyen NH, Do MC, Ton TN, Thu Dang TA, Nguyen K, Tran XB, Thai P, Phung D. Climate change and human health in Vietnam: a systematic review and additional analyses on current impacts, future risk, and adaptation. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 40:100943. [PMID: 38116497 PMCID: PMC10730327 DOI: 10.1016/j.lanwpc.2023.100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 12/21/2023]
Abstract
This study aims to investigate climate change's impact on health and adaptation in Vietnam through a systematic review and additional analyses of heat exposure, heat vulnerability, awareness and engagement, and projected health costs. Out of 127 reviewed studies, findings indicated the wider spread of infectious diseases, and increased mortality and hospitalisation risks associated with extreme heat, droughts, and floods. However, there are few studies addressing health cost, awareness, engagement, adaptation, and policy. Additional analyses showed rising heatwave exposure across Vietnam and global above-average vulnerability to heat. By 2050, climate change is projected to cost up to USD1-3B in healthcare costs, USD3-20B in premature deaths, and USD6-23B in work loss. Despite increased media focus on climate and health, a gap between public and government publications highlighted the need for more governmental engagement. Vietnam's climate policies have faced implementation challenges, including top-down approaches, lack of cooperation, low adaptive capacity, and limited resources.
Collapse
Affiliation(s)
- Nu Quy Linh Tran
- Centre for Environment and Population Health, School of Medicine and Dentistry, Griffith University, Australia
| | - Huynh Thi Cam Hong Le
- Child Health Research Centre, Faculty of Medicine, University of Queensland, Australia
| | | | - Xuan Huong Nguyen
- Centre for Scientific Research and International Collaboration, Phan Chau Trinh University, Quang Nam, Vietnam
| | - Ngoc Dang Tran
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Son Nghiem
- Department of Health Economics, Wellbeing and Society, Australian National University, Australia
| | - Thi Mai Ly Luong
- Faculty of Environmental Sciences, Vietnam University of Science, Hanoi, Vietnam
| | - Vinh Bui
- Faculty of Science and Engineering, Southern Cross University, Australia
| | - Thong Nguyen-Huy
- Centre for Applied Climate Sciences, University of Southern Queensland, Australia
| | - Van Quang Doan
- Centre for Computational Sciences, University of Tsukuba, Japan
| | - Kim Anh Dang
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Australia
| | - Thi Hoai Thuong Do
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hieu Kim Thi Ngo
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Ngoc Huy Nguyen
- Vietnam National University - Vietnam Japan University, Hanoi, Vietnam
| | - Manh Cuong Do
- Health Environment Management Agency, Ministry of Health, Vietnam
| | | | - Thi Anh Thu Dang
- Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Kien Nguyen
- Hue University of Economics, Hue University, Hue City, Vietnam
| | | | - Phong Thai
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Australia
| | - Dung Phung
- School of Public Health, The University of Queensland, Australia
| |
Collapse
|
6
|
Lan T, Hu Y, Cheng L, Chen L, Guan X, Yang Y, Guo Y, Pan J. Floods and diarrheal morbidity: Evidence on the relationship, effect modifiers, and attributable risk from Sichuan Province, China. J Glob Health 2022; 12:11007. [PMID: 35871400 PMCID: PMC9308977 DOI: 10.7189/jogh.12.11007] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Although studies have provided the estimates of floods-diarrhoea associations, little is known about the lag effect, effect modification, and attributable risk. Based on Sichuan, China, an uneven socio-economic development province with plateau, basin, and mountain terrains spanning different climatic zones, we aimed to systematically examine the impacts of floods on diarrheal morbidity. Methods We retrieved information on daily diarrheal cases, floods, meteorological variables, and annual socio-economic characteristics for 21 cities in Sichuan from January 1, 2017 to December 31, 2019. We fitted time-series Poisson models to estimate the city-specific floods-diarrhoea relation over the lags of 0-14 days, and then pooled them using meta-analysis for cumulative and lag effects. We further employed meta-regression to explore potential effect modifiers and identify effect modification. We calculated the attributable diarrheal cases and fraction of attributable morbidity within the framework of the distributed lag model. Results Floods had a significant cumulative association with diarrhoea at the provincial level, but varied by regions and cities. The effects of the floods appeared on the second day after the floods and lasted for 5 days. Floods-diarrhoea relations were modified by three effect modifiers, with stronger flood effects on diarrhoea found in areas with higher air pressure, lower diurnal temperature range, or warmer temperature. Floods were responsible for advancing a fraction of diarrhoea, corresponding to 0.25% within the study period and 0.48% within the flood season. Conclusions The impacts imposed by floods were mainly distributed within the first week. The floods-diarrhoea relations varied by geographic and climatic conditions. The diarrheal burden attributable to floods is currently low in Sichuan, but this figure could increase with the exposure more intensive and the effect modifiers more detrimental in the future. Our findings are expected to provide evidence for the formulation of temporal- and spatial-specific strategies to reduce potential risks of flood-related diarrhoea.
