1
|
Singh M, Pushpakumar S, Zheng Y, Smolenkova I, Akinterinwa OE, Luulay B, Tyagi SC. Novel mechanism of the COVID-19 associated coagulopathy (CAC) and vascular thromboembolism. NPJ VIRUSES 2023; 1:3. [PMID: 38077924 PMCID: PMC10710223 DOI: 10.1038/s44298-023-00003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/20/2023] [Indexed: 01/31/2024]
Abstract
Previous studies from our laboratory revealed that SARS-CoV-2 spike protein (SP) administration to a genetically engineered model expressing the human angiotensin-converting enzyme 2; ACE2 receptor (i.e., hACE2 humanized mouse) mimicked the coronavirus disease-19 (COVID-19) pathology. In humans the cause of high morbidity, and mortality is due to 'cytokine-storm' led thromboembolism; however, the exact mechanisms of COVID-19 associated coagulopathy (CAC) have yet to be discovered. Current knowledge suggests that CAC is distinct from the standard coagulopathy, in that the intrinsic and extrinsic thrombin-dependent coagulation factors, and the pathway(s) that are common to coagulopathy, are not recruited by SARS-CoV-2. Findings from patients revealed that there is little change in their partial thromboplastin, or the prothrombin time coupled with a significant decline in platelets. Further, there appears to be an endothelial dysfunction during COVID-19 suggesting an interaction of the endothelia with immune cells including neutrophils. There are also reports that inflammatory NGAL is elevated during COVID-19. Furthermore, the levels of NPT are also increased indicating an increase in inflammatory M1 macrophage iNOS which sequesters BH4; an essential enzyme co-factor that acts as a potent antioxidant thus causing damage to endothelia. SARS-CoV-2 entry into the host cells is facilitated by a co-operative action between TMPRSS2 and the main ACE2 receptor. Interestingly, after infection ADAMTS13; a von Willebrand factor; VWF cleaving enzyme is found to be decreased. Based on these facts, we hypothesize that vascular thromboembolism is associated with serine and metalloproteinase, and in that context, we opine that inhibition of iNOS might help mitigate COVID-19 harmful effects. To test this hypothesis, we administered SP to the hACE2 mice that were subsequently treated with amino guanidine (AG; a potent inhibitor of glycoxidation, lipoxidation and oxidative vicious cycles). Our results revealed increase in TMPRSS2, and NGAL by SP but treatment with AG mitigated their levels. Similarly, levels of MMP-2, and -9 were increased; however, AG treatment normalized these levels. Our findings suggest that occurrence of CAC is influenced by TMPRSS2, ADAMTS13, NGAL and MMP- 2, and -9 factors, and an intervention with iNOS blocker helped mitigate the CAC condition in experimental settings.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- These authors contributed equally: Mahavir Singh, Sathnur Pushpakumar
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- These authors contributed equally: Mahavir Singh, Sathnur Pushpakumar
| | - Yuting Zheng
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Irina Smolenkova
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Oluwaseun E. Akinterinwa
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bana Luulay
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Suresh C. Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
2
|
Bräuninger H, Krüger S, Bacmeister L, Nyström A, Eyerich K, Westermann D, Lindner D. Matrix metalloproteinases in coronary artery disease and myocardial infarction. Basic Res Cardiol 2023; 118:18. [PMID: 37160529 PMCID: PMC10169894 DOI: 10.1007/s00395-023-00987-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of death worldwide. Most cardiovascular deaths are caused by ischaemic heart diseases such as myocardial infarction (MI). Hereby atherosclerosis in the coronary arteries often precedes disease manifestation. Since tissue remodelling plays an important role in the development and progression of atherosclerosis as well as in outcome after MI, regulation of matrix metalloproteinases (MMPs) as the major ECM-degrading enzymes with diverse other functions is crucial. Here, we provide an overview of the expression profiles of MMPs in coronary artery and left ventricular tissue using publicly available data from whole tissue to single-cell resolution. To approach an association between MMP expression and the development and outcome of CVDs, we further review studies investigating polymorphisms in MMP genes since polymorphisms are known to have an impact on gene expression. This review therefore aims to shed light on the role of MMPs in atherosclerosis and MI by summarizing current knowledge from publically available datasets, human studies, and analyses of polymorphisms up to preclinical and clinical trials of pharmacological MMP inhibition.
Collapse
Affiliation(s)
- Hanna Bräuninger
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Side Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Saskia Krüger
- Clinic for Cardiology, University Heart and Vascular Centre Hamburg, Hamburg, Germany
| | - Lucas Bacmeister
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kilian Eyerich
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dirk Westermann
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Diana Lindner
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Side Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
3
|
Homme RP, George AK, Singh M, Smolenkova I, Zheng Y, Pushpakumar S, Tyagi SC. Mechanism of Blood-Heart-Barrier Leakage: Implications for COVID-19 Induced Cardiovascular Injury. Int J Mol Sci 2021; 22:ijms222413546. [PMID: 34948342 PMCID: PMC8706694 DOI: 10.3390/ijms222413546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
Although blood–heart-barrier (BHB) leakage is the hallmark of congestive (cardio-pulmonary) heart failure (CHF), the primary cause of death in elderly, and during viral myocarditis resulting from the novel coronavirus variants such as the severe acute respiratory syndrome novel corona virus 2 (SARS-CoV-2) known as COVID-19, the mechanism is unclear. The goal of this project is to determine the mechanism of the BHB in CHF. Endocardial endothelium (EE) is the BHB against leakage of blood from endocardium to the interstitium; however, this BHB is broken during CHF. Previous studies from our laboratory, and others have shown a robust activation of matrix metalloproteinase-9 (MMP-9) during CHF. MMP-9 degrades the connexins leading to EE dysfunction. We demonstrated juxtacrine coupling of EE with myocyte and mitochondria (Mito) but how it works still remains at large. To test whether activation of MMP-9 causes EE barrier dysfunction, we hypothesized that if that were the case then treatment with hydroxychloroquine (HCQ) could, in fact, inhibit MMP-9, and thus preserve the EE barrier/juxtacrine signaling, and synchronous endothelial-myocyte coupling. To determine this, CHF was created by aorta-vena cava fistula (AVF) employing the mouse as a model system. The sham, and AVF mice were treated with HCQ. Cardiac hypertrophy, tissue remodeling-induced mitochondrial-myocyte, and endothelial-myocyte contractions were measured. Microvascular leakage was measured using FITC-albumin conjugate. The cardiac function was measured by echocardiography (Echo). Results suggest that MMP-9 activation, endocardial endothelial leakage, endothelial-myocyte (E-M) uncoupling, dyssynchronous mitochondrial fusion-fission (Mfn2/Drp1 ratio), and mito-myocyte uncoupling in the AVF heart failure were found to be rampant; however, treatment with HCQ successfully mitigated some of the deleterious cardiac alterations during CHF. The findings have direct relevance to the gamut of cardiac manifestations, and the resultant phenotypes arising from the ongoing complications of COVID-19 in human subjects.
