1
|
Qin J, Hu C, Cao X, Gao J, Chen Y, Yan M, Chen J. Development and validation of a nomogram model to predict primary graft dysfunction in patients after lung transplantation based on the clinical factors. Clin Transplant 2023; 37:e15039. [PMID: 37256785 DOI: 10.1111/ctr.15039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Primary graft dysfunction (PGD), a significant complication that can affect patients' prognosis and quality of life, develops within 72 h post lung transplantation (LTx). Early detection and prevention of PGD should be given special consideration. The purpose of this study was to create a clinical prediction model to forecast the occurrence of PGD. METHODS We collected information on 622 LTx patients from Wuxi People's Hospital from 2016 to 2020 and used the data to construct the prediction model. Information on 224 patients from 2021 to June 2022 was used for external validation. We used LASSO regression for variable screening. A nomogram was developed for model presentation. Distinctness, fit, and calibration were used to evaluate the performance of the model. RESULTS Subjects with respiratory failure, who received fresh frozen plasma, donor age, donor gender, donor mechanism of death, donor smoking, donor ventilator use time, and donor PaO 2/FiO 2 ratio were independent predictor variables for the occurrence of PGD. The area under the curve of the nomogram was .779. The Hosmer-Lemeshow test showed a good model fit (P = .158). The calibration curve of the nomogram is fairly close to the ideal diagonal. Moreover, the decision curve analysis revealed a positive net benefit of the model. External validation also confirmed the reliability of the model. CONCLUSIONS The nomogram of PGD based on clinical risk factors in postoperative LTx patients was established with high reliability. It provides clinicians and nurses with a new and effective tool for early prediction of PGD and early intervention.
Collapse
Affiliation(s)
- Jianan Qin
- School of Nursing, Fudan University, Shanghai, China
- Operation Department, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Chunxiao Hu
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xiaodong Cao
- Department of Nursing, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jian Gao
- Department of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Chen
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Meiqiong Yan
- Department of Nursing, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingyu Chen
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
2
|
Avtaar Singh SS, Das De S, Al-Adhami A, Singh R, Hopkins PMA, Curry PA. Primary graft dysfunction following lung transplantation: From pathogenesis to future frontiers. World J Transplant 2023; 13:58-85. [PMID: 36968136 PMCID: PMC10037231 DOI: 10.5500/wjt.v13.i3.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/11/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Lung transplantation is the treatment of choice for patients with end-stage lung disease. Currently, just under 5000 lung transplants are performed worldwide annually. However, a major scourge leading to 90-d and 1-year mortality remains primary graft dysfunction. It is a spectrum of lung injury ranging from mild to severe depending on the level of hypoxaemia and lung injury post-transplant. This review aims to provide an in-depth analysis of the epidemiology, patho physiology, risk factors, outcomes, and future frontiers involved in mitigating primary graft dysfunction. The current diagnostic criteria are examined alongside changes from the previous definition. We also highlight the issues surrounding chronic lung allograft dysfunction and identify the novel therapies available for ex-vivo lung perfusion. Although primary graft dysfunction remains a significant contributor to 90-d and 1-year mortality, ongoing research and development abreast with current technological advancements have shed some light on the issue in pursuit of future diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Sanjeet Singh Avtaar Singh
- Department of Cardiothoracic Surgery, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, United Kingdom
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Sudeep Das De
- Heart and Lung Transplant Unit, Wythenshawe Hospital, Manchester M23 9NJ, United Kingdom
| | - Ahmed Al-Adhami
- Department of Cardiothoracic Surgery, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, United Kingdom
- Department of Heart and Lung Transplant, Royal Papworth Hospital, Cambridge CB2 0AY, United Kingdom
| | - Ramesh Singh
- Mechanical Circulatory Support, Inova Health System, Falls Church, VA 22042, United States
| | - Peter MA Hopkins
- Queensland Lung Transplant Service, Prince Charles Hospital, Brisbane, QLD 4032, Australia
| | - Philip Alan Curry
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Glasgow G81 4DY, United Kingdom
| |
Collapse
|
3
|
Chang SH, Chan J, Patterson GA. History of Lung Transplantation. Clin Chest Med 2023; 44:1-13. [PMID: 36774157 DOI: 10.1016/j.ccm.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Lung transplantation remains the only available therapy for many patients with end-stage lung disease. The number of lung transplants performed has increased significantly, but development of the field was slow compared with other solid-organ transplants. This delayed growth was secondary to the increased complexity of transplanting lungs; the continuous needs for surgical, anesthetics, and critical care improvements; changes in immunosuppression and infection prophylaxis; and donor management and patient selection. The future of lung transplant remains promising: expansion of donor after cardiac death donors, improved outcomes, new immunosuppressants targeted to cellular and antibody-mediated rejection, and use of xenotransplantation or artificial lungs.
Collapse
Affiliation(s)
- Stephanie H Chang
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, New York University Langone Health, New York City, NY, USA.
| | - Justin Chan
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, New York University Langone Health, New York City, NY, USA
| | - G Alexander Patterson
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
4
|
Yang W, Cerier EJ, Núñez-Santana FL, Wu Q, Yan Y, Kurihara C, Liu X, Yeldandi A, Khurram N, Avella-Patino D, Sun H, Budinger GS, Kreisel D, Mohanakumar T, Lecuona E, Bharat A. IL-1β-dependent extravasation of preexisting lung-restricted autoantibodies during lung transplantation activates complement and mediates primary graft dysfunction. J Clin Invest 2022; 132:157975. [PMID: 36250462 PMCID: PMC9566897 DOI: 10.1172/jci157975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Preexisting lung-restricted autoantibodies (LRAs) are associated with a higher incidence of primary graft dysfunction (PGD), although it remains unclear whether LRAs can drive its pathogenesis. In syngeneic murine left lung transplant recipients, preexisting LRAs worsened graft dysfunction, which was evident by impaired gas exchange, increased pulmonary edema, and activation of damage-associated pathways in lung epithelial cells. LRA-mediated injury was distinct from ischemia-reperfusion injury since deletion of donor nonclassical monocytes and host neutrophils could not prevent graft dysfunction in LRA-pretreated recipients. Whole LRA IgG molecules were necessary for lung injury, which was mediated by the classical and alternative complement pathways and reversed by complement inhibition. However, deletion of Fc receptors in donor macrophages or mannose-binding lectin in recipient mice failed to rescue lung function. LRA-mediated injury was localized to the transplanted lung and dependent on IL-1β-mediated permeabilization of pulmonary vascular endothelium, which allowed extravasation of antibodies. Genetic deletion or pharmacological inhibition of IL-1R in the donor lungs prevented LRA-induced graft injury. In humans, preexisting LRAs were an independent risk factor for severe PGD and could be treated with plasmapheresis and complement blockade. We conclude that preexisting LRAs can compound ischemia-reperfusion injury to worsen PGD for which complement inhibition may be effective.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - G.R. Scott Budinger
- Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel Kreisel
- Departments of Surgery, Pathology & Immunology, Washington University, St. Louis, Missouri, USA
| | | | | | - Ankit Bharat
- Division of Thoracic Surgery
- Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
5
|
Atagun Guney P, Uygun Kizmaz Y. Bronchial Culture Growth From the Donor and Recipient as Predictive Factors in the Detection of Primary Graft Dysfunction and Pneumonia After Lung Transplant. EXP CLIN TRANSPLANT 2022; 20:930-936. [PMID: 35607803 DOI: 10.6002/ect.2021.0496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES In this study, our aim was to investigate whether bacterial culture growth from donors and recipients is related to early posttransplant complications and to analyze its role in primary graft dysfunction and posttransplant pneumonia in lung transplant recipients. MATERIALS AND METHODS This retrospective cohort study included patients diagnosed with end-stage lung disease who received a lung transplant for treatment. We examined relationships between donor bronchial lavage, pretransplant recipient sputum, and recipient posttransplant serial bronchial lavage culture results, as well as the development of both primary graft dysfunction and pneumonia after lung transplant during the early posttransplant period. RESULTS Our study included 77 patients with median age of 48 years (25%-75% IQR, 34-56 years) and who were mostly men (79.2%; n = 61). Donor culture positivity was 62.3% (n = 48), and the positivity of sputum culture from patients before transplant was 20.8% (n = 16). Compared with that shown in those without versus those with primary graft dysfunction, there were significantly more positive sputum cultures from patients before transplant (P = .003). Recipients with donor culture growth had a longer duration of invasive mechanical ventilation (median of 4 days [IQR, 2-13 days] vs 1 day [IQR, 1-2 days]; P = .001, respectively) than those without. Multivariate logistic analysis identified both donor culture positivity (odds ratio: 3.391; 95% CI, 1.12-20.46; P = .0028) and sputum culture positivity in pretransplant recipient candidates (odds ratio: 6.494; 95% CI, 1.80-36.27; P = .004) as independent predictors of primary graft dysfunction. CONCLUSIONS Bacterial growth shown in donor bronchial lavage and sputum culture positivity in patients before transplant were found to be independent predictors of primary graft dysfunction in the early posttransplant period. Organism growth in both the donor and the recipient during the pretransplant period are important determinants for the development of primary graft dysfunction.
Collapse
Affiliation(s)
- Pinar Atagun Guney
- From the Kartal Kosuyolu Training and Research Hospital, Department of Lung Transplantation, Istanbul, Turkey
| | | |
Collapse
|
6
|
Abstract
Worldwide, lung transplantation has been a therapeutic option for select end-stage lung disease patients who are on optimized medical regimens, but the underlying clinical condition continues to progress. For any successful lung transplantation program, it is important to have a robust donor lung management program. Lungs are commonly affected by the various factors related to trauma or neurogenic in brain stem death donors. This article would focus on the basic protocols to optimize donor lungs which would help in increasing donor pool. It would also elaborate COVID-specific points for donor lung evaluation. This article would also describe the criteria for ideal as well as marginal donor lungs. A comprehensive literature search was performed using PubMed to review various articles related to donor lung management.
Collapse
Affiliation(s)
- Unmil Shah
- Institute of Heart and Lung Transplant, KIMS, Secunderabad, Telangana; Department of Heart and Lung Transplant, Gleneagles Global Hospital, Mumbai, Maharashtra, India
| | - Vijil Rahulan
- Institute of Heart and Lung Transplant, KIMS, Secunderabad, Telangana, India
| | - Pradeep Kumar
- Institute of Heart and Lung Transplant, KIMS, Secunderabad, Telangana, India
| | - Prabhat Dutta
- Institute of Heart and Lung Transplant, KIMS, Secunderabad, Telangana, India
| | - Sandeep Attawar
- Institute of Heart and Lung Transplant, KIMS, Secunderabad, Telangana, India
| |
Collapse
|
7
|
Selim J, Hamzaoui M, Boukhalfa I, Djerada Z, Chevalier L, Piton N, Genty D, Besnier E, Clavier T, Dumesnil A, Renet S, Mulder P, Doguet F, Tamion F, Veber B, Richard V, Baste JM. Cardiopulmonary bypass increases endothelial dysfunction after pulmonary ischaemia-reperfusion in an animal model. Eur J Cardiothorac Surg 2021; 59:1037-1047. [PMID: 33276375 DOI: 10.1093/ejcts/ezaa412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/06/2020] [Accepted: 10/18/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Endothelial dysfunction during ischaemia-reperfusion (IR) is a major cause of primary graft dysfunction during lung transplantation. The routine use of cardiopulmonary bypass (CPB) during lung transplantation remains controversial. However, the contribution of CPB to pulmonary endothelial dysfunction remains unclear. The objective was to investigate the impact of CPB on endothelial dysfunction in a lung IR rat model. METHODS Rats were allocated to 4 groups: (i) Sham, (ii) IR, (iii) CPB and (iv) IR-CPB. The primary outcome was the study of pulmonary vascular reactivity by wire myograph. We also assessed glycocalyx degradation by enzyme-linked immunosorbent assay and electron microscopy and both systemic and pulmonary inflammation by enzyme-linked immunosorbent assay and immunohistochemistry. Rats were exposed to 45 min of CPB and IR. We used a CPB model allowing femoro-femoral support with left pulmonary hilum ischaemia for IR. RESULTS Pulmonary endothelium-dependent relaxation to acetylcholine was markedly reduced in the IR-CPB group (10.7 ± 9.1%) compared to the IR group (50.5 ± 5.2%, P < 0.001), the CPB group (54.1 ± 4.7%, P < 0.001) and the sham group (80.8 ± 6.7%, P < 0.001), suggesting that the association of pulmonary IR and CPB increases endothelial dysfunction. In IR-CPB, IR and CPB groups, vasorelaxation was completely abolished when inhibiting nitric oxide synthase, suggesting that this relaxation process was mainly mediated by nitric oxide. We observed higher syndecan-1 plasma levels in the IR-CPB group in comparison with the other groups, reflecting an increased degradation of glycocalyx. We also observed higher systemic inflammation in the IR-CPB group as shown by the increased plasma levels of IL-1β, IL-10. CONCLUSIONS CPB significantly increased the IR-mediated effects on pulmonary endothelial dysfunction. Therefore, the use of CPB during lung transplantation could be deleterious, by increasing endothelial dysfunction.