Collapse
Affiliation(s)
- Tianjiao Lan
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, Chengdu, China
| | - Yifan Hu
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Liangliang Cheng
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lingwei Chen
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, Chengdu, China
| | - Xujing Guan
- Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Yili Yang
- Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, Chengdu, China
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Jay Pan
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Asare EO, Warren JL, Pitzer VE. Spatiotemporal patterns of diarrhea incidence in Ghana and the impact of meteorological and socio-demographic factors. FRONTIERS IN EPIDEMIOLOGY 2022; 2:871232. [PMID: 35822109 PMCID: PMC9272077 DOI: 10.3389/fepid.2022.871232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Diarrhea remains a significant public health problem and poses a considerable financial burden on Ghana's health insurance scheme. In order to prioritize district-level hotspots of diarrhea incidence for effective targeted interventions, it is important to understand the potential drivers of spatiotemporal patterns of diarrhea. We aimed to identify the spatiotemporal heterogeneity of diarrhea incidence in Ghana and explore how meteorological and socio-demographic factors influence the patterns. METHODS We used monthly district-level clinically diagnosed diarrhea data between 2012 and 2018 obtained from the Centre for Health Information and Management of the Ghana Health Services. We utilized a hierarchical Bayesian spatiotemporal modeling framework to evaluate potential associations between district-level monthly diarrhea incidence and meteorological variables (mean temperature, diurnal temperature range, surface water presence) and socio-demographic factors (population density, Gini index, District League Table score) in Ghana. In addition, we investigated whether these associations were consistent across the four agro-ecological zones. RESULTS There was considerable spatial heterogeneity in diarrhea patterns across the districts, with clusters of high diarrhea risk areas mostly found in the transition and savannah zones. The average monthly temporal patterns of diarrhea revealed a weak biannual seasonality with major and minor peaks in June and October, respectively, coinciding with the major and minor rainy seasons. We found a significant association between both meteorological and socio-demographic factors and diarrhea risk, but the strength and direction of associations differed across the four agro-ecological zones. Surface water presence demonstrated consistently positive, while diurnal temperature range and population density demonstrated consistently negative associations with diarrhea both overall and across the agro-ecological zones. CONCLUSIONS Although overall diarrhea incidence is declining in Ghana, our results revealed high-risk districts that could benefit from district-specific tailored intervention strategies to improve control efforts. Ghana health sector policy-makers can use these results to assess the effectiveness of ongoing interventions at the district level and prioritize resource allocation for diarrhea control.
Collapse
Affiliation(s)
- Ernest O. Asare
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT USA
- Public Health Modeling Unit, Yale School of Public Health, Yale University, New Haven, CT USA
| | - Joshua L. Warren
- Public Health Modeling Unit, Yale School of Public Health, Yale University, New Haven, CT USA
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT USA
| | - Virginia E. Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT USA
- Public Health Modeling Unit, Yale School of Public Health, Yale University, New Haven, CT USA
| |
Collapse
|
8
|
Risk Factors Associated with Diarrheal Episodes in an Agricultural Community in Nam Dinh Province, Vietnam: A Prospective Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042456. [PMID: 35206644 PMCID: PMC8872501 DOI: 10.3390/ijerph19042456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023]
Abstract
In Vietnam, data on the risk factors for diarrhea at the community level remain sparse. This study aimed to provide an overview of diarrheal diseases in an agricultural community in Vietnam, targeting all age groups. Specifically, we investigated the incidence of diarrheal disease at the community level and described the potential risk factors associated with diarrheal diseases. In this prospective cohort study, a total of 1508 residents were enrolled during the 54-week study period in northern Vietnam. The observed diarrheal incidence per person-year was 0.51 episodes. For children aged <5 years, the incidence per person-year was 0.81 episodes. Unexpectedly, the frequency of diarrhea was significantly higher among participants who used tap water for drinking than among participants who used rainwater. Participants who used a flush toilet had less frequent diarrhea than those who used a pit latrine. The potential risk factors for diarrhea included the source of water used in daily life, drinking water, and type of toilet. However, the direct reason for the association between potential risk factors and diarrhea was not clear. The infection routes of diarrheal pathogens in the environment remain to be investigated at this study site.
Collapse
|
9
|
Abstract
The twenty-first century has witnessed a wave of severe infectious disease outbreaks, not least the COVID-19 pandemic, which has had a devastating impact on lives and livelihoods around the globe. The 2003 severe acute respiratory syndrome coronavirus outbreak, the 2009 swine flu pandemic, the 2012 Middle East respiratory syndrome coronavirus outbreak, the 2013-2016 Ebola virus disease epidemic in West Africa and the 2015 Zika virus disease epidemic all resulted in substantial morbidity and mortality while spreading across borders to infect people in multiple countries. At the same time, the past few decades have ushered in an unprecedented era of technological, demographic and climatic change: airline flights have doubled since 2000, since 2007 more people live in urban areas than rural areas, population numbers continue to climb and climate change presents an escalating threat to society. In this Review, we consider the extent to which these recent global changes have increased the risk of infectious disease outbreaks, even as improved sanitation and access to health care have resulted in considerable progress worldwide.
Collapse
|
10
|
Zuo S, Yang L, Dou P, Ho HC, Dai S, Ma W, Ren Y, Huang C. The direct and interactive impacts of hydrological factors on bacillary dysentery across different geographical regions in central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144609. [PMID: 33385650 DOI: 10.1016/j.scitotenv.2020.144609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Previous studies found non-linear mutual interactions among hydrometeorological factors on diarrheal disease. However, the complex interactions of the hydrometeorological, topographical and human activity factors need to be further explored. This study aimed to reveal how hydrological and other factors jointly influence bacillary dysentery in different geographical regions. Using Anhui Province in China, consisted of Huaibei plain, Jianghuai hilly and Wannan mountainous regions, we integrated multi-source data (6 meteorological, 3 hydrological, 2 topographic, and 9 socioeconomic variables) to explore the direct and interactive relationship between hydrological factors (quick flow, baseflow and local recharge) and other factors by combining the ecosystem model InVEST with spatial statistical analysis. The results showed hydrological factors had significant impact powers (q = 0.444 (Huaibei plain) for local recharge, 0.412 (Jianghuai hilly region) and 0.891 (Wannan mountainous region) for quick flow, respectively) on bacillary dysentery in different regions, but lost powers at provincial level. Land use and soil properties have created significant interactions with hydrological factors across Anhui province. Particularly, percentage of farmland in Anhui province can influence quick flow across Jianghuai, Wannan regions and the whole province, and it also has significant interactions with the baseflow and local recharge across the plain as well as the whole province. Percentage of urban areas had interactions with baseflow and local recharge in Jianghuai and Wannan regions. Additionally, baseflow and local recharge could be interacted with meteorological factors (e.g. temperature and wind speed), while these interactions varied in different regions. In conclusion, it was evident that hydrological factors had significant impacts on bacillary dysentery, and also interacted significantly with meteorological and socioeconomic factors. This study applying ecosystem model and spatial analysis help reveal the complex and nonlinear transmission of bacillary dysentery in different geographical regions, supporting the development of precise public health interventions with consideration of hydrological factors.