Collapse
|
4
|
Gresele P, Falcinelli E, Momi S, Petito E, Sebastiano M. Platelets and Matrix Metalloproteinases: A Bidirectional Interaction with Multiple Pathophysiologic Implications. Hamostaseologie 2021; 41:136-145. [PMID: 33860521 DOI: 10.1055/a-1393-8339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Platelets contain and release several matrix metalloproteinases (MMPs), a highly conserved protein family with multiple functions in organism defense and repair. Platelet-released MMPs as well as MMPs generated by other cells within the cardiovascular system modulate platelet function in health and disease. In particular, a normal hemostatic platelet response to vessel wall injury may be transformed into pathological thrombus formation by platelet-released and/or by locally generated MMPs. However, it is becoming increasingly clear that platelets play a role not only in hemostasis but also in immune response, inflammation and allergy, atherosclerosis, and cancer development, and MMPs seem to contribute importantly to this role. A deeper understanding of these mechanisms may open the way to novel therapeutic approaches to the inhibition of their pathogenic effects and lead to significant advances in the treatment of cardiovascular, inflammatory, and neoplastic disorders.
Collapse
Affiliation(s)
- P Gresele
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - E Falcinelli
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - S Momi
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - E Petito
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - M Sebastiano
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Singh M, Hardin SJ, George AK, Eyob W, Stanisic D, Pushpakumar S, Tyagi SC. Epigenetics, 1-Carbon Metabolism, and Homocysteine During Dysbiosis. Front Physiol 2021; 11:617953. [PMID: 33708132 PMCID: PMC7940193 DOI: 10.3389/fphys.2020.617953] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/22/2020] [Indexed: 01/04/2023] Open
Abstract
Although a high-fat diet (HFD) induces gut dysbiosis and cardiovascular system remodeling, the precise mechanism is unclear. We hypothesize that HFD instigates dysbiosis and cardiac muscle remodeling by inducing matrix metalloproteinases (MMPs), which leads to an increase in white adipose tissue, and treatment with lactobacillus (a ketone body donor from lactate; the substrate for the mitochondria) reverses dysbiosis-induced cardiac injury, in part, by increasing lipolysis (PGC-1α, and UCP1) and adipose tissue browning and decreasing lipogenesis. To test this hypothesis, we used wild type (WT) mice fed with HFD for 16 weeks with/without a probiotic (PB) in water. Cardiac injury was measured by CKMB activity which was found to be robust in HFD-fed mice. Interestingly, CKMB activity was normalized post PB treatment. Levels of free fatty acids (FFAs) and methylation were increased but butyrate was decreased in HFD mice, suggesting an epigenetically governed 1-carbon metabolism along with dysbiosis. Levels of PGC-1α and UCP1 were measured by Western blot analysis, and MMP activity was scored via zymography. Collagen histology was also performed. Contraction of the isolated myocytes was measured employing the ion-optic system, and functions of the heart were estimated by echocardiography. Our results suggest that mice on HFD gained weight and exhibited an increase in blood pressure. These effects were normalized by PB. Levels of fibrosis and MMP-2 activity were robust in HFD mice, and treatment with PB mitigated the fibrosis. Myocyte calcium-dependent contraction was disrupted by HFD, and treatment with PB could restore its function. We conclude that HFD induces dysbiosis, and treatment with PB creates eubiosis and browning of the adipose tissue.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Shanna J Hardin
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Akash K George
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Wintana Eyob
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Dragana Stanisic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
6
|
Multi-organ damage by covid-19: congestive (cardio-pulmonary) heart failure, and blood-heart barrier leakage. Mol Cell Biochem 2021; 476:1891-1895. [PMID: 33483858 PMCID: PMC7822399 DOI: 10.1007/s11010-021-04054-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/09/2021] [Indexed: 12/23/2022]
Abstract
Corona virus disease-19 (covid-19) is caused by a coronavirus that is also known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and is generally characterized by fever, respiratory inflammation, and multi-organ failure in susceptible hosts. One of the first things during inflammation is the response by acute phase proteins coupled with coagulation. The angiotensinogen (a substrate for hypertension) is one such acute phase protein and goes on to explain an association of covid-19 with that of angiotensin-converting enzyme-2 (ACE2, a metallopeptidase). Therefore, it is advisable to administer, and test the efficacy of specific blocker(s) of angiotensinogen such as siRNAs or antibodies to covid-19 subjects. Covid-19 activates neutrophils, macrophages, but decreases T-helper cells activity. The metalloproteinases promote the activation of these inflammatory immune cells, therefore; we surmise that doxycycline (a metalloproteinase inhibitor, and a safer antibiotic) would benefit the covid-19 subjects. Along these lines, an anti-acid has also been suggested for mitigation of the covid-19 complications. Interestingly, there are three primary vegetables (celery, carrot, and long-squash) which are alkaline in their pH-range as compared to many others. Hence, treatment with fresh juice (without any preservative) from these vegies or the antioxidants derived from purple carrot and cabbage together with appropriate anti-coagulants may also help prevent or lessen the detrimental effects of the covid-19 pathological outcomes. These suggested remedies might be included in the list of putative interventions that are currently being investigated towards mitigating the multi-organ damage by Covid-19 during the ongoing pandemic.