Collapse
Affiliation(s)
- Jean Selim
- Normandie Univ, UNIVROUEN, INSERM U1096, Rouen, France.,Rouen University Hospital, Department of Anaesthesia and Critical Care, Rouen, France
| | | | | | | | | | - Nicolas Piton
- Rouen University Hospital, Department of Pathology, Rouen, France
| | - Damien Genty
- Rouen University Hospital, Department of Pathology, Rouen, France
| | - Emmanuel Besnier
- Normandie Univ, UNIVROUEN, INSERM U1096, Rouen, France.,Rouen University Hospital, Department of Anaesthesia and Critical Care, Rouen, France
| | - Thomas Clavier
- Normandie Univ, UNIVROUEN, INSERM U1096, Rouen, France.,Rouen University Hospital, Department of Anaesthesia and Critical Care, Rouen, France
| | | | | | - Paul Mulder
- Normandie Univ, UNIVROUEN, INSERM U1096, Rouen, France
| | - Fabien Doguet
- Normandie Univ, UNIVROUEN, INSERM U1096, Rouen, France
| | | | - Benoît Veber
- Rouen University Hospital, Department of Anaesthesia and Critical Care, Rouen, France
| | | | - Jean-Marc Baste
- Normandie Univ, UNIVROUEN, INSERM U1096, Rouen, France.,Rouen University Hospital, Department of Thoracic Surgery, Rouen, France
| |
Collapse
|
8
|
Elmaleh Y, De Tymowski C, Zappella N, Jean-Baptiste S, Tran-Dinh A, Tanaka S, Yung S, Lortat-Jacob B, Mal H, Castier Y, Atchade E, Montravers P. Blood transfusion of the donor is associated with stage 3 primary graft dysfunction after lung transplantation. Clin Transplant 2021; 35:e14407. [PMID: 34173690 DOI: 10.1111/ctr.14407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The first aim of this study was to assess the association between stage 3 PGD and pre-donation blood transfusion of the donor. The secondary objectives were to assess the epidemiology of donor transfusion and the outcome of LT recipients according to donor transfusion status and massive donor transfusion status. METHODS This was an observational, prospective, single-center study. The results are expressed as absolute numbers, percentages, medians, and interquartile ranges. Statistical analyses were performed using Chi squared, Fischer's exact tests, and Mann-Whitney U tests (P < .05 was considered significant). A multivariate analysis was performed. RESULTS Between January 2016 and February 2019, 147 patients were included in the analysis. PGD was observed in 79 (54%) patients, 45 (31%) of whom had stage 3 PGD. Pre-donation blood transfusion was administered in 48 (33%) donors (median of 3[1-9] packed red cells (PRCs)). On multivariate analysis, stage 3 PGD was significantly associated with donor blood transfusion (OR 2.69, IC (1.14-6.38), P = .024). Mortality at days 28 and 90 was not significantly different according to the pre-donation transfusion status of the donor. CONCLUSION Pre-donation blood transfusion is associated with stage 3 PGD occurrence after LT. Transfusion data of the donor should be included in donor lung assessment.
Collapse
Affiliation(s)
- Yoann Elmaleh
- APHP, CHU Bichat-Claude Bernard, DMU PARABOL, Paris, France
| | - Christian De Tymowski
- APHP, CHU Bichat-Claude Bernard, DMU PARABOL, Paris, France.,INSERM UMR 1149, Immunorecepteur et Immunopathologie Rénale, CHU Bichat-Claude Bernard, Paris, France
| | | | | | - Alexy Tran-Dinh
- APHP, CHU Bichat-Claude Bernard, DMU PARABOL, Paris, France.,INSERM U1148, LVTS, CHU Bichat-Claude Bernard, Paris, France
| | - Sébastien Tanaka
- APHP, CHU Bichat-Claude Bernard, DMU PARABOL, Paris, France.,Université de la Réunion, INSERM UMR 1188, Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de la Réunion, France
| | - Sonia Yung
- APHP, CHU Bichat-Claude Bernard, DMU PARABOL, Paris, France
| | | | - Hervé Mal
- APHP, CHU Bichat-Claude Bernard, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France.,Université de Paris, UFR Diderot, Paris, France
| | - Yves Castier
- Université de Paris, UFR Diderot, Paris, France.,APHP, CHU Bichat-Claude Bernard, Service de Chirurgie Thoracique et Vasculaire, Paris, France
| | - Enora Atchade
- APHP, CHU Bichat-Claude Bernard, DMU PARABOL, Paris, France
| | - Philippe Montravers
- APHP, CHU Bichat-Claude Bernard, DMU PARABOL, Paris, France.,Université de Paris, UFR Diderot, Paris, France.,INSERM UMR 1152, ANR-10 LABX17, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France
| |
Collapse
|
9
|
Li Y, Wang F, Yan M, Cantu E, Yang FN, Rao H, Feng R. Peel Learning for Pathway-Related Outcome Prediction. Bioinformatics 2021; 37:4108-4114. [PMID: 34042937 PMCID: PMC9502230 DOI: 10.1093/bioinformatics/btab402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/07/2021] [Accepted: 05/26/2021] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Traditional regression models are limited in outcome prediction due to their parametric nature. Current deep learning methods allow for various effects and interactions and have shown improved performance, but they typically need to be trained on a large amount of data to obtain reliable results. Gene expression studies often have small sample sizes but high dimensional correlated predictors so that traditional deep learning methods are not readily applicable. RESULTS In this paper, we proposed peel learning, a novel neural network that incorporates the prior relationship among genes. In each layer of learning, overall structure is peeled into multiple local substructures. Within the substructure, dependency among variables is reduced through linear projections. The overall structure is gradually simplified over layers and weight parameters are optimized through a revised backpropagation. We applied PL to a small lung transplantation study to predict recipients' post-surgery primary graft dysfunction using donors' gene expressions within several immunology pathways, where PL showed improved prediction accuracy compared to conventional penalized regression, classification trees, feed-forward neural network, and a neural network assuming prior network structure. Through simulation studies, we also demonstrated the advantage of adding specific structure among predictor variables in neural network, over no or uniform group structure, which is more favorable in smaller studies. The empirical evidence is consistent with our theoretical proof of improved upper bound of PL's complexity over ordinary neural networks. AVAILABILITY AND IMPLEMENTATION PL algorithm was implemented in Python and the open-source code and instruction will be available at https://github.com/Likelyt/Peel-Learning.
Collapse
Affiliation(s)
- Yuantong Li
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Fei Wang
- Department of Healthcare Policy and Research, Cornell University Weill Medical School, New York, NY, 10065, USA
| | - Mengying Yan
- Department of Statistics, George Washington University, Washington, DC, 20052, USA
| | - Edward Cantu
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Fan Nils Yang
- Department of Neuroscience, Georgetown University, Washington, D.C, 20057, USA
| | - Hengyi Rao
- epartment of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rui Feng
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
10
|
Huddleston SJ, Jackson S, Kane K, Lemke N, Shaffer AW, Soule M, Hertz M, Shumway S, Qi S, Perry T, Kelly R. Separate Effect of Perioperative Recombinant Human Factor VIIa Administration and Packed Red Blood Cell Transfusions on Midterm Survival in Lung Transplantation Recipients. J Cardiothorac Vasc Anesth 2020; 34:3013-3020. [DOI: 10.1053/j.jvca.2020.05.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 11/11/2022]
|
11
|
Azithromycin Partially Mitigates Dysregulated Repair of Lung Allograft Small Airway Epithelium. Transplantation 2020; 104:1166-1176. [PMID: 31985728 DOI: 10.1097/tp.0000000000003134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Dysregulated airway epithelial repair following injury is a proposed mechanism driving posttransplant bronchiolitis obliterans (BO), and its clinical correlate bronchiolitis obliterans syndrome (BOS). This study compared gene and cellular characteristics of injury and repair in large (LAEC) and small (SAEC) airway epithelial cells of transplant patients. METHODS Subjects were recruited at the time of routine bronchoscopy posttransplantation and included patients with and without BOS. Airway epithelial cells were obtained from bronchial and bronchiolar brushing performed under radiological guidance from these patients. In addition, bronchial brushings were also obtained from healthy control subjects comprising of adolescents admitted for elective surgery for nonrespiratory-related conditions. Primary cultures were established, monolayers wounded, and repair assessed (±) azithromycin (1 µg/mL). In addition, proliferative capacity as well as markers of injury and dysregulated repair were also assessed. RESULTS SAEC had a significantly dysregulated repair process postinjury, despite having a higher proliferative capacity than large airway epithelial cells. Addition of azithromycin significantly induced repair in these cells; however, full restitution was not achieved. Expression of several genes associated with epithelial barrier repair (matrix metalloproteinase 7, matrix metalloproteinase 3, the integrins β6 and β8, and β-catenin) were significantly different in epithelial cells obtained from patients with BOS compared to transplant patients without BOS and controls, suggesting an intrinsic defect. CONCLUSIONS Chronic airway injury and dysregulated repair programs are evident in airway epithelium obtained from patients with BOS, particularly with SAEC. We also show that azithromycin partially mitigates this pathology.
Collapse
|
12
|
Fanelli V, Del Sorbo L, Boffini M, Costamagna A, Balzano S, Musso T, Scutera S, Cappello P, Mazzeo A, Solidoro P, Baietto L, D'avolio A, Derosa FG, Brazzi L, Mascia L, Rinaldi M, Ranieri VM. Impact of imipenem concentration in lung perfusate and tissue biopsy during clinical ex-vivo lung perfusion of high-risk lung donors. Minerva Anestesiol 2020; 86:617-626. [DOI: 10.23736/s0375-9393.20.13840-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Monticelli LA, Diamond JM, Saenz SA, Tait Wojno ED, Porteous MK, Cantu E, Artis D, Christie JD. Lung Innate Lymphoid Cell Composition Is Altered in Primary Graft Dysfunction. Am J Respir Crit Care Med 2020; 201:63-72. [PMID: 31394048 PMCID: PMC6938146 DOI: 10.1164/rccm.201906-1113oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/07/2019] [Indexed: 01/08/2023] Open
Abstract
Rationale: Primary graft dysfunction (PGD) is the leading cause of early morbidity and mortality after lung transplantation, but the immunologic mechanisms are poorly understood. Innate lymphoid cells (ILC) are a heterogeneous family of immune cells regulating pathologic inflammation and beneficial tissue repair. However, whether changes in donor-derived lung ILC populations are associated with PGD development has never been examined.Objectives: To determine whether PGD in chronic obstructive pulmonary disease or interstitial lung disease transplant recipients is associated with alterations in ILC subset composition within the allograft.Methods: We performed a single-center cohort study of lung transplantation patients with surgical biopsies of donor tissue taken before, and immediately after, allograft reperfusion. Donor immune cells from 18 patients were characterized phenotypically by flow cytometry for single-cell resolution of distinct ILC subsets. Changes in the percentage of ILC subsets with reperfusion or PGD (grade 3 within 72 h) were assessed.Measurements and Main Results: Allograft reperfusion resulted in significantly decreased frequencies of natural killer cells and a trend toward reduced ILC populations, regardless of diagnosis (interstitial lung disease or chronic obstructive pulmonary disease). Seven patients developed PGD (38.9%), and PGD development was associated with selective reduction of the ILC2 subset after reperfusion. Conversely, patients without PGD exhibited significantly higher ILC1 frequencies before reperfusion, accompanied by elevated ILC2 frequencies after allograft reperfusion.Conclusions: The composition of donor ILC subsets is altered after allograft reperfusion and is associated with PGD development, suggesting that ILCs may be involved in regulating lung injury in lung transplant recipients.
