1
|
Lomeli N, Pearre DC, Lepe J, Argueta DA, Arellano MA, Ricks-Oddie JL, Gupta K, Bota DA. N-acetylcysteine prevents cisplatin-induced cognitive impairments in an ovarian cancer rat model. Cancer Lett 2024; 611:217405. [PMID: 39706252 DOI: 10.1016/j.canlet.2024.217405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Cancer-related cognitive impairment (CRCI) is prevalent among cancer patients. A critical disparity in the CRCI field is that most pre-clinical studies have been conducted on young cancer-free male rodents, although CRCI predominantly affects breast cancer and ovarian cancer women survivors. Since oxidative stress is widely implicated in the development of CRCI, we developed an ovarian cancer xenograft rat model of CRCI in Cr:NIH-RNU female rats to examine whether administration of the antioxidant N-acetylcysteine (NAC) prevents cisplatin-induced CRCI without altering its anti-cancer efficacy. In vitro, delayed treatment with NAC (10 h) following cisplatin treatment in the human ovarian cancer cell line SKOV3.ip1 did not decrease cisplatin's anti-cancer efficacy while mitigating hippocampal dendritic branching damage and neuronal apoptosis. Rats received subcutaneous and intraperitoneal implantation of SKOV3.ip1 cells. Rats received one cisplatin (5 mg/kg) injection every two weeks for a total of four cycles, with or without NAC (250 mg/kg/day), given for five consecutive days during cisplatin treatment. NAC was administered 10 h after cisplatin, based on our in vitro data. Cognitive testing was performed six to seven weeks after treatment cessation. In vivo, cognitive impairments were observed in tumor-bearing rats in the vehicle and cisplatin-treatment groups, while delayed NAC prevented cognitive impairments. Delayed NAC administration did not affect cisplatin-induced tumor volume reduction. Our study supports using NAC to mitigate cisplatin-induced CRCI through the novel development of an ovarian cancer rodent model. This study highlights the importance of developing clinically relevant tumor-bearing models to elucidate the underlying mechanisms associated with CRCI, which will aid in identifying potential therapeutic agents for preventing CRCI.
Collapse
Affiliation(s)
- Naomi Lomeli
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Diana C Pearre
- Gynecologic Oncology, Providence Cancer Institute, Burbank, CA, USA
| | - Javier Lepe
- Department of Pathology, University of California Irvine, Irvine, CA, USA
| | - Donovan A Argueta
- Department of Medicine, Division of Hematology/Oncology, University of California Irvine, Irvine, CA, USA
| | - Mya A Arellano
- Department of Medicine, Division of Hematology/Oncology, University of California Irvine, Irvine, CA, USA
| | - Joni L Ricks-Oddie
- Center for Statistical Consulting, Department of Statistics, University of California Irvine, Irvine, CA, USA; Biostatistics, Epidemiology and Research Design Unit, Institute for Clinical and Translational Sciences, University of California Irvine, Irvine, CA, USA
| | - Kalpna Gupta
- Department of Medicine, Division of Hematology/Oncology, University of California Irvine, Irvine, CA, USA
| | - Daniela A Bota
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Department of Pathology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Wu X, Peng X, Zhang Y, Peng W, Lu X, Deng T, Nie G. New application of ombuoside in protecting auditory cells from cisplatin-induced ototoxicity via the apoptosis pathway. Heliyon 2024; 10:e39166. [PMID: 39640804 PMCID: PMC11620119 DOI: 10.1016/j.heliyon.2024.e39166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Hearing loss is caused by many factors including ototoxic drug-induced hair cell damage. Ombuoside, an antioxidant isolated from Gynostemma pentaphyllum, has been suggested to serve as a new neuroprotective drug. However, the role of ombuoside in protecting inner ear hair cells from ototoxic drug-induced damage has not been investigated. Here, we demonstrated the protective potential of ombuoside in mitigating drug-induced ototoxicity in vivo and in vitro. We used cisplatin, a highly ototoxic anti-tumor drug, to induce hair cell damage. Our results showed that ombuoside significantly increased the survival of cisplatin-treated HEI-OC1 cells. Further mechanism research suggested that ombuoside protects HEI-OCI cells from cisplatin-induced apoptosis by reducing the cisplatin-induced upregulation of apoptosis-promoting proteins Bax, Bak, as well as apoptosis indicator proteins cytochrome C and cleaved-caspase-3, and the downregulation of apoptosis-inhibiting proteins Bcl-2. Ombuoside also protects the cells from the excessive ROS production and mitochondrial membrane depolarization triggered by cisplatin. These results demonstrated the potential for ombuoside in protecting hair cells from cisplatin by suppressing ROS generation and the mitochondrial apoptotic cascade. Ombuoside showed promise in protecting hair cells from cisplatin-induced apoptosis by suppressing ROS generation and the mitochondrial apoptotic cascade. Furthermore, ombuoside co-treatment in mouse cochlear explants and zebrafish lateral neuromasts rescued the decreased number and deformed morphology of hair cells resulting from cisplatin exposure. These findings further validated our conclusions and indicated that ombuoside is a potential protector against hearing loss caused by ototoxicity as a clinical side effect of cisplatin.
Collapse
Affiliation(s)
- Xingxing Wu
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518035, China
| | - Xixia Peng
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yue Zhang
- Department of Otolaryngology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Wanjun Peng
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518035, China
| | - Xiaochan Lu
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Tingting Deng
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518035, China
| | - Guohui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518035, China
| |
Collapse
|
3
|
Kessler L, Koo C, Richter CP, Tan X. Hearing loss during chemotherapy: prevalence, mechanisms, and protection. Am J Cancer Res 2024; 14:4597-4632. [PMID: 39417180 PMCID: PMC11477841 DOI: 10.62347/okgq4382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Ototoxicity is an often-underestimated sequela for cancer patients undergoing chemotherapy, with an incidence rate exceeding 50%, affecting approximately 4 million individuals worldwide each year. Despite the nearly 2,000 publications on chemotherapy-related ototoxicity in the past decade, the understanding of its prevalence, mechanisms, and preventative or therapeutic measures remains ambiguous and subject to debate. To date, only one drug, sodium thiosulfate, has gained FDA approval for treating ototoxicity in chemotherapy. However, its utilization is restricted. This review aims to offer clinicians and researchers a comprehensive perspective by thoroughly and carefully reviewing available data and current evidence. Chemotherapy-induced ototoxicity is characterized by four primary symptoms: hearing loss, tinnitus, vertigo, and dizziness, originating from both auditory and vestibular systems. Hearing loss is the predominant symptom. Amongst over 700 chemotherapeutic agents documented in various databases, only seven are reported to induce hearing loss. While the molecular mechanisms of the hearing loss caused by the two platinum-based drugs are extensively explored, the pathways behind the action of the other five drugs are primarily speculative, rooted in their therapeutic properties and side effects. Cisplatin attracts the majority of attention among these drugs, encompassing around two-thirds of the literature regarding ototoxicity in chemotherapy. Cisplatin ototoxicity chiefly manifests through the loss of outer hair cells, possibly resulting from damages directly by cisplatin uptake or secondary effects on the stria vascularis. Both direct and indirect influences contribute to cisplatin ototoxicity, while it is still debated which path is dominant or where the primary target of cisplatin is located. Candidates for hearing protection against cisplatin ototoxicity are also discussed, with novel strategies and methods showing promise on the horizon.
Collapse
Affiliation(s)
- Lexie Kessler
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Chail Koo
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Claus-Peter Richter
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Biomedical Engineering, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Communication Sciences and Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| | - Xiaodong Tan
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| |
Collapse
|
4
|
Carles L, Gibaja A, Scheper V, Alvarado JC, Almodovar C, Lenarz T, Juiz JM. Efficacy and Mechanisms of Antioxidant Compounds and Combinations Thereof against Cisplatin-Induced Hearing Loss in a Rat Model. Antioxidants (Basel) 2024; 13:761. [PMID: 39061830 PMCID: PMC11273477 DOI: 10.3390/antiox13070761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Cisplatin is an election chemotherapeutic agent used for many cancer treatments. Its cytotoxicity against neoplastic cells is mirrored by that taking place in healthy cells and tissues, resulting in serious adverse events. A very frequent one is ototoxicity, causing hearing loss which may permanently affect quality of life after successful oncologic treatments. Exacerbated oxidative stress is a main cytotoxic mechanism of cisplatin, including ototoxicity. Previous reports have shown antioxidant protection against cisplatin ototoxicity, but there is a lack of comparative studies on the otoprotectant activity and mechanism of antioxidant formulations. Here, we show evidence that a cocktail of vitamins A, C, and E along with Mg++ (ACEMg), previously shown to protect against noise-induced hearing loss, reverses auditory threshold shifts, promotes outer hair cell survival, and attenuates oxidative stress in the cochlea after cisplatin treatment, thus protecting against extreme cisplatin ototoxicity in rats. The addition of 500 mg N-acetylcysteine (NAC), which, administered individually, also shows significant attenuation of cisplatin ototoxicity, to the ACEMg formulation results in functional degradation of ACEMg otoprotection. Mg++ administered alone, as MgSO4, also prevents cisplatin ototoxicity, but in combination with 500 mg NAC, otoprotection is also greatly degraded. Increasing the dose of NAC to 1000 mg also results in dramatic loss of otoprotection activity compared with 500 mg NAC. These findings support that single antioxidants or antioxidant combinations, particularly ACEMg in this experimental series, have significant otoprotection efficacy against cisplatin ototoxicity. However, an excess of combined antioxidants and/or elevated doses, above a yet-to-be-defined "antioxidation threshold", results in unrecoverable redox imbalance with loss of otoprotectant activity.
Collapse
Grants
- PID2020-117266RB-C22-1, EXC 2177/1, ID:390895286, SBPLY/17/180501/000544. Ministerio de Ciencia Innovación, MCINN, Gobierno de España, Plan Estatal de I+D+i, PID2020-117266RB-C22-1, Cluster of Excellence "Hearing4All" EXC 2177/1, ID:390895286, part of the Germany´s Excellence Strategy of the German Research Foundation, DFG. Co
Collapse
Affiliation(s)
- Liliana Carles
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008 Albacete, Spain; (L.C.); (A.G.); (J.C.A.)
- Department of Otolaryngology, University Hospital “Doce de Octubre”, 28041 Madrid, Spain;
| | - Alejandro Gibaja
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008 Albacete, Spain; (L.C.); (A.G.); (J.C.A.)
| | - Verena Scheper
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.L.)
- Cluster of Excellence “Hearing4all” of the German Research Foundation, DFG, 26111 Oldenburg, Germany
| | - Juan C. Alvarado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008 Albacete, Spain; (L.C.); (A.G.); (J.C.A.)
| | - Carlos Almodovar
- Department of Otolaryngology, University Hospital “Doce de Octubre”, 28041 Madrid, Spain;
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.L.)
- Cluster of Excellence “Hearing4all” of the German Research Foundation, DFG, 26111 Oldenburg, Germany
| | - José M. Juiz
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008 Albacete, Spain; (L.C.); (A.G.); (J.C.A.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.L.)
- Cluster of Excellence “Hearing4all” of the German Research Foundation, DFG, 26111 Oldenburg, Germany
| |
Collapse
|
5
|
Gao Y, Wu F, He W, Cai Z, Pang J, Zheng Y. Reactive Oxygen Species-Related Disruptions to Cochlear Hair Cell and Stria Vascularis Consequently Leading to Radiation-Induced Sensorineural Hearing Loss. Antioxid Redox Signal 2024; 40:470-491. [PMID: 37476961 DOI: 10.1089/ars.2022.0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Aims: Radiation-induced sensorineural hearing loss (RISNHL) is one of the major side effects of radiotherapy for head and neck cancers. At present, no effective clinical treatment or prevention is available for RISNHL. This study thus aimed to investigate the cochlear pathology so that the underlying mechanisms of RISNHL may be elucidated, consequently paving the way for potential protective strategies to be developed. Results: Functional and morphological impairment in the stria vascularis (SV) was observed after irradiation (IR), as indicated by endocochlear potential (EP) reduction, hyperpermeability, and SV atrophy. The expression of zonulae occludins-1 was found to have decreased after IR. The loss of outer hair cells (OHCs) occurred later than SV damage. The disruption to the SV and OHCs could be attributed to reactive oxygen species (ROS)-related damage. In addition, EP shifts and the loss of OHCs were reduced when ROS was reduced by N-acetylcysteine (NAC) in C57BL/6 mice, attenuating auditory threshold shifts. Innovation: The damage to the SV was found to occur before OHC loss. ROS-related damage accounted for SV damage and OHC loss. The incidences of SV damage and OHC loss were decreased through ROS modulation by NAC, subsequently preventing RISNHL, suggesting the possible role of NAC as a possible protective agent against RISNHL. Conclusion: The findings from this study suggest oxidative stress-induced early SV injury and late OHC loss to be the key factors leading to RISNHL. NAC prevents IR-induced OHC loss, and attenuates auditory brainstem response and EP shifts by regulating the level of oxidative stress. Antioxid. Redox Signal. 40, 470-491.