Collapse
Affiliation(s)
- Shudi Zuo
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Lianping Yang
- School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Panfeng Dou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Hung Chak Ho
- Department of Urban Planning and Design, The University of Hong Kong, Hong Kong; School of Geography and Remote Sensing, Guangzhou University, Guangzhou, China
| | - Shaoqing Dai
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, Netherlands
| | - Wenjun Ma
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Yin Ren
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Cunrui Huang
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China; School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Helldén D, Andersson C, Nilsson M, Ebi KL, Friberg P, Alfvén T. Climate change and child health: a scoping review and an expanded conceptual framework. Lancet Planet Health 2021; 5:e164-e175. [PMID: 33713617 DOI: 10.1016/s2542-5196(20)30274-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Climate change can have detrimental effects on child health and wellbeing. Despite the imperative for a fuller understanding of how climate change affects child health and wellbeing, a systematic approach and focus solely on children (aged <18 years) has been lacking. In this Scoping Review, we did a literature search on the impacts of climate change on child health from January, 2000, to June, 2019. The included studies explicitly linked an alteration of an exposure to a risk factor for child health to climate change or climate variability. In total, 2970 original articles, reviews, and other documents were identified, of which 371 were analysed. Employing an expanded framework, our analysis showed that the effects of climate change on child health act through direct and indirect pathways, with implications for determinants of child health as well as morbidity and mortality from a range of diseases. This understanding can be further enhanced by using a broader range of research methods, studying overlooked populations and geographical regions, investigating the costs and benefits of mitigation and adaptation for child health, and considering the position of climate change and child health within the UN Sustainable Development Goals. Present and future generations of children bear and will continue to bear an unacceptably high disease burden from climate change.
Collapse
Affiliation(s)
- Daniel Helldén
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden.
| | - Camilla Andersson
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - Maria Nilsson
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - Kristie L Ebi
- Department of Global Health, School of Public Health, University of Washington, Seattle, WA, USA
| | - Peter Friberg
- Swedish Institute for Global Health Transformation, Royal Swedish Academy of Sciences, Stockholm, Sweden; Department of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tobias Alfvén
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Kraay ANM, Man O, Levy MC, Levy K, Ionides E, Eisenberg JNS. Understanding the Impact of Rainfall on Diarrhea: Testing the Concentration-Dilution Hypothesis Using a Systematic Review and Meta-Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:126001. [PMID: 33284047 PMCID: PMC7720804 DOI: 10.1289/ehp6181] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Projected increases in extreme weather may change relationships between rain-related climate exposures and diarrheal disease. Whether rainfall increases or decreases diarrhea rates is unclear based on prior literature. The concentration-dilution hypothesis suggests that these conflicting results are explained by the background level of rain: Rainfall following dry periods can flush pathogens into surface water, increasing diarrhea incidence, whereas rainfall following wet periods can dilute pathogen concentrations in surface water, thereby decreasing diarrhea incidence. OBJECTIVES In this analysis, we explored the extent to which the concentration-dilution hypothesis is supported by published literature. METHODS To this end, we conducted a systematic search for articles assessing the relationship between rain, extreme rain, flood, drought, and season (rainy vs. dry) and diarrheal illness. RESULTS A total of 111 articles met our inclusion criteria. Overall, the literature largely supports the concentration-dilution hypothesis. In particular, extreme rain was associated with increased diarrhea when it followed a dry period [incidence rate ratio ( IRR ) = 1.26 ; 95% confidence interval (CI): 1.05, 1.51], with a tendency toward an inverse association for extreme rain following wet periods, albeit nonsignificant, with one of four relevant studies showing a significant inverse association (IRR = 0.911 ; 95% CI: 0.771, 1.08). Incidences of bacterial and parasitic diarrhea were more common during rainy seasons, providing pathogen-specific support for a concentration mechanism, but rotavirus diarrhea showed the opposite association. Information on timing of cases within the rainy season (e.g., early vs. late) was lacking, limiting further analysis. We did not find a linear association between nonextreme rain exposures and diarrheal disease, but several studies found a nonlinear association with low and high rain both being associated with diarrhea. DISCUSSION Our meta-analysis suggests that the effect of rainfall depends on the antecedent conditions. Future studies should use standard, clearly defined exposure variables to strengthen understanding of the relationship between rainfall and diarrheal illness. https://doi.org/10.1289/EHP6181.
