1
|
Zahid A, Wilson JC, Grice ID, Peak IR. Otitis media: recent advances in otitis media vaccine development and model systems. Front Microbiol 2024; 15:1345027. [PMID: 38328427 PMCID: PMC10847372 DOI: 10.3389/fmicb.2024.1345027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Otitis media is an inflammatory disorder of the middle ear caused by airways-associated bacterial or viral infections. It is one of the most common childhood infections as globally more than 80% of children are diagnosed with acute otitis media by 3 years of age and it is a common reason for doctor's visits, antibiotics prescriptions, and surgery among children. Otitis media is a multifactorial disease with various genetic, immunologic, infectious, and environmental factors predisposing children to develop ear infections. Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis are the most common culprits responsible for acute otitis media. Despite the massive global disease burden, the pathogenesis of otitis media is still unclear and requires extensive future research. Antibiotics are the preferred treatment to cure middle ear infections, however, the antimicrobial resistance rate of common middle ear pathogens has increased considerably over the years. At present, pneumococcal and influenza vaccines are administered as a preventive measure against otitis media, nevertheless, these vaccines are only beneficial in preventing carriage and/or disease caused by vaccine serotypes. Otitis media caused by non-vaccine serotype pneumococci, non-typeable H. influenza, and M. catarrhalis remain an important healthcare burden. The development of multi-species vaccines is an arduous process but is required to reduce the global burden of this disease. Many novel vaccines against S. pneumoniae, non-typeable H. influenza, and M. catarrhalis are in preclinical trials. It is anticipated that these vaccines will lower the disease burden and provide better protection against otitis media. To study disease pathology the rat, mouse, and chinchilla are commonly used to induce experimental acute otitis media to test new therapeutics, including antibiotics and vaccines. Each of these models has its advantages and disadvantages, yet there is still a need to develop an improved animal model providing a better correlated mechanistic understanding of human middle ear infections, thereby underpinning the development of more effective otitis media therapeutics. This review provides an updated summary of current vaccines against otitis media, various animal models of otitis media, their limitations, and some future insights in this field providing a springboard in the development of new animal models and novel vaccines for otitis media.
Collapse
Affiliation(s)
- Ayesha Zahid
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Jennifer C. Wilson
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - I. Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Ian R. Peak
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
2
|
Kim Y, Lee SY, Kim MY, Park K, Han JH, Kim JH, Kim BJ, Choi BY. Auditory Phenotype and Histopathologic Findings of a Mutant Nlrp3 Expression Mouse Model. Front Neurol 2022; 13:890256. [PMID: 35812087 PMCID: PMC9263128 DOI: 10.3389/fneur.2022.890256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/19/2022] [Indexed: 11/19/2022] Open
Abstract
Objective The pathogenesis of hearing loss in autoinflammatory disorders due to activation of the inflammasome remains incompletely understood. Previously no animals expressing mutant Nlrp3 (NOD-, LRR- and pyrin domain-containing protein 3) survived to an age when hearing evaluation was possible due to embryonic lethality. We aimed to establish a novel mouse model that manifests quantifiable hearing loss with other syndromic features due to alteration of Nlrp3 and investigate the audiologic and histopathologic phenotype in the cochlea to clarify how the genetic alterations of NLRP3 could induce autoinflammatory hearing loss. Methods To induce inner ear expression of the mutant Nlrp3, Nlrp3D301NneoR mice were bred with Gfi1Cre knock-in mice for conditional mutant Nlrp3 activation in the cochlea and hematopoietic cells. Hearing thresholds were measured. Hematoxylin-eosin sections of the cochlea, brain, kidney, and liver were examined under light microscopy. Immunohistochemical analyses using polyclonal anti-NLRP3 antibodies on cochlear whole-mount preparations and frozen sections were performed. Results We, for the first time in the literature, established a mouse model that manifests quantifiable hearing loss due to Nlrp3 alteration. ABR recordings of Nlrp3D301NneoR/+; Gfi1Cre/+ mice, albeit with limited life expectancy, exhibited severe to profound hearing loss at postnatal day 20 (P20). There was overall overexpression of mutant Nlrp3, and mutant Nlrp3 expression was noted in the spiral prominence, the outer sulcus region (Claudius cells and outer sulcus cells), the organ of Corti, the inner sulcus, and the spiral ganglion neurons in the cochlea. The hematoxylin-eosin sections of Nlrp3D301NneoR/+; Gfi1Cre/+ mice cochleae at P12 exhibited a disorganized organ of Corti between the outer hair cells/supporting Deiters' cells and basilar membrane compared with the normal phenotype mice, leading to a collapsed Nuel's space. This morphologic feature gradually returned to normal by P15. Varying degrees of inflammation with lymphocytic infiltrations were observed in the brain, kidney, and liver. Conclusion We report the first mutant Nlrp3 overexpression mouse model (Nlrp3D301NneoR/+; Gfi1Cre/+) that shows obvious overexpression of Nlrp3 in the cochlea, a transient developmental lag of the cochlea, and severe to profound hearing loss. We expect that this mouse line, which models human autoinflammatory hearing loss, could provide a valuable tool to elucidate the underlying pathogenic mechanism of inflammasome activation-mediated hearing loss.
Collapse
Affiliation(s)
- Yehree Kim
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul, South Korea
| | - Min Young Kim
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyusun Park
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul, South Korea
| | - Bong Jik Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University, Chungnam National University Sejong Hospital, Sejong, South Korea
- *Correspondence: Bong Jik Kim
| | - Byung Yoon Choi
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, South Korea
- Byung Yoon Choi
| |
Collapse
|
3
|
Massa HM, Spann KM, Cripps AW. Innate Immunity in the Middle Ear Mucosa. Front Cell Infect Microbiol 2021; 11:764772. [PMID: 34778109 PMCID: PMC8586084 DOI: 10.3389/fcimb.2021.764772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023] Open
Abstract
Otitis media (OM) encompasses a spectrum of clinical presentations ranging from the readily identifiable Acute OM (AOM), which is characterised by otalgia and fever, to chronic otitis media with effusion (COME) where impaired hearing due to middle ear effusion may be the only clinical symptom. Chronic suppurative OM (CSOM) presents as a more severe form of OM, involving perforation of the tympanic membrane. The pathogenesis of OM in these varied clinical presentations is unclear but activation of the innate inflammatory responses to viral and/or bacterial infection of the upper respiratory tract performs an integral role. This localised inflammatory response can persist even after pathogens are cleared from the middle ear, eustachian tubes and, in the case of respiratory viruses, even the nasal compartment. Children prone to OM may experience an over exuberant inflammatory response that underlies the development of chronic forms of OM and their sequelae, including hearing impairment. Treatments for chronic effusive forms of OM are limited, with current therapeutic guidelines recommending a "watch and wait" strategy rather than active treatment with antibiotics, corticosteroids or other anti-inflammatory drugs. Overall, there is a clear need for more targeted and effective treatments that either prevent or reduce the hyper-inflammatory response associated with chronic forms of OM. Improved treatment options rely upon an in-depth understanding of OM pathogenesis, particularly the role of the host innate immune response during acute OM. In this paper, we review the current literature regarding the innate immune response within the middle ear to bacterial and viral otopathogens alone, and as co-infections. This is an important consideration, as the role of respiratory viruses as primary pathogens in OM is not yet fully understood. Furthermore, increased reporting from PCR-based diagnostics, indicates that viral/bacterial co-infections in the middle ear are more common than bacterial infections alone. Increasingly, the mechanisms by which viral/bacterial co-infections may drive or maintain complex innate immune responses and inflammation during OM as a chronic response require investigation. Improved understanding of the pathogenesis of chronic OM, including host innate immune response within the middle ear is vital for development of improved diagnostic and treatment options for our children.