Collapse
Affiliation(s)
- Laurel A. Monticelli
- Division of Pulmonary and Critical Care Medicine and
- Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, New York; and
| | | | - Steven A. Saenz
- Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, New York; and
| | - Elia D. Tait Wojno
- Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, New York; and
| | | | - Edward Cantu
- Division of Cardiovascular Surgery, Center for Translational Lung Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Artis
- Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, New York; and
| | | |
Collapse
|
14
|
Patel A, Faro A. Pediatric Lung Transplantation. PEDIATRIC RESPIRATORY DISEASES 2020. [PMCID: PMC7121766 DOI: 10.1007/978-3-030-26961-6_74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Lung transplantation is considered the last therapeutic resource for children with life threatening end-stage lung disease, but it is also a lifelong commitment to a complex clinical follow-up. The main indications in childhood are pulmonary hypertension in infancy and cystic fibrosis in children and adolescents. Contraindications are absolute and relative and often vary from one to another transplant program. Multi-organ disorders, active malignancy, and specific active infection are general agreed upon contraindications. Only 21% of organ donors had suitable lungs for transplant. Although immunosuppressive regimens vary, most lung transplant centers use induction to avoid early acute rejection. The postoperative period is not only crucial for early detection of complications, such as infections and rejection, but also in the long term when gastrointestinal and neurological complications may compromise up to 50% of the patients. One year survival rate is around 85%, and 3 year survival is around 65%. Long-term survival is determined primarily by the development of bronchiolitis obliterans syndrome (BOS), so it is important to plan better therapeutic regimes to preserve graft function.
Collapse
|
15
|
Huddleston SJ, Brown R, Rudser K, Goswami U, Tomic R, Lemke NT, Shaffer AW, Soule M, Hertz M, Shumway S, Kelly R, Loor G. Need for tracheostomy after lung transplant predicts decreased mid- and long-term survival. Clin Transplant 2019; 34:e13766. [PMID: 31815320 DOI: 10.1111/ctr.13766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/30/2019] [Accepted: 12/05/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Tracheostomy is an important adjunct for lung transplant patients requiring prolonged ventilation. We explored the effects of post-transplant tracheostomy on survival and bronchiolitis obliterans syndrome after lung transplant. METHODS A retrospective, single center analysis was performed on all lung transplant recipients during the Lung Allocation Score (LAS) era. Risk factors for post-transplant tracheostomy or death within 30 days were assessed. Kaplan-Meier estimates and Cox proportional hazards models were used to examine the association between tracheostomy within 30 days after transplant and survival at 1 and 3 years. A total of 403 patients underwent single or bilateral lung transplant between May 2005 and February 2016 with complete data for 352 cases, and 35 patients (9.9%) underwent tracheostomy or died (N = 10, 2.8%) within 30 days. RESULTS In adjusted analyses, primary graft dysfunction grade 3 (PGD3) was associated with a composite end point of tracheostomy or death within 30 days (HR 3.11 (1.69, 5.71), P-value < .001). Tracheostomy within 30 days was associated with decreased survival at 1(HR 4.25 [1.75, 10.35] P-value = .001) and 3 years (HR 2.74 [1.30, 5.76], P-value = .008), as well as decreased bronchiolitis obliterans (BOS)-free survival at 1 (HR 1.87 [1.02, 3.41] P-value = .042) and 3 years (HR 2.15 [1.33, 3.5], P-value = .002). CONCLUSION Post-transplant tracheostomy is a marker for advanced lung allograft dysfunction with significant reduction in long-term overall and BOS-free survival.
Collapse
Affiliation(s)
- Stephen J Huddleston
- Division of Cardiothoracic Surgery, Department of a Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Roland Brown
- Divison of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Kyle Rudser
- Divison of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Umesh Goswami
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Rade Tomic
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Nicholas T Lemke
- Division of Cardiothoracic Surgery, Department of a Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Andrew W Shaffer
- Division of Cardiothoracic Surgery, Department of a Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Matthew Soule
- Division of Cardiothoracic Surgery, Department of a Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Marshall Hertz
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Sara Shumway
- Division of Cardiothoracic Surgery, Department of a Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Rose Kelly
- Division of Cardiothoracic Surgery, Department of a Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Gabriel Loor
- Division of Cardiothoracic Transplantation and Circulatory Support, Texas Heart Institute, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
16
|
Abstract
Lung transplantation is an accepted therapeutic option for end-stage lung diseases. Its history starts in the 1940s, initially hampered by early deaths due to perioperative problems and acute rejection. Improvement of surgical techniques and the introduction of immunosuppressive drugs resulted in longer survival. Chronic lung allograft dysfunction (CLAD), a new complication appeared and remains the most serious complication today. CLAD, the main reason why survival after lung transplantation is impaired compared to other solid-organ transplantations is characterized by a gradually increasing shortness of breath, reflected in a deterioration of pulmonary function status, respiratory insufficiency and possibly death.
Collapse
|
17
|
Li D, Weinkauf J, Hirji A, Kapasi A, Lien D, Nagendran J, Kim D, Ezekowitz J, Halloran K. Elevated pre-transplant left ventricular end-diastolic pressure increases primary graft dysfunction risk in double lung transplant recipients. J Heart Lung Transplant 2019; 38:710-718. [DOI: 10.1016/j.healun.2019.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/22/2019] [Accepted: 02/13/2019] [Indexed: 12/28/2022] Open
|
18
|
Rosenheck J, Pietras C, Cantu E. Early Graft Dysfunction after Lung Transplantation. CURRENT PULMONOLOGY REPORTS 2018; 7:176-187. [PMID: 31548919 PMCID: PMC6756771 DOI: 10.1007/s13665-018-0213-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Primary graft dysfunction is an acute lung injury syndrome occurring immediately following lung transplantation. This review aims to provide an overview of the current understanding of PGD, including epidemiology, immunology, clinical outcomes and management. RECENT FINDINGS Identification of donor and recipient factors allowing accurate prediction of PGD has been actively pursued. Improved understanding of the immunology underlying PGD has spurred interest in identifying relevant biomarkers. Work in PGD prediction, severity stratification and targeted therapies continue to make progress. Donor expansion strategies continue to be pursued with ex vivo lung perfusion playing a prominent role. While care of PGD remains supportive, ECMO has established a prominent role in the early aggressive management of severe PGD. SUMMARY A consensus definition of PGD has allowed marked advances in research and clinical care of affected patients. Future research will lead to reliable predictive tools, and targeted therapeutics of this important syndrome.
Collapse
Affiliation(s)
- Justin Rosenheck
- Pulmonary, Allergy, and Critical Care Division, University
of Pennsylvania Perelman School of Medicine
| | - Colleen Pietras
- Department of Surgery, University of Pennsylvania Perelman
School of Medicine
| | - Edward Cantu
- Department of Surgery, University of Pennsylvania Perelman
School of Medicine
| |
Collapse
|
19
|
Sullivan D, Ahn C, Gao A, Lacelle C, Torres F, Bollineni S, Banga A, Mullins J, Mohanka M, Ring S, Wait M, Peltz M, Duddupudi P, Surapaneni D, Kaza V. Evaluation of current strategies for surveillance and management of donor-specific antibodies: Single-center study. Clin Transplant 2018; 32:e13285. [PMID: 29774598 DOI: 10.1111/ctr.13285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND Although the presence of donor-specific antibodies (DSA) is known to impact lung allograft, limited data exist regarding DSA management. METHODS We did a retrospective study at our center evaluating DSA management in adult lung transplant recipients undergoing lung transplantation between January 1, 2010 and June 30, 2014. Study follow-up was completed through October 2017. All recipients were stratified into 2 groups based on the presence or absence of DSA. Those with DSA were evaluated for the impact of treatment of DSA. The primary outcomes were postlung transplant survival and freedom from bronchiolitis obliterans syndrome (BOS), subset of chronic lung allograft dysfunction (CLAD). Simon-Makuch method was used to estimate overall survival and BOS-free survival to account for DSA as time-dependent covariate. Survival differences between the groups were analyzed using time-dependent Cox proportional hazards model. RESULTS Sixty-four percent of 194 total subjects developed post-lung transplant DSA. Overall survival was different with worse survival in the DSA positive group that never cleared DSA (P = .002). BOS-free survival was lower, but did not reach significance in this group. Response to treatment was poor, with only 12 of 47 (25.5%) who received treatment demonstrating clearance of DSA. CONCLUSIONS Donor-specific antibodies prevalence is high after lung transplantation. Clearance of DSA correlated with improved outcomes. Current therapeutic strategies against DSA are relatively ineffective. Multicenter collaborative studies will be required to evaluate current treatment strategies and other innovative modalities.
Collapse
Affiliation(s)
- Daniel Sullivan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chul Ahn
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ang Gao
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chantale Lacelle
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fernando Torres
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Srinivas Bollineni
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amit Banga
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jessica Mullins
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Manish Mohanka
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steve Ring
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Wait
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthias Peltz
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Vaidehi Kaza
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
20
|
Extracorporeal Circulation During Lung Transplantation Procedures: A Meta-Analysis. ASAIO J 2018; 63:551-561. [PMID: 28257296 DOI: 10.1097/mat.0000000000000549] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Extracorporeal circulation (ECC) is an invaluable tool in lung transplantation (lutx). More than the past years, an increasing number of centers changed their standard for intraoperative ECC from cardiopulmonary bypass (CPB) to extracorporeal membrane oxygenation (ECMO) - with differing results. This meta-analysis reviews the existing evidence. An online literature research on Medline, Embase, and PubMed has been performed. Two persons independently judged the papers using the ACROBAT-NRSI tool of the Cochrane collaboration. Meta-analyses and meta-regressions were used to determine whether veno-arterial ECMO (VA-ECMO) resulted in better outcomes compared with CPB. Six papers - all observational studies without randomization - were included in the analysis. All were considered to have serious bias caused by heparinization as co-intervention. Forest plots showed a beneficial trend of ECMO regarding blood transfusions (packed red blood cells (RBCs) with an average mean difference of -0.46 units [95% CI = -3.72, 2.80], fresh-frozen plasma with an average mean difference of -0.65 units [95% CI = -1.56, 0.25], platelets with an average mean difference of -1.72 units [95% CI = -3.67, 0.23]). Duration of ventilator support with an average mean difference of -2.86 days [95% CI = -11.43, 5.71] and intensive care unit (ICU) length of stay with an average mean difference of -4.79 days [95% CI = -8.17, -1.41] were shorter in ECMO patients. Extracorporeal membrane oxygenation treatment tended to be superior regarding 3 month mortality (odds ratio = 0.46, 95% CI = 0.21-1.02) and 1 year mortality (odds ratio = 0.65, 95% CI = 0.37-1.13). However, only the ICU length of stay reached statistical significance. Meta-regression analyses showed that heterogeneity across studies (sex, year of ECMO implementation, and underlying disease) influenced differences. These data indicate a benefit of the intraoperative use of ECMO as compared with CPB during lung transplant procedures regarding short-term outcome (ICU stay). There was no statistically significant effect regarding blood transfusion needs or long-term outcome. The superiority of ECMO in lutx patients remains to be determined in larger multi-center randomized trials.
Collapse
|
21
|
Tanaka S, Geneve C, Tebano G, Grall N, Piednoir P, Bronchard R, Godement M, Atchade E, Augustin P, Mal H, Castier Y, Montravers P, Desmard M. Morbidity and mortality related to pneumonia and TRACHEOBRONCHITIS in ICU after lung transplantation. BMC Pulm Med 2018; 18:43. [PMID: 29506501 PMCID: PMC5836426 DOI: 10.1186/s12890-018-0605-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 02/27/2018] [Indexed: 11/10/2022] Open
Abstract
Background Bacterial respiratory infections (BRI) are major complications contributing to increased morbidity and mortality after lung transplantation (LT). This study analyzed epidemiology and outcome of 175 consecutive patients developing BRI in ICU after LT between 2006 and 2012. Methods Three situations were described: colonization determined in donors and recipients, pneumonia and tracheobronchitis during the first 28 postoperative days. Severity score, demographic, bacteriologic and outcome data were collected. Results 26% of donors and 31% of recipients were colonized. 92% of recipients developed BRI, including at least one episode of pneumonia in 19% of recipients. Only 21% of recipients developed BRI with an organism cultured from the donor’s samples, while 40% of recipients developed BRI with their own bacteria cultured before LT. Purulent sputum appears to be an important factor to discriminate tracheobronchitis from pneumonia. When compared to patients with tracheobronchitis, those with pneumonia had longer durations of mechanical ventilation (13 [3–27] vs 3 [29], p = 0.0005) and ICU stay (24 [16–34] vs 14 [9-22], p = 0.002). Pneumonia was associated with higher 28-day (11 (32%) vs 9 (7%), p = 0.0004) and one-year mortality rates (21 (61%) vs 24 (19%), p ≤ 0.0001). Conclusions These data confirm the high frequency of BRI right from the early postoperative period and the poor prognosis of pneumonia after LT.