Collapse
Affiliation(s)
- Alicia N. M. Kraay
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Olivia Man
- Department of Epidemiology, University of Michigan–Ann Arbor, Ann Arbor, Michigan, USA
| | - Morgan C. Levy
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- School of Global Policy and Strategy, University of California San Diego, La Jolla, California, USA
| | - Karen Levy
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Edward Ionides
- Department of Epidemiology, University of Michigan–Ann Arbor, Ann Arbor, Michigan, USA
| | | |
Collapse
|
13
|
Genomic Serotyping, Clinical Manifestations, and Antimicrobial Resistance of Nontyphoidal Salmonella Gastroenteritis in Hospitalized Children in Ho Chi Minh City, Vietnam. J Clin Microbiol 2020; 58:JCM.01465-20. [PMID: 32907994 PMCID: PMC7685882 DOI: 10.1128/jcm.01465-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/05/2020] [Indexed: 12/18/2022] Open
Abstract
Nontyphoidal Salmonella (NTS) are among the most common etiological agents of diarrheal diseases worldwide and have become the most commonly detected bacterial pathogen in children hospitalized with diarrhea in Vietnam. Aiming to better understand the epidemiology, serovar distribution, antimicrobial resistance (AMR), and clinical manifestation of NTS gastroenteritis in Vietnam, we conducted a clinical genomics investigation of NTS isolated from diarrheal children admitted to one of three tertiary hospitals in Ho Chi Minh City. Nontyphoidal Salmonella (NTS) are among the most common etiological agents of diarrheal diseases worldwide and have become the most commonly detected bacterial pathogen in children hospitalized with diarrhea in Vietnam. Aiming to better understand the epidemiology, serovar distribution, antimicrobial resistance (AMR), and clinical manifestation of NTS gastroenteritis in Vietnam, we conducted a clinical genomics investigation of NTS isolated from diarrheal children admitted to one of three tertiary hospitals in Ho Chi Minh City. Between May 2014 and April 2016, 3,166 children hospitalized with dysentery were recruited into the study; 478 (∼15%) children were found to be infected with NTS by stool culture. Molecular serotyping of the 450 generated genomes identified a diverse collection of serogroups (B, C1, C2 to C3, D1, E1, G, I, K, N, O, and Q); however, Salmonella enterica serovar Typhimurium was the most predominant serovar, accounting for 41.8% (188/450) of NTS isolates. We observed a high prevalence of AMR to first-line treatments recommended by WHO, and more than half (53.8%; 242/450) of NTS isolates were multidrug resistant (MDR; resistant to ≥3 antimicrobial classes). AMR gene detection positively correlated with phenotypic AMR testing, and resistance to empirical antimicrobials was associated with a significantly longer hospitalization (0.91 days; P = 0.04). Our work shows that genome sequencing is a powerful epidemiological tool to characterize the serovar diversity and AMR profiles in NTS. We propose a revaluation of empirical antimicrobials for dysenteric diarrhea and endorse the use of whole-genome sequencing for sustained surveillance of NTS internationally.
Collapse
|
14
|
Aik J, Ong J, Ng LC. The effects of climate variability and seasonal influence on diarrhoeal disease in the tropical city-state of Singapore - A time-series analysis. Int J Hyg Environ Health 2020; 227:113517. [PMID: 32272437 DOI: 10.1016/j.ijheh.2020.113517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Diarrhoeal disease is common and imposes substantial health and economic burdens across the globe, especially in the African and Southeast Asian regions. Besides causing high mortality and morbidity, diarrhoeal disease has also been associated with growth and cognitive shortfalls in children in low-resource settings. Extreme weather events brought about by climate change may increase diarrhoeal disease and impact vulnerable populations in countries regardless of levels of development. We examined the seasonal and climatic influences of acute diarrhoeal disease reports in Singapore, a city-state located in Southeast Asia. METHODS We used a time-series analysis, adjusting for time-varying potential confounders in a negative binomial regression model and fitting fractional polynomials to investigate the relationship between climatic factors (temperature, relative humidity and rainfall) and reported diarrhoeal disease. RESULTS We included 1,798,198 reports of diarrhoeal disease from 2005 to 2018. We observed annual trimodal peaks in the number of reports. Every 10% increase in relative humidity in the present week was positively associated with an increase in reports one week later [Incidence Rate Ratio (IRR): 1.030, 95% CI 1.004-1.057] and negatively associated with a decrease in reports six weeks later (IRR: 0.979, 95% CI 0.961-0.997). We observed effect modification of relative humidity on the risk of diarrhoeal disease in the first calendar quarter (January to March). There was weak evidence of a delayed effect of ambient air temperature on reports of diarrhoeal disease one week later (IRR: 1.013, 95% CI 0.998-1.027). No threshold effects of climatic factors were observed. Each week of school holidays was associated with a 14.4% reduction in diarrhoeal disease reports (IRR: 0.856, 95% CI: 0.840 to 0.871). Public holidays were associated with a reduction in reports in the same week and an increase a week later. CONCLUSIONS Diarrhoeal disease is highly seasonal and is associated with climate variability. Food safety and primary healthcare resource mitigation could be timed in anticipation of seasonal and climate driven increases in disease reports.
Collapse
Affiliation(s)
- Joel Aik
- Environmental Health Institute, National Environment Agency, 40 Scotts Road, Environment Building, #13-00, 228231, Singapore; School of Public Health and Community Medicine, Faculty of Medicine, University of New South Wales, New South Wales, Australia.
| | - Janet Ong
- Environmental Health Institute, National Environment Agency, 40 Scotts Road, Environment Building, #13-00, 228231, Singapore.
| | - Lee-Ching Ng
- Environmental Health Institute, National Environment Agency, 40 Scotts Road, Environment Building, #13-00, 228231, Singapore.