Collapse
Affiliation(s)
- Helen M Massa
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Kirsten M Spann
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Allan W Cripps
- Menzies Health Institute Queensland, School of Medicine, Griffith University, Gold Coast, QLD, Australia.,School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
4
|
Motallebzadeh H, Puria S. Mouse middle-ear forward and reverse acoustics. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:2711. [PMID: 33940924 PMCID: PMC8060050 DOI: 10.1121/10.0004218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 05/26/2023]
Abstract
The mouse is an important animal model for hearing science. However, our knowledge of the relationship between mouse middle-ear (ME) anatomy and function is limited. The ME not only transmits sound to the cochlea in the forward direction, it also transmits otoacoustic emissions generated in the cochlea to the ear canal (EC) in the reverse direction. Due to experimental limitations, a complete characterization of the mouse ME has not been possible. A fully coupled finite-element model of the mouse EC, ME, and cochlea was developed and calibrated against experimental measurements. Impedances of the EC, ME, and cochlea were calculated, alongside pressure transfer functions for the forward, reverse, and round-trip directions. The effects on sound transmission of anatomical changes such as removing the ME cavity, pars flaccida, and mallear orbicular apophysis were also calculated. Surprisingly, below 10 kHz, the ME cavity, eardrum, and stapes annular ligament were found to significantly affect the cochlear input impedance, which is a result of acoustic coupling through the round window. The orbicular apophysis increases the delay of the transmission line formed by the flexible malleus, incus, and stapes, and improves the forward sound-transmission characteristics in the frequency region of 7-30 kHz.
Collapse
Affiliation(s)
- Hamid Motallebzadeh
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114, USA
| | - Sunil Puria
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114, USA
| |
Collapse
|
5
|
Spoială EL, Stanciu GD, Bild V, Ababei DC, Gavrilovici C. From Evidence to Clinical Guidelines in Antibiotic Treatment in Acute Otitis Media in Children. Antibiotics (Basel) 2021; 10:52. [PMID: 33419114 PMCID: PMC7825459 DOI: 10.3390/antibiotics10010052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022] Open
Abstract
Acute otitis media (AOM) in children represents a public health concern, being one of the leading causes of health care visits and antibiotic prescriptions worldwide. The overall aim of this paper is to unravel the major current insights into the antibiotic treatment of AOM in children. Our approach is three-fold: 1. a preclinical evaluation of antibiotics in animal models of AOM stressing on the advantages of different species when testing for different schemes of antibiotics; 2. an overview on the new antimicrobial agents whose efficacy has been demonstrated in refractory cases of AOM in children; and 3. an analysis of the different guidelines stressing on the differences and similarities between the various schemes of antibiotic treatment. The preferred therapeutic agents remain amoxicillin and the amoxicillin-clavulanate combination for AOM caused by Streptococcus pneumoniae, whereas oral cephalosporin is preferred in AOM due to Moraxella catarrhalis and Haemophilus influenzae. As for the second and third line antimicrobial treatments, there is a wide variety of suggested antibiotic classes with variations in duration and posology. The decision to prescribe antimicrobial treatment as a first-line choice is based on the severity of the symptoms in 16 of the guidelines included in this review.
Collapse
Affiliation(s)
- Elena Lia Spoială
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (E.L.S.); (C.G.)
| | - Gabriela Dumitrita Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Veronica Bild
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Daniela Carmen Ababei
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Cristina Gavrilovici
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (E.L.S.); (C.G.)
| |
Collapse
|
6
|
Lentz JJ, Pan B, Ponnath A, Tran CM, Nist-Lund C, Galvin A, Goldberg H, Robillard KN, Jodelka FM, Farris HE, Huang J, Chen T, Zhu H, Zhou W, Rigo F, Hastings ML, Géléoc GSG. Direct Delivery of Antisense Oligonucleotides to the Middle and Inner Ear Improves Hearing and Balance in Usher Mice. Mol Ther 2020; 28:2662-2676. [PMID: 32818431 PMCID: PMC7704764 DOI: 10.1016/j.ymthe.2020.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/05/2020] [Accepted: 08/02/2020] [Indexed: 12/16/2022] Open
Abstract
Usher syndrome is a syndromic form of hereditary hearing impairment that includes sensorineural hearing loss and delayed-onset retinitis pigmentosa (RP). Type 1 Usher syndrome (USH1) is characterized by congenital profound sensorineural hearing impairment and vestibular areflexia, with adolescent-onset RP. Systemic treatment with antisense oligonucleotides (ASOs) targeting the human USH1C c.216G>A splicing mutation in a knockin mouse model of USH1 restores hearing and balance. Herein, we explore the effect of delivering ASOs locally to the ear to treat hearing and vestibular dysfunction associated with Usher syndrome. Three localized delivery strategies were investigated in USH1C mice: inner ear injection, trans-tympanic membrane injection, and topical tympanic membrane application. We demonstrate, for the first time, that ASOs delivered directly to the ear correct Ush1c expression in inner ear tissue, improve cochlear hair cell transduction currents, restore vestibular afferent irregularity, spontaneous firing rate, and sensitivity to head rotation, and successfully recover hearing thresholds and balance behaviors in USH1C mice. We conclude that local delivery of ASOs to the middle and inner ear reach hair cells and can rescue both hearing and balance. These results also demonstrate the therapeutic potential of ASOs to treat hearing and balance deficits associated with Usher syndrome and other ear diseases.