Collapse
Affiliation(s)
- Yiming Gao
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fan Wu
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wuhui He
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ziyi Cai
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiaqi Pang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Shanwei, China
| |
Collapse
|
6
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
7
|
Doroudian M, Thibault ME, Gailer J. N-Acetylcysteine Displaces Glutathionyl-Moieties from Hg 2+ and MeHg + to Form More Hydrophobic Complexes at Near-Physiological Conditions. Molecules 2023; 28:6762. [PMID: 37836605 PMCID: PMC10574133 DOI: 10.3390/molecules28196762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
The anthropogenic release of Hg is associated with an increased human exposure risk. Since Hg2+ and MeHg+ have a high affinity for thiols, their interaction with L-glutathione (GSH) within mammalian cells is fundamentally involved in their toxicological chemistry and excretion. To gain insight into the interaction of these mercurials with multiple small molecular weight thiols, we have investigated their competitive interactions with GSH and N-acetylcysteine (NAC) at near-physiological conditions, using a liquid chromatographic approach. This approach involved the injection of each mercurial onto a reversed-phase (RP)-HPLC column (37 °C) using a PBS buffer mobile phase containing 5.0 mM GSH to simulate cytosolic conditions with Hg being detected in the column effluent by an inductively coupled plasma atomic emission spectrometer (ICP-AES). When the 5.0 mM GSH mobile phase was amended with up to 10 mM NAC, gradually increasing retention times of both mercurials were observed. To explain this behavior, the experiment with 5.0 mM NAC and 5.0 mM GSH was replicated using 50 mM Tris buffer (pH 7.4), and the Hg-containing fractions were analyzed by electrospray ionization mass spectrometry. The results revealed the presence of Hg(GS)(NAC) and Hg(NAC)2 for Hg2+ and MeHg(GS) and MeHg(NAC) for MeHg+, which suggests that the coordination/displacement of GS-moieties from each mercurial by the more hydrophobic NAC can explain their retention behavior. Since the biotransformations of both mercurials were observed at near-physiological conditions, they are of toxicological relevance as they provide a biomolecular explanation for some results that were obtained when animals were administered with each mercurial and NAC.
Collapse
Affiliation(s)
| | | | - Jürgen Gailer
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada; (M.D.); (M.E.T.)
| |
Collapse
|
8
|
Rybak LP, Alberts I, Patel S, Al Aameri RFH, Ramkumar V. Effects of natural products on cisplatin ototoxicity and chemotherapeutic efficacy. Expert Opin Drug Metab Toxicol 2023; 19:635-652. [PMID: 37728555 DOI: 10.1080/17425255.2023.2260737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Cisplatin is a very effective chemotherapeutic agent against a variety of solid tumors. Unfortunately, cisplatin causes permanent sensorineural hearing loss in at least two-thirds of patients treated. There are no FDA approved drugs to prevent this serious side effect. AREAS COVERED This paper reviews various natural products that ameliorate cisplatin ototoxicity. These compounds are strong antioxidants and anti-inflammatory agents. This review includes mostly preclinical studies but also discusses a few small clinical trials with natural products to minimize hearing loss from cisplatin chemotherapy in patients. The interactions of natural products with cisplatin in tumor-bearing animal models are highlighted. A number of natural products did not interfere with cisplatin anti-tumor efficacy and some agents actually potentiated cisplatin anti-tumor activity. EXPERT OPINION There are a number of natural products or their derivatives that show excellent protection against cisplatin ototoxicity in preclinical studies. There is a need to insure uniform standards for purity of drugs derived from natural sources and to ensure adequate pharmacokinetics and safety of these products. Natural products that protect against cisplatin ototoxicity and augment cisplatin's anti-tumor effects in multiple studies of tumor-bearing animals are most promising for advancement to clinical trials. The most promising natural products include honokiol, sulforaphane, and thymoquinone.
Collapse
Affiliation(s)
- Leonard P Rybak
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Ian Alberts
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Shree Patel
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Raheem F H Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
9
|
Orgel E, Knight KR, Chi YY, Malvar J, Rushing T, Mena V, Eisenberg LS, Rassekh SR, Ross CJD, Scott EN, Neely M, Neuwelt EA, Muldoon LL, Freyer DR. Intravenous N-Acetylcysteine to Prevent Cisplatin-Induced Hearing Loss in Children: A Nonrandomized Controlled Phase I Trial. Clin Cancer Res 2023; 29:2410-2418. [PMID: 37134194 PMCID: PMC10330342 DOI: 10.1158/1078-0432.ccr-23-0252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/29/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023]
Abstract
PURPOSE Cisplatin-induced hearing loss (CIHL) is common and permanent. As compared with earlier otoprotectants, we hypothesized N-acetylcysteine (NAC) offers potential for stronger otoprotection through stimulation of glutathione (GSH) production. This study tested the optimal dose, safety, and efficacy of NAC to prevent CIHL. PATIENTS AND METHODS In this nonrandomized, controlled phase Ia/Ib trial, children and adolescents newly diagnosed with nonmetastatic, cisplatin-treated tumors received NAC intravenously 4 hours post-cisplatin. The trial performed dose-escalation across three dose levels to establish a safe dose that exceeded the targeted peak serum NAC concentration of 1.5 mmol/L (as identified from preclinical models). Patients with metastatic disease or who were otherwise ineligible were enrolled in an observation-only/control arm. To evaluate efficacy, serial age-appropriate audiology assessments were performed. Integrated biology examined genes involved in GSH metabolism and post-NAC GSH concentrations. RESULTS Of 52 patients enrolled, 24 received NAC and 28 were in the control arm. The maximum tolerated dose was not reached; analysis of peak NAC concentration identified 450 mg/kg as the recommended phase II dose (RP2D). Infusion-related reactions were common. No severe adverse events occurred. Compared with the control arm, NAC decreased likelihood of CIHL at the end of cisplatin therapy [OR, 0.13; 95% confidence interval (CI), 0.021-0.847; P = 0.033] and recommendations for hearing intervention at end of study (OR, 0.082; 95% CI, 0.011-0.60; P = 0.014). NAC increased GSH; GSTP1 influenced risk for CIHL and NAC otoprotection. CONCLUSIONS NAC was safe at the RP2D, with strong evidence for efficacy to prevent CIHL, warranting further development as a next-generation otoprotectant.
Collapse
Affiliation(s)
- Etan Orgel
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Kristin R. Knight
- Department of Pediatric Audiology, Doernbecher Children’s Hospital, Oregon Health & Science University, Portland, Oregon
| | - Yueh-Yun Chi
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jemily Malvar
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Teresa Rushing
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Victoria Mena
- Department of Rehabilitation Services-Pediatric Audiology, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Laurie S. Eisenberg
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Shahrad R. Rassekh
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin JD Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erika N. Scott
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Neely
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Laboratory of Applied Pharmacokinetics and Bioinformatics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California
| | - Edward A. Neuwelt
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Leslie L. Muldoon
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - David R Freyer
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
10
|
Zadrożniak M, Szymański M, Łuszczki JJ. N-Acetyl-L-cysteine Affects Ototoxicity Evoked by Amikacin and Furosemide Either Alone or in Combination in a Mouse Model of Hearing Threshold Decrease. Int J Mol Sci 2023; 24:ijms24087596. [PMID: 37108758 PMCID: PMC10143461 DOI: 10.3390/ijms24087596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Drug-induced ototoxicity resulting from therapy with aminoglycoside antibiotics and loop diuretics is one of the main well-known causes of hearing loss in patients. Unfortunately, no specific protection and prevention from hearing loss are recommended for these patients. This study aimed at evaluating the ototoxic effects produced by mixtures of amikacin (AMI, an aminoglycoside antibiotic) and furosemide (FUR, a loop diuretic) in the mouse model as the hearing threshold decreased by 20% and 50% using auditory brainstem responses (ABRs). Ototoxicity was produced by the combinations of a constant dose of AMI (500 mg/kg; i.p.) on FUR-induced hearing threshold decreases, and a fixed dose of FUR (30 mg/kg; i.p.) on AMI-induced hearing threshold decreases, which were determined in two sets of experiments. Additionally, the effects of N-acetyl-L-cysteine (NAC; 500 mg/kg; i.p.) on the hearing threshold decrease of 20% and 50% were determined by means of an isobolographic transformation of interactions to detect the otoprotective action of NAC in mice. The results indicate that the influence of a constant dose of AMI on FUR-induced hearing threshold decreases was more ototoxic in experimental mice than a fixed dose of FUR on AMI-induced ototoxicity. Moreover, NAC reversed the AMI-induced, but not FUR-induced, hearing threshold decreases in this mouse model of hearing loss. NAC could be considered an otoprotectant in the prevention of hearing loss in patients receiving AMI alone and in combination with FUR.
Collapse
Affiliation(s)
- Marek Zadrożniak
- Department of Otolaryngology and Laryngological Oncology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Marcin Szymański
- Department of Otolaryngology and Laryngological Oncology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Jarogniew J Łuszczki
- Department of Occupational Medicine, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
11
|
Noman A, Mukherjee S, Le TN. Manipulating the Blood Labyrinth Barrier with Mannitol to Prevent Cisplatin-Induced Hearing Loss. Hear Res 2022; 426:108646. [DOI: 10.1016/j.heares.2022.108646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/10/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022]
|
12
|
Dash S, Zuo J, Steyger PS. Local Delivery of Therapeutics to the Cochlea Using Nanoparticles and Other Biomaterials. Pharmaceuticals (Basel) 2022; 15:1115. [PMID: 36145336 PMCID: PMC9504900 DOI: 10.3390/ph15091115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
Hearing loss negatively impacts the well-being of millions of people worldwide. Systemic delivery of ototherapeutics has limited efficacy due to severe systemic side effects and the presence of the blood-labyrinth barrier that selectively limits or enables transfer of molecules between plasma and inner ear tissues and fluids. Local drug delivery into the middle and inner ear would be preferable for many newly emerging classes of drugs. Although the cochlea is a challenging target for drug delivery, recent technologies could provide a safe and efficacious delivery of ototherapeutics. Local drug delivery routes include topical delivery via the external auditory meatus, retroauricular, transtympanic, and intracochlear delivery. Many new drug delivery systems specifically for the inner ear are under development or undergoing clinical studies. Future studies into these systems may provide a means for extended delivery of drugs to preserve or restore hearing in patients with hearing disorders. This review outlines the anatomy of the (inner) ear, describes the various local delivery systems and routes, and various quantification methodologies to determine the pharmacokinetics of the drugs in the inner ear.
Collapse
Affiliation(s)
| | | | - Peter S. Steyger
- Translational Hearing Center, Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
13
|
Kishimoto-Urata M, Urata S, Fujimoto C, Yamasoba T. Role of Oxidative Stress and Antioxidants in Acquired Inner Ear Disorders. Antioxidants (Basel) 2022; 11:1469. [PMID: 36009187 PMCID: PMC9405327 DOI: 10.3390/antiox11081469] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Oxygen metabolism in the mitochondria is essential for biological activity, and reactive oxygen species (ROS) are produced simultaneously in the cell. Once an imbalance between ROS production and degradation (oxidative stress) occurs, cells are damaged. Sensory organs, especially those for hearing, are constantly exposed during daily life. Therefore, almost all mammalian species are liable to hearing loss depending on their environment. In the auditory pathway, hair cells, spiral ganglion cells, and the stria vascularis, where mitochondria are abundant, are the main targets of ROS. Excessive generation of ROS in auditory sensory organs is widely known to cause sensorineural hearing loss, and mitochondria-targeted antioxidants are candidates for treatment. This review focuses on the relationship between acquired hearing loss and antioxidant use to provide an overview of novel antioxidants, namely medicines, supplemental nutrients, and natural foods, based on clinical, animal, and cultured-cell studies.