| |
Collapse
|
15
|
Tuyet Hanh TT, Huong LTT, Huong NTL, Linh TNQ, Quyen NH, Nhung NTT, Ebi K, Cuong ND, Van Nhu H, Kien TM, Hales S, Cuong DM, Tho NTT, Toan LQ, Bich NN, Van Minh H. Vietnam Climate Change and Health Vulnerability and Adaptation Assessment, 2018. ENVIRONMENTAL HEALTH INSIGHTS 2020; 14:1178630220924658. [PMID: 32612364 PMCID: PMC7309337 DOI: 10.1177/1178630220924658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND The Global Climate Risk Index 2020 ranked Vietnam as the sixth country in the world most affected by climate variability and extreme weather events over the period 1999-2018. Sea level rise and extreme weather events are projected to be more severe in coming decades, which, without additional action, will increase the number of people at risk of climate-sensitive diseases, challenging the health system. This article summaries the results of a health vulnerability and adaptation (V&A) assessment conducted in Vietnam as evidences for development of the National Climate Change Health Adaptation Plan to 2030. METHODS The assessment followed the first 4 steps outlined in the World Health Organization's Guidelines in conducting "Vulnerability and Adaptation Assessments." A framework and list of indicators were developed for semi-quantitative assessment for the period 2013 to 2017. Three sets of indicators were selected to assess the level of (1) exposure to climate change and extreme weather events, (2) health sensitivity, and (3) adaptation capacity. The indicators were rated and analyzed using a scoring system from 1 to 5. RESULTS The results showed that climate-sensitive diseases were common, including dengue fever, diarrheal, influenza, etc, with large burdens of disease that are projected to increase. From 2013 to 2017, the level of "exposure" to climate change-related hazards of the health sector was "high" to "very high," with an average score from 3.5 to 4.4 (out of 5.0). For "health sensitivity," the scores decreased from 3.8 in 2013 to 3.5 in 2017, making the overall rating as "high." For "adaptive capacity," the scores were from 4.0 to 4.1, which meant adaptive capacity was "very low." The overall V&A rating in 2013 was "very high risk" (score 4.1) and "high risk" with scores of 3.8 in 2014 and 3.7 in 2015 to 2017. CONCLUSIONS Adaptation actions of the health sector are urgently needed to reduce the vulnerability to climate change in coming decades. Eight adaptation solutions, among recommendations of V&A assessment, were adopted in the National Health Climate Change Adaptation Plan.
Collapse
Affiliation(s)
- Tran Thi Tuyet Hanh
- Faculty of Environmental and Occupational Health, Hanoi University of Public Health, Hanoi, Vietnam
| | - Le Thi Thanh Huong
- Faculty of Environmental and Occupational Health, Hanoi University of Public Health, Hanoi, Vietnam
- Le Thi Thanh Huong, Hanoi University of Public Health, 1A Duc Thang Road, Duc Thang Ward, North Tu Liem District, Hanoi 100000, Vietnam.
| | | | - Tran Nu Quy Linh
- Center for Environment and Population Health, School of Medicine, Griffith University, Brisbane, Queensland, Australia
| | - Nguyen Huu Quyen
- Climate research and Climate Forecasting Division, Institute of Hydrology and Meteorology Science and Climate Change, Hanoi, Vietnam
| | | | - Kristie Ebi
- Center for Health and the Global Environment, University of Washington, Seattle, WA, USA
| | | | - Ha Van Nhu
- Faculty of Environmental and Occupational Health, Hanoi University of Public Health, Hanoi, Vietnam
| | - Tran Mai Kien
- Climate Change Research Center, Institute of Hydrology and Meteorology Science and Climate Change, Hanoi, Vietnam
| | - Simon Hales
- Public Health Department, University of Otago, Otago, New Zealand
| | - Do Manh Cuong
- Vietnam Health Environment Management Agency, Hanoi, Vietnam
| | - Nguyen Thi Thi Tho
- Department of Non-Communicable Diseases Prevention and Control, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Luu Quoc Toan
- Faculty of Environmental and Occupational Health, Hanoi University of Public Health, Hanoi, Vietnam
| | - Nguyen Ngoc Bich
- Faculty of Environmental and Occupational Health, Hanoi University of Public Health, Hanoi, Vietnam
| | - Hoang Van Minh
- Vice-Rector, Hanoi University of Public Health, Hanoi, Vietnam
| |
Collapse
|
16
|
Osei FB, Stein A. Bayesian Random Effect Modeling for analyzing spatial clustering of differential time trends of diarrhea incidences. Sci Rep 2019; 9:13217. [PMID: 31519962 PMCID: PMC6744449 DOI: 10.1038/s41598-019-49549-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
In 2012, nearly 644,000 people died from diarrhea in sub-Saharan Africa. This is a significant obstacle towards the achievement of the Sustainable Development Goal 3 of ensuring a healthy life and promoting the wellbeing at all ages. To enhance evidence-based site-specific intervention and mitigation strategies, especially in resource-poor countries, we focused on developing differential time trend models for diarrhea. We modeled the logarithm of the unknown risk for each district as a linear function of time with spatially varying effects. We induced correlation between the random intercepts and slopes either by linear functions or bivariate conditional autoregressive (BiCAR) priors. In comparison, models which included correlation between the varying intercepts and slopes outperformed those without. The convolution model with the BiCAR correlation prior was more competitive than the others. The inclusion of correlation between the intercepts and slopes provided an epidemiological value regarding the response of diarrhea infection dynamics to environmental factors in the past and present. We found diarrhea risk to increase by 23% yearly, a rate far exceeding Ghana’s population growth rate of 2.3%. The varying time trends widely varied and clustered, with the majority of districts with at least 80% chance of their rates exceeding the previous years. These findings can be useful for active site-specific evidence-based planning and interventions for diarrhea.