Collapse
Affiliation(s)
- Jennifer J Lentz
- Department of Otorhinolaryngology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Bifeng Pan
- Department of Otolaryngology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abhilash Ponnath
- Department of Otorhinolaryngology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Christopher M Tran
- Department of Otorhinolaryngology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Carl Nist-Lund
- Department of Otolaryngology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alice Galvin
- Department of Otolaryngology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Goldberg
- Department of Otolaryngology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Katelyn N Robillard
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Francine M Jodelka
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Hamilton E Farris
- Department of Otorhinolaryngology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jun Huang
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Tianwen Chen
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Hong Zhu
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Wu Zhou
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92008, USA
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Gwenaëlle S G Géléoc
- Department of Otolaryngology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Dewan KK, Taylor-Mulneix DL, Campos LL, Skarlupka AL, Wagner SM, Ryman VE, Gestal MC, Ma L, Blas-Machado U, Faddis BT, Harvill ET. A model of chronic, transmissible Otitis Media in mice. PLoS Pathog 2019; 15:e1007696. [PMID: 30970038 PMCID: PMC6476515 DOI: 10.1371/journal.ppat.1007696] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/22/2019] [Accepted: 03/11/2019] [Indexed: 12/15/2022] Open
Abstract
Infection and inflammation of the middle ears that characterizes acute and chronic otitis media (OM), is a major reason for doctor visits and antibiotic prescription, particularly among children. Nasopharyngeal pathogens that are commonly associated with OM in humans do not naturally colonize the middle ears of rodents, and experimental models in most cases involve directly injecting large numbers of human pathogens into the middle ear bullae of rodents, where they induce a short-lived acute inflammation but fail to persist. Here we report that Bordetella pseudohinzii, a respiratory pathogen of mice, naturally, efficiently and rapidly ascends the eustachian tubes to colonize the middle ears, causing acute and chronic histopathological changes with progressive decrease in hearing acuity that closely mimics otitis media in humans. Laboratory mice experimentally inoculated intranasally with very low numbers of bacteria consistently have their middle ears colonized and subsequently transmit the bacterium to cage mates. Taking advantage of the specifically engineered and well characterized immune deficiencies available in mice we conducted experiments to uncover different roles of T and B cells in controlling bacterial numbers in the middle ear during chronic OM. The iconic mouse model provides significant advantages for elucidating aspects of host-pathogen interactions in otitis media that are currently not possible using other animal models. This natural model of otitis media permits the study of transmission between hosts, efficient early colonization of the respiratory tract, ascension of the eustachian tube, as well as colonization, pathogenesis and persistence in the middle ear. It also allows the combination of the powerful tools of mouse molecular immunology and bacterial genetics to determine the mechanistic basis for these important processes.
Collapse
Affiliation(s)
- Kalyan K. Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| | - Dawn L. Taylor-Mulneix
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Laura L. Campos
- University of Colorado Hospital, Aurora, Colorado, United States of America
| | - Amanda L. Skarlupka
- Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Shannon M. Wagner
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Valerie E. Ryman
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Monica C. Gestal
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Longhua Ma
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Uriel Blas-Machado
- Department of Pathology, Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Brian T. Faddis
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
8
|
Animal models of acute otitis media - A review with practical implications for laboratory research. Eur Ann Otorhinolaryngol Head Neck Dis 2018; 135:183-190. [PMID: 29656888 DOI: 10.1016/j.anorl.2017.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 11/23/2022]
Abstract
Considerable animal research has focused on developing new strategies for the prevention and treatment of acute otitis media (AOM). Several experimental models of AOM have thus been developed. A PubMed search of the English literature was conducted from 1975 to July 2016 using the search terms "animal model" and "otitis media" from which 91 published studies were included for analysis, yielding 123 animal models. The rat, mouse and chinchilla are the preferred animals for experimental AOM models with their individual advantages and disadvantages. The most common pathogens used to create AOM are Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis. Streptococcus pneumoniae (types 3, 23 and 6A) and non-typeable Haemophilus influenzae (NTHi) are best options for inoculation into rat and mouse models. Adding viral pathogens such as RSV and Influenza A virus, along with creating ET dysfunction, are useful adjuncts in animal models of AOM. Antibiotic prophylaxis may interfere with the inflammatory response without a significant reduction in animal mortality.
Collapse
|
9
|
The Role of the Notch Signal Pathway in Mucosal Cell Metaplasia in Mouse Acute Otitis Media. Sci Rep 2017; 7:4588. [PMID: 28676722 PMCID: PMC5496876 DOI: 10.1038/s41598-017-04639-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/17/2017] [Indexed: 01/15/2023] Open
Abstract
Otitis media (OM) is a major cause of morbidity in pediatric and adult patients. This inflammatory condition is characterized by mucous cell hyperplasia that is thought to produce mucins from the middle ear mucosa. We are interested in the role of Notch signalling pathway in this inflammatory process. Using an acute otitis media (AOM) mouse model through injection of Streptococcus Pneumoniae into the middle ear, histopathologic examination and quantitative RT-PCR, acute inflammation with the thickness of mucosa, Goblet cell hyperplasia, and cilia loss were determined and gene expression related to the Notch signaling pathway were evaluated. Upregulation of the mucous cell markers, Argr2 and Muc5AC, and downregulation of the cilia cell marker, Foxj1 and Dnai2, were observed in AOM. In addition, genes encoding Notch receptors and ligands (Notch1, Notch2, Notch3, Notch4 and Dll1) and the Notch target genes (Hes1, Hes5, Hey1, NRARP) in AOM decreased significantly. The expression of the Notch1 and Jagged1 also showed down-regulation throughout the mouse middle ear epithelium. Taken together, this study suggests that downregulation of the Notch signaling pathway is involved in the mucosa hyperplasia during AOM.
Collapse
|
10
|
Xiang Y, Jin C, Wang W, Wang Z, Huang Y, Fan F, Ma Y, Zhang X, Xu W, Yin Y, He Y. The critical role of myeloperoxidase in Streptococcus pneumoniae clearance and tissue damage during mouse acute otitis media. Innate Immun 2017; 23:296-306. [PMID: 28359218 DOI: 10.1177/1753425917693907] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have recently reported that neutrophils play a pivotal role in innate defense against Streptococcus pneumoniae ( Spn) during mouse acute otitis media (AOM). However, the underlying mechanism remains unclear. By constructing models of pneumococcal AOM in C57BL/6 mice and using a specific inhibitor in vivo, we investigated the role of myeloperoxidase (MPO), one of the most important protein components of neutrophils. Experiment results showed a significant increase in MPO production of the recruited neutrophils in Spn-infected mice. Neutrophils killed Spn in a MPO-dependent manner. MPO facilitated the generation of reactive oxygen species (ROS), and consequently promoted Spn clearance at an early stage and exacerbated tissue damage. Moreover, MPO induced neutrophil apoptosis and necrosis, which, in turn, worsened tissue damage. In summary, our study demonstrates that neutrophil MPO plays a paradoxical role in bacterial clearance and tissue damage in pneumococcal AOM.