Collapse
Affiliation(s)
| | | | | | - Tatsuya Yamasoba
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo 1138655, Japan; (M.K.-U.); (S.U.); (C.F.)
| |
Collapse
|
14
|
Li Y, Yu H, Zhou X, Jin L, Li W, Li GL, Shen X. Multiple Sevoflurane Exposures During the Neonatal Period Cause Hearing Impairment and Loss of Hair Cell Ribbon Synapses in Adult Mice. Front Neurosci 2022; 16:945277. [PMID: 35911996 PMCID: PMC9329801 DOI: 10.3389/fnins.2022.945277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives This study aims to investigate the effects of multiple sevoflurane exposures in neonatal mice on hearing function in the later life and explores the underlying mechanisms and protective strategies. Materials and Methods Neonatal Kunming mice were exposed to sevoflurane for 3 days. Auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) tests, immunofluorescence, patch-clamp recording, and quantitative real-time PCR were performed to observe hearing function, hair cells, ribbon synapses, nerve fibers, spiral ganglion neurons, and oxidative stress. Results Compared to control group, multiple sevoflurane exposures during the neonatal time significantly elevated ABR thresholds at 8 kHz (35.42 ± 1.57 vs. 41.76 ± 1.97 dB, P = 0.0256), 16 kHz (23.33 ± 1.28 vs. 33.53 ± 2.523 dB, P = 0.0012), 24 kHz (30.00 ± 2.04 vs. 46.76 ± 3.93 dB, P = 0.0024), and 32 kHz (41.25 ± 2.31 vs. 54.41 ± 2.94 dB, P = 0.0028) on P30, caused ribbon synapse loss on P15 (13.10 ± 0.43 vs. 10.78 ± 0.52, P = 0.0039) and P30 (11.24 ± 0.56 vs. 8.50 ± 0.84, P = 0.0141), and degenerated spiral ganglion neuron (SGN) nerve fibers on P30 (110.40 ± 16.23 vs. 55.04 ± 8.13, P = 0.0073). In addition, the Vhalf of calcium current become more negative (−21.99 ± 0.70 vs. −27.17 ± 0.60 mV, P < 0.0001), exocytosis was reduced (105.40 ± 19.97 vs. 59.79 ± 10.60 fF, P < 0.0001), and Lpo was upregulated (P = 0.0219) in sevoflurane group than those in control group. N-acetylcysteine (NAC) reversed hearing impairment induced by sevoflurane. Conclusion The findings suggest that multiple sevoflurane exposures during neonatal time may cause hearing impairment in adult mice. The study also demonstrated that elevated oxidative stress led to ribbon synapses impairment and SGN nerve fibers degeneration, and the interventions of antioxidants alleviated the sevoflurane-induced hearing impairment.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Huiqian Yu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Xuehua Zhou
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Lin Jin
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Wen Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Geng-Lin Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Geng-Lin Li,
| | - Xia Shen
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Xia Shen,
| |
Collapse
|
15
|
Barth MC, Lange S, Häfner N, Ueberschaar N, Görls H, Runnebaum IB, Weigand W. Synthesis and characterization of thiocarbonato-linked platinum(IV) complexes. Dalton Trans 2022; 51:5567-5576. [PMID: 35311885 DOI: 10.1039/d2dt00318j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we show the formation of new oxaliplatin-based platinum(IV) complexes by reaction with DSC-activated thiols via thiocarbonate linkage. Three model complexes based on aliphatic and aromatic thiols, as well as one complex with N-acetylcysteine as biologically active thiol were synthesized. This synthetic strategy affords the expansion of biologically active compounds other than those containing carboxylic, amine or hydroxy groups for coupling to the platinum(IV) center. The complexes were characterized by high-resolution mass spectrometry, NMR spectroscopy (1H, 13C, 195Pt) and elemental analysis. Their biological behavior was evaluated against two ovarian carcinoma cell lines and their cisplatin-resistant analogues. Remarkably, the platinum(IV) samples show modest in vitro cytotoxicity against A2780 cells and comparable effects against A2780cis cells. Two complexes in particular demonstrate improved activity against SKOV3cis cells. The reduction experiment of complex 8, investigated by UHPLC-HRMS, provides evidence of interesting platinum-species formed during reaction with ascorbic acid.
Collapse
Affiliation(s)
- Marie-Christin Barth
- Department of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743 Jena, Germany.
| | - Stefanie Lange
- Department of Gynecology and Reproduction Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Norman Häfner
- Department of Gynecology and Reproduction Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Nico Ueberschaar
- Mass Spectrometry Platform, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743 Jena, Germany
| | - Helmar Görls
- Department of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743 Jena, Germany.
| | - Ingo B Runnebaum
- Department of Gynecology and Reproduction Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Wolfgang Weigand
- Department of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743 Jena, Germany.
| |
Collapse
|
16
|
Chen BC, Lin LJ, Lin YC, Lee CF, Hsu WC. Optimal N-acetylcysteine concentration for intratympanic injection to prevent cisplatin-induced ototoxicity in guinea pigs. Acta Otolaryngol 2022; 142:127-131. [PMID: 35287541 DOI: 10.1080/00016489.2022.2038796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Cisplatin is a chemotherapy drug that can induce sensorineural hearing loss. At present, no otoprotective agent is approved for use. OBJECTIVES This study investigated the optimal concentration of intratympanic N-acetylcysteine (NAC) to prevent cisplatin-induced ototoxicity in a guinea pig model. MATERIALS AND METHODS Guinea pigs (n = 64) were treated with a single intratympanic injection containing different NAC concentrations or saline (control) 3 days prior to intraperitoneal injection with cisplatin. The threshold change in the auditory brainstem response was assessed. RESULTS Four weeks after intraperitoneal cisplatin injection, only the group that received 2% NAC exhibited significant otoprotection (p < .05) compared with the control. Otoprotection was observed at all the frequencies tested (1k, 2k, 4k, and 8k Hz). The 2% NAC group also exhibited significant otoprotection (p < .05) compared with the other NAC groups (at 1k, 2k, 4k, and 8k Hz). The 4% NAC group exhibited significantly reduced hearing capacity (p < .05) in the fourth week compared with controls. CONCLUSIONS AND SIGNIFICANCE Intratympanic NAC administration is an efficient and safe means of preventing cisplatin-induced ototoxicity. In our animal model, the optimal intratympanic NAC concentration was 2%; concentrations of 4% loss of otoprotection.
Collapse
Affiliation(s)
- Bo-Cheng Chen
- Department of Otolaryngology, Hualien Tzu Chi Hospital, Medical Foundation, Hualien, Taiwan
| | - Lian-Jie Lin
- Department of Otolaryngology, Hualien Tzu Chi Hospital, Medical Foundation, Hualien, Taiwan
| | - Yi-Chen Lin
- Department of Otolaryngology, Hualien Tzu Chi Hospital, Medical Foundation, Hualien, Taiwan
| | - Chia-Fone Lee
- Department of Otolaryngology, Hualien Tzu Chi Hospital, Medical Foundation, Hualien, Taiwan
- Department of otolaryngology Head and Neck Surgery, School of Medicine, Chi University, Hualien, Taiwan
| | - Wei-Chung Hsu
- Department of Otolaryngology, Head and Neck Surgery, National Taiwan, University Hospital, Taipei, Taiwan
- Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
Ramkumar V, Mukherjea D, Dhukhwa A, Rybak LP. Oxidative Stress and Inflammation Caused by Cisplatin Ototoxicity. Antioxidants (Basel) 2021; 10:antiox10121919. [PMID: 34943021 PMCID: PMC8750101 DOI: 10.3390/antiox10121919] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hearing loss is a significant health problem that can result from a variety of exogenous insults that generate oxidative stress and inflammation. This can produce cellular damage and impairment of hearing. Radiation damage, ageing, damage produced by cochlear implantation, acoustic trauma and ototoxic drug exposure can all generate reactive oxygen species in the inner ear with loss of sensory cells and hearing loss. Cisplatin ototoxicity is one of the major causes of hearing loss in children and adults. This review will address cisplatin ototoxicity. It includes discussion of the mechanisms associated with cisplatin-induced hearing loss including uptake pathways for cisplatin entry, oxidative stress due to overpowering antioxidant defense mechanisms, and the recently described toxic pathways that are activated by cisplatin, including necroptosis and ferroptosis. The cochlea contains G-protein coupled receptors that can be activated to provide protection. These include adenosine A1 receptors, cannabinoid 2 receptors (CB2) and the Sphingosine 1-Phosphate Receptor 2 (S1PR2). A variety of heat shock proteins (HSPs) can be up-regulated in the cochlea. The use of exosomes offers a novel method of delivery of HSPs to provide protection. A reversible MET channel blocker that can be administered orally may block cisplatin uptake into the cochlear cells. Several protective agents in preclinical studies have been shown to not interfere with cisplatin efficacy. Statins have shown efficacy in reducing cisplatin ototoxicity without compromising patient response to treatment. Additional clinical trials could provide exciting findings in the prevention of cisplatin ototoxicity.
Collapse
Affiliation(s)
- Vickram Ramkumar
- Department of Pharmacology, School of Medicine, Southern Illinois University, 801 N. Rutledge Street, Springfield, IL 62702, USA; (V.R.); (A.D.)
| | - Debashree Mukherjea
- Department of Otolaryngology, School of Medicine, Southern Illinois University, 801 N. Rutledge Street, Springfield, IL 62702, USA;
| | - Asmita Dhukhwa
- Department of Pharmacology, School of Medicine, Southern Illinois University, 801 N. Rutledge Street, Springfield, IL 62702, USA; (V.R.); (A.D.)
| | - Leonard P. Rybak
- Department of Otolaryngology, School of Medicine, Southern Illinois University, 801 N. Rutledge Street, Springfield, IL 62702, USA;
- Correspondence: ; Fax: +1-217-545-6544
| |
Collapse
|
18
|
Park DJ, Park JE, Lee SH, Eliceiri BP, Choi JS, Kim SK, Seo YJ. Protective effect of MSC-derived exosomes against cisplatin-induced apoptosis via heat shock protein 70 in auditory explant model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 38:102447. [PMID: 34314868 DOI: 10.1016/j.nano.2021.102447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/17/2021] [Accepted: 07/11/2021] [Indexed: 12/20/2022]
Abstract
Therapeutics based on stem cell technology, including stem cell-derived exosomes, have emerged in recent years for the treatment of what were otherwise considered incurable diseases. In this study, we evaluated the efficacy of human MSC-derived exosomes for protection against cisplatin induced ototoxic hearing loss. Incubation of cochlear explants with MSC-derived exosomes prior to addition of cisplatin induced a reduction in cisplatin-induced drug toxicity in auditory hair cells but not when the exosomes were introduced simultaneously with or after cisplatin. The delivery of MSC-derived exosomes to cochlear explants was confirmed by the increasing protein levels of the exosome markers CD63 and HSP70 to reduce apoptosis. These results were consistent with those from a model in which MSC-derived exosomes protect auditory hair cells from cisplatin-induced drug toxicity in an ex vivo cochlear explant model and support future studies into the therapeutic benefits of stem cell-derived exosomes in clinical applications.
Collapse
Affiliation(s)
- Dong Jun Park
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea; Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea; Department of Surgery, University of California San Diego Medical Center Hillcrest, San Diego, CA, USA
| | - Jeong-Eun Park
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea; Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Su Hoon Lee
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea; Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Brian P Eliceiri
- Department of Surgery, University of California San Diego Medical Center Hillcrest, San Diego, CA, USA
| | - Jin Sil Choi
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea; Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Sung Kyun Kim
- Department of Otorhinolaryngology Head and Neck Surgery, Hallym University College of Medicine, Dongtan Sacred Heart Hospital, Hwaseong, South Korea
| | - Young Joon Seo
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea; Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea.
| |
Collapse
|
19
|
Tian M, Xing R, Guan J, Yang B, Zhao X, Yang J, Zhan C, Zhang S. A Nanoantidote Alleviates Glioblastoma Chemotoxicity without Efficacy Compromise. NANO LETTERS 2021; 21:5158-5166. [PMID: 34097422 DOI: 10.1021/acs.nanolett.1c01201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cancer patients suffer from the toxicity of chemotherapy. Antidote, given as a remedy limiting poison, is an effective way to counteract toxicity. However, few antidotes abrogate chemotoxicity without compromising the therapeutic efficacy. Herein, a rationally designed nanoantidote can neutralize chemo-agents in normal cells but not enter tumors and thus would not interfere with the efficacy of tumor treatment. The nanoantidote, consisting of a dendrimer core wrapped by reductive cysteine, captures Temozolomide (TMZ, the glioblastoma standard chemotherapy). Meanwhile, thanks to the blood-brain barrier (BBB) and the size of the nanoantidote, the nanoantidote cannot enter glioblastoma. In murine models, the nanoantidote distributes in normal tissues without crossing the BBB, so it markedly reduces the chemotoxicity of TMZ and retains the original TMZ therapeutic efficacy. With most nanotechnologies focusing on antitumor treatment, this detoxicating strategy demonstrates a nanoplatform to reduce chemotoxicity using physiology barriers and introduces a new approach to nanomedicine for cancer chemotherapy.