Collapse
Affiliation(s)
- Frank Badu Osei
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, Netherlands.
| | - Alfred Stein
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, Netherlands
| |
Collapse
|
17
|
Climatic Factors in Relation to Diarrhoea Hospital Admissions in Rural Limpopo, South Africa. ATMOSPHERE 2019. [DOI: 10.3390/atmos10090522] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diarrheal disease is one of the leading causes of morbidity and mortality globally, particularly in children under 5 years of age. Factors related to diarrheal disease incidence include infection, malnutrition, and exposure to contaminated water and food. Climate factors also contribute to diarrheal disease. We aimed to explore the relationship between temperature, precipitation and diarrhoea case counts of hospital admissions among vulnerable communities living in a rural setting in South Africa. We applied ‘contour analysis’ to visually examine simultaneous observations in frequencies of anomalously high and low diarrhoea case counts occurring in a season, and assigning colours to differences that were statistically significant based on chi-squared test results. Children under 5 years of age were especially vulnerable to diarrhoea during very dry, hot conditions as well as when conditions were wetter than usual. We saw an anomalously higher number of diarrhoea cases during ‘warmer than usual’ conditions in the dry winter season, with average winter temperatures in Limpopo being from about 5 to 10 °C. As for ‘wetter than usual’ conditions, we saw an anomalously higher number of diarrhoea cases during ‘drier than usual’ conditions for the winter and spring. The lagged association seen in cumulative rainfall could not be distinguished in the same way for temperature-related variables (indicating rainfall had a larger impact on higher cases of diarrhoea), nor for the older age group of 5 years and older. Dry conditions were associated with diarrhoea in children under 5 years of age; such conditions may lead to increased water storage, raising the risks of water contamination. Reduced use of water for personal hygiene and cleaning of outdoor pit latrines also affect sanitation quality. Rural communities require adequate and uninterrupted water provision, and healthcare providers should raise awareness about potential diarrhoeal risks, especially during the dry season as well as during wintertime when conditions are warmer than usual.
Collapse
|
18
|
Levy K, Smith SM, Carlton EJ. Climate Change Impacts on Waterborne Diseases: Moving Toward Designing Interventions. Curr Environ Health Rep 2019; 5:272-282. [PMID: 29721700 DOI: 10.1007/s40572-018-0199-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE Climate change threatens progress achieved in global reductions of infectious disease rates over recent decades. This review summarizes literature on potential impacts of climate change on waterborne diseases, organized around a framework of questions that can be addressed depending on available data. RECENT FINDINGS A growing body of evidence suggests that climate change may alter the incidence of waterborne diseases, and diarrheal diseases in particular. Much of the existing work examines historical relationships between weather and diarrhea incidence, with a limited number of studies projecting future disease rates. Some studies take social and ecological factors into account in considerations of historical relationships, but few have done so in projecting future conditions. The field is at a point of transition, toward incorporating social and ecological factors into understanding the relationships between climatic factors and diarrheal diseases and using this information for future projections. The integration of these components helps identify vulnerable populations and prioritize adaptation strategies.
Collapse
Affiliation(s)
- Karen Levy
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA, 30322, USA.
| | - Shanon M Smith
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA, 30322, USA
| | - Elizabeth J Carlton
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, 13001 E 17th Place B119, Aurora, CO, 80045, USA
| |
Collapse
|
19
|
Vuong QH, Ho MT, Vuong TT, La VP, Ho MT, Nghiem KCP, Tran BX, Giang HH, Giang TV, Latkin C, Nguyen HKT, Ho CSH, Ho RCM. Artificial Intelligence vs. Natural Stupidity: Evaluating AI readiness for the Vietnamese Medical Information System. J Clin Med 2019; 8:E168. [PMID: 30717268 PMCID: PMC6406313 DOI: 10.3390/jcm8020168] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 01/02/2023] Open
Abstract
This review paper presents a framework to evaluate the artificial intelligence (AI) readiness for the healthcare sector in developing countries: a combination of adequate technical or technological expertise, financial sustainability, and socio-political commitment embedded in a healthy psycho-cultural context could bring about the smooth transitioning toward an AI-powered healthcare sector. Taking the Vietnamese healthcare sector as a case study, this paper attempts to clarify the negative and positive influencers. With only about 1500 publications about AI from 1998 to 2017 according to the latest Elsevier AI report, Vietnamese physicians are still capable of applying the state-of-the-art AI techniques in their research. However, a deeper look at the funding sources suggests a lack of socio-political commitment, hence the financial sustainability, to advance the field. The AI readiness in Vietnam's healthcare also suffers from the unprepared information infrastructure-using text mining for the official annual reports from 2012 to 2016 of the Ministry of Health, the paper found that the frequency of the word "database" actually decreases from 2012 to 2016, and the word has a high probability to accompany words such as "lacking", "standardizing", "inefficient", and "inaccurate." Finally, manifestations of psycho-cultural elements such as the public's mistaken views on AI or the non-transparent, inflexible and redundant of Vietnamese organizational structures can impede the transition to an AI-powered healthcare sector.
Collapse
Affiliation(s)
- Quan-Hoang Vuong
- Center for Interdisciplinary Social Research, Phenikaa University, Yen Nghia, Ha Dong district, Hanoi 100803, Vietnam.
- Faculty of Economics and Finance, Phenikaa University, Yen Nghia, Ha Dong district, Hanoi 100803, Vietnam.
| | - Manh-Tung Ho
- Center for Interdisciplinary Social Research, Phenikaa University, Yen Nghia, Ha Dong district, Hanoi 100803, Vietnam.
- Faculty of Economics and Finance, Phenikaa University, Yen Nghia, Ha Dong district, Hanoi 100803, Vietnam.
| | | | - Viet-Phuong La
- Center for Interdisciplinary Social Research, Phenikaa University, Yen Nghia, Ha Dong district, Hanoi 100803, Vietnam.