Collapse
Affiliation(s)
- Yun Xiang
- 1 Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, People's Republic of China
| | - Chunfang Jin
- 1 Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, People's Republic of China.,2 Department of Laboratory Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China
| | - Wei Wang
- 1 Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, People's Republic of China.,3 The Sixth People's Hospital of Chongqing City, Chongqing, People's Republic of China
| | - Zimeng Wang
- 1 Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, People's Republic of China
| | - Yifei Huang
- 1 Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, People's Republic of China
| | - Fangmei Fan
- 1 Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, People's Republic of China
| | - Yurong Ma
- 1 Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, People's Republic of China
| | - Xuemei Zhang
- 1 Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, People's Republic of China
| | - Wenchun Xu
- 1 Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, People's Republic of China
| | - Yibing Yin
- 1 Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, People's Republic of China
| | - Yujuan He
- 1 Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
11
|
Ranakusuma RW, Pitoyo Y, Safitri ED, Thorning S, Beller EM, Sastroasmoro S, Del Mar CB. Systemic corticosteroids for acute otitis media in children. Hippokratia 2016. [DOI: 10.1002/14651858.cd012289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Respati W Ranakusuma
- Dr Cipto Mangunkusumo Hospital - Faculty of Medicine Universitas Indonesia; Clinical Epidemiology & Evidence-Based Medicine Unit; 2nd Floor Building H Jl. Diponegoro 71 Jakarta Indonesia 10430
| | - Yupitri Pitoyo
- Dr Cipto Mangunkusumo Hospital - Faculty of Medicine Universitas Indonesia; Clinical Epidemiology & Evidence-Based Medicine Unit; 2nd Floor Building H Jl. Diponegoro 71 Jakarta Indonesia 10430
| | - Eka D Safitri
- Dr Cipto Mangunkusumo Hospital - Faculty of Medicine Universitas Indonesia; Clinical Epidemiology & Evidence-Based Medicine Unit; 2nd Floor Building H Jl. Diponegoro 71 Jakarta Indonesia 10430
| | - Sarah Thorning
- Gold Coast University Hospital; GCUH Library; Level 1, Bolck E, GCUH Southport Queensland Australia 4215
| | - Elaine M Beller
- Bond University; Centre for Research in Evidence-Based Practice (CREBP); University Drive Gold Coast Queensland Australia 4229
| | - Sudigdo Sastroasmoro
- Dr. Cipto Mangunkusumo Hospital - Faculty of Medicine Universitas Indonesia; Department of Pediatrics; Diponegoro 71 Jakarta DKI Jakarta Indonesia 10430
| | - Chris B Del Mar
- Bond University; Centre for Research in Evidence-Based Practice (CREBP); University Drive Gold Coast Queensland Australia 4229
| |
Collapse
|
12
|
Trune DR, Kempton B, Hausman FA, Larrain BE, MacArthur CJ. Correlative mRNA and protein expression of middle and inner ear inflammatory cytokines during mouse acute otitis media. Hear Res 2015; 326:49-58. [PMID: 25922207 DOI: 10.1016/j.heares.2015.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/23/2015] [Accepted: 04/16/2015] [Indexed: 12/20/2022]
Abstract
Although the inner ear has long been reported to be susceptible to middle ear disease, little is known of the inflammatory mechanisms that might cause permanent sensorineural hearing loss. Recent studies have shown inner ear tissues are capable of expressing inflammatory cytokines during otitis media. However, little quantitative information is available concerning cytokine gene expression in the inner ear and the protein products that result. Therefore, this study was conducted of mouse middle and inner ear during acute otitis media to measure the relationship between inflammatory cytokine genes and their protein products with quantitative RT-PCR and ELISA, respectively. Balb/c mice were inoculated transtympanically with heat-killed Haemophilus influenzae and middle and inner ear tissues collected for either quantitative RT-PCR microarrays or ELISA multiplex arrays. mRNA for several cytokine genes was significantly increased in both the middle and inner ear at 6 h. In the inner ear, these included MIP-2 (448 fold), IL-6 (126 fold), IL-1β (7.8 fold), IL-10 (10.7 fold), TNFα (1.8 fold), and IL-1α (1.5 fold). The 24 h samples showed a similar pattern of gene expression, although generally at lower levels. In parallel, the ELISA showed the related cytokines were present in the inner ear at concentrations higher by 2-122 fold higher at 18 h, declining slightly from there at 24 h. Immunohistochemistry with antibodies to a number of these cytokines demonstrated they occurred in greater amounts in the inner ear tissues. These findings demonstrate considerable inflammatory gene expression and gene products in the inner ear following acute otitis media. These higher cytokine levels suggest one potential mechanism for the permanent hearing loss seen in some cases of acute and chronic otitis media.
Collapse
Affiliation(s)
- Dennis R Trune
- Oregon Hearing Research Center, Department of Otolaryngology Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA.
| | - Beth Kempton
- Oregon Hearing Research Center, Department of Otolaryngology Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Frances A Hausman
- Oregon Hearing Research Center, Department of Otolaryngology Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Barbara E Larrain
- Oregon Hearing Research Center, Department of Otolaryngology Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Carol J MacArthur
- Oregon Hearing Research Center, Department of Otolaryngology Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
13
|
Control of middle ear inflammatory and ion homeostasis genes by transtympanic glucocorticoid and mineralocorticoid treatments. PLoS One 2015; 10:e0119228. [PMID: 25811752 PMCID: PMC4374692 DOI: 10.1371/journal.pone.0119228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/29/2015] [Indexed: 11/19/2022] Open
Abstract
HYPOTHESIS Transtympanic steroid treatment will induce changes in ion homeostasis and inflammatory gene expression to decrease middle ear inflammation due to bacterial inoculation. BACKGROUND Otitis media is common, but treatment options are limited to systemic antibiotic therapy or surgical intervention. Systemic glucocorticoid treatment of mice decreases inflammation and improves fluid clearance. However, transtympanic delivery of glucocorticoids or mineralocorticoid has not been explored to determine if direct steroid application is beneficial. METHODS Balb/c mice received transtympanic inoculation of heat-killed Haemophilus influenzae (H flu), followed by transtympanic treatment with either prednisolone or aldosterone. Mice given PBS instead of steroid and untreated mice were used as controls. Four hours after steroid treatment, middle ears were harvested for mRNA extraction and 24 hours after inoculation middle ears were harvested and examined for measures of inflammation. RESULTS H flu inoculation caused the increased expression of nearly all inflammatory cytokine genes and induced changes in expression of several genes related to cellular junctions and transport channels. Both steroids generally reversed the expression of inflammatory genes and caused ion and water regulatory genes to return to normal or near normal levels. Histologic evaluation of middle ears showed improved fluid and inflammatory cell clearance. CONCLUSION Improvement in middle ear inflammation was noted with both the glucocorticoid prednisolone and the mineralocorticoid aldosterone. This was due to reversal of inflammation-induced changes in middle ear cytokine genes, as well as those involved in ion and water homeostasis. Because glucocorticoids bind to the mineralocorticoid receptor, but not the reverse, it is concluded that much of the reduction of fluid and other inflammation measures was due to these steroids impact on ion and water transport channels. Further research is necessary to determine if this alternative mineralocorticoid treatment for otitis media will be clinically effective with fewer side effects than glucocorticoids.