Collapse
|
7
|
Tyagi SC, Stanisic D, Singh M. Epigenetic memory: gene writer, eraser and homocysteine. Mol Cell Biochem 2020; 476:507-512. [PMID: 33030620 DOI: 10.1007/s11010-020-03895-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
Naturally chromatin remodeling is highly organized, consisting of histone acetylation (opening/relaxation of the compact chromatin structure), DNA methylation (inhibition of the gene expression activity) and sequence rearrangement by shifting. All this is essentially required for proper "in-printing and off-printing" of genes thus ensuring the epigenetic memory process. Any imbalance in ratios of DNA methyltransferase (DNMT, gene writer), fat-mass obesity-associated protein (FTO, gene eraser) and product (function) homocysteine (Hcy) could lead to numerous diseases. Interestingly, a similar process also happens in stem cells during embryogenesis and development. Despite gigantic unsuccessful efforts undertaken thus far toward the conversion of a stem cell into a functional cardiomyocyte, there has been hardly any study that shows successful conversion of a stem cell into a multinucleated cardiomyocyte. We have shown nuclear hypertrophy during heart failure, however; the mechanism(s) of epigenetic memory, regulation of genes during fertilization, embryogenesis, development and during adulthood remain far from understanding. In addition, there may be a connection of aging, loosing of the memory leading to death, and presumably to reincarnation. This review highlights some of these pertinent issues facing the discipline of biology as a whole today.
Collapse
Affiliation(s)
- Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Dragana Stanisic
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.,Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia
| | - Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
8
|
George AK, Singh M, Pushpakumar S, Homme RP, Hardin SJ, Tyagi SC. Dysbiotic 1-carbon metabolism in cardiac muscle remodeling. J Cell Physiol 2019; 235:2590-2598. [PMID: 31489638 DOI: 10.1002/jcp.29163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022]
Abstract
Unless there is a genetic defect/mutation/deletion in a gene, the causation of a given disease is chronic dysregulation of gut metabolism. Most of the time, if not always, starts within the gut; that is what we eat. Recent research shows that the imbalance between good versus bad microbial population, especially in the gut, causes systemic diseases. Thus, an appropriate balance of the gut microbiota (eubiosis over dysbiosis) needs to be maintained for normal health (Veeranki and Tyagi, 2017, Journal of Cellular Physiology, 232, 2929-2930). However, during various diseases such as metabolic syndrome, inflammatory bowel disease, diabetes, obesity, and hypertension the dysbiotic gut environment tends to prevail. Our research focuses on homocysteine (Hcy) metabolism that occupies a center-stage in many biochemically relevant epigenetic mechanisms. For example, dysbiotic bacteria methylate promoters to inhibit gene activities. Interestingly, the product of the 1-carbon metabolism is Hcy, unequivocally. Emerging studies show that host resistance to various antibiotics occurs due to inverton promoter inhibition, presumably because of promoter methylation. This results from modification of host promoters by bacterial products leading to loss of host's ability to drug compatibility and system sensitivity. In this study, we focus on the role of high methionine diet (HMD), an ingredient rich in red meat and measure the effects of a probiotic on cardiac muscle remodeling and its functions. We employed wild type (WT) and cystathionine beta-synthase heterozygote knockout (CBS+/- ) mice with and without HMD and with and without a probiotic; PB (Lactobacillus) in drinking water for 16 weeks. Results indicate that matrix metalloproteinase-2 (MMP-2) activity was robust in CBS+/- fed with HMD and that it was successfully attenuated by the PB treatment. Cardiomyocyte contractility and ECHO data revealed mitigation of the cardiac dysfunction in CBS+/- + HMD mice treated with PB. In conclusion, our data suggest that probiotics can potentially reverse the Hcy-meditated cardiac dysfunction.
Collapse
Affiliation(s)
- Akash K George
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - S Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Rubens P Homme
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Shanna J Hardin
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
9
|
Mechanisms of I/R-Induced Endothelium-Dependent Vasodilator Dysfunction. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:331-364. [PMID: 29310801 DOI: 10.1016/bs.apha.2017.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ischemia/reperfusion (I/R) induces leukocyte/endothelial cell adhesive interactions (LECA) in postcapillary venules and impaired endothelium-dependent, NO-mediated dilatory responses (EDD) in upstream arterioles. A large body of evidence has implicated reactive oxygen species, adherent leukocytes, and proteases in postischemic EDD dysfunction in conduit arteries. However, arterioles represent the major site for the regulation of vascular resistance but have received less attention with regard to the mechanisms underlying their reduced responsiveness to EDD stimuli in I/R. Even though leukocytes do not roll along, adhere to, or emigrate across arteriolar endothelium in postischemic intestine, recent work indicates that I/R-induced venular LECA is causally linked to EDD in arterioles. An emerging body of evidence suggests that I/R-induced EDD in arterioles occurs by a mechanism that is triggered by LECA in postcapillary venules and involves the formation of signals in the interstitium elicited by the proteolytic activity of emigrated leukocytes. This activity releases matricryptins from or exposes matricryptic sites in the extracellular matrix that interact with the integrin αvβ3 to induce mast cell chymase-dependent formation of angiotensin II (Ang II). Subsequent activation of NAD(P)H oxidase by Ang II leads to the formation of oxidants which inactivate NO and leads to eNOS uncoupling, resulting in arteriolar EDD dysfunction. This work establishes new links between LECA in postcapillary venules, signals generated in the interstitium by emigrated leukocytes, mast cell degranulation, and impaired EDD in upstream arterioles. These fundamentally important findings have enormous implications for our understanding of blood flow dysregulation in conditions characterized by I/R.