Collapse
Affiliation(s)
- Meng Tian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Rui Xing
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Juan Guan
- Department of Pharmacology, School of Basic Medical Sciences and Center of Medical Research and Innovation, Shanghai Pudong Hospital and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P.R. China
| | - Bingxue Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xin Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Juanjuan Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences and Center of Medical Research and Innovation, Shanghai Pudong Hospital and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P.R. China
| | - Shiyi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| |
Collapse
|
20
|
Tang Q, Wang X, Jin H, Mi Y, Liu L, Dong M, Chen Y, Zou Z. Cisplatin-induced ototoxicity: Updates on molecular mechanisms and otoprotective strategies. Eur J Pharm Biopharm 2021; 163:60-71. [PMID: 33775853 DOI: 10.1016/j.ejpb.2021.03.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/20/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
Cisplatin is a highly effective antitumor drug generally used in the treatment of solid malignant tumors. However, cisplatin causes severe side effects such as bone marrow depression, nephrotoxicity, and ototoxicity, thus limiting its clinical application. The incidence of ototoxicity induced by cisplatin ranges from 20% to 70%, and it usually manifests as a progressive, bilateral and irreversible hearing loss. Although the etiology of cisplatin-induced ototoxicity remains unclear, an increasing body of evidence suggests that the ototoxicity of cisplatin is mainly related to the production of reactive oxygen species and activation of apoptotic pathway in cochlear tissues. Many drugs have been well proved to protect cisplatin-induced hearing loss in vitro and in vivo. However, the anti-tumor effect of cisplatin is also weakened by systemic administration of those drugs for hearing protection, especially antioxidants. Therefore, establishing a local administration strategy contributes to the otoprotection without affecting the effect of cisplatin. This review introduces the pathology of ototoxicity caused by cisplatin, and focuses on recent developments in the mechanisms and protective strategies of cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Qing Tang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xianren Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Huan Jin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yanjun Mi
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research and Thoracic Tumor Diagnosis & Treatment, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Lingfeng Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Mengyuan Dong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
21
|
Fuloria S, Subramaniyan V, Karupiah S, Kumari U, Sathasivam K, Meenakshi DU, Wu YS, Sekar M, Chitranshi N, Malviya R, Sudhakar K, Bajaj S, Fuloria NK. Comprehensive Review of Methodology to Detect Reactive Oxygen Species (ROS) in Mammalian Species and Establish Its Relationship with Antioxidants and Cancer. Antioxidants (Basel) 2021; 10:128. [PMID: 33477494 PMCID: PMC7831054 DOI: 10.3390/antiox10010128] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Evidence suggests that reactive oxygen species (ROS) mediate tissue homeostasis, cellular signaling, differentiation, and survival. ROS and antioxidants exert both beneficial and harmful effects on cancer. ROS at different concentrations exhibit different functions. This creates necessity to understand the relation between ROS, antioxidants, and cancer, and methods for detection of ROS. This review highlights various sources and types of ROS, their tumorigenic and tumor prevention effects; types of antioxidants, their tumorigenic and tumor prevention effects; and abnormal ROS detoxification in cancer; and methods to measure ROS. We conclude that improving genetic screening methods and bringing higher clarity in determination of enzymatic pathways and scale-up in cancer models profiling, using omics technology, would support in-depth understanding of antioxidant pathways and ROS complexities. Although numerous methods for ROS detection are developing very rapidly, yet further modifications are required to minimize the limitations associated with currently available methods.
Collapse
Affiliation(s)
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | | | - Usha Kumari
- Faculty of Medicine, AIMST University, Kedah 08100, Malaysia;
| | | | | | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Mahendran Sekar
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Malaysia;
| | - Nitin Chitranshi
- Faculty of Medicine and Human Sciences, Maquarie University, North Ryde, NSW 2109, Australia;
| | - Rishabha Malviya
- Department of Pharmacy, SMAS, Galgotias University, Greater Noida 203201, India;
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences (LIT-Pharmacy), Lovely Professional University, Jalandhar 144411, India;
| | - Sakshi Bajaj
- Delhi Institute of Pharmaceutical Science and Research, Pushp Vihar, New Delhi 110017, India;
| | | |
Collapse
|
22
|
Ahiskali I, Ferah Okkay I, Mammadov R, Okkay U, Keskin Cimen F, Kurt N, Suleyman H. Effect of taxifolin on cisplatin-associated oxidative optic nerve damage in rats. Cutan Ocul Toxicol 2020; 40:1-6. [PMID: 33121287 DOI: 10.1080/15569527.2020.1844726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM To investigate the effect of taxifolin on cisplatin-induced oxidative and proinflammatory optic nerve damage in rats. METHODS A total of 18 albino Wistar male rats were assigned into 3 groups, as follows; Group 1: Control group, Group 2: Only cisplatin administered group for 14 days (Cisplatin group), and Group 3: Taxifolin + cisplatin administered group for 14 days (CIS + TAX group). Serum malondialdehyde (MDA), total Glutathione (tGSH), Nuclear Factor-Kappa B (NF-ƘB), Total Oxidative Status (TOS) and Total Antioxidant Status (TAS) levels were collected from the left eyes of rats. Rats' right eyes were enucleated for histopathological evaluations of optic nerves. RESULTS NF-ƘB, MDA and TOS levels were statistically significantly higher (p < 0.001) in cisplatin group when compared to other 2 groups, the tGSH and TAS levels of which were statistically significantly lower (p < 0.001). Regarding these parameters, in cisplatin group NF-ƘB, MDA and TOS levels were statistically significantly increased with cisplatin administration and giving taxifolin concomitantly with cisplatin prevented this elevation. On the other hand, tGSH and TAS levels were statistically significantly decreased with cisplatin administration and routine simultaneous application of taxifolin with cisplatin prevented this decrease. In histopathological findings, haemorrhage was observed in the perineum of the injured optic nerves in the cisplatin treated group. And also edoema and degeneration in nerve fascicles in damaged optic nerves were seen in the cisplatin group. In the taxifolin treated group histopathological examinations were close to normal appearance, except mild edoema in nerve fascicles. CONCLUSION Cisplatin causes oxidative stress on the rat optic nerves, and these changes lead to significant histopathological damage. Taxifolin, which we used to prevent oxidative damage to the optic nerves caused by cisplatin, has been emphasized as a powerful antioxidant agent in many previous scientific investigations. Concomitant administration of taxifolin may prevent these adverse effects of cisplatin, as well as histopathological damage. Further studies are needed to fully determine the effects of cisplatin and taxifolin on the eye.
Collapse
Affiliation(s)
- Ibrahim Ahiskali
- Department of Ophtalmology, University of Health Sciences; Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Irmak Ferah Okkay
- Department of Pharmacology, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Renad Mammadov
- Department of Pharmacology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Ufuk Okkay
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ferda Keskin Cimen
- Department of Pathology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Nezahat Kurt
- Department of Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| |
Collapse
|
23
|
Gausterer JC, Saidov N, Ahmadi N, Zhu C, Wirth M, Reznicek G, Arnoldner C, Gabor F, Honeder C. Intratympanic application of poloxamer 407 hydrogels results in sustained N-acetylcysteine delivery to the inner ear. Eur J Pharm Biopharm 2020; 150:143-155. [DOI: 10.1016/j.ejpb.2020.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/20/2020] [Accepted: 03/04/2020] [Indexed: 01/06/2023]
|
24
|
Clinical trials evaluating transtympanic otoprotectants for cisplatin-induced ototoxicity: what do we know so far? Eur Arch Otorhinolaryngol 2020; 277:2413-2422. [PMID: 32358651 DOI: 10.1007/s00405-020-06003-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cisplatin (CDDP) chemotherapy can cause serious side effects including irreversible and progressive hearing loss. Studies have aimed to assess potential protective strategies; however, systemic treatments have presented variable results, and potential interactions with CDDP have limited clinical trials. METHODS A review of the literature was performed in order to evaluate clinical trials that have studied a transtympanic approach as an otoprotectant strategy. RESULTS Six clinical trials were included. While a transtympanic approach can limit side effects and avoid interactions with CDDP, recurrent issues have been expressed including which otoprotectant to test, time delays between CDDP treatment and transtympanic injections, side effects such as pain and dizziness, concentrations, and number of injections. Clinical trials have used sodium thiosulfate, N-acetylcysteine and dexamethasone. CONCLUSIONS While a transtympanic approach seems like an attractive strategy, further research is needed to clarify which is the optimal otoprotectant, its dosage, and the number of injections.
Collapse
|
25
|
Freyer DR, Brock PR, Chang KW, Dupuis LL, Epelman S, Knight K, Mills D, Phillips R, Potter E, Risby D, Simpkin P, Sullivan M, Cabral S, Robinson PD, Sung L. Prevention of cisplatin-induced ototoxicity in children and adolescents with cancer: a clinical practice guideline. THE LANCET. CHILD & ADOLESCENT HEALTH 2020; 4:141-150. [PMID: 31866182 PMCID: PMC7521149 DOI: 10.1016/s2352-4642(19)30336-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 01/19/2023]
Abstract
Despite ototoxicity being a prevalent consequence of cisplatin chemotherapy, little guidance exists on interventions to prevent this permanent and progressive adverse event. To develop a clinical practice guideline for the prevention of cisplatin-induced ototoxicity in children and adolescents with cancer, we convened an international, multidisciplinary panel of experts and patient advocates to update a systematic review of randomised trials for the prevention of cisplatin-induced ototoxicity. The systematic review identified 27 eligible adult and paediatric trials that evaluated amifostine, sodium diethyldithiocarbamate or disulfiram, systemic sodium thiosulfate, intratympanic therapies, and cisplatin infusion duration. Regarding systemic sodium thiosulfate, the panel made a strong recommendation for administration in non-metastatic hepatoblastoma, a weak recommendation for administration in other non-metastatic cancers, and a weak recommendation against its routine use in metastatic cancers. Amifostine, sodium diethyldithiocarbamate, and intratympanic therapy should not be routinely used. Cisplatin infusion duration should not be altered as a means to reduce ototoxicity. Further research to determine the safety of sodium thiosulfate in patients with metastatic cancer is encouraged.
Collapse
Affiliation(s)
- David R Freyer
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA; Departments of Pediatrics and Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Penelope R Brock
- Department of Haematology and Oncology, Great Ormond Street Hospital, London, UK
| | - Kay W Chang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Palo Alto, CA, USA
| | - L Lee Dupuis
- Department of Pharmacy, The Hospital for Sick Children, Toronto, ON, Canada; Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Sidnei Epelman
- Department of Pediatric Oncology, Casa de Saude Santa Marcelina, Sao Paolo, Brazil
| | - Kristin Knight
- Pediatric Audiology, Doernbecher Children's Hospital, Oregon Health and Science University, Portland, OR, USA
| | - Denise Mills
- Division of Haematology and Oncology, The Hospital for Sick Children, Toronto, ON, Canada; Pediatric Oncology Group of Ontario, Toronto, ON, Canada
| | - Robert Phillips
- Department of Haematology and Oncology, Leeds Teaching Hospital, NHS Trust, Leeds, UK; Centre for Reviews and Dissemination, University of York, York, UK
| | - Emma Potter
- Division of Oncology, Royal Marsden Hospital, London, UK
| | | | | | - Michael Sullivan
- Children's Cancer Centre, Royal Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, Faculty of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Sandra Cabral
- Pediatric Oncology Group of Ontario, Toronto, ON, Canada
| | | | - Lillian Sung
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada; Division of Haematology and Oncology, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
26
|
Gonçalves MS, Silveira AFD, Murashima ADAB, Rossato M, Hippolito MA. Otoprotection Mechanisms Against Oxidative Stress Caused by Cisplatin. Int Arch Otorhinolaryngol 2020; 24:e47-e52. [PMID: 31929833 PMCID: PMC6952293 DOI: 10.1055/s-0039-1698782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/07/2019] [Indexed: 11/18/2022] Open
Abstract
Introduction
Cisplatin damages the auditory system and is related to the generation of free radicals. Glutathione peroxidase is an endogenous free radicals remover.
Objective
To investigate the mechanisms involved in otoprotection by N-acetylcysteine through the expression of glutathione peroxidase in outer hair cells from rats treated with cisplatin.
Methods
Male Wistar rats were intraperitoneally injected with cisplatin (8 mg/Kg) and/or received oral administration by gavage of N-acetylcysteine (300 mg/Kg) for 3 consecutive days. On the 4
th
day, the animals were euthanized and beheaded. The tympanic bullae were removed and prepared for scanning electron microscopy and immunofluorescence.