Collapse
|
14
|
Santa Maria PL, Kim S, Varsak YK, Yang YP. Heparin binding-epidermal growth factor-like growth factor for the regeneration of chronic tympanic membrane perforations in mice. Tissue Eng Part A 2015; 21:1483-94. [PMID: 25567607 DOI: 10.1089/ten.tea.2014.0474] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We aim to explore the role of epidermal growth factor (EGF) ligand shedding in tympanic membrane wound healing and to investigate the translation of its modulation in tissue engineering of chronic tympanic membrane perforations. Chronic suppurative otitis media (CSOM) is an infected chronic tympanic membrane perforation. Up to 200 million suffer from its associated hearing loss and it is the most common cause of pediatric hearing loss in developing countries. There is a need for nonsurgical treatment due to a worldwide lack of resources. In this study, we show that EGF ligand shedding is essential for tympanic membrane healing as it's inhibition, with KB-R7785, leads to chronic perforation in 87.9% (n=58) compared with 0% (n=20) of controls. We then show that heparin binding-EGF-like growth factor (5 μg/mL), which acts to shed EGF ligands, can regenerate chronic perforations in mouse models with 92% (22 of 24) compared with 38% (10 of 26), also with eustachian tube occlusion with 94% (18 of 19) compared with 9% (2 of 23) and with CSOM 100% (16 of 16) compared with 41% (7 of 17). We also show the nonototoxicity of this treatment and its hydrogel delivery vehicle. This provides preliminary data for a clinical trial where it could be delivered by nonspecialist trained healthcare workers and fulfill the clinical need for a nonsurgical treatment for chronic tympanic membrane perforation and CSOM.
Collapse
Affiliation(s)
- Peter Luke Santa Maria
- 1 Department of Otolaryngology, Head and Neck Surgery, Stanford University , Stanford, California
| | | | | | | |
Collapse
|
15
|
Xu JH, Dai WJ, Chen B, Fan XY. Mucosal Immunization with PsaA Protein, Using Chitosan as a Delivery System, Increases Protection Against Acute Otitis Media and Invasive Infection byStreptococcus pneumoniae. Scand J Immunol 2015; 81:177-85. [PMID: 25565478 DOI: 10.1111/sji.12267] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/11/2014] [Indexed: 11/27/2022]
Affiliation(s)
- J.-H. Xu
- Department of Otology and Skull Base Surgery; Eye Ear Nose & Throat Hospital of Fudan University; Key Laboratory of Health Ministry for Hearing Medicine; Shanghai China
| | - W.-J. Dai
- Department of Otology and Skull Base Surgery; Eye Ear Nose & Throat Hospital of Fudan University; Key Laboratory of Health Ministry for Hearing Medicine; Shanghai China
| | - B. Chen
- Department of Otology and Skull Base Surgery; Eye Ear Nose & Throat Hospital of Fudan University; Key Laboratory of Health Ministry for Hearing Medicine; Shanghai China
| | - X.-Y. Fan
- Shanghai Public Health Clinical Center Affiliated to Fudan University; Shanghai China
| |
Collapse
|
16
|
Influenza A virus alters pneumococcal nasal colonization and middle ear infection independently of phase variation. Infect Immun 2014; 82:4802-12. [PMID: 25156728 DOI: 10.1128/iai.01856-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is both a widespread nasal colonizer and a leading cause of otitis media, one of the most common diseases of childhood. Pneumococcal phase variation influences both colonization and disease and thus has been linked to the bacteria's transition from colonizer to otopathogen. Further contributing to this transition, coinfection with influenza A virus has been strongly associated epidemiologically with the dissemination of pneumococci from the nasopharynx to the middle ear. Using a mouse infection model, we demonstrated that coinfection with influenza virus and pneumococci enhanced both colonization and inflammatory responses within the nasopharynx and middle ear chamber. Coinfection studies were also performed using pneumococcal populations enriched for opaque or transparent phase variants. As shown previously, opaque variants were less able to colonize the nasopharynx. In vitro, this phase also demonstrated diminished biofilm viability and epithelial adherence. However, coinfection with influenza virus ameliorated this colonization defect in vivo. Further, viral coinfection ultimately induced a similar magnitude of middle ear infection by both phase variants. These data indicate that despite inherent differences in colonization, the influenza A virus exacerbation of experimental middle ear infection is independent of the pneumococcal phase. These findings provide new insights into the synergistic link between pneumococcus and influenza virus in the context of otitis media.
Collapse
|
17
|
Tong HH, Lambert G, Li YX, Thurman JM, Stahl GL, Douthitt K, Clancy C, He Y, Bowman AS. Deletion of the complement C5a receptor alleviates the severity of acute pneumococcal otitis media following influenza A virus infection in mice. PLoS One 2014; 9:e95160. [PMID: 24740152 PMCID: PMC3989264 DOI: 10.1371/journal.pone.0095160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/24/2014] [Indexed: 12/04/2022] Open
Abstract
There is considerable evidence that influenza A virus (IAV) promotes adherence, colonization, and superinfection by S. pneumoniae (Spn) and contributes to the pathogenesis of otitis media (OM). The complement system is a critical innate immune defense against both pathogens. To assess the role of the complement system in the host defense and the pathogenesis of acute pneumococcal OM following IAV infection, we employed a well-established transtympanically-induced mouse model of acute pneumococcal OM. We found that antecedent IAV infection enhanced the severity of acute pneumococcal OM. Mice deficient in complement C1qa (C1qa−/−) or factor B (Bf −/−) exhibited delayed viral and bacterial clearance from the middle ear and developed significant mucosal damage in the eustachian tube and middle ear. This indicates that both the classical and alternative complement pathways are critical for the oto-immune defense against acute pneumococcal OM following influenza infection. We also found that Spn increased complement activation following IAV infection. This was characterized by sustained increased levels of anaphylatoxins C3a and C5a in serum and middle ear lavage samples. In contrast, mice deficient in the complement C5a receptor (C5aR) demonstrated enhanced bacterial clearance and reduced severity of OM. Our data support the concept that C5a-C5aR interactions play a significant role in the pathogenesis of acute pneumococcal OM following IAV infection. It is possible that targeting the C5a-C5aR axis might prove useful in attenuating acute pneumococcal OM in patients with influenza infection.
Collapse
Affiliation(s)
- Hua Hua Tong
- Department of Otolaryngology, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Garrett Lambert
- Department of Otolaryngology, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Yong Xing Li
- Department of Otolaryngology, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Joshua M Thurman
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Gregory L Stahl
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kelsey Douthitt
- Department of Otolaryngology, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Caitlin Clancy
- Department of Otolaryngology, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Yujuan He
- Department of Otolaryngology, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America; Department of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, Sichuan, P. R. China
| | - Andrew S Bowman
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
18
|
Interleukin 17A promotes pneumococcal clearance by recruiting neutrophils and inducing apoptosis through a p38 mitogen-activated protein kinase-dependent mechanism in acute otitis media. Infect Immun 2014; 82:2368-77. [PMID: 24664502 DOI: 10.1128/iai.00006-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Streptococcus pneumoniae is a Gram-positive and human-restricted pathogen colonizing the nasopharynx with an absence of clinical symptoms as well as a major pathogen causing otitis media (OM), one of the most common childhood infections. Upon bacterial infection, neutrophils are rapidly activated and recruited to the infected site, acting as the frontline defender against emerging microbial pathogens via different ways. Evidence shows that interleukin 17A (IL-17A), a neutrophil-inducing factor, plays important roles in the immune responses in several diseases. However, its function in response to S. pneumoniae OM remains unclear. In this study, the function of IL-17A in response to S. pneumoniae OM was examined using an in vivo model. We developed a model of acute OM (AOM) in C57BL/6 mice and found that neutrophils were the dominant immune cells that infiltrated to the middle ear cavity (MEC) and contributed to bacterial clearance. Using IL-17A knockout (KO) mice, we found that IL-17A boosted neutrophil recruitment to the MEC and afterwards induced apoptosis, which was identified to be conducive to bacterial clearance. In addition, our observation suggested that the p38 mitogen-activated protein kinase (MAPK) signaling pathway was involved in the recruitment and apoptosis of neutrophils mediated by IL-17A. These data support the conclusion that IL-17A contributes to the host immune response against S. pneumoniae by promoting neutrophil recruitment and apoptosis through the p38 MAPK signaling pathway.