Collapse
|
10
|
Veeranki S, Tyagi SC. Dysbiosis and Disease: Many Unknown Ends, Is It Time to Formulate Guidelines for Dysbiosis Research? J Cell Physiol 2017; 232:2929-2930. [PMID: 27925191 DOI: 10.1002/jcp.25719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 11/08/2022]
Abstract
Dysbiosis has been implicated in modulation of disease and treatment outcome. It also has been linked to the reproducibility concerns. However, research community needs guidelines on animal models and dysbiosis research to tackle the complexities associated with it. There is a necessity for multi-disciplinary collaborative approach in setting up certain guidelines to hasten the dysbiosis research in a hassle-free manner. J. Cell. Physiol. 232: 2929-2930, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
11
|
Riba A, Deres L, Eros K, Szabo A, Magyar K, Sumegi B, Toth K, Halmosi R, Szabados E. Doxycycline protects against ROS-induced mitochondrial fragmentation and ISO-induced heart failure. PLoS One 2017; 12:e0175195. [PMID: 28384228 PMCID: PMC5383248 DOI: 10.1371/journal.pone.0175195] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/22/2017] [Indexed: 11/18/2022] Open
Abstract
In addition to their anti-bacterial action, tetracyclines also have complex biological effects, including the modification of mitochondrial protein synthesis, metabolism and gene-expression. Long-term clinical studies have been performed using tetracyclines, without significant side effects. Previous studies demonstrated that doxycycline (DOX), a major tetracyclin antibiotic, exerted a protective effect in animal models of heart failure; however, its exact molecular mechanism is still unknown. Here, we provide the first evidence that DOX reduces oxidative stress-induced mitochondrial fragmentation and depolarization in H9c2 cardiomyocytes and beneficially alters the expression of Mfn-2, OPA-1 and Drp-1 -the main regulators of mitochondrial fusion and fission-in our isoproterenol (ISO)-induced heart failure model, ultimately decreasing the severity of heart failure. In mitochondria, oxidative stress causes a shift toward fission which leads to mitochondrial fragmentation and cell death. Protecting mitochondria from oxidative stress, and the regulation of mitochondrial dynamics by drugs that shift the balance toward fusion, could be a novel therapeutic approach for heart failure. On the basis of our findings, we raise the possibility that DOX could be a novel therapeutic agent in the future treatment of heart failure.
Collapse
Affiliation(s)
- Adam Riba
- 1st Department of Medicine, University of Pecs, Pécs, Hungary
- Szentagothai ResearchCenter, University of Pecs, Pécs, Hungary
| | - Laszlo Deres
- 1st Department of Medicine, University of Pecs, Pécs, Hungary
- Szentagothai ResearchCenter, University of Pecs, Pécs, Hungary
| | - Krisztian Eros
- 1st Department of Medicine, University of Pecs, Pécs, Hungary
- Szentagothai ResearchCenter, University of Pecs, Pécs, Hungary
| | - Aliz Szabo
- Department of Biochemistry and Medical Chemistry, University of Pecs, Pécs, Hungary
| | - Klara Magyar
- 1st Department of Medicine, University of Pecs, Pécs, Hungary
- Szentagothai ResearchCenter, University of Pecs, Pécs, Hungary
| | - Balazs Sumegi
- Szentagothai ResearchCenter, University of Pecs, Pécs, Hungary
- Department of Biochemistry and Medical Chemistry, University of Pecs, Pécs, Hungary
- MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Pécs, Hungary
| | - Kalman Toth
- 1st Department of Medicine, University of Pecs, Pécs, Hungary
- Department of Biochemistry and Medical Chemistry, University of Pecs, Pécs, Hungary
- MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Pécs, Hungary
| | - Robert Halmosi
- 1st Department of Medicine, University of Pecs, Pécs, Hungary
- Szentagothai ResearchCenter, University of Pecs, Pécs, Hungary
| | - Eszter Szabados
- 1st Department of Medicine, University of Pecs, Pécs, Hungary
- Szentagothai ResearchCenter, University of Pecs, Pécs, Hungary
| |
Collapse
|
12
|
Matrix Metalloproteinases in Myocardial Infarction and Heart Failure. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:75-100. [PMID: 28413032 DOI: 10.1016/bs.pmbts.2017.02.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease is the leading cause of death, accounting for 600,000 deaths each year in the United States. In addition, heart failure accounts for 37% of health care spending. Matrix metalloproteinases (MMPs) increase after myocardial infarction (MI) and correlate with left ventricular dysfunction in heart failure patients. MMPs regulate the remodeling process by facilitating extracellular matrix turnover and inflammatory signaling. Due to the critical role MMPs play during cardiac remodeling, there is a need to better understand the pathophysiological mechanism of MMPs, including the biological function of the downstream products of MMP proteolysis. Future studies developing new therapeutic targets that inhibit specific MMP actions to limit the development of heart failure post-MI are warranted. This chapter focuses on the role of MMPs post-MI, the efficiency of MMPs as biomarkers for MI or heart failure, and the future of MMPs and their cleavage products as targets for prevention of post-MI heart failure.
Collapse
|
13
|
Hughes BG, Schulz R. Targeting MMP-2 to treat ischemic heart injury. Basic Res Cardiol 2014; 109:424. [PMID: 24986221 DOI: 10.1007/s00395-014-0424-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/23/2014] [Indexed: 10/24/2022]
Abstract
Matrix metalloproteinase (MMPs) are long understood to be involved in remodeling of the extracellular matrix. However, over the past decade, it has become clear that one of the most ubiquitous MMPs, MMP-2, has numerous intracellular targets in cardiac myocytes. Notably, MMP-2 proteolyzes components of the sarcomere, and its intracellular activity contributes to ischemia-reperfusion injury of the heart. Together with the well documented role played by MMPs in the myocardial remodeling that occurs following myocardial infarction, this has led to great interest in targeting MMPs to treat cardiac ischemic injury. In this review we will describe the expanding understanding of intracellular MMP-2 biology, and how this knowledge may lead to improved treatments for ischemic heart injury. We also critically review the numerous preclinical studies investigating the effects of MMP inhibition in animal models of myocardial infarction and ischemia-reperfusion injury, as well as the recent clinical trials that are part of the effort to translate these results into clinical practice. Acknowledging the disappointing results of past clinical trials of MMP inhibitors for other diseases, we discuss the need for carefully designed preclinical and clinical studies to avoid mistakes that have been previously made. We conclude that inhibition of MMPs, and in particular MMP-2, shows promise as a therapy to prevent the progression from ischemic injury to heart failure. However, it is critical that the full breadth of MMP-2 biology be taken into account as such therapies are developed.