Collapse
Affiliation(s)
- Sebastien Tanaka
- APHP, CHU Bichat-Claude Bernard, Département d'Anesthésie Réanimation, 46 rue Henri Huchard, 75018, Paris, France.
| | - Claire Geneve
- APHP, CHU Bichat-Claude Bernard, Département d'Anesthésie Réanimation, 46 rue Henri Huchard, 75018, Paris, France
| | - Gianpiero Tebano
- APHP, CHU Bichat-Claude Bernard, Département d'Anesthésie Réanimation, 46 rue Henri Huchard, 75018, Paris, France
| | - Nathalie Grall
- Université Denis Diderot, PRESS Sorbonne Cité, Paris, France.,INSERM, UMR 1137, Infection, Antimicrobiens, Modélisation, Evolution, Paris, France.,AP-HP, CHU Bichat-Claude Bernard Laboratoire de Microbiologie, Paris, France
| | - Pascal Piednoir
- APHP, CHU Bichat-Claude Bernard, Département d'Anesthésie Réanimation, 46 rue Henri Huchard, 75018, Paris, France
| | - Régis Bronchard
- APHP, CHU Bichat-Claude Bernard, Département d'Anesthésie Réanimation, 46 rue Henri Huchard, 75018, Paris, France
| | - Mathieu Godement
- APHP, CHU Bichat-Claude Bernard, Département d'Anesthésie Réanimation, 46 rue Henri Huchard, 75018, Paris, France
| | - Enora Atchade
- APHP, CHU Bichat-Claude Bernard, Département d'Anesthésie Réanimation, 46 rue Henri Huchard, 75018, Paris, France
| | - Pascal Augustin
- APHP, CHU Bichat-Claude Bernard, Département d'Anesthésie Réanimation, 46 rue Henri Huchard, 75018, Paris, France
| | - Herve Mal
- Université Denis Diderot, PRESS Sorbonne Cité, Paris, France.,APHP, CHU Bichat-Claude Bernard, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France.,INSERM, UMR1152. Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France
| | - Yves Castier
- Université Denis Diderot, PRESS Sorbonne Cité, Paris, France.,INSERM, UMR1152. Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France.,APHP, CHU Bichat-Claude Bernard, Service de Chirurgie Thoracique et Vasculaire, Paris, France
| | - Philippe Montravers
- APHP, CHU Bichat-Claude Bernard, Département d'Anesthésie Réanimation, 46 rue Henri Huchard, 75018, Paris, France.,Université Denis Diderot, PRESS Sorbonne Cité, Paris, France.,INSERM, UMR1152. Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France
| | - Mathieu Desmard
- APHP, CHU Bichat-Claude Bernard, Département d'Anesthésie Réanimation, 46 rue Henri Huchard, 75018, Paris, France.,Service de Réanimation, Centre Hospitalier Sud Francilien, Corbeil-Essonnes, France
| |
Collapse
|
22
|
Cantu E, Diamond JM, Suzuki Y, Lasky J, Schaufler C, Lim B, Shah R, Porteous M, Lederer DJ, Kawut SM, Palmer SM, Snyder LD, Hartwig MG, Lama VN, Bhorade S, Bermudez C, Crespo M, McDyer J, Wille K, Orens J, Shah PD, Weinacker A, Weill D, Wilkes D, Roe D, Hage C, Ware LB, Bellamy SL, Christie JD. Quantitative Evidence for Revising the Definition of Primary Graft Dysfunction after Lung Transplant. Am J Respir Crit Care Med 2018; 197:235-243. [PMID: 28872353 PMCID: PMC5768905 DOI: 10.1164/rccm.201706-1140oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/01/2017] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Primary graft dysfunction (PGD) is a form of acute lung injury that occurs after lung transplantation. The definition of PGD was standardized in 2005. Since that time, clinical practice has evolved, and this definition is increasingly used as a primary endpoint for clinical trials; therefore, validation is warranted. OBJECTIVES We sought to determine whether refinements to the 2005 consensus definition could further improve construct validity. METHODS Data from the Lung Transplant Outcomes Group multicenter cohort were used to compare variations on the PGD definition, including alternate oxygenation thresholds, inclusion of additional severity groups, and effects of procedure type and mechanical ventilation. Convergent and divergent validity were compared for mortality prediction and concurrent lung injury biomarker discrimination. MEASUREMENTS AND MAIN RESULTS A total of 1,179 subjects from 10 centers were enrolled from 2007 to 2012. Median length of follow-up was 4 years (interquartile range = 2.4-5.9). No mortality differences were noted between no PGD (grade 0) and mild PGD (grade 1). Significantly better mortality discrimination was evident for all definitions using later time points (48, 72, or 48-72 hours; P < 0.001). Biomarker divergent discrimination was superior when collapsing grades 0 and 1. Additional severity grades, use of mechanical ventilation, and transplant procedure type had minimal or no effect on mortality or biomarker discrimination. CONCLUSIONS The PGD consensus definition can be simplified by combining lower PGD grades. Construct validity of grading was present regardless of transplant procedure type or use of mechanical ventilation. Additional severity categories had minimal impact on mortality or biomarker discrimination.
Collapse
Affiliation(s)
| | - Joshua M. Diamond
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | - Brian Lim
- Division of Cardiovascular Surgery and
| | - Rupal Shah
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Mary Porteous
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - David J. Lederer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Steven M. Kawut
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Center for Clinical Epidemiology and Biostatistics and
- Penn Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Scott M. Palmer
- Division of Pulmonary, Allergy, and Critical Care Medicine and
| | | | - Matthew G. Hartwig
- Division of Cardiothoracic Surgery, Duke University, Durham, North Carolina
| | - Vibha N. Lama
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sangeeta Bhorade
- Division of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois
| | | | - Maria Crespo
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - John McDyer
- Division of Pulmonary, Allergy, and Critical Care, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Keith Wille
- Division of Pulmonary and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jonathan Orens
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Johns Hopkins University Hospital, Baltimore, Maryland
| | - Pali D. Shah
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Johns Hopkins University Hospital, Baltimore, Maryland
| | - Ann Weinacker
- Division of Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, California
| | - David Weill
- Institute for Advanced Organ Disease and Transplantation, University of South Florida, Tampa, Florida
| | - David Wilkes
- Division of Pulmonary, Allergy, Critical Care, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - David Roe
- Division of Pulmonary, Allergy, Critical Care, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chadi Hage
- Division of Pulmonary, Allergy, Critical Care, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lorraine B. Ware
- Department of Medicine and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee; and
| | - Scarlett L. Bellamy
- Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania
| | - Jason D. Christie
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Center for Clinical Epidemiology and Biostatistics and
| |
Collapse
|
23
|
Report of the ISHLT Working Group on Primary Lung Graft Dysfunction, part I: Definition and grading-A 2016 Consensus Group statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2017; 36:1097-1103. [PMID: 28942784 DOI: 10.1016/j.healun.2017.07.021] [Citation(s) in RCA: 457] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/27/2022] Open
|
24
|
Andreasson ASI, Borthwick LA, Gillespie C, Jiwa K, Scott J, Henderson P, Mayes J, Romano R, Roman M, Ali S, Fildes JE, Marczin N, Dark JH, Fisher AJ. The role of interleukin-1β as a predictive biomarker and potential therapeutic target during clinical ex vivo lung perfusion. J Heart Lung Transplant 2017; 36:985-995. [PMID: 28551353 PMCID: PMC5578478 DOI: 10.1016/j.healun.2017.05.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/09/2017] [Accepted: 05/09/2017] [Indexed: 11/23/2022] Open
Abstract
Background Extended criteria donor lungs deemed unsuitable for immediate transplantation can be reconditioned using ex vivo lung perfusion (EVLP). Objective identification of which donor lungs can be successfully reconditioned and will function well post-operatively has not been established. This study assessed the predictive value of markers of inflammation and tissue injury in donor lungs undergoing EVLP as part of the DEVELOP-UK study. Methods Longitudinal samples of perfusate, bronchoalveolar lavage, and tissue from 42 human donor lungs undergoing clinical EVLP assessments were analyzed for markers of inflammation and tissue injury. Levels were compared according to EVLP success and post-transplant outcomes. Neutrophil adhesion to human pulmonary microvascular endothelial cells (HPMECs) conditioned with perfusates from EVLP assessments was investigated on a microfluidic platform. Results The most effective markers to differentiate between in-hospital survival and non-survival post-transplant were perfusate interleukin (IL)-1β (area under the curve = 1.00, p = 0.002) and tumor necrosis factor-α (area under the curve = 0.95, p = 0.006) after 30 minutes of EVLP. IL-1β levels in perfusate correlated with upregulation of intracellular adhesion molecule-1 in donor lung vasculature (R2 = 0.68, p < 0.001) and to a lesser degree upregulation of intracellular adhesion molecule-1 (R2 = 0.30, p = 0.001) and E-selectin (R2 = 0.29, p = 0.001) in conditioned HPMECs and neutrophil adhesion to conditioned HPMECs (R2 = 0.33, p < 0.001). Neutralization of IL-1β in perfusate effectively inhibited neutrophil adhesion to conditioned HPMECs (91% reduction, p = 0.002). Conclusions Donor lungs develop a detectable and discriminatory pro-inflammatory signature in perfusate during EVLP. Blocking the IL-1β pathway during EVLP may reduce endothelial activation and subsequent neutrophil adhesion on reperfusion; this requires further investigation in vivo.
Collapse
Affiliation(s)
- Anders S I Andreasson
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lee A Borthwick
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Colin Gillespie
- School of Mathematics & Statistics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kasim Jiwa
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Jonathan Scott
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paul Henderson
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Jonny Mayes
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | - Simi Ali
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - James E Fildes
- University Hospital of South Manchester, Manchester, United Kingdom; Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom
| | | | - John H Dark
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew J Fisher
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | |
Collapse
|
25
|
Soluri-Martins A, Moraes L, Santos RS, Santos CL, Huhle R, Capelozzi VL, Pelosi P, Silva PL, de Abreu MG, Rocco PRM. Variable Ventilation Improved Respiratory System Mechanics and Ameliorated Pulmonary Damage in a Rat Model of Lung Ischemia-Reperfusion. Front Physiol 2017; 8:257. [PMID: 28512431 PMCID: PMC5411427 DOI: 10.3389/fphys.2017.00257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/10/2017] [Indexed: 12/28/2022] Open
Abstract
Lung ischemia-reperfusion injury remains a major complication after lung transplantation. Variable ventilation (VV) has been shown to improve respiratory function and reduce pulmonary histological damage compared to protective volume-controlled ventilation (VCV) in different models of lung injury induced by endotoxin, surfactant depletion by saline lavage, and hydrochloric acid. However, no study has compared the biological impact of VV vs. VCV in lung ischemia-reperfusion injury, which has a complex pathophysiology different from that of other experimental models. Thirty-six animals were randomly assigned to one of two groups: (1) ischemia-reperfusion (IR), in which the left pulmonary hilum was completely occluded and released after 30 min; and (2) Sham, in which animals underwent the same surgical manipulation but without hilar clamping. Immediately after surgery, the left (IR-injured) and right (contralateral) lungs from 6 animals per group were removed, and served as non-ventilated group (NV) for molecular biology analysis. IR and Sham groups were further randomized to one of two ventilation strategies: VCV (n = 6/group) [tidal volume (VT) = 6 mL/kg, positive end-expiratory pressure (PEEP) = 2 cmH2O, fraction of inspired oxygen (FiO2) = 0.4]; or VV, which was applied on a breath-to-breath basis as a sequence of randomly generated VT values (n = 1200; mean VT = 6 mL/kg), with a 30% coefficient of variation. After 5 min of ventilation and at the end of a 2-h period (Final), respiratory system mechanics and arterial blood gases were measured. At Final, lungs were removed for histological and molecular biology analyses. Respiratory system elastance and alveolar collapse were lower in VCV than VV (mean ± SD, VCV 3.6 ± 1.3 cmH20/ml and 2.0 ± 0.8 cmH20/ml, p = 0.005; median [interquartile range], VCV 20.4% [7.9–33.1] and VV 5.4% [3.1–8.8], p = 0.04, respectively). In left lungs of IR animals, VCV increased the expression of interleukin-6 and intercellular adhesion molecule-1 compared to NV, with no significant differences between VV and NV. Compared to VCV, VV increased the expression of surfactant protein-D, suggesting protection from type II epithelial cell damage. In conclusion, in this experimental lung ischemia-reperfusion model, VV improved respiratory system elastance and reduced lung damage compared to VCV.