Results
Among the groups exposed to ototoxic doses of cisplatin, there was an increase in glutathione peroxidase immunostaining in two groups, the one exposed to cisplatin alone, and the group exposed to both cisplatin and N-acetylcysteine.
Conclusion
The expression of glutathione peroxidase in the outer hair cells of rats exposed to cisplatin showed the synthesis of this enzyme under cellular toxicity conditions.
Collapse
Affiliation(s)
| | | | - Adriana de Andrade Batista Murashima
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirao Preto, SP, Brazil
| | - Maria Rossato
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirao Preto, SP, Brazil
| | - Miguel Angelo Hippolito
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
27
|
Ruggiero A, Trombatore G, Triarico S, Capozza MA, Coccia P, Attina G, Mastrangelo S, Maurizi P. Cisplatin Toxicity in Children with Malignancy. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2019; 12:1603-1611. [DOI: 10.13005/bpj/1791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Platinum’ derivates are antineoplastic agents widely adopted for their efficacy for the treatment of many pediatric cancers. The use of cisplatin has positively influenced the results of the cure of different childhood malignancies. However, cisplatin-based treatments are limited by the risk of severe and progressive toxicities, such as oto- or nephrotoxicity, that can be more serious in very young children expecially when high cumulative doses and/or radiotherapy is administered. A correct knowledge of the cisplatin’ pharmacological features might be of interest for clinicians in order to manage its potential toxicities. Based on the positive trend in the cure of children with cancer, it is crucial that all children receiving cisplatin-based chemotherapy have and appropriate and long-term follow-up to improve their quality of life.
Collapse
Affiliation(s)
- Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A .Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Roma, Italy
| | - Giovanna Trombatore
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A .Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Roma, Italy
| | - Silvia Triarico
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A .Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Roma, Italy
| | - Michele Antonio Capozza
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A .Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Roma, Italy
| | - Paola Coccia
- Pediatric Hemato-oncology Unit, Ospedale Salesi, Azienda Ospedali Riuniti Ancona, Ancona, Italy
| | - Giorgio Attina
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A .Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Roma, Italy
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A .Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Roma, Italy
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A .Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Roma, Italy
| |
Collapse
|
28
|
Freyer DR, Brock P, Knight K, Reaman G, Cabral S, Robinson PD, Sung L. Interventions for cisplatin-induced hearing loss in children and adolescents with cancer. THE LANCET. CHILD & ADOLESCENT HEALTH 2019; 3:578-584. [PMID: 31160205 PMCID: PMC7521148 DOI: 10.1016/s2352-4642(19)30115-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 01/19/2023]
Abstract
The identification of preventive interventions that are safe and effective for cisplatin-induced ototoxicity is important, especially in children because hearing loss can impair speech-language acquisition development. Previous randomised trials assessed systemic drugs such as amifostine, sodium diethyldithiocarbamate or disulfiram, and sodium thiosulfate. Amifostine, sodium diethyldithiocarbamate, and disulfiram did not show hearing preservation. Paediatric trials assessing sodium thiosulfate showed efficacy in terms of hearing protection. The SIOPEL 6 trial consisted solely of patients with localised hepatoblastoma and no effects on survival were shown. In the ACCL0431 trial, which included heterogeneous patients, a post-hoc analysis showed significantly worse overall survival among patients who had disseminated disease receiving sodium thiosulfate than among controls, but not among those with localised disease. Intratympanically administered drugs have mainly been assessed in adults and include N-acetylcysteine and dexamethasone. Inconsistent effects of these drugs were identified but these studies were limited by design, small sample size, and statistical approach. Future studies of systemic drugs will need to consider the measurement of disease outcomes through study design and sample size, and ototoxicity endpoints should be harmonised to enhance comparability between trials.
Collapse
Affiliation(s)
- David R Freyer
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA; Departments of Pediatrics and Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Penelope Brock
- Department of Haematology and Oncology, Great Ormond Street Hospital, London, UK
| | - Kristin Knight
- Division of Pediatric Audiology, Doernbecher Children's Hospital, Oregon Health and Science University, Portland, OR, USA
| | - Gregory Reaman
- Division of Oncology, Children's National Health System, Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Sandra Cabral
- Pediatric Oncology Group of Ontario, Toronto, ON, Canada
| | | | - Lillian Sung
- Division of Haematology and Oncology, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
29
|
Videhult Pierre P, Fransson A, Kisiel MA, Damberg P, Nikkhou Aski S, Andersson M, Hällgren L, Laurell G. Middle Ear Administration of a Particulate Chitosan Gel in an in vivo Model of Cisplatin Ototoxicity. Front Cell Neurosci 2019; 13:268. [PMID: 31293387 PMCID: PMC6603134 DOI: 10.3389/fncel.2019.00268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/29/2019] [Indexed: 11/13/2022] Open
Abstract
Background Middle ear (intratympanic, IT) administration is a promising therapeutic method as it offers the possibility of achieving high inner ear drug concentrations with low systemic levels, thus minimizing the risk of systemic side effects and drug-drug interactions. Premature elimination through the Eustachian tube may be reduced by stabilizing drug solutions with a hydrogel, but this raises the secondary issue of conductive hearing loss. Aim This study aimed to investigate the properties of a chitosan-based particulate hydrogel formulation when used as a drug carrier for IT administration in an in vivo model of ototoxicity. Materials and Methods Two particulate chitosan-based IT delivery systems, Thio-25 and Thio-40, were investigated in albino guinea pigs (n = 94). Both contained the hearing protecting drug candidate sodium thiosulfate with different concentrations of chitosan gel particles (25% vs. 40%). The safety of the two systems was explored in vivo. The most promising system was then tested in guinea pigs subjected to a single intravenous injection with the anticancer drug cisplatin (8 mg/kg b.w.), which has ototoxic side effects. Hearing status was evaluated with acoustically evoked frequency-specific auditory brainstem response (ABR) and hair cell counting. Finally, in vivo magnetic resonance imaging was used to study the distribution and elimination of the chitosan-based system from the middle ear cavity in comparison to a hyaluronan-based system. Results Both chitosan-based IT delivery systems caused ABR threshold elevations (p < 0.05) that remained after 10 days (p < 0.05) without evidence of hair cell loss, although the elevation induced by Thio-25 was significantly lower than for Thio-40 (p < 0.05). Thio-25 significantly reduced cisplatin-induced ABR threshold elevations (p < 0.05) and outer hair cell loss (p < 0.05). IT injection of the chitosan- and hyaluronan-based systems filled up most of the middle ear space. There were no significant differences between the systems in terms of distribution and elimination. Conclusion Particulate chitosan is a promising drug carrier for IT administration. Future studies should assess whether the physical properties of this technique allow for a smaller injection volume that would reduce conductive hearing loss.
Collapse
Affiliation(s)
- Pernilla Videhult Pierre
- Division of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Anette Fransson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Peter Damberg
- Karolinska Experimental Research and Imaging Center, Karolinska University Hospital, Stockholm, Sweden
| | - Sahar Nikkhou Aski
- Karolinska Experimental Research and Imaging Center, Karolinska University Hospital, Stockholm, Sweden
| | - Mats Andersson
- Division of Bioscience and Materials, RISE Research Institutes of Sweden, Södertälje, Sweden
| | - Lotta Hällgren
- Division of Bioscience and Materials, RISE Research Institutes of Sweden, Södertälje, Sweden
| | - Göran Laurell
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Pierstorff E, Yang WW, Chen YJA, Cheung S, Kalinec F, Slattery WH. Prevention of cisplatin-induced hearing loss by extended release fluticasone propionate intracochlear implants. Int J Pediatr Otorhinolaryngol 2019; 121:157-163. [PMID: 30913504 PMCID: PMC6502669 DOI: 10.1016/j.ijporl.2019.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/27/2019] [Accepted: 03/17/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Cisplatin is a chemotherapeutic drug known to induce hearing loss. Although corticosteroids may help to mitigate the ototoxic side effects of cisplatin, there are complications associated with their systemic and prolonged use. The goal of this study is to test the efficacy of extended-release fluticasone propionate intracochlear implant particles to protect against cisplatin-induced hearing loss. METHODS We used guinea pigs (n = 9) injected with cisplatin (IP, 12 mg/kg weight). Fluticasone particles were delivered to the cochlear scala tympani through the round window membrane into the right ears of the guinea pigs (left ears being used as a control) two weeks prior to cisplatin administration, and hearing function was evaluated by ABR and DPOAE before implantation, immediately before cisplatin administration, and 2 weeks after the challenge with cisplatin. Data was statistically evaluated using paired t-test analysis. RESULTS No significant differences were observed in ABR threshold between control and implanted ears on day 14 (23.9 ± 2.3 dB vs. 25.6 ± 1.3 dB, P = 0.524), whereas the significant cisplatin-induced hearing loss in control animals (23.9 ± 2.3 dB at day 14 vs. 40.7 ± 2.5 dB at day 28, P ≤ 0.0001) was prevented in implanted animals (25.6 ± 1.3 dB at day 14 vs. 25.0 ± 3.1 at day 28, P ≥ 0.85). A similar, though not statistically significant, trend was observed in DPOAE responses in untreated ears (7.9 ± 5.8 dB at day14 vs. -0.5 ± 5.3 dB at day 28, P = 0.654) as compared to treatment (11.1 ± 3.4 dB at day 14 vs. 13.6 ± 4.8 dB at day 28, P = 0.733). CONCLUSION These results suggest that fluticasone intracochlear implants are safe and able to provide effective otoprotection against cisplatin-induced hearing loss in the guinea pig model.
Collapse
Affiliation(s)
- Erik Pierstorff
- O-Ray Pharma, Inc., 2285 E. Foothill Blvd, Pasadena, CA, 91107, USA.
| | - Wan-Wan Yang
- O-Ray Pharma, Inc., 2285 E. Foothill Blvd, Pasadena, CA, 91107, USA
| | - Yen-Jung Angel Chen
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Shirley Cheung
- O-Ray Pharma, Inc., 2285 E. Foothill Blvd, Pasadena, CA, 91107, USA
| | - Federico Kalinec
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | | |
Collapse
|
31
|
Visacri MB, Quintanilha JCF, de Sousa VM, Amaral LS, de F. L. Ambrósio R, Calonga L, Curi SFBB, de T. Leme MF, Chone CT, Altemani JMC, Mazzola PG, Malaguti C, Vercesi AE, Lima CSP, Moriel P. Can acetylcysteine ameliorate cisplatin-induced toxicities and oxidative stress without decreasing antitumor efficacy? A randomized, double-blind, placebo-controlled trial involving patients with head and neck cancer. Cancer Med 2019; 8:2020-2030. [PMID: 30977273 PMCID: PMC6536930 DOI: 10.1002/cam4.2072] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 01/22/2023] Open
Abstract
The protective antioxidant activity of acetylcysteine (NAC) against toxicity due to cisplatin has been reported in experimental models; however, its efficacy in patients has not been elucidated. The aim of this study was to investigate the possible protective effect of NAC on cisplatin-induced toxicity and the effect of NAC on clinical response and oxidative stress in patients treated for head and neck cancer. This was a randomized, double-blind, placebo-controlled trial conducted in patients receiving high-dose cisplatin chemotherapy concomitant to radiotherapy. Patients were randomly assigned to groups and received: (a) 600 mg NAC syrup, orally once daily at night for 7 consecutive days or (b) placebo, administered similarly to NAC. Nephro-, oto-, hepato-, myelo-, and gastrointestinal toxicities, clinical responses, and plasma and cellular markers of oxidative stress were evaluated. Fifty-seven patients were included (n = 28, NAC arm; and n = 29, placebo arm). A high prevalence of most types of toxicities was observed after cisplatin chemotherapy; however, the parameters were similar between the two groups. There was a predominance of partial response to treatment. In the cellular and plasmatic oxidative stress analyses, minor differences were observed. Overall, there was no statistically significant difference between the groups for all outcomes. These findings show that low-dose oral NAC does not protect patients with head and neck cancer from cisplatin-induced toxicities and oxidative stress. The antitumor efficacy of cisplatin was apparently not impaired by NAC.