Collapse
Affiliation(s)
- Bryan G Hughes
- Departments of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute/Cardiovascular Research Centre, University of Alberta, 4-62 HMRC, Edmonton, AB, T6G 2S2, Canada
| | | |
Collapse
|
14
|
Ma Y, de Castro Brás LE, Toba H, Iyer RP, Hall ME, Winniford MD, Lange RA, Tyagi SC, Lindsey ML. Myofibroblasts and the extracellular matrix network in post-myocardial infarction cardiac remodeling. Pflugers Arch 2014; 466:1113-27. [PMID: 24519465 PMCID: PMC4033805 DOI: 10.1007/s00424-014-1463-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 01/27/2014] [Indexed: 01/17/2023]
Abstract
The cardiac extracellular matrix (ECM) fills the space between cells, supports tissue organization, and transduces mechanical, chemical, and biological signals to regulate homeostasis of the left ventricle (LV). Following myocardial infarction (MI), a multitude of ECM proteins are synthesized to replace myocyte loss and form a reparative scar. Activated fibroblasts (myofibroblasts) are the primary source of ECM proteins, thus playing a key role in cardiac repair. A balanced turnover of ECM through regulation of synthesis by myofibroblasts and degradation by matrix metalloproteinases (MMPs) is critical for proper scar formation. In this review, we summarize the current literature on the roles of myofibroblasts, MMPs, and ECM proteins in MI-induced LV remodeling. In addition, we discuss future research directions that are needed to further elucidate the molecular mechanisms of ECM actions to optimize cardiac repair.
Collapse
Affiliation(s)
- Yonggang Ma
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX USA
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
| | - Lisandra E. de Castro Brás
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX USA
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
| | - Hiroe Toba
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX USA
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
- Department of Clinical Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Rugmani Padmanabhan Iyer
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX USA
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
| | - Michael E. Hall
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX USA
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
- Cardiology Division, University of Mississippi Medical Center, Jackson, MS USA
| | - Michael D. Winniford
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX USA
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
- Cardiology Division, University of Mississippi Medical Center, Jackson, MS USA
| | - Richard A. Lange
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Suresh C. Tyagi
- Department of Physiology and Biophysics, University of Louisville, Louisville, KY USA
| | - Merry L. Lindsey
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX USA
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
- Research and Medicine Services, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216-4505 USA
| |
Collapse
|
15
|
Zhang Y, Huang XR, Wei LH, Chung AC, Yu CM, Lan HY. miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-β/Smad3 signaling. Mol Ther 2014; 22:974-85. [PMID: 24569834 DOI: 10.1038/mt.2014.25] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 02/10/2014] [Indexed: 12/17/2022] Open
Abstract
Loss of miR-29 is associated with cardiac fibrosis. This study examined the role and therapeutic potential of miR-29 in mouse model of hypertension induced by angiotensin II (AngII). By using microRNA microarray, in situ hybridization, and real-time polymerase chain reaction, we found that AngII-induced cardiac fibrosis in the hypertensive heart and in cultured cardiac fibroblasts were associated with downregulation of miR-29a-c via a Smad3-dependent mechanism. In vitro knockdown of miR-29b enhanced but overexpression of miR-29b inhibited AngII-induced fibrosis, revealing a protective role of miR-29b in cardiac fibrosis in response to AngII. This was further demonstrated in vivo by the ability of overexpressing miR-29b in the mouse heart to prevent AngII-mediated cardiac fibrosis and cardiac dysfunction. Importantly, we also found that restored miR-29b in the established hypertensive heart was capable of blocking progressive cardiac fibrosis and improving cardiac dysfunction, demonstrating a therapeutic potential of miR-29b for chronic heart disease. Further studies revealed that targeting the transforming growth factor (TGF)-β1 coding sequence region, thereby inhibiting TGF-β/Smad3 signaling, could be a new mechanism by which miR-29b inhibited AngII-induced cardiac fibrosis. In conclusion, miR-29b plays a protective role in AngII-mediated cardiac remodeling and may be a therapeutic agent for cardiac fibrosis by targeting the TGF-β/Smad3 pathway.
Collapse
Affiliation(s)
- Yang Zhang
- 1] Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China [2] Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- 1] Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China [2] Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Li-Hua Wei
- 1] Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China [2] Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Arthur Ck Chung
- 1] Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China [2] Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Cheuk-Man Yu
- 1] Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China [2] Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui-Yao Lan
- 1] Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China [2] Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Hori Y, Kashimoto T, Yonezawa T, Sano N, Saitoh R, Igarashi S, Chikazawa S, Kanai K, Hoshi F, Itoh N, Higuchi SI. Matrix metalloproteinase-2 stimulates collagen-I expression through phosphorylation of focal adhesion kinase in rat cardiac fibroblasts. Am J Physiol Cell Physiol 2012; 303:C947-53. [PMID: 22914642 DOI: 10.1152/ajpcell.00401.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Collagen-I is thought to be the main component of the extracellular matrix in cardiac fibrosis, the accumulation of which occurs with excessive activation of matrix metalloproteinase-2 (MMP-2). MMP-2 degrades the extracellular matrix; however, the relative importance of MMP-2 to collagen-I synthesis in cardiac fibroblasts remains unclear. We investigated whether extracellular activation of MMP-2 regulates collagen-I synthesis and phosphorylation of focal adhesion kinase (FAK) in rat cardiac fibroblasts. Primary cultures of rat cardiac fibroblasts were incubated with purified active MMP-2 to determine whether extracellular MMP-2 affects collagen-I synthesis and FAK phosphorylation in cardiac fibroblasts. Exogenous MMP-2 significantly stimulated FAK (Tyr397) phosphorylation and induced collagen-I expression in a time-dependent manner. Simultaneous treatment with the FAK inhibitor PF573228 abolished exogenous MMP-2-enhanced FAK (Tyr397) phosphorylation and collagen-I expression. Cells were then stimulated with norepinephrine (NE) to investigate whether endogenous MMP-2 could also induce collagen-I expression through FAK (Tyr397) phosphorylation. NE-stimulated endogenous MMP-2 activation in conditioned medium was significantly attenuated by simultaneous treatment with the MMP inhibitor PD166793. Similarly, NE-induced FAK (Tyr397) phosphorylation and collagen-I expression were significantly inhibited by simultaneous treatment with PD166793 or PF573228. Furthermore, MMP-2 knockdown induced by small interfering RNA (siRNA) significantly abolished endogenous MMP-2 expression and activation. MMP-2 siRNA significantly abolished NE-induced FAK (Tyr397) phosphorylation and collagen-I expression. These findings suggest that the extracellular activation of MMP-2 accelerated collagen-I synthesis in rat cardiac fibroblasts and that FAK phosphorylation (Tyr397) plays a pivotal role in MMP-2-stimulated collagen-I synthesis.