Collapse
Affiliation(s)
- André Soluri-Martins
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Lillian Moraes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Raquel S Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Cintia L Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Robert Huhle
- Pulmonary Engineering Group, Department of Anesthesiology and Intensive Care Therapy, University Hospital Carl Gustav Carus, Dresden University of TechnologyDresden, Germany
| | - Vera L Capelozzi
- Department of Pathology, School of Medicine, University of São PauloSão Paulo, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of GenoaGenoa, Italy
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Marcelo Gama de Abreu
- Pulmonary Engineering Group, Department of Anesthesiology and Intensive Care Therapy, University Hospital Carl Gustav Carus, Dresden University of TechnologyDresden, Germany
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| |
Collapse
|
26
|
Pérez-Terán P, Roca O, Rodríguez-Palomares J, Ruiz-Rodríguez JC, Zapatero A, Gea J, Serra J, Evangelista A, Masclans JR. Prospective validation of right ventricular role in primary graft dysfunction after lung transplantation. Eur Respir J 2016; 48:1732-1742. [PMID: 27824609 DOI: 10.1183/13993003.02136-2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 08/05/2016] [Indexed: 12/29/2022]
Abstract
Primary graft dysfunction is a significant cause of lung transplant morbidity and mortality, but its underlying mechanisms are not completely understood. The aims of the present study were: 1) to confirm that right ventricular function is a risk factor for severe primary graft dysfunction; and 2) to propose a clinical model for predicting the development of severe primary graft dysfunction.A prospective cohort study was performed over 14 months. The primary outcome was development of primary graft dysfunction grade 3. An echocardiogram was performed immediately before transplantation, measuring conventional and speckle-tracking parameters. Pulmonary artery catheter data were also measured. A classification and regression tree was made to identify prognostic models for the development of severe graft dysfunction.70 lung transplant recipients were included. Patients who developed severe primary graft dysfunction had better right ventricular function, as estimated by cardiac index (3.5±0.8 versus 2.6±0.7 L·min-1·m-2, p<0.01) and basal longitudinal strain (-25.7±7.3% versus -19.5±6.6%, p<0.01). Regression tree analysis provided an algorithm based on the combined use of three variables (basal longitudinal strain, pulmonary fibrosis disease and ischaemia time), allowing accurate preoperative discrimination of three distinct subgroups with low (11-20%), intermediate (54%) and high (75%) risk of severe primary graft dysfunction (area under the receiver operating characteristic curve 0.81).Better right ventricular function is a risk factor for the development of severe primary graft dysfunction. Preoperative estimation of right ventricular function could allow early identification of recipients at increased risk, who would benefit the most from careful perioperative management in order to limit pulmonary overflow.
Collapse
Affiliation(s)
- Purificación Pérez-Terán
- Critical Care Dept, Hospital del Mar-Parc de Salut Mar, Institut Mar d'Investigacions mèdiques (IMIM), Barcelona, Spain .,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oriol Roca
- Critical Care Dept, Vall d'Hebron University Hospital, Institut de Recerca Vall d'Hebron (VHIR), Barcelona, Spain.,Ciber de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Juan C Ruiz-Rodríguez
- Critical Care Dept, Vall d'Hebron University Hospital, Institut de Recerca Vall d'Hebron (VHIR), Barcelona, Spain
| | - Ana Zapatero
- Critical Care Dept, Hospital del Mar-Parc de Salut Mar, Institut Mar d'Investigacions mèdiques (IMIM), Barcelona, Spain
| | - Joaquim Gea
- Ciber de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Respiratory Dept, Hospital del Mar-Parc de Salut Mar, IMIM, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Joaquim Serra
- Critical Care Dept, Vall d'Hebron University Hospital, Institut de Recerca Vall d'Hebron (VHIR), Barcelona, Spain
| | - Arturo Evangelista
- Cardiology Dept, Vall d'Hebron University Hospital, VHIR, Barcelona, Spain
| | - Joan R Masclans
- Critical Care Dept, Hospital del Mar-Parc de Salut Mar, Institut Mar d'Investigacions mèdiques (IMIM), Barcelona, Spain.,Ciber de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
27
|
Lee SH, Lee JG, Lee CY, Kim N, Chang MY, You YC, Kim HJ, Paik HC, Oh YJ. Effects of intraoperative inhaled iloprost on primary graft dysfunction after lung transplantation: A retrospective single center study. Medicine (Baltimore) 2016; 95:e3975. [PMID: 27399072 PMCID: PMC5058801 DOI: 10.1097/md.0000000000003975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
DESIGN Inhaled iloprost was known to alleviate ischemic-reperfusion lung injury. We investigated whether intraoperative inhaled iloprost can prevent the development of primary graft dysfunction after lung transplantation. Data for a consecutive series of patients who underwent lung transplantation with extracorporeal membrane oxygenation were retrieved. By propensity score matching, 2 comparable groups of 30 patients were obtained: patients who inhaled iloprost immediately after reperfusion of the grafted lung (ILO group); patients who did not receive iloprost (non-ILO group). RESULTS The severity of pulmonary infiltration on postoperative days (PODs) 1 to 3 was significantly lower in the ILO group compared to the non-ILO group. The PaO2/FiO2 ratio was significantly higher in the ILO group compared to the non-ILO group (318.2 ± 74.2 vs 275.9 ± 65.3 mm Hg, P = 0.022 on POD 1; 351.4 ± 58.2 vs 295.8 ± 53.7 mm Hg, P = 0.017 on POD 2; and 378.8 ± 51.9 vs 320.2 ± 66.2 mm Hg, P = 0.013 on POD 3, respectively). The prevalence of the primary graft dysfunction grade 3 was lower in the ILO group compared to the non-ILO group (P = 0.042 on POD 1; P = 0.026 on POD 2; P = 0.024 on POD 3, respectively). The duration of ventilator use and intensive care unit were significantly reduced in the ILO group (P = 0.041 and 0.038). CONCLUSIONS Intraoperative inhaled iloprost could prevent primary graft dysfunction and preserve allograft function, thus reducing the length of ventilator care and intensive care unit stay, and improving the overall early post-transplant morbidity in patients undergoing lung transplantation.
Collapse
Affiliation(s)
- Su Hyun Lee
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular Surgery
| | | | - Namo Kim
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute
| | - Min-Yung Chang
- Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Chul You
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute
| | - Hyun Joo Kim
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute
| | - Hyo Chae Paik
- Department of Thoracic and Cardiovascular Surgery
- Correspondence: Hyo Chae Paik, Department of Thoracic and Cardiovascular Surgery, Seodaemun-gu, Seoul, Korea (e-mail: ); Young Jun Oh, Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea (e-mail: )
| | - Young Jun Oh
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute
- Correspondence: Hyo Chae Paik, Department of Thoracic and Cardiovascular Surgery, Seodaemun-gu, Seoul, Korea (e-mail: ); Young Jun Oh, Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea (e-mail: )
| |
Collapse
|
28
|
Andersen KH, Schultz HHL, Nyholm B, Iversen MP, Gustafsson F, Carlsen J. Pulmonary hypertension as a risk factor of mortality after lung transplantation. Clin Transplant 2016; 30:357-64. [DOI: 10.1111/ctr.12692] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Kasper H. Andersen
- Department of Cardiology; Section for Pulmonary Hypertension and Right Heart Failure; Copenhagen University Hospital; Rigshospitalet Denmark
| | - Hans Henrik L. Schultz
- Department of Cardiology; Section for Lung Transplantation; Copenhagen University Hospital; Rigshospitalet Denmark
| | - Benjamin Nyholm
- Department of Cardiology; Section for Pulmonary Hypertension and Right Heart Failure; Copenhagen University Hospital; Rigshospitalet Denmark
| | - Martin P. Iversen
- Department of Cardiology; Section for Lung Transplantation; Copenhagen University Hospital; Rigshospitalet Denmark
| | - Finn Gustafsson
- Department of Cardiology, Section for Heart Transplantation; Copenhagen University Hospital; Rigshospitalet Denmark
| | - Jørn Carlsen
- Department of Cardiology; Section for Pulmonary Hypertension and Right Heart Failure; Copenhagen University Hospital; Rigshospitalet Denmark
| |
Collapse
|
29
|
Kelm DJ, Bonnes SL, Jensen MD, Eiken PW, Hathcock MA, Kremers WK, Kennedy CC. Pre-transplant wasting (as measured by muscle index) is a novel prognostic indicator in lung transplantation. Clin Transplant 2016; 30:247-55. [PMID: 26701203 DOI: 10.1111/ctr.12683] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Frailty in non-transplant populations increases morbidity and mortality. Muscle wasting is an important frailty characteristic. Low body mass index is used to measure wasting, but can over- or underestimate muscle mass. Computed tomography (CT) software can directly measure muscle mass. It is unknown if muscle wasting is important in lung transplantation. AIM AND METHODS The aim of this single-center, retrospective cohort study was to determine whether pre-transplant low muscle mass (as measured by CT using Slice-O-matic software at L2-L3 interspace) was associated with post-transplantation mortality, hospital and intensive care unit length of stay (LOS), duration of mechanical ventilation, or primary graft dysfunction. Lung transplant recipients from 2000 to 2012 with a CT scan less than six months prior to transplant were included. Univariate, multivariate, and Kaplan-Meier analyses were conducted. RESULTS Thirty-six patients were included. Those with low muscle index (lower 25th percentile) had a worse survival (hazard ratio = 3.83; 95% confidence interval 1.42-10.3; p = 0.007) and longer hospital LOS by an estimated 7.2 d (p = 0.01) when adjusted for age and sex as compared to those with higher muscle index. CONCLUSION Low muscle index at lung transplantation is associated with worse survival and increased hospital LOS.