Collapse
Affiliation(s)
| | | | | | - Laís S. Amaral
- School of Medical SciencesUniversity of CampinasCampinasBrazil
| | | | | | | | | | | | | | | | - Carina Malaguti
- School of Medical SciencesUniversity of CampinasCampinasBrazil
| | | | | | - Patricia Moriel
- Faculty of Pharmaceutical SciencesUniversity of CampinasCampinasBrazil
| |
Collapse
|
32
|
Abstract
There is an urgent need for otoprotective drug agents. Prevention of noise-induced hearing loss continues to be a major challenge for military personnel and workers in a variety of industries despite the requirements that at-risk individuals use hearing protection devices such as ear plugs or ear muffs. Drug-induced hearing loss is also a major quality-of-life issue with many patients experiencing clinically significant hearing loss as a side effect of treatment with life-saving drug agents such as cisplatin and aminoglycoside antibiotics. There are no pharmaceutical agents approved by the United States Food and Drug Administration for the purpose of protecting the inner ear against damage, and preventing associated hearing loss (otoprotection). However, a variety of preclinical studies have suggested promise, with some supporting data from clinical trials now being available as well. Additional research within this promising area is urgently needed.
Collapse
Affiliation(s)
- Colleen G Le Prell
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas
| |
Collapse
|
33
|
Castañeda R, Natarajan S, Jeong SY, Hong BN, Kang TH. Traditional oriental medicine for sensorineural hearing loss: Can ethnopharmacology contribute to potential drug discovery? JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:409-428. [PMID: 30439402 DOI: 10.1016/j.jep.2018.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Traditional Oriental Medicine (TOM), the development of hearing pathologies is related to an inadequate nourishment of the ears by the kidney and other organs involved in regulation of bodily fluids and nutrients. Several herbal species have historically been prescribed for promoting the production of bodily fluids or as antiaging agents to treat deficiencies in hearing. AIM OF REVIEW The prevalence of hearing loss has been increasing in the last decade and is projected to grow considerably in the coming years. Recently, several herbal-derived products prescribed in TOM have demonstrated a therapeutic potential for acquired sensorineural hearing loss and tinnitus. Therefore, the aims of this review are to provide a comprehensive overview of the current known efficacy of the herbs used in TOM for preventing different forms of acquired sensorineural hearing loss and tinnitus, and associate the traditional principle with the demonstrated pharmacological mechanisms to establish a solid foundation for directing future research. METHODS The present review collected the literature related to herbs used in TOM or related compounds on hearing from Chinese, Korean, and Japanese herbal classics; library catalogs; and scientific databases (PubMed, Scopus, Google Scholar; and Science Direct). RESULTS This review shows that approximately 25 herbal species and 40 active compounds prescribed in TOM for hearing loss and tinnitus have shown in vitro or in vivo beneficial effects for acquired sensorineural hearing loss produced by noise, aging, ototoxic drugs or diabetes. The inner ear is highly vulnerable to ischemia and oxidative damage, where several TOM agents have revealed a direct effect on the auditory system by normalizing the blood supply to the cochlea and increasing the antioxidant defense in sensory hair cells. These strategies have shown a positive impact on maintaining the inner ear potential, sustaining the production of endolymph, reducing the accumulation of toxic and inflammatory substances, preventing sensory cell death and preserving sensory transmission. There are still several herbal species with demonstrated therapeutic efficacy whose mechanisms have not been deeply studied and others that have been traditionally used in hearing loss but have not been tested experimentally. In clinical studies, Ginkgo biloba, Panax ginseng, and Astragalus propinquus have demonstrated to improve hearing thresholds in patients with sensorineural hearing loss and alleviated the symptoms of tinnitus. However, some of these clinical studies have been limited by small sample sizes, lack of an adequate control group or contradictory results. CONCLUSIONS Current therapeutic strategies have proven that the goal of the traditional oriental medicine principle of increasing bodily fluids is a relevant approach for reducing the development of hearing loss by improving microcirculation in the blood-labyrinth barrier and increasing cochlear blood flow. The potential benefits of TOM agents expand to a multi-target approach on different auditory structures of the inner ear related to increased cochlear blood flow, antioxidant, anti-inflammatory, anti-apoptotic and neuroprotective activities. However, more research is required, given the evidence is very limited in terms of the mechanism of action at the preclinical in vivo level and the scarce number of clinical studies published.
Collapse
Affiliation(s)
- Rodrigo Castañeda
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Sathishkumar Natarajan
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Seo Yule Jeong
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Bin Na Hong
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea.
| | - Tong Ho Kang
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| |
Collapse
|
34
|
Khurana RK, Jain A, Jain A, Sharma T, Singh B, Kesharwani P. Administration of antioxidants in cancer: debate of the decade. Drug Discov Today 2018; 23:763-770. [PMID: 29317341 DOI: 10.1016/j.drudis.2018.01.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/30/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022]
Abstract
Several randomized clinical trials have divulged that administration of antioxidants during chemotherapy decreases the effectiveness of treatment. Hence, the characteristic feature of this article is extensive assessment of putative benefits and potential risks of natural and synthetic antioxidant supplementation, administered with chemotherapy, based upon the available preclinical and clinical data. After analyzing mixed results, it was concluded that current FDA guidelines should be followed before supplementing antioxidants during cytotoxic treatment. Nevertheless, contradictory experimental animal models opposing human clinical trials discourage the concurrent administration of antioxidants ostensibly owing to the possibility of tumor protection and reduced survival.
Collapse
Affiliation(s)
- Rajneet Kaur Khurana
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Ashay Jain
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh 160014, India
| | - Atul Jain
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh 160014, India
| | - Teenu Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India; UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh 160014, India.
| | - Prashant Kesharwani
- Department of Pharmaceutical Technology, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.
| |
Collapse
|
35
|
Eroğlu O, Karlıdağ T, Kuloğlu T, Keleş E, Kaygusuz İ, Yalçın Ş. The Protective Effect of Cortexin on Cisplatin-Induced Ototoxicity. J Int Adv Otol 2017; 14:27-33. [PMID: 29092803 DOI: 10.5152/iao.2017.3825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE The aim of this report is to evaluate whether cortexin provides any protective activity against ototoxicity of cisplatin. MATERIALS AND METHODS The study was performed on 30 healthy adult Wistar Albino rats, and rats were randomly divided into three groups of ten. Group I (Control group) was given intraperitoneal (ip) saline solution 1 mL/day. Group II (Cisplatin group) was given ip cisplatin for 2 days at doses of 10 mg/kg. Group III (Cisplatin + Cortexin group) was given ip cisplatin for 2 days at same doses with ip cortexin 2 mg/day for 7 days. Before and on the fourth day of the study, all subjects underwent auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) tests. At the end of fourth day, half of the subjects in all three groups were decapitated, and their cochlea were removed for histopathologic examination. On the eighth day, tests of the remaining subjects and histopathological examinations were repeated. RESULTS ABR tests on the fourth and eighth days showed elevations in the mean hearing thresholds of Groups II and III compared to Group I (p < 0.05). DPOAE tests revealed a loss in emission values on the fourth and eighth days of the study compared to the baseline in Groups II and III. Comparison of Groups II with III showed that emission loss was higher in Group II at both time points, and the difference was more pronounced on the eighth day. Histopathological findings supported these tests. CONCLUSION Cortexin provide protective activity against cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Orkun Eroğlu
- Department of Otorhinolaryngology, Fırat University School of Medicine, Elazığ, Turkey
| | - Turgut Karlıdağ
- Department of Otorhinolaryngology, Fırat University School of Medicine, Elazığ, Turkey
| | - Tuncay Kuloğlu
- Department of Histology and Embryology, Fırat University School of Medicine, Elazığ, Turkey
| | - Erol Keleş
- Department of Otorhinolaryngology, Fırat University School of Medicine, Elazığ, Turkey
| | - İrfan Kaygusuz
- Department of Otorhinolaryngology, Fırat University School of Medicine, Elazığ, Turkey
| | - Şinasi Yalçın
- Department of Otorhinolaryngology, Fırat University School of Medicine, Elazığ, Turkey
| |
Collapse
|
36
|
Kuang X, Sun Y, Wang Z, Zhou S, Liu H. A mitochondrial targeting tetrapeptide Bendavia protects lateral line hair cells from gentamicin exposure. J Appl Toxicol 2017; 38:376-384. [PMID: 29105116 DOI: 10.1002/jat.3547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/29/2017] [Accepted: 09/10/2017] [Indexed: 12/18/2022]
Abstract
The hearing loss induced by aminoglycosides is caused by the permanent loss of mechanosensory hair cells of the inner ear. The aim of the present study is therefore to evaluate the protective effect of Bendavia, a novel antioxidant, on gentamicin-induced hair cell damage in zebrafish lateral lines. The results demonstrated the pretreatment of Bendavia exhibited dose-dependent protection against gentamicin in both acute and chronic exposure. We found that Bendavia at 150 μm conferred optimal protection from either acute or chronic exposure with ototoxin. Bendavia reduced uptake of fluorescent-tagged gentamicin via mechanoelectrical transduction channels, suggesting its protective effects may be partially due to decreasing ototoxic molecule uptake. The intracellular death pathways inhibition triggered by gentamicin might be also included as no blockage of gentamicin was observed. Our data suggest that Bendavia represents a novel otoprotective drug that might provide a therapeutic alternative for patients receiving aminoglycoside treatment.
Collapse
Affiliation(s)
- Xiao Kuang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yanhui Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zhenjie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Shuang Zhou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Hongzhuo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| |
Collapse
|
37
|
Dósa E, Heltai K, Radovits T, Molnár G, Kapocsi J, Merkely B, Fu R, Doolittle ND, Tóth GB, Urdang Z, Neuwelt EA. Dose escalation study of intravenous and intra-arterial N-acetylcysteine for the prevention of oto- and nephrotoxicity of cisplatin with a contrast-induced nephropathy model in patients with renal insufficiency. Fluids Barriers CNS 2017; 14:26. [PMID: 28974245 PMCID: PMC5627439 DOI: 10.1186/s12987-017-0075-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/18/2017] [Indexed: 12/02/2022] Open
Abstract
Background Cisplatin neuro-, oto-, and nephrotoxicity are major problems in children with malignant tumors, including medulloblastoma, negatively impacting educational achievement, socioemotional development, and overall quality of life. The blood-labyrinth barrier is somewhat permeable to cisplatin, and sensory hair cells and cochlear supporting cells are highly sensitive to this toxic drug. Several chemoprotective agents such as N-acetylcysteine (NAC) were utilized experimentally to avoid these potentially serious and life-long side effects, although no clinical phase I trial was performed before. The purpose of this study was to establish the maximum tolerated dose (MTD) and pharmacokinetics of both intravenous (IV) and intra-arterial (IA) NAC in adults with chronic kidney disease to be used in further trials on oto- and nephroprotection in pediatric patients receiving platinum therapy. Methods Due to ethical considerations in pediatric tumor patients, we used a clinical population of adults with non-neoplastic disease. Subjects with stage three or worse renal failure who had any endovascular procedure were enrolled in a prospective, non-randomized, single center trial to determine the MTD for NAC. We initially aimed to evaluate three patients each at 150, 300, 600, 900, and 1200 mg/kg NAC. The MTD was defined as one dose level below the dose producing grade 3 or 4 toxicity. Serum NAC levels were assessed before, 5 and 15 min post NAC. Twenty-eight subjects (15 men; mean age 72.2 ± 6.8 years) received NAC IV (N = 13) or IA (N = 15). Results The first participant to experience grade 4 toxicity was at the 600 mg/kg IV dose, at which time the protocol was modified to add an additional dose level of 450 mg/kg NAC. Subsequently, no severe NAC-related toxicity arose and 450 mg/kg NAC was found to be the MTD in both IV and IA groups. Blood levels of NAC showed a linear dose response (p < 0.01). Five min after either IV or IA NAC MTD dose administration, serum NAC levels reached the 2–3 mM concentration which seemed to be nephroprotective in previous preclinical studies. Conclusions In adults with kidney impairment, NAC can be safely given both IV and IA at a dose of 450 mg/kg. Additional studies are needed to confirm oto- and nephroprotective properties in the setting of cisplatin treatment. Clinical Trial Registration URL: https://eudract.ema.europa.eu. Unique identifier: 2011-000887-92
Collapse
Affiliation(s)
- Edit Dósa
- Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, Budapest, 1122, Hungary
| | - Krisztina Heltai
- Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, Budapest, 1122, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, Budapest, 1122, Hungary
| | - Gabriella Molnár
- Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, Budapest, 1122, Hungary
| | - Judit Kapocsi
- 1st Department of Internal Medicine, Semmelweis University, 26 Üllői Street, Budapest, 1085, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, Budapest, 1122, Hungary
| | - Rongwei Fu
- Public Health & Preventive Medicine, Oregon Health & Science University, 3184 S.W. Sam Jackson Park Rd, CB669, Portland, OR, 97329, USA
| | - Nancy D Doolittle
- Department of Neurology, Oregon Health & Science University, 3184 S.W. Sam Jackson Park Rd, L603, Portland, OR, 97329, USA
| | - Gerda B Tóth
- Department of Neurology, Oregon Health & Science University, 3184 S.W. Sam Jackson Park Rd, L603, Portland, OR, 97329, USA
| | - Zachary Urdang
- Department of Neurology, Oregon Health & Science University, 3184 S.W. Sam Jackson Park Rd, L603, Portland, OR, 97329, USA
| | - Edward A Neuwelt
- Department of Neurology, Oregon Health & Science University, 3184 S.W. Sam Jackson Park Rd, L603, Portland, OR, 97329, USA. .,Department of Neurosurgery, Oregon Health & Science University, 3184 S.W. Sam Jackson Park Rd, L603, Portland, OR, 97329, USA. .,Portland Veterans Affairs Medical Center, 3710 S.W. US Veterans Hospital Rd, Portland, OR, 97239, USA. .,Blood-Brain Barrier and Neuro-Oncology Program, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, L603, Portland, OR, 97239, USA.