- Faculty of Economics and Finance, Phenikaa University, Yen Nghia, Ha Dong district, Hanoi 100803, Vietnam.
| | - Manh-Toan Ho
- Center for Interdisciplinary Social Research, Phenikaa University, Yen Nghia, Ha Dong district, Hanoi 100803, Vietnam.
- Faculty of Economics and Finance, Phenikaa University, Yen Nghia, Ha Dong district, Hanoi 100803, Vietnam.
| | | | - Bach Xuan Tran
- Institute for Preventive Medicine and Public Health, Hanoi Medical University, Hanoi 100000, Vietnam.
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Hai-Ha Giang
- Institute for Global Health Innovations, Duy Tan University, Da Nang 100000, Vietnam.
| | - Thu-Vu Giang
- Center of Excellence in Artificial Intelligence in Medicine, Nguyen Tat Thanh University, Ho Chi Minh City 100000, Vietnam.
| | - Carl Latkin
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Hong-Kong T Nguyen
- A.I. for Social Data Lab (AISDL), Vuong & Associates, Dong Da district, Hanoi 100000, Vietnam.
| | - Cyrus S H Ho
- Department of Psychological Medicine, National University Health System, Singapore 119228, Singapore.
| | - Roger C M Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| |
Collapse
|
20
|
Luong LMT, Phung D, Sly PD, Dang TN, Morawska L, Thai PK. Effects of temperature on hospitalisation among pre-school children in Hanoi, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2603-2612. [PMID: 30474814 DOI: 10.1007/s11356-018-3737-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
This study examined the effect of short-term changes in ambient temperature on hospital admissions among children aged less than 5 years old in Hanoi, Vietnam. Data on daily hospital admissions from January 2010 to June 2014 were collected from two hospitals. Daily meteorological data were obtained for the same period. We applied time series analysis to evaluate the risk of hospitalisation related to hot and cold weather by age and causes. We found that a 1 °C decrease in minimum temperature during the cold weather months was associated with 2.2% increase in hospital admission for respiratory infection among children 3-5 years old. A 1 °C increase in diurnal temperature range (DTR) in cold weather was associated with an increase of 1.9% and 1.7% in hospitalisation for all causes and respiratory infection, respectively, among children < 3 years old and an increase of 1.8% and 3.4% in hospitalisation for all causes and respiratory infection, respectively, among children of 3-5 years old. Negative associations between hot weather and hospital admissions were demonstrated. These findings suggested that low temperature and DTRs in winter are important risk factors for hospital admissions among children aged < 5 years old in Hanoi. Other factors may have modified the effect of high temperature on hospital admissions of children in Hanoi.
Collapse
Affiliation(s)
- Ly M T Luong
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Children's Health and Environment Program, The University of Queensland, Brisbane, Australia
- Faculty of Environmental Sciences, VNU University of Science, Hanoi, Vietnam
| | - Dung Phung
- Centre for Environment and Population Health, Griffith University, Brisbane, Australia.
| | - Peter D Sly
- Children's Health and Environment Program, The University of Queensland, Brisbane, Australia
| | - Tran Ngoc Dang
- Department of Environmental Health, University of Medicine and Pharmacy, Ho Chi Minh, Vietnam
- The Institute of Research and Development, Duy Tan University, Da Nang City, Vietnam
| | - Lidia Morawska
- International Laboratory for Air Quality & Health, Queensland University of Technology, Brisbane, Australia
| | - Phong K Thai
- International Laboratory for Air Quality & Health, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
21
|
Floods Increase the Risks of Hand-Foot-Mouth Disease in Qingdao, China, 2009-2013: A Quantitative Analysis. Disaster Med Public Health Prep 2018; 12:723-729. [PMID: 29734967 DOI: 10.1017/dmp.2017.154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND We aimed to quantify the impact of few times floods on hand-foot-mouth disease (HFMD) in Qingdao during 2009-2013. METHODS The Spearman correlation test was applied to examine the lagged effects of floods on monthly morbidity of HFMD during study period in Qingdao. We further quantified the effects of 5 flood events on the morbidity of HFMD using the time-series Poisson regression controlling for climatic factors, seasonality, and lagged effects among different populations. RESULTS A total of 55,920 cases of HFMD were reported in the study region over the study period. The relative risks of floods on the morbidity of HFMD among the total population, males, females, under 1-2 years old, and 3-5 years old were 1.178, 1.165, 1.198, 1.338, and 1.245, respectively. CONCLUSIONS This study has, for the first time, provided the positive evidence of the impact of floods on HFMD. It demonstrates that floods can significantly increase the risk of HFMD during study period. Additionally, among the different populations, the risks were higher among children under 1-5 years old. (Disaster Med Public Health Preparedness. 2018;12:723-729).