Collapse
Affiliation(s)
- Diana J Kelm
- Division of Pulmonary Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sara L Bonnes
- Division of General Internal Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael D Jensen
- Division of Endocrinology and Metabolic Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Walter K Kremers
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.,William J. Von Liebig Transplant Center, Mayo Clinic, Rochester, MN, USA
| | - Cassie C Kennedy
- Division of Pulmonary Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.,William J. Von Liebig Transplant Center, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
30
|
Mohite PN, Sabashnikov A, Patil NP, Garcia-Saez D, Zych B, Zeriouh M, Romano R, Soresi S, Reed A, Carby M, De Robertis F, Bahrami T, Amrani M, Marczin N, Simon AR, Popov AF. The role of cardiopulmonary bypass in lung transplantation. Clin Transplant 2016; 30:202-9. [DOI: 10.1111/ctr.12674] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Prashant N. Mohite
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support; Royal Brompton & Harefield NHS Foundation Trust; Harefield Hospital; Harefield Middlesex UK
| | - Anton Sabashnikov
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support; Royal Brompton & Harefield NHS Foundation Trust; Harefield Hospital; Harefield Middlesex UK
| | - Nikhil P. Patil
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support; Royal Brompton & Harefield NHS Foundation Trust; Harefield Hospital; Harefield Middlesex UK
| | - Diana Garcia-Saez
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support; Royal Brompton & Harefield NHS Foundation Trust; Harefield Hospital; Harefield Middlesex UK
| | - Bartlomeij Zych
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support; Royal Brompton & Harefield NHS Foundation Trust; Harefield Hospital; Harefield Middlesex UK
| | - Mohamed Zeriouh
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support; Royal Brompton & Harefield NHS Foundation Trust; Harefield Hospital; Harefield Middlesex UK
| | - Rosalba Romano
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support; Royal Brompton & Harefield NHS Foundation Trust; Harefield Hospital; Harefield Middlesex UK
| | - Simona Soresi
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support; Royal Brompton & Harefield NHS Foundation Trust; Harefield Hospital; Harefield Middlesex UK
| | - Anna Reed
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support; Royal Brompton & Harefield NHS Foundation Trust; Harefield Hospital; Harefield Middlesex UK
| | - Martin Carby
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support; Royal Brompton & Harefield NHS Foundation Trust; Harefield Hospital; Harefield Middlesex UK
| | - Fabio De Robertis
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support; Royal Brompton & Harefield NHS Foundation Trust; Harefield Hospital; Harefield Middlesex UK
| | - Toufan Bahrami
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support; Royal Brompton & Harefield NHS Foundation Trust; Harefield Hospital; Harefield Middlesex UK
| | - Mohamed Amrani
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support; Royal Brompton & Harefield NHS Foundation Trust; Harefield Hospital; Harefield Middlesex UK
| | - Nandor Marczin
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support; Royal Brompton & Harefield NHS Foundation Trust; Harefield Hospital; Harefield Middlesex UK
| | - Andre R. Simon
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support; Royal Brompton & Harefield NHS Foundation Trust; Harefield Hospital; Harefield Middlesex UK
| | - Aron-Frederik Popov
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support; Royal Brompton & Harefield NHS Foundation Trust; Harefield Hospital; Harefield Middlesex UK
| |
Collapse
|
31
|
Diamond JM, Porteous MK, Roberts LJ, Wickersham N, Rushefski M, Kawut SM, Shah RJ, Cantu E, Lederer DJ, Chatterjee S, Lama VN, Bhorade S, Crespo M, McDyer J, Wille K, Orens J, Weinacker A, Arcasoy S, Shah PD, Wilkes DS, Hage C, Palmer SM, Snyder L, Calfee CS, Ware LB, Christie JD. The relationship between plasma lipid peroxidation products and primary graft dysfunction after lung transplantation is modified by donor smoking and reperfusion hyperoxia. J Heart Lung Transplant 2016; 35:500-507. [PMID: 26856667 DOI: 10.1016/j.healun.2015.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/16/2015] [Accepted: 12/21/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Donor smoking history and higher fraction of inspired oxygen (FIO2) at reperfusion are associated with primary graft dysfunction (PGD) after lung transplantation. We hypothesized that oxidative injury biomarkers would be elevated in PGD, with higher levels associated with donor exposure to cigarette smoke and recipient hyperoxia at reperfusion. METHODS We performed a nested case-control study of 72 lung transplant recipients from the Lung Transplant Outcomes Group cohort. Using mass spectroscopy, F2-isoprostanes and isofurans were measured in plasma collected after transplantation. Cases were defined in 2 ways: grade 3 PGD present at day 2 or day 3 after reperfusion (severe PGD) or any grade 3 PGD (any PGD). RESULTS There were 31 severe PGD cases with 41 controls and 35 any PGD cases with 37 controls. Plasma F2-isoprostane levels were higher in severe PGD cases compared with controls (28.6 pg/ml vs 19.8 pg/ml, p = 0.03). Plasma F2-isoprostane levels were higher in severe PGD cases compared with controls (29.6 pg/ml vs 19.0 pg/ml, p = 0.03) among patients reperfused with FIO2 >40%. Among recipients of lungs from donors with smoke exposure, plasma F2-isoprostane (38.2 pg/ml vs 22.5 pg/ml, p = 0.046) and isofuran (66.9 pg/ml vs 34.6 pg/ml, p = 0.046) levels were higher in severe PGD compared with control subjects. CONCLUSIONS Plasma levels of lipid peroxidation products are higher in patients with severe PGD, in recipients of lungs from donors with smoke exposure, and in recipients exposed to higher Fio2 at reperfusion. Oxidative injury is an important mechanism of PGD and may be magnified by donor exposure to cigarette smoke and hyperoxia at reperfusion.
Collapse
Affiliation(s)
- Joshua M Diamond
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mary K Porteous
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - L Jackson Roberts
- Departments of Medicine and Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Nancy Wickersham
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
| | - Melanie Rushefski
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Steven M Kawut
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.,Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Philadelphia, PA.,Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Rupal J Shah
- Department of Medicine, University of California, San Francisco, California
| | - Edward Cantu
- Division of Cardiovascular Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - David J Lederer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Shampa Chatterjee
- Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Philadelphia, PA
| | - Vibha N Lama
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sangeeta Bhorade
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois
| | - Maria Crespo
- Division of Pulmonary, Allergy, and Critical Care, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John McDyer
- Division of Pulmonary, Allergy, and Critical Care, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Keith Wille
- Division of Pulmonary and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jonathan Orens
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Johns Hopkins University Hospital, Baltimore, Maryland
| | - Ann Weinacker
- Division of Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, California
| | - Selim Arcasoy
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Pali D Shah
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Johns Hopkins University Hospital, Baltimore, Maryland
| | - David S Wilkes
- Division of Pulmonary, Allergy, Critical Care, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chadi Hage
- Division of Pulmonary, Allergy, Critical Care, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Scott M Palmer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Raleigh-Durham, North Carolina
| | - Laurie Snyder
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Raleigh-Durham, North Carolina
| | - Carolyn S Calfee
- Department of Medicine, University of California, San Francisco, California.,Departments of Medicine and Anesthesia, University of California, San Francisco, California
| | - Lorraine B Ware
- Departments of Medicine and Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Jason D Christie
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.,Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Philadelphia, PA
| | | |
Collapse
|
32
|
Mizota T, Miyao M, Yamada T, Sato M, Aoyama A, Chen F, Date H, Fukuda K. Graft dysfunction immediately after reperfusion predicts short-term outcomes in living-donor lobar lung transplantation but not in cadaveric lung transplantation. Interact Cardiovasc Thorac Surg 2015; 22:314-20. [PMID: 26705301 DOI: 10.1093/icvts/ivv357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/17/2015] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Primary graft dysfunction (PGD) is a major cause of early morbidity and mortality after cadaveric lung transplantation (CLT). This study examined the incidence, time course and predictive value of PGD after living-donor lobar lung transplantation (LDLLT). METHODS We retrospectively investigated 75 patients (42 with LDLLT and 33 with CLT) who underwent lung transplantation from January 2008 to December 2013. Patients were assigned PGD grades at six time points, as defined by the International Society for Heart and Lung Transplantation: immediately after final reperfusion, upon arrival at the intensive care unit (ICU), and 12, 24, 48 and 72 h after ICU admission. RESULTS The incidence of severe (Grade 3) PGD at 48 or 72 h after ICU admission was similar for LDLLT and CLT patients (16.7 vs 12.1%; P = 0.581). The majority of the LDLLT patients having severe PGD first developed PGD immediately after reperfusion, whereas more than half of the CLT patients first developed severe PGD upon ICU arrival or later. In LDLLT patients, severe PGD immediately after reperfusion was significantly associated with fewer ventilator-free days during the first 28 postoperative days [median (interquartile range) of 0 (0-10) vs 21 (13-25) days, P = 0.001], prolonged postoperative ICU stay [median (interquartile range) of 20 (16-27) vs 12 (8-14) days, P = 0.005] and increased hospital mortality (27.3 vs 3.2%, P = 0.02). Severe PGD immediately after reperfusion was not associated with ventilator-free days during the first 28 postoperative days, time to discharge from ICU or hospital, or hospital mortality in CLT patients. CONCLUSIONS Postoperative incidence of severe PGD was not significantly different between LDLLT and CLT patients. In LDLLT patients, the onset of severe PGD tended to be earlier than that in CLT patients. Severe PGD immediately after reperfusion was a significant predictor of postoperative morbidity and mortality in LDLLT patients but not in CLT patients.
Collapse
Affiliation(s)
- Toshiyuki Mizota
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | - Mariko Miyao
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | - Tetsu Yamada
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Masaaki Sato
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Akihiro Aoyama
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Fengshi Chen
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Kazuhiko Fukuda
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
33
|
Jacob S, Courtwright A, El-Chemaly S, Racila E, Divo M, Burkett P, Fuhlbrigge A, Goldberg HJ, Rosas IO, Camp P. Donor-acquired fat embolism syndrome after lung transplantation. Eur J Cardiothorac Surg 2015; 49:1344-7. [PMID: 26468269 DOI: 10.1093/ejcts/ezv347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/03/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Fat embolism is a known complication of severe trauma and closed chest cardiac resuscitation both of which are more common in the lung transplant donor population and can lead to donor-acquired fat embolism syndrome (DAFES). The objective was to review the diagnosis and management of DAFES in the lung transplantation literature and at our centre. METHODS We performed a literature review on DAFES using the Medline database. We then reviewed the transplant record of Brigham and Women's Hospital, a large academic hospital with an active lung transplant programme, for cases of DAFES. RESULTS We identified 2 cases of DAFES in our centre, one of which required extracorporeal membrane oxygenation (ECMO) for successful management. In contrast to the broader literature on DAFES, which emphasizes unsuccessfully treated cases, both patients survived. CONCLUSION DAFES is a rare but likely underappreciated early complication of lung transplant as it can mimic primary graft dysfunction. Aggressive interventions, including ECMO, may be necessary to achieve a good clinical outcome following DAFES.
Collapse
Affiliation(s)
- Samuel Jacob
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew Courtwright
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
| | - Emilian Racila
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Miguel Divo
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
| | - Patrick Burkett
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
| | - Anne Fuhlbrigge
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
| | - Hilary J Goldberg
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
| | - Phillip Camp
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
34
|
Wagner CE, Pope NH, Charles EJ, Huerter ME, Sharma AK, Salmon MD, Carter BT, Stoler MH, Lau CL, Laubach VE, Kron IL. Ex vivo lung perfusion with adenosine A2A receptor agonist allows prolonged cold preservation of lungs donated after cardiac death. J Thorac Cardiovasc Surg 2015; 151:538-45. [PMID: 26323621 DOI: 10.1016/j.jtcvs.2015.07.075] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/13/2015] [Accepted: 07/19/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Ex vivo lung perfusion has been successful in the assessment of marginal donor lungs, including donation after cardiac death (DCD) donor lungs. Ex vivo lung perfusion also represents a unique platform for targeted drug delivery. We sought to determine whether ischemia-reperfusion injury would be decreased after transplantation of DCD donor lungs subjected to prolonged cold preservation and treated with an adenosine A2A receptor agonist during ex vivo lung perfusion. METHODS Porcine DCD donor lungs were preserved at 4°C for 12 hours and underwent ex vivo lung perfusion for 4 hours. Left lungs were then transplanted and reperfused for 4 hours. Three groups (n = 4/group) were randomized according to treatment with the adenosine A2A receptor agonist ATL-1223 or the dimethyl sulfoxide vehicle: Infusion of dimethyl sulfoxide during ex vivo lung perfusion and reperfusion (DMSO), infusion of ATL-1223 during ex vivo lung perfusion and dimethyl sulfoxide during reperfusion (ATL-E), and infusion of ATL-1223 during ex vivo lung perfusion and reperfusion (ATL-E/R). Final Pao2/Fio2 ratios (arterial oxygen partial pressure/fraction of inspired oxygen) were determined from samples obtained from the left superior and inferior pulmonary veins. RESULTS Final Pao2/Fio2 ratios in the ATL-E/R group (430.1 ± 26.4 mm Hg) were similar to final Pao2/Fio2 ratios in the ATL-E group (413.6 ± 18.8 mm Hg), but both treated groups had significantly higher final Pao2/Fio2 ratios compared with the dimethyl sulfoxide group (84.8 ± 17.7 mm Hg). Low oxygenation gradients during ex vivo lung perfusion did not preclude superior oxygenation capacity during reperfusion. CONCLUSIONS After prolonged cold preservation, treatment of DCD donor lungs with an adenosine A2A receptor agonist during ex vivo lung perfusion enabled Pao2/Fio2 ratios greater than 400 mm Hg after transplantation in a preclinical porcine model. Pulmonary function during ex vivo lung perfusion was not predictive of outcomes after transplantation.