Collapse
|
19
|
Guan X, Chen Y, Gan RZ. Factors affecting loss of tympanic membrane mobility in acute otitis media model of chinchilla. Hear Res 2014; 309:136-46. [PMID: 24406734 DOI: 10.1016/j.heares.2013.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 12/18/2013] [Accepted: 12/26/2013] [Indexed: 11/20/2022]
Abstract
Recently we reported that middle ear pressure (MEP), middle ear effusion (MEE), and ossicular changes each contribute to the loss of tympanic membrane (TM) mobility in a guinea pig model of acute otitis media (AOM) induced by Streptococcus pneumoniae (Guan and Gan, 2013). However, it is not clear how those factors vary along the course of the disease and whether those effects are reproducible in different species. In this study, a chinchilla AOM model was produced by transbullar injection of Haemophilus influenzae. Mobility of the TM at the umbo was measured by laser vibrometry in two treatment groups: 4 days (4D) and 8 days (8D) post inoculation. These time points represent relatively early and later phases of AOM. In each group, the vibration of the umbo was measured at three experimental stages: unopened, pressure-released, and effusion-removed ears. The effects of MEP and MEE and middle ear structural changes were quantified in each group by comparing the TM mobility at one stage with that of the previous stage. Our findings show that the factors affecting TM mobility do change with the disease time course. The MEP was the dominant contributor to reduction of TM mobility in 4D AOM ears, but showed little effect in 8D ears when MEE filled the tympanic cavity. MEE was the primary factor affecting TM mobility loss in 8D ears, but affected the 4D ears only at high frequencies. After the release of MEP and removal of MEE, residual loss of TM mobility was seen mainly at low frequencies in both 4D and 8D ears, and was associated with middle ear structural changes. Our findings establish that the factors contributing to TM mobility loss in the chinchilla ear were similar to those we reported previously for the guinea pig ears with AOM. Outcomes did not appear to differ between the two major bacterial species causing AOM in these animal models.
Collapse
Affiliation(s)
- Xiying Guan
- School of Aerospace and Mechanical Engineering and Bioengineering Center, University of Oklahoma, 865 Asp Avenue, Room 200, Norman, OK 73019, USA
| | - Yongzheng Chen
- School of Aerospace and Mechanical Engineering and Bioengineering Center, University of Oklahoma, 865 Asp Avenue, Room 200, Norman, OK 73019, USA
| | - Rong Z Gan
- School of Aerospace and Mechanical Engineering and Bioengineering Center, University of Oklahoma, 865 Asp Avenue, Room 200, Norman, OK 73019, USA.
| |
Collapse
|
20
|
Mechanisms of tympanic membrane and incus mobility loss in acute otitis media model of guinea pig. J Assoc Res Otolaryngol 2013; 14:295-307. [PMID: 23483330 DOI: 10.1007/s10162-013-0379-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 02/15/2013] [Indexed: 10/27/2022] Open
Abstract
Acute otitis media (AOM) is a rapid infection of middle ear due to bacterial or viral invasion. The infection commonly leads to negative pressure and purulent effusion in the middle ear. To identify how these changes affect tympanic membrane (TM) mobility or sound transmission through the middle ear, we hypothesize that pressure, effusion, and structural changes of the middle ear are the main mechanisms of conductive hearing loss in AOM. To test the hypothesis, a guinea pig AOM model was created by injection of Streptococcus pneumoniae. Three days post inoculation, vibration of the TM at umbo in response to input sound in the ear canal was measured at three experimental stages: intact, pressure-released, and effusion-drained AOM ears. The vibration of the incus tip was also measured after the effusion was removed. Results demonstrate that displacement of the TM increased mainly at low frequencies when pressure was released. As the effusion was removed, the TM mobility increased further but did not reach the level of the normal ear at low frequencies. This was caused by middle ear structural changes or adhesions on ossicles in AOM. The structural changes also affected movement of the incus at low and high frequencies. The results provide new evidence for understanding the mechanism of conductive hearing loss in AOM.
Collapse
|
21
|
Chen J, Ingham N, Clare S, Raisen C, Vancollie VE, Ismail O, McIntyre RE, Tsang SH, Mahajan VB, Dougan G, Adams DJ, White JK, Steel KP. Mcph1-deficient mice reveal a role for MCPH1 in otitis media. PLoS One 2013; 8:e58156. [PMID: 23516444 PMCID: PMC3596415 DOI: 10.1371/journal.pone.0058156] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/31/2013] [Indexed: 12/20/2022] Open
Abstract
Otitis media is a common reason for hearing loss, especially in children. Otitis media is a multifactorial disease and environmental factors, anatomic dysmorphology and genetic predisposition can all contribute to its pathogenesis. However, the reasons for the variable susceptibility to otitis media are elusive. MCPH1 mutations cause primary microcephaly in humans. So far, no hearing impairment has been reported either in the MCPH1 patients or mouse models with Mcph1 deficiency. In this study, Mcph1-deficient (Mcph1tm1a/tm1a) mice were produced using embryonic stem cells with a targeted mutation by the Sanger Institute's Mouse Genetics Project. Auditory brainstem response measurements revealed that Mcph1tm1a/tm1a mice had mild to moderate hearing impairment with around 70% penetrance. We found otitis media with effusion in the hearing-impaired Mcph1tm1a/tm1a mice by anatomic and histological examinations. Expression of Mcph1 in the epithelial cells of middle ear cavities supported its involvement in the development of otitis media. Other defects of Mcph1tm1a/tm1a mice included small skull sizes, increased micronuclei in red blood cells, increased B cells and ocular abnormalities. These findings not only recapitulated the defects found in other Mcph1-deficient mice or MCPH1 patients, but also revealed an unexpected phenotype, otitis media with hearing impairment, which suggests Mcph1 is a new gene underlying genetic predisposition to otitis media.