Collapse
Affiliation(s)
- Yasutomo Hori
- Dept. of Small Animal Internal Medicine, School of Veterinary Medicine, Kitasato Univ., 23-35-1 Higashi, Towada, Aomori 034-8628, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hori Y, Yoshioka K, Kanai K, Hoshi F, Itoh N, Higuchi SI. Spironolactone decreases isoproterenol-induced ventricular fibrosis and matrix metalloproteinase-2 in rats. Biol Pharm Bull 2011; 34:61-5. [PMID: 21212518 DOI: 10.1248/bpb.34.61] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although transregulation between the sympathetic nervous system and the renin-angiotensin-aldosterone system has been reported, it remains unclear whether sympathetic hyperactivity-induced matrix metalloproteinease (MMP) expression/activity and cardiac fibrosis are mediated by the mineralocorticoid receptor system. We investigated whether isoproterenol (ISO)-induced MMP expression/activity and cardiac fibrosis are mediated by spironolactone in rats. Male Wistar Kyoto rats were divided into 3 groups: control, ISO, and ISO combined with spironolactone (SPI). ISO (2.0 mg/kg/d) and/or SPI (40 mg/kg/d) were given for 14 d. Echocardiography and hemodynamic measurements were recorded and hearts were excised. The myocyte cross-sectional and fibrotic area was evaluated via histopathological analysis. MMP-2 and collagen-I were analyzed by Western blotting and zymography. Compared with the controls, ISO significantly elevated the end-diastolic left ventricular (LV) pressure and the time constant of isovolumic relaxation and decreased the -dP/dt, while those of SPI co-treatment did not. ISO treatment induced significant increases in the fractional shortening and relative wall thickness, whereas SPI co-treatment significantly decreased relative wall thickness. Similarly, ISO significantly increased LV weight and myocyte cross-sectional and fibrotic area, which occurred concomitantly with the MMP-2 expression/activity and the expression of collagen-I. Moreover, ISO induced these features were significantly attenuated by SPI co-treatment. Our results suggest that ISO-evoked sympathetic hyperactivity induced LV fibrosis and MMP-2, which may be partially controlled via the mineralocorticoid receptor system.
Collapse
Affiliation(s)
- Yasutomo Hori
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034–8628, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Castro MM, Tanus-Santos JE, Gerlach RF. Matrix metalloproteinases: targets for doxycycline to prevent the vascular alterations of hypertension. Pharmacol Res 2011; 64:567-72. [PMID: 21514386 DOI: 10.1016/j.phrs.2011.04.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypertension is associated with well known structural and functional alterations in both resistance and conduit arteries, which may be the result from long-lasting high blood pressure and may also be the cause of maintained hypertension and its complications. Therefore, in addition to lowering blood pressure, therapeutic strategies targeting the structural and functional modifications found in hypertensive patients may prevent the cardiovascular events and decrease the death rates associated with hypertension. Mounting evidence indicates that many vascular alterations associated with sustained hypertension are due to imbalanced matrix metalloproteinases (MMPs), a family of zinc-endopeptidases that degrade not only proteins of extracellular matrix (ECM) but several other substrates. Recent observations showed that abnormal MMP activity is a feature of the pathogenesis of hypertension and other diseases, thus justifying the development of drugs aiming at MMP downregulation. This review focuses on the extracellular actions of MMPs in hypertension-induced chronic vascular alterations. We then discuss the effects of MMP inhibitors, especially doxycycline, on the vascular changes associated with hypertension. There is now strong evidence that MMP inhibition with doxycycline (and maybe other MMP inhibitors) may attenuate the functional and structural alterations associated with hypertension, including increases in arterial stiffness. These beneficial effects may be, at least in part, independent of their antihypertensive effects.
Collapse
Affiliation(s)
- Michele M Castro
- Department of Pharmacology, Cardiovascular Research Centre, 4-62 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | |
Collapse
|
19
|
Hori Y, Kunihiro SI, Sato S, Yoshioka K, Hara Y, Kanai K, Hoshi F, Itoh N, Higuchi S. Doxycycline attenuates isoproterenol-induced myocardial fibrosis and matrix metalloproteinase activity in rats. Biol Pharm Bull 2010; 32:1678-82. [PMID: 19801827 DOI: 10.1248/bpb.32.1678] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our objective was to investigate the effects of doxycycline, a matrix metalloproteinase (MMP) inhibitor (MMPi) on beta-agonist-induced myocardial fibrosis and MMP expression. Twenly-four Wistar-Kyoto rats were divided into 3 groups: control (CTL; n=8), isoproterenol (ISO; n=8), and isoproterenol with doxycycline (ISO+DOX; n=8). ISO and ISO+DOX rats received L-isoproterenol (2.0 mg/kg/d) for 14 d, whereas the CTL group received vehicle. In addition, ISO+DOX rats received a subcutaneous injection of doxycycline (25 mg/kg/d) for 14 d, whereas CTL and ISO rats were injected with saline. Cardiac fibrosis was evaluated via histopathological analysis. MMP-2 and -9 were analyzed by Western blotting and zymography. Compared to the control, the myocardial cross-sectional area and areas of fibrosis were increased significantly in the ISO group, but were attenuated in the ISO+DOX group. MMP-2 activity also increased significantly in the ISO group, but decreased in the ISO+DOX group. Similarly, immunoblotting showed significant increase in MMP-2 and -9 levels in the ISO group, and decreased levels in the ISO+DOX group. Our results suggest that the enhanced expression of MMPs plays a prominent role in promoting myocardial fibrosis in beta-agonist signaling pathway, and that MMP-inhibiting compounds may attenuate myocardial fibrosis.