Collapse
Affiliation(s)
- Cynthia E Wagner
- Department of Surgery, Division of Thoracic and Cardiovascular Surgery, University of Virginia, Charlottesville, Va
| | - Nicolas H Pope
- Department of Surgery, Division of Thoracic and Cardiovascular Surgery, University of Virginia, Charlottesville, Va
| | - Eric J Charles
- Department of Surgery, Division of Thoracic and Cardiovascular Surgery, University of Virginia, Charlottesville, Va
| | - Mary E Huerter
- Department of Surgery, Division of Thoracic and Cardiovascular Surgery, University of Virginia, Charlottesville, Va
| | - Ashish K Sharma
- Department of Surgery, Division of Thoracic and Cardiovascular Surgery, University of Virginia, Charlottesville, Va
| | - Morgan D Salmon
- Department of Surgery, Division of Thoracic and Cardiovascular Surgery, University of Virginia, Charlottesville, Va
| | | | - Mark H Stoler
- Department of Pathology, University of Virginia, Charlottesville, Va
| | - Christine L Lau
- Department of Surgery, Division of Thoracic and Cardiovascular Surgery, University of Virginia, Charlottesville, Va
| | - Victor E Laubach
- Department of Surgery, Division of Thoracic and Cardiovascular Surgery, University of Virginia, Charlottesville, Va
| | - Irving L Kron
- Department of Surgery, Division of Thoracic and Cardiovascular Surgery, University of Virginia, Charlottesville, Va.
| |
Collapse
|
35
|
Cantu E, Shah RJ, Lin W, Daye ZJ, Diamond JM, Suzuki Y, Ellis JH, Borders CF, Andah GA, Beduhn B, Meyer NJ, Ruschefski M, Aplenc R, Feng R, Christie JD. Oxidant stress regulatory genetic variation in recipients and donors contributes to risk of primary graft dysfunction after lung transplantation. J Thorac Cardiovasc Surg 2015; 149:596-602. [PMID: 25439478 PMCID: PMC4346512 DOI: 10.1016/j.jtcvs.2014.09.077] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/19/2014] [Accepted: 09/23/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Oxidant stress pathway activation during ischemia reperfusion injury may contribute to the development of primary graft dysfunction (PGD) after lung transplantation. We hypothesized that oxidant stress gene variation in recipients and donors is associated with PGD. METHODS Donors and recipients from the Lung Transplant Outcomes Group (LTOG) cohort were genotyped using the Illumina IBC chip filtered for oxidant stress pathway genes. Single nucleotide polymorphisms (SNPs) grouped into SNP sets based on haplotype blocks within 49 oxidant stress genes selected from gene ontology pathways and literature review were tested for PGD association using a sequencing kernel association test. Analyses were adjusted for clinical confounding variables and population stratification. RESULTS Three hundred ninety-two donors and 1038 recipients met genetic quality control standards. Thirty percent of patients developed grade 3 PGD within 72 hours. Donor NADPH oxidase 3 (NOX3) was associated with PGD (P = .01) with 5 individual significant loci (P values between .006 and .03). In recipients, variation in glutathione peroxidase (GPX1) and NRF-2 (NFE2L2) was significantly associated with PGD (P = .01 for both). The GPX1 association included 3 individual loci (P values between .006 and .049) and the NFE2L2 association included 2 loci (P = .03 and .05). Significant epistatic effects influencing PGD susceptibility were evident between 3 different donor blocks of NOX3 and recipient NFE2L2 (P = .026, P = .017, and P = .031). CONCLUSIONS Our study has prioritized GPX1, NOX3, and NFE2L2 genes for future research in PGD pathogenesis, and highlights a donor-recipient interaction of NOX3 and NFE2L2 that increases the risk of PGD.
Collapse
Affiliation(s)
- Edward Cantu
- Cardiovascular Surgery Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Rupal J. Shah
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Wei Lin
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Zhongyin J. Daye
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Joshua M. Diamond
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Yoshikazu Suzuki
- Cardiovascular Surgery Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - John H. Ellis
- Cardiovascular Surgery Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Catherine F. Borders
- Cardiovascular Surgery Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Gerald A. Andah
- Cardiovascular Surgery Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ben Beduhn
- Cardiovascular Surgery Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Nuala J. Meyer
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Melanie Ruschefski
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Richard Aplenc
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Rui Feng
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jason D. Christie
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | |
Collapse
|
36
|
Abstract
BACKGROUND Primary graft dysfunction (PGD) is the most important cause of early morbidity and mortality in lung transplantation (LTX) with an incidence of 8% to 20%. We hypothesized that application of C1-esterase-inhibitor (C1-INH) in LTX-recipients showing early signs of severe PGD would attenuate the condition. METHODS Starting as of May 2010, all recipients showing a PaO2/FiO2 ratio of less than 100 as early sign of PGD at first measurement in the OR were immediately treated with C1-INH. Postoperative courses of C1-INH-treated recipients were compared with a subgroup of recipients that developed severe PGD (PGD3-group) within 72 hours after LTX but did not receive C1-INH. Additionally, a third group consisting of all remaining recipients was assembled. RESULTS A total of 275 LTX were performed between May 2010 and September 2012 at our center. Among these, 24 patients (8.7%) revealed a first PaO2/FiO2 ratio less than 100 and were treated with C1-INH (C1-INH-group). The PGD3-group consisted of 14 patients; the control cohort consisted of 237 patients. PGD scores were significantly higher in the C1-INH-group and PGD3-group as compared with the control group at all times postoperatively. ICU stay was longest in the PGD3 cohort and prolonged in C1-INH patients compared with the control group (29 [2-70] vs. 9 [2-83] vs. 3 [1-166] days, P=0.002). One-year survival in the PGD3-cohort was 71.4%, the C1-INH-treated-group had a one-year-survival of 82.5%, the control group had the best outcome (95%) (P=0.001). CONCLUSION Treatment of PGD with C1-INH led to acceptable outcome. Although survival in the C1-INH treated patients was lower than in the remaining collective, it was as good or better, compared with the PGD3 group and as what is internationally regarded as reasonable after LTX.
Collapse
|
37
|
|
38
|
VEGF-A Blockade Reduces Reperfusion Edema but Favors Arterial Thromboembolism in a Rat Model of Orthotopic Lung Transplantation. Transplantation 2014; 97:908-16. [DOI: 10.1097/tp.0000000000000056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Diamond JM, Akimova T, Kazi A, Shah RJ, Cantu E, Feng R, Levine MH, Kawut SM, Meyer NJ, Lee JC, Hancock WW, Aplenc R, Ware LB, Palmer SM, Bhorade S, Lama VN, Weinacker A, Orens J, Wille K, Crespo M, Lederer DJ, Arcasoy S, Demissie E, Christie JD. Genetic variation in the prostaglandin E2 pathway is associated with primary graft dysfunction. Am J Respir Crit Care Med 2014; 189:567-75. [PMID: 24467603 DOI: 10.1164/rccm.201307-1283oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
RATIONALE Biologic pathways with significant genetic conservation across human populations have been implicated in the pathogenesis of primary graft dysfunction (PGD). The evaluation of the role of recipient genetic variation in PGD has thus far been limited to single, candidate gene analyses. OBJECTIVES We sought to identify genetic variants in lung transplant recipients that are responsible for increased risk of PGD using a two-phase large-scale genotyping approach. METHODS Phase 1 was a large-scale candidate gene association study of the multicenter, prospective Lung Transplant Outcomes Group cohort. Phase 2 included functional evaluation of selected variants and a bioinformatics screening of variants identified in phase 1. MEASUREMENTS AND MAIN RESULTS After genetic data quality control, 680 lung transplant recipients were included in the analysis. In phase 1, a total of 17 variants were significantly associated with PGD, four of which were in the prostaglandin E2 family of genes. Among these were a coding variant in the gene encoding prostaglandin E2 synthase (PTGES2; P = 9.3 × 10(-5)) resulting in an arginine to histidine substitution at amino acid position 298, and three variants in a block containing the 5' promoter and first intron of the PTGER4 gene (encoding prostaglandin E2 receptor subtype 4; all P < 5 × 10(-5)). Functional evaluation in regulatory T cells identified that rs4434423A in the PTGER4 gene was associated with differential suppressive function of regulatory T cells. CONCLUSIONS Further research aimed at replication and additional functional insight into the role played by genetic variation in prostaglandin E2 synthetic and signaling pathways in PGD is warranted.
Collapse
|
40
|
Liu Y, Liu Y, Su L, Jiang SJ. Recipient-related clinical risk factors for primary graft dysfunction after lung transplantation: a systematic review and meta-analysis. PLoS One 2014; 9:e92773. [PMID: 24658073 PMCID: PMC3962459 DOI: 10.1371/journal.pone.0092773] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/25/2014] [Indexed: 01/08/2023] Open
Abstract
Background Primary graft dysfunction (PGD) is the main cause of early morbidity and mortality after lung transplantation. Previous studies have yielded conflicting results for PGD risk factors. Herein, we carried out a systematic review and meta-analysis of published literature to identify recipient-related clinical risk factors associated with PGD development. Method A systematic search of electronic databases (PubMed, Embase, Web of Science, Cochrane CENTRAL, and Scopus) for studies published from 1970 to 2013 was performed. Cohort, case-control, or cross-sectional studies that examined recipient-related risk factors of PGD were included. The odds ratios (ORs) or mean differences (MDs) were calculated using random-effects models Result Thirteen studies involving 10042 recipients met final inclusion criteria. From the pooled analyses, female gender (OR 1.38, 95% CI 1.09 to 1.75), African American (OR 1.82, 95%CI 1.36 to 2.45), idiopathic pulmonary fibrosis (IPF) (OR 1.78, 95% CI 1.49 to 2.13), sarcoidosis (OR 4.25, 95% CI 1.09 to 16.52), primary pulmonary hypertension (PPH) (OR 3.73, 95%CI 2.16 to 6.46), elevated BMI (BMI≥25 kg/m2) (OR 1.83, 95% CI 1.26 to 2.64), and use of cardiopulmonary bypass (CPB) (OR 2.29, 95%CI 1.43 to 3.65) were significantly associated with increased risk of PGD. Age, cystic fibrosis, secondary pulmonary hypertension (SPH), intra-operative inhaled nitric oxide (NO), or lung transplant type (single or bilateral) were not significantly associated with PGD development (all P>0.05). Moreover, a nearly 4 fold increased risk of short-term mortality was observed in patients with PGD (OR 3.95, 95% CI 2.80 to 5.57). Conclusions Our analysis identified several recipient related risk factors for development of PGD. The identification of higher-risk recipients and further research into the underlying mechanisms may lead to selective therapies aimed at reducing this reperfusion injury.
Collapse
Affiliation(s)
- Yao Liu
- Department of Respiratory Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yi Liu
- Department of Respiratory Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Lili Su
- Department of Respiratory Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Shu-juan Jiang
- Department of Respiratory Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
41
|
Abstract
Primary graft dysfunction (PGD) is a syndrome encompassing a spectrum of mild to severe lung injury that occurs within the first 72 hours after lung transplantation. PGD is characterized by pulmonary edema with diffuse alveolar damage that manifests clinically as progressive hypoxemia with radiographic pulmonary infiltrates. In recent years, new knowledge has been generated on risks and mechanisms of PGD. Following ischemia and reperfusion, inflammatory and immunological injury-repair responses appear to be key controlling mechanisms. In addition, PGD has a significant impact on short- and long-term outcomes; therefore, the choice of donor organ is impacted by this potential adverse consequence. Improved methods of reducing PGD risk and efforts to safely expand the pool are being developed. Ex vivo lung perfusion is a strategy that may improve risk assessment and become a promising platform to implement treatment interventions to prevent PGD. This review details recent updates in the epidemiology, pathophysiology, molecular and genetic biomarkers, and state-of-the-art technical developments affecting PGD.
Collapse
Affiliation(s)
- Yoshikazu Suzuki
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Edward Cantu
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jason D Christie
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
42
|
Cantu E, Lederer D, Meyer K, Milewski K, Suzuki Y, Shah R, Diamond J, Meyer N, Tobias J, Baldwin D, Van Deerlin V, Olthoff K, Shaked A, Christie J. Gene set enrichment analysis identifies key innate immune pathways in primary graft dysfunction after lung transplantation. Am J Transplant 2013; 13:1898-904. [PMID: 23710539 PMCID: PMC3954988 DOI: 10.1111/ajt.12283] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/19/2013] [Accepted: 04/07/2013] [Indexed: 01/25/2023]
Abstract
We hypothesized alterations in gene expression could identify important pathways involved in transplant lung injury. Broncho alveolar lavage fluid (BALF) was sampled from donors prior to procurement and in recipients within an hour of reperfusion as part of the NIAID Clinical Trials in Organ Transplantation Study. Twenty-three patients with Grade 3 primary graft dysfunction (PGD) were frequency matched with controls based on donor age and recipient diagnosis. RNA was analyzed using the Human Gene 1.0 ST array. Normalized mRNA expression was transformed and differences between donor and postreperfusion values were ranked then tested using Gene Set Enrichment Analysis. Three-hundred sixty-two gene sets were upregulated, with eight meeting significance (familywise-error rate, FWER p-value <0.05), including the NOD-like receptor inflammasome (NLR; p < 0.001), toll-like receptors (TLR; p < 0.001), IL-1 receptor (p = 0.001), myeloid differentiation primary response gene 88 (p = 0.001), NFkB activation by nontypeable Haemophilus influenzae (p = 0.001), TLR4 (p = 0.008) and TLR 9 (p = 0.018). The top five ranked individual transcripts from these pathways based on rank metric score are predominantly present in the NLR and TLR pathways, including IL1β (1.162), NLRP3 (1.135), IL1α (0.952), IL6 (0.931) and CCL4 (0.842). Gene set enrichment analyses implicate inflammasome-mediated and innate immune signaling pathways as key mediators of the development of PGD in lung transplant patients.