Collapse
Affiliation(s)
- Jing Chen
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Neil Ingham
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Simon Clare
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Claire Raisen
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | | | - Ozama Ismail
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | | | - Stephen H. Tsang
- Edward S. Harkness Eye Institute, Columbia University, New York, New York, United States of America
| | - Vinit B. Mahajan
- Omics Laboratory, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - David J. Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | | | - Karen P. Steel
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Li Q, Li YX, Douthitt K, Stahl GL, Thurman JM, Tong HH. Role of the alternative and classical complement activation pathway in complement mediated killing against Streptococcus pneumoniae colony opacity variants during acute pneumococcal otitis media in mice. Microbes Infect 2012; 14:1308-18. [PMID: 22975410 PMCID: PMC3511655 DOI: 10.1016/j.micinf.2012.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/30/2012] [Accepted: 08/10/2012] [Indexed: 01/24/2023]
Abstract
There is considerable evidence that phase variation among transparent and opaque colony phenotypes of Streptococcus pneumoniae (Spn) plays an important role in the pneumococcal adherence and invasion. The current study was designed to investigate the interactions of the opacity phenotype variants of Spn with specific complement pathway activation in a mouse model of acute otitis media (AOM). Although the opaque colony phenotype was expected to be more resistant to complement mediated killing compared to the transparent Spn variant, we discovered that C3b deposition on the transparent Spn is, in large part, dependent on the alternative pathway activation. There were no significant differences in resistance to complement mediated opsonophagocytosis between the two variants in factor B deficient mice. In addition, an in vitro study demonstrated that significantly more C4b-binding protein (C4BP) (the classical pathway inhibitor) and factor H (FH) (the alternative pathway inhibitor) bound to the transparent strain compared with the opaque one. Our data suggest that the difference in the relative virulence of Spn opacity phenotypes is associated with its ability to evade complement-mediated opsonophagocytosis in a mouse model of pneumococcal AOM.
Collapse
Affiliation(s)
- Qian Li
- Department of Otolaryngology, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43210, USA
- Department of Infectious Diseases, FuDan University affiliated Hua Shan Hospital, Shanghai, China
| | - Yong Xing Li
- Department of Otolaryngology, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43210, USA
| | - Kelsey Douthitt
- Department of Otolaryngology, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43210, USA
| | - Gregory L. Stahl
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine,, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua M. Thurman
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Hua Hua Tong
- Department of Otolaryngology, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
23
|
Morris LM, DeGagne JM, Kempton JB, Hausman F, Trune DR. Mouse middle ear ion homeostasis channels and intercellular junctions. PLoS One 2012; 7:e39004. [PMID: 22720014 PMCID: PMC3376096 DOI: 10.1371/journal.pone.0039004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/16/2012] [Indexed: 11/25/2022] Open
Abstract
Hypothesis The middle ear contains homeostatic mechanisms that control the movement of ions and fluids similar to those present in the inner ear, and are altered during inflammation. Background The normal middle ear cavity is fluid-free and air-filled to allow for effective sound transmission. Within the inner ear, the regulation of fluid and ion movement is essential for normal auditory and vestibular function. The same ion and fluid channels active in the inner ear may have similar roles with fluid regulation in the middle ear. Methods Middle and inner ears from BALB/c mice were processed for immunohistochemistry of 10 specific ion homeostasis factors to determine if similar transport and barrier mechanisms are present in the tympanic cavity. Examination also was made of BALB/c mice middle ears after transtympanic injection with heat-killed Haemophilus influenza to determine if these channels are impacted by inflammation. Results The most prominent ion channels in the middle ear included aquaporins 1, 4 and 5, claudin 3, ENaC and Na+,K+-ATPase. Moderate staining was found for GJB2, KCNJ10 and KCNQ1. The inflamed middle ear epithelium showed increased staining due to expected cellular hypertrophy. Localization of ion channels was preserved within the inflamed middle ear epithelium. Conclusions The middle ear epithelium is a dynamic environment with intrinsic mechanisms for the control of ion and water transport to keep the middle ear clear of fluids. Compromise of these processes during middle ear disease may underlie the accumulation of effusions and suggests they may be a therapeutic target for effusion control.
Collapse
Affiliation(s)
- Lisa M. Morris
- Oregon Hearing Research Center, Department of Otolaryngology – Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jacqueline M. DeGagne
- Oregon Hearing Research Center, Department of Otolaryngology – Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon, United States of America
| | - J. Beth Kempton
- Oregon Hearing Research Center, Department of Otolaryngology – Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Frances Hausman
- Oregon Hearing Research Center, Department of Otolaryngology – Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Dennis R. Trune
- Oregon Hearing Research Center, Department of Otolaryngology – Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
24
|
Abstract
HYPOTHESIS Ion homeostasis genes are responsible for the movement of ions and water in the epithelium of the middle ear. BACKGROUND It is not well known to what extent disruption of ion homeostasis is a factor in the accumulation of middle ear fluid during otitis media. METHODS Balb/c mice were transtympanically injected with heat-killed Hemophilus influenza bacteria. Untreated and saline-injected mice were used as controls. Mice were euthanized at 6, 24, and 72 hours and 1 week after injection, the bullae harvested, and total ribonucleic acid isolated from the middle ear tissues. Ion homeostasis genes were analyzed with real-time quantitative reverse transcription-polymerase chain reaction from the following gene families: Na,K-ATPase, claudins, K transport channels, epithelial Na channels, gap junctions, and aquaporins. Inflammatory genes also were analyzed to document inflammation. RESULTS All inflammatory genes analyzed were significantly upregulated, more at 6 hours than at 24 hours, with the exception of vascular endothelial growth factor and Mapk8. Most middle ear ion homeostasis genes experienced downregulation because of inflammation. This was most prominent in the aquaporin and Na,K-ATPase genes. Significant upregulation was seen in several genes in response to inflammation and saline independently. CONCLUSION The innate immune response to bacteria in the middle ear induces expression of several inflammatory genes. Coinciding with this inflammation is the downregulation of numerous ion homeostasis genes that are involved in ion and water transport and maintenance of tight junctions. This may explain the fluid accumulation within the middle ear seen with both acute and chronic otitis media.
Collapse
|
25
|
Sautter NB, Delaney KL, Hausman FA, Trune DR. Tissue remodeling in the acute otitis media mouse model. Int J Pediatr Otorhinolaryngol 2011; 75:1368-71. [PMID: 21889218 PMCID: PMC3197788 DOI: 10.1016/j.ijporl.2011.07.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/20/2011] [Accepted: 07/24/2011] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Otitis media is an infectious, inflammatory process involving the middle ear space. Chronic inflammation is associated with fibrosis, scarring and osteogenesis within the middle ear, which may contribute to subsequent hearing loss and increase the difficulty of treatment. METHODS Heat-killed Streptococcus pneumoniae was injected into the middle ears of 8-12 week old Balb/c mice. Control mice were treated with PBS middle ear injections. Middle ears were harvested at 1, 3, 5 and 7 days following injection (n=8 for each time point). The middle ears were processed using standard RT-PCR techniques. Up- and down-regulation of mRNA expression of various members of the Bone Morphogenetic Protein (BMP), Fibroblast Growth Factor (FGF) and Matrix Metalloproteinase (MMP) families was quantified and compared to PBS treated controls (n=8 for each time point). RESULTS Significant upregulation of MMP2, MMP3 and MMP9 was observed at varying time points (p<0.05). Significant downregulation of BMP3, BMP4, BMP5 BMP6 and BMP8a was seen at varying time points (p<0.05). Significant downregulation of FGF3, FGF6, FGF10 and FGFr1 was observed at varying time points (p<0.05). No significant expression of BMP8b, BMP9, BMP10, FGF5, FGF8, MMP1a, MMP7 and MMP14 was detected within the middle ear. CONCLUSIONS Inflammation within the middle ear following injection of bacterial products results in changes in the regulation of several tissue remodeling cytokines and proteinases in the mouse model. Further understanding of these molecular processes may allow for the development of treatment modalities aimed at preventing middle ear tissue remodeling.