Collapse
Affiliation(s)
- Yasutomo Hori
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) Is Increased in Human Left Ventricle after Acute Myocardial Infarction. Arch Med Res 2009; 40:605-11. [DOI: 10.1016/j.arcmed.2009.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 08/19/2009] [Indexed: 12/30/2022]
|
21
|
Castro MM, Rizzi E, Rodrigues GJ, Ceron CS, Bendhack LM, Gerlach RF, Tanus-Santos JE. Antioxidant treatment reduces matrix metalloproteinase-2-induced vascular changes in renovascular hypertension. Free Radic Biol Med 2009; 46:1298-307. [PMID: 19248829 DOI: 10.1016/j.freeradbiomed.2009.02.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 02/06/2009] [Accepted: 02/10/2009] [Indexed: 02/07/2023]
Abstract
Mounting evidence indicates that structural and functional vascular changes associated with two-kidney, one-clip (2K-1C) hypertension result, at least in part, from altered activity of matrix metalloproteinases (MMPs). Because MMPs are upregulated by increased formation of reactive oxygen species (ROS), we hypothesized that antioxidant approaches could attenuate the increases in MMP-2 expression/activity and the vascular dysfunction and remodeling associated with 2K-1C hypertension. Sham-operated or 2K-1C hypertensive rats were treated with tempol 18 mg/kg/day or apocyanin 25 mg/kg/day (or vehicle). Systolic blood pressure was monitored weekly. After 8 weeks of treatment, aortic rings were isolated to assess endothelium-dependent and -independent relaxation. Quantitative morphometry of structural changes in the aortic wall was studied in hematoxylin/eosin sections. Aortic and systemic ROS levels were measured using dihydroethidine and thiobarbituric acid-reactive substances, respectively. Aortic MMP-2 levels and activity were determined by gelatin and in situ zymography, fluorimetry, and immunohistochemistry. Tempol and apocyanin attenuated 2K-1C hypertension (181+/-20.8 and 192+/-17.6 mm Hg, respectively, versus 213+/-18 mm Hg in hypertensive controls; both p<0.05) and prevented the reduction in endothelium-dependent vasorelaxation found in 2K-1C rats. Tempol, but not apocyanin (p>0.05), prevented the vascular remodeling found in 2K-1C rats (all p<0.01). Tempol was more effective than apocyanin in attenuating hypertension-induced increases in oxidative stress (both p<0.05), MMP-2 levels, and MMP-2 activity in hypertensive rats (all p<0.05). Our results suggest that antioxidant approaches decrease MMP-2 upregulation and attenuate the vascular dysfunction and remodeling during 2K-1C hypertension.
Collapse
Affiliation(s)
- Michele M Castro
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
22
|
Castro MM, Rizzi E, Figueiredo-Lopes L, Fernandes K, Bendhack LM, Pitol DL, Gerlach RF, Tanus-Santos JE. Metalloproteinase inhibition ameliorates hypertension and prevents vascular dysfunction and remodeling in renovascular hypertensive rats. Atherosclerosis 2008; 198:320-31. [DOI: 10.1016/j.atherosclerosis.2007.10.011] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 10/08/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
|
23
|
Siwik DA, Kuster GM, Brahmbhatt JV, Zaidi Z, Malik J, Ooi H, Ghorayeb G. EMMPRIN mediates β-adrenergic receptor-stimulated matrix metalloproteinase activity in cardiac myocytes. J Mol Cell Cardiol 2008; 44:210-7. [PMID: 17869266 DOI: 10.1016/j.yjmcc.2007.07.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/06/2007] [Accepted: 07/17/2007] [Indexed: 01/08/2023]
Abstract
Extracellular matrix metalloproteinase inducer (EMMPRIN) expression is increased in myocardium from patients with dilated cardiomyopathy and animal models of heart failure. However, little is known about the regulated expression or functional role of EMMPRIN in the myocardium. In rat cardiac cells, EMMPRIN is expressed on myocytes but not endothelial cells or fibroblasts. Therefore, we tested the hypothesis that EMMPRIN expression regulates matrix metalloproteinase (MMP) activity in rat ventricular myocytes in vitro. In adult rat ventricular myocytes (ARVM), beta-adrenergic receptor (betaAR) stimulation and H(2)O(2) (24 h) each increased EMMPRIN expression as assessed by immunoblotting. Pretreatment with a catalase/superoxide dismutase mimetic or adenoviral-mediated expression of catalase or a dominant-negative c-jun N-terminal kinase-1 (JNK) mutant inhibited the betaAR- and H(2)O(2)-stimulated increases in EMMPRIN expression suggesting that EMMPRIN expression is regulated via a reactive oxygen species-dependent JNK pathway. To determine whether EMMPRIN expression regulates matrix metalloproteinase (MMP) activity, EMMPRIN activity was inhibited by adenoviral expression of an inhibitory mutant of EMMPRIN. Expression of mutant EMMPRIN inhibited the betaAR-stimulated increases in MMP2 expression and zymographic MMP activity. Thus, in cardiac myocytes betaAR stimulation induces the expression of EMMPRIN via the ROS-dependent activation of JNK. The resulting increase in EMMPRIN activity stimulates MMP expression and activity. These findings suggest that in the myocardium the regulated expression of EMMPRIN is a determinant of MMP activity and may thus play a role in myocardial remodeling.
Collapse
Affiliation(s)
- Deborah A Siwik
- Myocardial Biology Unit, Boston University School of Medicine, 650 Albany Street, X740, Boston, MA 02118, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Gueders MM, Bertholet P, Perin F, Rocks N, Maree R, Botta V, Louis R, Foidart JM, Noel A, Evrard B, Cataldo DD. A novel formulation of inhaled doxycycline reduces allergen-induced inflammation, hyperresponsiveness and remodeling by matrix metalloproteinases and cytokines modulation in a mouse model of asthma. Biochem Pharmacol 2007; 75:514-26. [PMID: 17950252 DOI: 10.1016/j.bcp.2007.09.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 09/11/2007] [Indexed: 11/17/2022]
Abstract
BACKGROUND In this study, we assess the effectiveness of inhaled doxycycline, a tetracycline antibiotic displaying matrix metalloproteinases (MMP) inhibitory effects to prevent allergen-induced inflammation, hyperresponsiveness and remodeling. MMPs play key roles in the complex cascade of events leading to asthmatic phenotype. METHODS Doxycycline was administered by aerosols by the mean of a novel formulation as a complex with hydroxypropyl-gamma-cyclodextrin (HP-gamma-CD) used as an excipient. BALB/c mice (n=16-24 in each group) were sensitized and exposed to aerosolized ovalbumin (OVA) from day 21 to 27 (short-term exposure protocol) or 5 days/odd weeks from day 22 to 96 (long-term exposure protocol). RESULTS In the short-term exposure model, inhaled doxycycline decreased allergen-induced eosinophilic inflammation in bronchoalveolar lavage (BAL) and in peribronchial areas, as well as airway hyperresponsiveness. In lung tissue, exposure to doxycycline via inhaled route induced a fourfold increase in IL-10 levels, a twofold decrease in IL-5, IL-13 levels and diminished MMP-related proteolysis and the proportion of activated MMP-9 as compared to placebo. In the long-term exposure model, inhaled doxycycline significantly decreased the extent of glandular hyperplasia, airway wall thickening, smooth muscle hyperplasia and subepithelial collagen deposition which are well recognized features of airway remodeling. CONCLUSION Doxycycline administered by aerosols decreases the allergen-induced airway inflammation and hyperresponsiveness and inhibits the development of bronchial remodeling in a mouse model of asthma by modulation of cytokines production and MMP activity.