Collapse
|
22
|
The Association between Ambient Temperature and Acute Diarrhea Incidence in Hong Kong, Taiwan, and Japan. SUSTAINABILITY 2018. [DOI: 10.3390/su10051417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Phung D, Nguyen HX, Nguyen HLT, Luong AM, Do CM, Tran QD, Chu C. The effects of socioecological factors on variation of communicable diseases: A multiple-disease study at the national scale of Vietnam. PLoS One 2018; 13:e0193246. [PMID: 29494623 PMCID: PMC5832231 DOI: 10.1371/journal.pone.0193246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/07/2018] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To examine the effects of socioecological factors on multiple communicable diseases across Vietnam. METHODS We used the Moran's I tests to evaluate spatial clusters of diseases and applied multilevel negative binomial regression models using the Bayesian framework to analyse the association between socioecological factors and the diseases queried by oral, airborne, vector-borne, and animal transmission diseases. RESULTS AND SIGNIFICANCE The study found that oral-transmission diseases were spatially distributed across the country; whereas, the airborne-transmission diseases were more clustered in the Northwest and vector-borne transmission diseases were more clustered in the South. Most of diseases were sensitive with climatic factors. For instance, a 1°C increase in average temperature is significantly associated with 0.4% (95CI, 0.3-0.5), 2.5% (95%CI, 1.4-3.6), 0.9% (95%CI, 0.6-1.4), 1.1% (95%CI), 5% (95%CI, 3-.7.4), 0.4% (95%CI, 0.2-0.7), and 2% (95%CI, 1.5-2.8) increase in risk of diarrhoea, shigellosis, mumps, influenza, dengue, malaria, and rabies respectively. The influences of socio-economic factors on risk of communicable diseases are varied by factors with the biggest influence of population density. The research findings reflect an important implication for the climate change adaptation strategies of health sectors. A development of weather-based early warning systems should be considered to strengthen communicable disease prevention in Vietnam.
Collapse
Affiliation(s)
- Dung Phung
- Centre for Environment and Population Health, Menzies Health Institute Queensland, Griffith University, Brisbane, Queensland, Australia
| | - Huong Xuan Nguyen
- Da Nang University of Medical Technology and Pharmacy, Da Nang, Vietnam
| | | | - Anh Mai Luong
- Health Environment Management Agency, Ministry of Health, Hanoi, Vietnam
| | - Cuong Manh Do
- Health Environment Management Agency, Ministry of Health, Hanoi, Vietnam
| | - Quang Dai Tran
- General Department of Preventive Medicine, Ministry of Health, Hanoi, Vietnam
| | - Cordia Chu
- Centre for Environment and Population Health, Menzies Health Institute Queensland, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
24
|
Association between Childhood Diarrhoeal Incidence and Climatic Factors in Urban and Rural Settings in the Health District of Mbour, Senegal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14091049. [PMID: 28895927 PMCID: PMC5615586 DOI: 10.3390/ijerph14091049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/31/2017] [Accepted: 09/08/2017] [Indexed: 02/08/2023]
Abstract
We assessed the association between childhood diarrhoeal incidence and climatic factors in rural and urban settings in the health district of Mbour in western Senegal. We used monthly diarrhoeal case records among children under five years registered in 24 health facilities over a four-year period (2011-2014). Climatic data (i.e., daily temperature, night temperature and rainfall) for the same four-year period were obtained. We performed a negative binomial regression model to establish the relationship between monthly diarrhoeal incidence and climatic factors of the same and the previous month. There were two annual peaks in diarrhoeal incidence: one during the cold dry season and one during the rainy season. We observed a positive association between diarrhoeal incidence and high average temperature of 36 °C and above and high cumulative monthly rainfall at 57 mm and above. The association between diarrhoeal incidence and temperature was stronger in rural compared to urban settings, while higher rainfall was associated with higher diarrhoeal incidence in the urban settings. Concluding, this study identified significant health-climate interactions and calls for effective preventive measures in the health district of Mbour. Particular attention should be paid to urban settings where diarrhoea was most common in order to reduce the high incidence in the context of climatic variability, which is expected to increase in urban areas in the face of global warming.
Collapse
|
25
|
Phung D, Chu C, Rutherford S, Nguyen HLT, Luong MA, Do CM, Huang C. Heavy rainfall and risk of infectious intestinal diseases in the most populous city in Vietnam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:805-812. [PMID: 28012659 DOI: 10.1016/j.scitotenv.2016.12.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/13/2016] [Accepted: 12/03/2016] [Indexed: 05/13/2023]
Abstract
The association between heavy rainfall and infectious intestinal diseases (IID) has not been well described and little research has been conducted in developing countries. This study examines the association between heavy rainfall and hospital admissions for IID in Ho Chi Minh City, the most populous city in Vietnam. An interrupted time-series method was used to examine the effect of each individual heavy rainfall event (HRE) on IID. The percentage changes in post-HRE level and trends of IID were estimated for 30days following each HRE. Then a random-effect meta-analysis was used to quantify the pooled estimate of effect sizes of all HREs on IID. The pooled estimates were calculated over a 21day lag period. The effects of a HRE on IID varied across individual HREs. The pooled estimates indicate that the levels of IID following a HRE increased from 7.3% to 13.5% for lags from 0 to 21days, however statistically significant increases were only observed for lags from 4 to 6days (13.5%, 95%CI: 1.4-25.4; 13.3%, 95%CI: 1.5-25.0; and 12.9%, 95%CI: 1.6-24.1 respectively). An average decrease of 0.11% (95%CI: -0.55-0.33) per day was observed for the post-HRE trend. This finding has important implications for the projected impacts on residents living in this city which is highly vulnerable to increased heavy rainfall associated with climate change. Adaptation and intervention programs should be developed to prevent this additional burden of disease and to protect residents from the adverse impacts of extreme weather events.
Collapse
Affiliation(s)
- Dung Phung
- Centre for Environment and Population Health, Griffith University, Australia; School of Public Health, Sun Yat-sen University, China.
| | - Cordia Chu
- Centre for Environment and Population Health, Griffith University, Australia
| | - Shannon Rutherford
- Centre for Environment and Population Health, Griffith University, Australia
| | | | - Mai Anh Luong
- Health Environment Management Agency, Vietnam Ministry of Health, Viet Nam
| | - Cuong Manh Do
- Health Environment Management Agency, Vietnam Ministry of Health, Viet Nam
| | - Cunrui Huang
- School of Public Health, Sun Yat-sen University, China; Centre for Environment and Population Health, Griffith University, Australia.
| |
Collapse
|