| |
Collapse
|
38
|
Wu X, Li X, Song Y, Li H, Bai X, Liu W, Han Y, Xu L, Li J, Zhang D, Wang H, Fan Z. Allicin protects auditory hair cells and spiral ganglion neurons from cisplatin - Induced apoptosis. Neuropharmacology 2017; 116:429-440. [DOI: 10.1016/j.neuropharm.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/02/2016] [Accepted: 01/02/2017] [Indexed: 12/18/2022]
|
39
|
Lo WC, Wu CT, Lee HC, Young YH, Chang YL, Cheng PW. Evaluation of geranylgeranylacetone against cisplatin-induced ototoxicity by auditory brainstem response, heat shock proteins and oxidative levels in guinea pigs. Neurotoxicol Teratol 2017; 61:29-35. [PMID: 28344103 DOI: 10.1016/j.ntt.2017.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/25/2017] [Accepted: 03/21/2017] [Indexed: 11/28/2022]
Abstract
This study aims to assess whether geranylgeranylacetone (GGA) could reduce ototoxicity induced by cisplatin through upregulation of not only heat shock protein(HSP)-70, but also HSP-27 and HSP-40, and to study if GGA would reduce cisplatin-induced increase in oxidative stress. 48 guinea pigs were used in this study and treated with the following regimen: 0.5% CMC (sodium carboxymethyl cellulose) control for 7days, GGA (600mg/kg/d) for 7days, a combination of GGA (600mg/kg) for 7days and then one dose of 10mg/kg cisplatin (GGA+Cis), and a combination of CMC for 7days and then 10mg/kg cisplatin (cisplatin group). Auditory brainstem response (ABR) measurement was performed in each animal at time before treatment and 7days after the last dose. Additionally, HSPs, nitric oxide (NO), and lipid peroxidation (LPO) levels in cochlear membranous tissues were assessed. The mean ABR thresholds in the cisplatin group were significantly (p<0.05) increased when compared to the other three groups. In guinea pigs receiving both GGA and cisplatin, the mean threshold shift (TS) were smaller (p<0.05) than those of the cisplatin group, but larger (p<0.05) than those of the CMC control or GGA only group with statistical significance. Compared to the GGA only group or the group treated with GGA+Cis, the cisplatin group had the highest (p<0.05) oxidative stress (NO and LPO levels), and the lowest (p<0.05) mean HSPs expression levels. It can be concluded that GGA attenuate ototoxicity induced by cisplatin through upregulation of HSP-27, -40, and -70. Moreover, increased oxidative stress induced by cisplatin in the cochlea membranous tissue could be reduced by pre-treatment of GGA.
Collapse
Affiliation(s)
- Wu-Chia Lo
- Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Otolaryngology, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Chen-Tu Wu
- Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Pathology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hillary Chiao Lee
- Department of Otolaryngology, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Yi-Ho Young
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yih-Leong Chang
- Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Pathology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Po-Wen Cheng
- Department of Otolaryngology, Far Eastern Memorial Hospital, Taipei, Taiwan.
| |
Collapse
|
40
|
Koçak HE, Taşkın Ü, Aydın S, Oktay MF, Altınay S, Çelik DS, Yücebaş K, Altaş B. Effects of ozone (O 3) therapy on cisplatin-induced ototoxicity in rats. Eur Arch Otorhinolaryngol 2016; 273:4153-4159. [PMID: 27221387 DOI: 10.1007/s00405-016-4104-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 05/14/2016] [Indexed: 10/21/2022]
Abstract
The aim of this study is to investigate the effect of rectal ozone and intratympanic ozone therapy on cisplatin-induced ototoxicity in rats. Eighteen female Wistar albino rats were included in our study. External auditory canal and tympanic membrane examinations were normal in all rats. The rats were randomly divided into three groups. Initially, all the rats were tested with distortion product otoacoustic emissions (DPOAE), and emissions were measured normally. All rats were injected with 5-mg/kg/day cisplatin for 3 days intraperitoneally. Ototoxicy had developed in all rats, as confirmed with DPOAE after 1 week. Rectal and intratympanic ozone therapy group was Group 1. No treatment was administered for the rats in Group 2 as the control group. The rats in Group 3 were treated with rectal ozone. All the rats were tested with DPOAE under general anesthesia, and all were sacrificed for pathological examination 1 week after ozone administration. Their cochleas were removed. The outer hair cell damage and stria vascularis damage were examined. In the statistical analysis conducted, a statistically significant difference between Group 1 and Group 2 was observed in all frequencies according to the DPOAE test. In addition, between Group 2 and Group 3, a statistically significant difference was observed in the DPOAE test. However, a statistically significant difference was not observed between Group 1 and Group 3 according to the DPOAE test. According to histopathological scoring, the outer hair cell damage score was statistically significantly high in Group 2 compared with Group 1. In addition, the outer hair cell damage score was also statistically significantly high in Group 2 compared with Group 3. Outer hair cell damage scores were low in Group 1 and Group 3, but there was no statistically significant difference between these groups. There was no statistically significant difference between the groups in terms of stria vascularis damage score examinations. Systemic ozone gas therapy is effective in the treatment of cell damage in cisplatin-induced ototoxicity. The intratympanic administration of ozone gas does not have any additional advantage over the rectal administration.
Collapse
Affiliation(s)
- Hasan Emre Koçak
- Department of Otorhinolaryngology, Bakırköy Training and Research Hospital, Istanbul, Turkey
| | - Ümit Taşkın
- Department of Otorhinolaryngology, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Salih Aydın
- Department of Otorhinolaryngology, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Mehmet Faruk Oktay
- Department of Otorhinolaryngology, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Serdar Altınay
- Department of Pathology, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Duygu Sultan Çelik
- Bağcılar Training and Research Hospital Experimental Surgical Research and Skill Improvement Training Center, Istanbul, Turkey
| | | | - Bengül Altaş
- Department of Otorhinolaryngology, Bağcılar Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
41
|
Sooriyaarachchi M, Gibson MA, Lima BDS, Gailer J. Modulation of the metabolism of cis-platin in blood plasma by glutathione. CAN J CHEM 2016. [DOI: 10.1139/cjc-2015-0395] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The anticancer drug cis-platin (CP) is in worldwide clinical use to treat a variety of cancers, but is inherently associated with severe toxic side effects. Previous animal studies revealed that its neurotoxicity can be significantly reduced by the coadministration of l-glutathione (GSH) without affecting the anticancer effect. The underlying molecular mechanism, however, has remained elusive. Since the bloodstream is a likely biological compartment where CP-derived hydrolysis products may react with GSH, we have employed a recently developed metallomics tool to gain insight into the interaction of CP and GSH in rabbit plasma in vitro. After the addition of increasing GSH/CP molar ratios to plasma (25:1, 50:1, and 100:1), the determination of the Pt distribution 5 min and 2 h later revealed the formation of a Pt–GSH complex that did not bind to plasma proteins. The simultaneously obtained Zn distribution in plasma revealed a progressively more pronounced perturbation of the Zn metalloproteome with increasing GSH/CP molar ratios at the 5 min time point, which partially reversed at the 2 h time point. The formation of Pt–GSH species in plasma is therefore likely to be directly involved in the process by which GSH protects mammalian organisms from CP-induced neurotoxicity, nephrotoxicity, and possibly other organ-based toxicities.
Collapse
Affiliation(s)
- Melani Sooriyaarachchi
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Matthew A. Gibson
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Bruno dos S. Lima
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Jürgen Gailer
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
42
|
Rosic G, Selakovic D, Joksimovic J, Srejovic I, Zivkovic V, Tatalović N, Orescanin-Dusic Z, Mitrovic S, Ilic M, Jakovljevic V. The effects of N-acetylcysteine on cisplatin-induced changes of cardiodynamic parameters within coronary autoregulation range in isolated rat hearts. Toxicol Lett 2016; 242:34-46. [PMID: 26656795 DOI: 10.1016/j.toxlet.2015.11.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 11/18/2022]
Abstract
The aim of this study was to evaluate the effects of chronic NAC administration along with cisplatin on cisplatin-induced cardiotoxicity by means of coronary flow (CF), cardiodynamic parameters, oxidative stress markers and morphological changes in isolated rat heart. Isolated hearts of Wistar albino rats (divided into four groups: control, cisplatin, NAC and cisplatin+NAC group) were perfused according to Langendorff technique at constant coronary perfusion pressure starting at 50 and gradually increased to 65, 80, 95 and 110 cm H2O to evaluate cardiodynamic parameters within autoregulation range. Samples of coronary venous effluent (CVE) were collected for determination of CF and biochemical assays, and heart tissue samples for biochemical assays and histopathological examination. Cisplatin treatment decreased CF and heart rate, and increased left ventricular systolic pressure and maximum left ventricular pressure development rate. Cisplatin increased H2O2 and TBARS, but decreased NO2(-) levels in CVE. In tissue samples, cisplatin reduced pathological alterations in myocardium and coronary vessels, with no changes in the amount of total glutathione, as well as in activity of glutathione peroxidase and glutathione reductase. NAC coadministration, by reducing oxidative damage, attenuated cisplatin-induced changes of cardiodynamic and oxidative stress parameters, as well as morphological changes in myocardium and coronary vasculature.
Collapse
Affiliation(s)
- Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia.
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia.
| | - Jovana Joksimovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia.
| | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia.
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia.
| | - Nikola Tatalović
- Department of Physiology, Institute for Biological Research, University of Belgrade, Serbia.
| | - Zorana Orescanin-Dusic
- Department of Physiology, Institute for Biological Research, University of Belgrade, Serbia.
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Serbia.
| | - Milena Ilic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Serbia.
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia.
| |
Collapse
|
43
|
Helal MAM. The effects ofN-acetyl-l-cysteine on the female reproductive performance and nephrotoxicity in rats. Ren Fail 2016; 38:311-20. [DOI: 10.3109/0886022x.2015.1127742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
A kinetic analysis of oxidation of the antioxidant N-acetyl-l-cysteine (NAC) by Pt(IV) complexes. TRANSIT METAL CHEM 2016. [DOI: 10.1007/s11243-016-0021-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Im GJ, Chang J, Lee S, Choi J, Jung HH, Lee HM, Ryu SH, Park SK, Kim JH, Kim HJ. Protective role of edaravone against cisplatin-induced ototoxicity in an auditory cell line. Hear Res 2015; 330:113-8. [DOI: 10.1016/j.heares.2015.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/31/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
|
46
|
Mut-Salud N, Álvarez PJ, Garrido JM, Carrasco E, Aránega A, Rodríguez-Serrano F. Antioxidant Intake and Antitumor Therapy: Toward Nutritional Recommendations for Optimal Results. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:6719534. [PMID: 26682013 PMCID: PMC4670692 DOI: 10.1155/2016/6719534] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/12/2015] [Indexed: 02/07/2023]
Abstract
The role of the induction of oxidative stress as the mechanism of action of many antitumor drugs is acquiring an increasing interest. In such cases, the antitumor therapy success may be conditioned by the antioxidants present in our own body, which can be synthesized de novo (endogenous) or incorporated through the diet and nutritional supplements (exogenous). In this paper, we have reviewed different aspects of antioxidants, including their classification, natural sources, importance in diet, consumption of nutritional supplements, and the impact of antioxidants on health. Moreover, we have focused especially on the study of the interaction between antioxidants and antitumor therapy, considering both radiotherapy and chemotherapy. In this regard, we found that the convenience of administration of antioxidants during cancer treatment still remains a very controversial issue. In general terms, antioxidants could promote or suppress the effectiveness of antitumor treatment and even protect healthy tissues against damage induced by oxidative stress. The effects may depend on many factors discussed in the paper. These factors should be taken into consideration in order to achieve precise nutritional recommendations for patients. The evidence at the moment suggests that the supplementation or restriction of exogenous antioxidants during cancer treatment, as appropriate, could contribute to improving its efficiency.