Collapse
Affiliation(s)
- Maud M Gueders
- Department of Pneumology, GIGA research, Liège and Centre Hospitalier Universitaire de Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Phatharajaree W, Phrommintikul A, Chattipakorn N. Matrix metalloproteinases and myocardial infarction. Can J Cardiol 2007; 23:727-33. [PMID: 17622396 PMCID: PMC2651917 DOI: 10.1016/s0828-282x(07)70818-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Acute myocardial infarction (AMI) is currently one of the most important health problems in many countries around the world. Following AMI, many cytokines and proteolytic enzymes are released. Among these, matrix metalloproteinases (MMPs) are important proteolytic enzymes that lead to degradation of the extracellular matrix and to changes in cardiomyocytes in both infarcted and noninfarcted myocardium. This process is known as cardiac remodelling. It has been demonstrated that more than one type of MMP is present in the circulation after cardiomyocyte injury. A number of studies have demonstrated the correlations between these MMP levels and the severity of a coronary lesion, the progression of left ventricular dimension and the survival rate following AMI in both animal and human studies. MMPs have also been proposed as a possible novel prognostic indicator for myocardial infarction patients. Although the use of MMP inhibitors to improve cardiac outcome in AMI patients has been investigated, discrepancies in the results from those studies indicate that further research is still needed to warrant their beneficial effects. In the present review article, the roles of MMPs as prognostic indicators, as well as the factors influencing MMP expression, are discussed. Current findings on the role of MMP inhibitors in cardiac remodelling and the prognosis after AMI in both animal models and clinical studies are also examined.
Collapse
Affiliation(s)
| | - Arintaya Phrommintikul
- Department of Medicine
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Chiang Mai, Thailand
- Correspondence: Dr Nipon Chattipakorn, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand. Telephone 66-53-945329, fax 66-53-945329, e-mail
| |
Collapse
|
26
|
Tessone A, Feinberg MS, Barbash IM, Reich R, Holbova R, Richmann M, Mardor Y, Leor J. Effect of Matrix Metalloproteinase Inhibition by Doxycycline on Myocardial Healing and Remodeling after Myocardial Infarction. Cardiovasc Drugs Ther 2006; 19:383-90. [PMID: 16435072 DOI: 10.1007/s10557-005-5201-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of conducting this study was to assess the clinical relevance of matrix metalloproteinase (MMP) inhibition by doxycycline, an effective MMP inhibitor, in a rat model of extensive myocardial infarction (MI) and left ventricular (LV) dysfunction. Rats (n = 22) were subjected to extensive anterior MI. Doxycycline (25 mg SC, daily) or saline (control) injections were started for nine days thereafter. The effect of doxycycline on MMP activity in the infarcted and remote myocardium was measured by zymography, in another subgroup (n = 8), nine days after MI. Echocardiography and magnetic resonance imaging (MRI) studies were performed at one and thirty days after MI to assess LV remodeling and function. After 4 weeks, hearts were fixed, and subjected to morphometric and histological analysis. Compared with control, doxycycline treatment attenuated MMP-9 and -2 activity in both infarcted and remote myocardium. Serial echocardiography studies showed that doxycycline failed to attenuate scar thinning, LV dilatation and dysfunction. MRI study showed that doxycycline impaired LV compensatory hypertrophy. Furthermore, compared with control, doxycycline reduced vessel density (/mm(2) +/- SEM) in the infarcted myocardium (84 +/- 16 vs. 46 +/- 9/mm(2), respectively; p < 0.05). Our work suggest that effective MMPs' inhibition in the infarcted and remote myocardium by doxycycline does not prevent LV remodeling and dysfunction but impairs angiogenesis and compensatory LV hypertrophy. Our findings caution against aggressive, non-selective inhibition of MMPs in the early healing phase after MI.
Collapse
Affiliation(s)
- Ariel Tessone
- Neufeld Cardiac Research Institute, Sheba Medical Center, Tel-Aviv University, Tel Hashomer, Israel
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Pacher P, Schulz R, Liaudet L, Szabó C. Nitrosative stress and pharmacological modulation of heart failure. Trends Pharmacol Sci 2005; 26:302-10. [PMID: 15925705 PMCID: PMC2228264 DOI: 10.1016/j.tips.2005.04.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 03/21/2005] [Accepted: 04/19/2005] [Indexed: 11/16/2022]
Abstract
Dysregulation of nitric oxide (NO) and increased oxidative and nitrosative stress are implicated in the pathogenesis of heart failure. Peroxynitrite is a reactive oxidant that is produced from the reaction of nitric oxide with superoxide anion and impairs cardiovascular function through multiple mechanisms, including activation of matrix metalloproteinases (MMPs) and nuclear enzyme poly(ADP-ribose) polymerase (PARP). Recent studies suggest that the neutralization of peroxynitrite or pharmacological inhibition of MMPs and PARP are promising new approaches in the experimental therapy of various forms of myocardial injury. In this article, the role of nitrosative stress and downstream mechanisms, including activation of MMPs and PARP, in various forms of heart failure are discussed and novel emerging therapeutic strategies offered by neutralization of peroxynitrite and inhibition of MMPs and PARP in these pathophysiological conditions are reviewed.
Collapse
Affiliation(s)
- Pal Pacher
- Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane MSC 9413, Room 2S24, Bethesda, MD 20892-9413, USA.
| | | | | | | |
Collapse
|