Collapse
Affiliation(s)
- E. Cantu
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - D.J. Lederer
- Department of Medicine and Epidemiology, Columbia University College of Physicians and Surgeons, New York, NY
| | - K. Meyer
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - K. Milewski
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Y. Suzuki
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - R.J. Shah
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - J.M. Diamond
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - N.J. Meyer
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - J.W. Tobias
- Penn Molecular Profiling Facility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - V.M. Van Deerlin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - K.M. Olthoff
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - A. Shaked
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - J.D. Christie
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | |
Collapse
|
43
|
Shah RJ, Diamond JM, Lederer DJ, Arcasoy SM, Cantu EM, Demissie EJ, Kawut SM, Kohl B, Lee JC, Sonett J, Christie JD, Ware LB. Plasma monocyte chemotactic protein-1 levels at 24 hours are a biomarker of primary graft dysfunction after lung transplantation. Transl Res 2012; 160:435-42. [PMID: 22989614 PMCID: PMC3500407 DOI: 10.1016/j.trsl.2012.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/08/2012] [Accepted: 08/20/2012] [Indexed: 02/08/2023]
Abstract
Monocyte chemotactic protein-1 (MCP-1), also known as "chemokine ligand 2" (CCL2), is a monocyte-attracting chemokine produced in lung epithelial cells. We previously reported an association of increased levels of plasma MCP-1 with primary graft dysfunction (PGD) after lung transplantation in a nested case-control study of extreme phenotypes using a multiplex platform. In this study, we sought to evaluate the role of plasma MCP-1 level as a biomarker across the full spectrum of PGD. We performed a prospective cohort study of 108 lung transplant recipients within the Lung Transplant Outcomes Group cohort. Plasma MCP-1 levels were measured pretransplantation and 6 and 24 hours after transplantation. The primary outcome was development of grade 3 PGD within 72 hours of transplant, with secondary analyses at the 72-hour time point. Multivariable logistic regression was used to evaluate confounding. Thirty subjects (28%) developed PGD. Median MCP-1 measured at 24 hours post-transplant was elevated in subjects with PGD (167.95 vs 103.5 pg/mL, P = .04). MCP-1 levels at 24 hours were associated with increased odds of grade 3 PGD after lung transplantation (odds ratio for each 100 pg/mL, 1.24; 95% confidence interval, 1.00-1.53) and with grade 3 PGD present at the 72-hour time point (odds ratio for each 100 pg/mL, 1.57; 95% confidence interval, 1.18-2.08), independent of confounding variables in multivariable analyses. MCP-1 levels measured preoperatively and 6 hours after transplant were not significantly associated with PGD. Persistent elevations in MCP-1 levels at 24 hours are a biomarker of grade 3 PGD post-transplantation. Monocyte chemotaxis may play a role in the pathogenesis of PGD.
Collapse
Affiliation(s)
- Rupal J Shah
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Risk Factors and Survival Impact of Primary Graft Dysfunction After Lung Transplantation in a Single Institution. Transplant Proc 2012; 44:2462-8. [DOI: 10.1016/j.transproceed.2012.07.134] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
45
|
Lin X, Li W, Lai J, Okazaki M, Sugimoto S, Yamamoto S, Wang X, Gelman AE, Kreisel D, Krupnick AS. Five-year update on the mouse model of orthotopic lung transplantation: Scientific uses, tricks of the trade, and tips for success. J Thorac Dis 2012; 4:247-58. [PMID: 22754663 DOI: 10.3978/j.issn.2072-1439.2012.06.02] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/05/2012] [Indexed: 12/23/2022]
Abstract
It has been 5 years since our team reported the first successful model of orthotopic single lung transplantation in the mouse. There has been great demand for this technique due to the obvious experimental advantages the mouse offers over other large and small animal models of lung transplantation. These include the availability of mouse-specific reagents as well as knockout and transgenic technology. Our laboratory has utilized this mouse model to study both immunological and non-immunological mechanisms of lung transplant physiology while others have focused on models of chronic rejection. It is surprising that despite our initial publication in 2007 only few other laboratories have published data using this model. This is likely due to the technical complexity of the surgical technique and perioperative complications, which can limit recipient survival. As two of the authors (XL and WL) have a combined experience of over 2500 left and right single lung transplants, this review will summarize their experience and delineate tips and tricks necessary for successful transplantation. We will also describe technical advances made since the original description of the model.
Collapse
|
46
|
Diamond JM, Meyer NJ, Feng R, Rushefski M, Lederer DJ, Kawut SM, Lee JC, Cantu E, Shah RJ, Lama VN, Bhorade S, Crespo M, Demissie E, Sonett J, Wille K, Orens J, Weinacker A, Weill D, Arcasoy S, Shah PD, Belperio JA, Wilkes D, Ware LB, Palmer SM, Christie JD. Variation in PTX3 is associated with primary graft dysfunction after lung transplantation. Am J Respir Crit Care Med 2012; 186:546-52. [PMID: 22822025 DOI: 10.1164/rccm.201204-0692oc] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Elevated long pentraxin-3 (PTX3) levels are associated with the development of primary graft dysfunction (PGD) after lung transplantation. Abnormalities in innate immunity, mediated by PTX3 release, may play a role in PGD pathogenesis. OBJECTIVES Our goal was to test whether variants in the gene encoding PTX3 are risk factors for PGD. METHODS We performed a candidate gene association study in recipients from the multicenter, prospective Lung Transplant Outcomes Group cohort enrolled between July 2002 and July 2009. The primary outcome was International Society for Heart and Lung Transplantation grade 3 PGD within 72 hours of transplantation. Targeted genotyping of 10 haplotype-tagging PTX3 single-nucleotide polymorphisms (SNPs) was performed in lung transplant recipients. The association between PGD and each SNP was evaluated by logistic regression, adjusting for pretransplantation lung disease, cardiopulmonary bypass use, and population stratification. The association between SNPs and plasma PTX3 levels was tested across genotypes in a subset of recipients with idiopathic pulmonary fibrosis. MEASUREMENTS AND MAIN RESULTS Six hundred fifty-four lung transplant recipients were included. The incidence of PGD was 29%. Two linked 5' region variants, rs2120243 and rs2305619, were associated with PGD (odds ratio, 1.5; 95% confidence interval, 1.1 to 1.9; P = 0.006 and odds ratio, 1.4; 95% confidence interval, 1.1 to 1.9; P = 0.007, respectively). The minor allele of rs2305619 was significantly associated with higher plasma PTX3 levels measured pretransplantation (P = 0.014) and at 24 hours (P = 0.047) after transplantation in patients with idiopathic pulmonary fibrosis. CONCLUSIONS Genetic variants of PTX3 are associated with PGD after lung transplantation, and are associated with increased PTX3 plasma levels.
Collapse
Affiliation(s)
- Joshua M Diamond
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, 3400 Spruce St., 8 West Gates, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
A panel of lung injury biomarkers enhances the definition of primary graft dysfunction (PGD) after lung transplantation. J Heart Lung Transplant 2012; 31:942-9. [PMID: 22694851 DOI: 10.1016/j.healun.2012.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/13/2012] [Accepted: 05/09/2012] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND We aimed to identify combinations of biomarkers to enhance the definition of primary graft dysfunction (PGD) for translational research. METHODS Biomarkers reflecting lung epithelial injury (soluble receptor for advance glycation end products [sRAGE] and surfactant protein-D [SP-D]), coagulation cascade (plasminogen activator inhibitor-1 [PAI-1] and protein C), and cell adhesion (intracellular adhesion molecule-1 [ICAM-1]) were measured in the plasma of 315 individuals derived from the Lung Transplant Outcomes Group cohort at 6 and 24 hours after transplantation. We assessed biomarker utility in 2 ways: first, we tested the discrimination of grade 3 PGD within 72 hours; second, we tested the predictive utility of plasma biomarkers for 90-day mortality. RESULTS PGD developed in 86 of 315 individuals (27%). Twenty-patients (8%) died within 90 days of transplantation, of which 16 (70%) had PGD. Biomarkers measured at 24 hours had greater discrimination than at 6 hours. Individually, sRAGE (area under the curve [AUC], 0.71) and PAI-1 (AUC, 0.73) had the best discrimination of PGD. The combinations of sRAGE with PAI-1 (AUC, 0.75), PAI-1 with ICAM-1 (AUC, 0.75), and PAI-1 with SP-D (AUC, 0.76) had the best discrimination. Combinations of greater than 2 biomarkers did not significantly enhance discrimination of PGD. ICAM-1 with PAI-1 (AUC, 0.72) and ICAM-1 with sRAGE (AUC, 0.72) had the best prediction for 90-day mortality. The addition of ICAM-1, PAI-1, or sRAGE to the concurrent clinical PGD grade significantly improved the prediction of 90-day mortality (p < 0.001 each). CONCLUSIONS Measurement of the combination of a marker of impaired fibrinolysis with an epithelial injury or cell adhesion marker had the best discrimination for PGD and prediction for early death and may provide an alternative outcome useful in future research.
Collapse
|
48
|
Suárez López VJ, Miñambres E, Robles Arista JC, Ballesteros MA. [Primary graft dysfunction after lung transplantation]. Med Intensiva 2012; 36:506-12. [PMID: 22673134 DOI: 10.1016/j.medin.2012.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 03/19/2012] [Accepted: 03/21/2012] [Indexed: 01/02/2023]
Abstract
Lung transplantation is a therapeutic option for pulmonary diseases in which the other treatment options have failed or in cases of rapid disease progression. However, transplantation is not free from complications, and primary graft dysfunction is one of them. Primary graft dysfunction is a form of acute lung injury. It characteristically develops during the immediate postoperative period, being associated to high morbidity and mortality, and increased risk of bronchiolitis obliterans. Different terms have been used in reference to primary graft dysfunction, leading to a consensus document to clarify the definition in 2005. This consensus document regards primary graft dysfunction as non-cardiogenic pulmonary edema developing within 72 hours of reperfusion and intrinsically attributable to alteration of the lung parenchyma. A number of studies have attempted to identify risk factors and to establish the underlying physiopathology, with a view to developing potential therapeutic options. Such options include nitric oxide and pulmonary surfactant together with supportive measures such as mechanical ventilation or oxygenation bypass.
Collapse
Affiliation(s)
- V J Suárez López
- Servicio Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, España
| | | | | | | |
Collapse
|
49
|
Braga KADO, Nepomuceno NA, Correia AT, Jatene FB, Pêgo-Fernandes PM. The effects on mucociliary clearance of prednisone associated with bronchial section. Clinics (Sao Paulo) 2012; 67:647-52. [PMID: 22760905 PMCID: PMC3370318 DOI: 10.6061/clinics/2012(06)16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 02/27/2012] [Accepted: 02/27/2012] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Infections have been and remain the major cause of morbidity and mortality after lung transplantation. Because mucociliary clearance plays an important role in human defense mechanisms, the influence of drugs on the mucociliary epithelium of patients undergoing lung transplantation must be examined. Prednisone is the most important corticosteroid used after lung transplantation. The aim of this study was to evaluate the effects of bronchial transection and prednisone therapy on mucociliary clearance. METHODS A total of 120 rats were assigned to 4 groups according to surgical procedure or drug therapy: prednisone therapy (1.25 mg/kg/day); bronchial section and anastomosis + prednisone therapy (1.25 mg/kg/day); bronchial section + saline solution (2 ml/day); and saline solution (2 ml/day). After 7, 15, or 30 days, the animals were sacrificed, and the lungs were removed from the thoracic cavity. The in situ mucociliary transport velocity, ciliary beat frequency and in vitro mucus transportability were evaluated. RESULTS Animals undergoing bronchial section surgery and anastomosis had a significant decrease in the ciliary beat frequency and mucociliary transport velocity 7 and 15 days after surgery (p<0.001). These parameters were normalized 30 days after the surgical procedure. Prednisone improved mucous transportability in the animals undergoing bronchial section and anastomosis at 15 and 30 days (p<0.05). CONCLUSION Bronchial section and anastomosis decrease mucociliary clearance in the early postoperative period. Prednisone therapy improves mucus transportability in animals undergoing bronchial section and anastomosis.
Collapse
|
50
|
Abstract
Primary graft dysfunction (PGD) is the most important cause of early morbidity and mortality following lung transplantation. PGD affects up to 25% of all lung transplant procedures and currently has no proven preventive therapy. Lung transplant recipients who recover from PGD may have impaired long-term function and an increased risk of bronchiolitis obliterans syndrome. This article aims to provide a state-of-the-art review of PGD epidemiology, outcomes, and risk factors, and to summarize current efforts at biomarker development and novel strategies for prevention and treatment.
Collapse
Affiliation(s)
- James C Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | |
Collapse
|