Collapse
Affiliation(s)
- Nuria Mut-Salud
- Institute of Biopathology and Regenerative Medicine, University of Granada, 18071 Granada, Spain
| | - Pablo Juan Álvarez
- Institute of Biopathology and Regenerative Medicine, University of Granada, 18071 Granada, Spain
| | - Jose Manuel Garrido
- Department of Cardiovascular Surgery, Virgen de las Nieves Hospital, 18014 Granada, Spain
| | - Esther Carrasco
- Institute of Biopathology and Regenerative Medicine, University of Granada, 18071 Granada, Spain
| | - Antonia Aránega
- Institute of Biopathology and Regenerative Medicine, University of Granada, 18071 Granada, Spain
| | | |
Collapse
|
47
|
Lo WC, Chang CM, Liao LJ, Wang CT, Young YH, Chang YL, Cheng PW. Assessment of D-methionine protecting cisplatin-induced otolith toxicity by vestibular-evoked myogenic potential tests, ATPase activities and oxidative state in guinea pigs. Neurotoxicol Teratol 2015. [PMID: 26219586 DOI: 10.1016/j.ntt.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
To date, inadequate study has been devoted to the toxic vestibular effects caused by cisplatin. In addition, no electrophysiological examination has been conducted to assess cisplatin-induced otolith toxicity. The purposes of this study are thus two-fold: 1) to determine whether cervical vestibular-evoked myogenic potentials (VEMPs) and ocular VEMPs are practical electrophysiological methods of testing for cisplatin-induced otolith toxicity and 2) to examine if D-methionine (D-met) pre-injection would protect the otolith organs against cisplatin-induced changes in enzyme activities and/or oxidative status. Guinea pigs were intraperitoneally treated once daily with the following injections for seven consecutive days: sterile 0.9% saline control, cisplatin (5 mg/kg) only, D-met (300 mg/kg) only, or a combination of d-met (300 mg/kg) and cisplatin (5 mg/kg), respectively, with a 30 minute window in between. Each animal underwent the oVEMP and cVEMP tests before and after treatment. The changes in the biochemistry of the otolith organs, including membranous Na(+), K(+)-ATPase and Ca(2+)-ATPase, lipid peroxidation (LPO) levels and nitric oxide (NO) levels, were also evaluated. In the cisplatin-only treated guinea pigs, the mean amplitudes of the oVEMP tests were significantly (p<0.05) decreased when compared to the other three groups. In guinea pigs receiving both D-met and cisplatin, the amplitudes of their oVEMP tests were significantly larger (p<0.05) than those of the cisplatin-only group, but smaller (p<0.05) than those of the saline control or D-met-only group. However, no significant difference of the amplitudes of cVEMP tests was noted among the four groups. In comparison with the other three groups, the cisplatin-only group had the lowest (ps<0.05) mean Na(+), K(+)-ATPase and Ca(2+)-ATPase, and the highest (ps<0.05) LPO and NO levels. The oVEMP tests were feasible for the evaluation of cisplatin-related otolith dysfunction. D-Met attenuated the reduced ATPase activities and increased oxidative stress induced by cisplatin toxicity in the otolith organs.
Collapse
Affiliation(s)
- Wu-Chia Lo
- Department and Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei, Taiwan; Oriental Institute of Technology, Taipei, Taiwan
| | - Chih-Ming Chang
- Department of Otolaryngology, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Li-Jen Liao
- Department of Otolaryngology, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Chi-Te Wang
- Department of Otolaryngology, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Yi-Ho Young
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yih-Leong Chang
- Department and Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Po-Wen Cheng
- Department of Otolaryngology, Far Eastern Memorial Hospital, Taipei, Taiwan; Oriental Institute of Technology, Taipei, Taiwan.
| |
Collapse
|
48
|
Kim HJ, Oh GS, Shen A, Lee SB, Khadka D, Pandit A, Shim H, Yang SH, Cho EY, Song J, Kwak TH, Choe SK, Park R, So HS. Nicotinamide adenine dinucleotide: An essential factor in preserving hearing in cisplatin-induced ototoxicity. Hear Res 2015; 326:30-9. [PMID: 25891352 DOI: 10.1016/j.heares.2015.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/07/2015] [Indexed: 12/20/2022]
Abstract
Ototoxicity is an important issue in patients receiving cisplatin chemotherapy. Numerous studies have demonstrated that several mechanisms, including oxidative stress, DNA damage, and inflammatory responses, are closely associated with cisplatin-induced ototoxicity. Although much attention has been directed at identifying ways to protect the inner ear from cisplatin-induced damage, the precise underlying mechanisms have not yet been elucidated. The cofactor nicotinamide adenine dinucleotide (NAD(+)) has emerged as an important regulator of cellular energy metabolism and homeostasis. NAD(+) acts as a cofactor for various enzymes including sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs), and therefore, maintaining adequate NAD(+) levels has therapeutic benefits because of its effect on NAD(+)-dependent enzymes. Recent studies demonstrated that disturbance in intracellular NAD(+) levels is critically involved in cisplatin-induced cochlear damage associated with oxidative stress, DNA damage, and inflammatory responses. In this review, we describe the importance of NAD(+) in cisplatin-induced ototoxicity and discuss potential strategies for the prevention or treatment of cisplatin-induced ototoxicity with a particular focus on NAD(+)-dependent cellular pathways.
Collapse
Affiliation(s)
- Hyung-Jin Kim
- Center for Metabolic Function Regulation & Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Gi-Su Oh
- Center for Metabolic Function Regulation & Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - AiHua Shen
- Center for Metabolic Function Regulation & Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Su-Bin Lee
- Center for Metabolic Function Regulation & Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Dipendra Khadka
- Center for Metabolic Function Regulation & Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Arpana Pandit
- Center for Metabolic Function Regulation & Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Hyeok Shim
- Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Sei-Hoon Yang
- Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Eun-Young Cho
- Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Jeho Song
- Department of Sports Industry and Welfare, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Tae Hwan Kwak
- PAEAN Biotechnology, 160 Techno-2 Street, Yuseong-gu, Daejeon, 305-500, Republic of Korea
| | - Seong-Kyu Choe
- Center for Metabolic Function Regulation & Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Raekil Park
- Center for Metabolic Function Regulation & Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Hong-Seob So
- Center for Metabolic Function Regulation & Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea.
| |
Collapse
|
49
|
Kim SJ, Ho Hur J, Park C, Kim HJ, Oh GS, Lee JN, Yoo SJ, Choe SK, So HS, Lim DJ, Moon SK, Park R. Bucillamine prevents cisplatin-induced ototoxicity through induction of glutathione and antioxidant genes. Exp Mol Med 2015; 47:e142. [PMID: 25697147 PMCID: PMC4346486 DOI: 10.1038/emm.2014.112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/10/2014] [Accepted: 11/14/2014] [Indexed: 11/09/2022] Open
Abstract
Bucillamine is used for the treatment of rheumatoid arthritis. This study investigated the protective effects of bucillamine against cisplatin-induced damage in auditory cells, the organ of Corti from postnatal rats (P2) and adult Balb/C mice. Cisplatin increases the catalytic activity of caspase-3 and caspase-8 proteases and the production of free radicals, which were significantly suppressed by pretreatment with bucillamine. Bucillamine induces the intranuclear translocation of Nrf2 and thereby increases the expression of γ-glutamylcysteine synthetase (γ-GCS) and glutathione synthetase (GSS), which further induces intracellular antioxidant glutathione (GSH), heme oxygenase 1 (HO-1) and superoxide dismutase 2 (SOD2). However, knockdown studies of HO-1 and SOD2 suggest that the protective effect of bucillamine against cisplatin is independent of the enzymatic activity of HO-1 and SOD. Furthermore, pretreatment with bucillamine protects sensory hair cells on organ of Corti explants from cisplatin-induced cytotoxicity concomitantly with inhibition of caspase-3 activation. The auditory-brainstem-evoked response of cisplatin-injected mice shows marked increases in hearing threshold shifts, which was markedly suppressed by pretreatment with bucillamine in vivo. Taken together, bucillamine protects sensory hair cells from cisplatin through a scavenging effect on itself, as well as the induction of intracellular GSH.
Collapse
Affiliation(s)
- Se-Jin Kim
- Department of Microbiology, Center for Metabolic Function Regulation (CMFR), Wonkwang University College of Medicine, Iksan, Jeonbuk, Korea
| | - Joon Ho Hur
- Emergency medicine, Wonkwang University, College of Medicine, Iksan, Jeonbuk, Korea
| | - Channy Park
- Department of Head & Neck Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Hyung-Jin Kim
- Department of Microbiology, Center for Metabolic Function Regulation (CMFR), Wonkwang University College of Medicine, Iksan, Jeonbuk, Korea
| | - Gi-Su Oh
- Department of Microbiology, Center for Metabolic Function Regulation (CMFR), Wonkwang University College of Medicine, Iksan, Jeonbuk, Korea
| | - Joon No Lee
- Department of Microbiology, Center for Metabolic Function Regulation (CMFR), Wonkwang University College of Medicine, Iksan, Jeonbuk, Korea
| | - Su-Jin Yoo
- Emergency medicine, Wonkwang University, College of Medicine, Iksan, Jeonbuk, Korea
| | - Seong-Kyu Choe
- Department of Microbiology, Center for Metabolic Function Regulation (CMFR), Wonkwang University College of Medicine, Iksan, Jeonbuk, Korea
| | - Hong-Seob So
- 1] Department of Microbiology, Center for Metabolic Function Regulation (CMFR), Wonkwang University College of Medicine, Iksan, Jeonbuk, Korea [2] BK21Plus Program & Department of Smart Life-Care Convergence, Wonkwang University College of Medicine, Iksan, Jeonbuk, Korea
| | - David J Lim
- Department of Head & Neck Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sung K Moon
- Department of Head & Neck Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Raekil Park
- 1] Department of Microbiology, Center for Metabolic Function Regulation (CMFR), Wonkwang University College of Medicine, Iksan, Jeonbuk, Korea [2] BK21Plus Program & Department of Smart Life-Care Convergence, Wonkwang University College of Medicine, Iksan, Jeonbuk, Korea
| |
Collapse
|
50
|
Muldoon LL, Wu YJ, Pagel MA, Neuwelt EA. N-acetylcysteine chemoprotection without decreased cisplatin antitumor efficacy in pediatric tumor models. J Neurooncol 2015; 121:433-40. [PMID: 25411097 PMCID: PMC4324166 DOI: 10.1007/s11060-014-1657-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 11/06/2014] [Indexed: 12/26/2022]
Abstract
Decreasing oxidative damage with the antioxidant agent N-acetylcysteine (NAC) can block the side effects of chemotherapy, but may diminish anti-tumor efficacy. We tested the potential for interactions of high dose NAC against a minimally effective cisplatin chemotherapy regimen in rat models of human pediatric cancers. Athymic rats received subcutaneous implantation of human SK-N-AS neuroblastoma cells or intra-cerebellar implantation of human D283-MED medulloblastoma cells. Rats were untreated or treated with cisplatin (3 or 4 mg/kg IV) with or without NAC (1,000 mg/kg IV) 30 min before or 4 h after cisplatin treatment. Blood urea nitrogen (BUN) and tumor volumes were measured. Cisplatin decreased the growth of SK-N-AS neuroblastoma subcutaneous tumors from 17.7 ± 4.9 to 6.4 ± 2.5 fold over baseline 2 weeks after treatment (P < 0.001). Pretreatment with NAC decreased cisplatin efficacy, while 4 h delayed NAC did not significantly affect cisplatin anti-tumor effects (relative tumor volume 6.8 ± 2.0 fold baseline, P < 0.001). In D283-MED medulloblastoma brain tumors, cisplatin decreased final tumor volume to 3.9 ± 2.3 mm(3) compared to untreated tumor volume of 45.9 ± 38.7 (P = 0.008). Delayed NAC did not significantly alter cisplatin efficacy (tumor volume 6.8 ± 8.1 mm(3), P = 0.014 versus control). Cisplatin was minimally nephrotoxic in these models. NAC decreased cisplatin-induced elevations in BUN (P < 0.02). NAC chemoprotection did not alter cisplatin therapy, if delayed until 4 h after chemotherapy. These data support a Phase I/II clinical trial of delayed NAC to reduce ototoxicity in children with localized pediatric cancers.
Collapse
Affiliation(s)
- Leslie L Muldoon
- Department of Neurology, Oregon Health & Sciences University, L603; 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | | | | | | |
Collapse
|