Collapse
Affiliation(s)
- Nathan B. Sautter
- Oregon Health Sciences University, Department of Otolaryngology – Head and Neck Surgery, Portland, OR
| | | | - Frances A. Hausman
- Oregon Hearing Research Center, Oregon Health Sciences University, Portland, OR
| | - Dennis R. Trune
- Oregon Hearing Research Center, Oregon Health Sciences University, Portland, OR
| |
Collapse
|
26
|
Murphy D, Daniel SJ. Intratympanic Dexamethasone to Prevent Cisplatin Ototoxicity. Otolaryngol Head Neck Surg 2011; 145:452-7. [DOI: 10.1177/0194599811406673] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective. To determine whether intratympanic administration of dexamethasone reduces ototoxicity from systemic cisplatin. Study Design. Prospective animal study. Setting. Cisplatin chemotherapy induces ototoxicity manifesting as irreversible, sensorineural hearing loss. This is due to damage to the inner ear structures by free radicals. Steroidal anti-inflammatories have been shown to reduce the formation of free radicals and protect hearing in animal models. Subjects and Methods. Pure tone auditory brainstem responses were obtained in 58 female albino guinea pigs before and 3 days after intraperitoneal (IP) cisplatin chemotherapy. Auditory brainstem responses were also taken up to 1 month after a low dose of cisplatin. Part I consisted of a dosing study to determine the optimal ototoxic dose of cisplatin. In part II, auditory brainstem response thresholds were compared after bilateral intratympanic dexamethasone doses to act as controls. For part III, the otoprotection of dexamethasone against cisplatin was tested in separate bilateral and unilateral studies. Results. IP injection of 12 mg/kg of cisplatin induced significant hearing loss (57.2 ± 4.4 dB, P < .01) with 0% mortality. Ears treated with intratympanic dexamethasone alone showed no significant threshold changes. Ears that received IP cisplatin and intratympanic dexamethasone showed reduced threshold shifts at 8 kHz when the greatest concentration of dexamethasone was administered. Conclusion. Modest intratympanic dexamethasone otoprotection of the guinea pig ear was greatest at the highest concentration tested and occurred in a frequency-dependent manner. Intratympanic dexamethasone presents as a safe, simple, and effective treatment modality to minimize cisplatin ototoxicity without interfering with the chemotherapeutic effects of cisplatin.
Collapse
Affiliation(s)
- Denise Murphy
- McGill Auditory Sciences Laboratory, McGill University, Montreal, Quebec, Canada
| | - Sam J. Daniel
- McGill Auditory Sciences Laboratory, McGill University, Montreal, Quebec, Canada
- Department of Otolaryngology, Head and Neck Surgery, McGill University, Montreal Children’s Hospital, Montreal, Quebec, Canada
| |
Collapse
|
27
|
Essential role of factor B of the alternative complement pathway in complement activation and opsonophagocytosis during acute pneumococcal otitis media in mice. Infect Immun 2011; 79:2578-85. [PMID: 21502587 DOI: 10.1128/iai.00168-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We recently reported that the complement system plays a pivotal role in innate immune defense against Streptococcus pneumoniae during acute otitis media (OM) in mice. The current study was designed to determine which of the complement pathways are activated during acute pneumococcal OM and whether components of complement are expressed in the middle ear epithelium. Gene expression was determined by quantitative PCR, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence staining. We found that S. pneumoniae induced increased gene expression of factor B of the alternative complement pathway and C3 in mouse middle ear epithelium. Activation of factor B and C3 in the middle ear lavage fluids was significantly greater than in simultaneously obtained serum samples as determined by Western blotting. Using mice deficient in complement C1qa, factor B, and factor B/C2, we found that complement C3 activation and opsonophagocytosis of S. pneumoniae were greatly attenuated in factor B- and factor B/C2-deficient mice. These findings support the concept that local complement activation is an important host innate immune response and that activation of the alternative complement pathway represents one of the innate immune defense mechanisms against pneumococcal infection during the early stage of acute OM.
Collapse
|
28
|
MacArthur CJ, Pillers DAM, Pang J, Kempton JB, Trune DR. Altered expression of middle and inner ear cytokines in mouse otitis media. Laryngoscope 2011; 121:365-71. [PMID: 21271590 DOI: 10.1002/lary.21349] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 12/20/2022]
Abstract
OBJECTIVES/HYPOTHESIS The inner ear is at risk for sensorineural hearing loss in both acute and chronic otitis media (OM), but the mechanisms underlying sensorineural hearing loss are unknown. Previous gene expression array studies have shown that cytokine genes might be upregulated in the cochleas of mice with acute and chronic OM. This finding implies that the inner ear could manifest a direct inflammatory response to OM that may cause sensorineural damage. Therefore, to better understand inner ear cytokine gene expression during OM, quantitative real-time polymerase chain reaction and immunohistochemistry were used in mouse models to evaluate middle and inner ear inflammatory and remodeling cytokines. STUDY DESIGN Basic science experiment. METHODS An acute OM model was created in Balb/c mice by a transtympanic injection of Streptococcus pneumoniae in one ear; the other ear was used as a control. C3H/HeJ mice were screened for unilateral chronic OM, with the noninfected ear serving as a control. RESULTS Both acute and chronic OM caused both the middle ear and inner tissues in these two mouse models to overexpress numerous cytokine genes related to tissue remodeling (tumor necrosis factor-α, bone morphogenetic proteins, fibroblast growth factors) and angiogenesis (vascular endothelial growth factor), as well as inflammatory cell proliferation (interleukin [IL]-1α,β, IL-2, IL-6). Immunohistochemistry confirmed that both the middle ear and inner ear tissues expressed these cytokines. CONCLUSIONS Cochlear tissues are capable of expressing cytokine mRNA that contributes to the inflammation and remodeling that occur in association with middle ear disease. This provides a potential molecular basis for the transient and permanent sensorineural hearing loss often reported with acute and chronic OM.
Collapse
Affiliation(s)
- Carol J MacArthur
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon 97239-3098, USA.
| | | | | | | | | |
Collapse
|
29
|
Trune DR, Larrain BE, Hausman FA, Kempton JB, MacArthur CJ. Simultaneous measurement of multiple ear proteins with multiplex ELISA assays. Hear Res 2010; 275:1-7. [PMID: 21144888 DOI: 10.1016/j.heares.2010.11.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/09/2010] [Accepted: 11/29/2010] [Indexed: 10/18/2022]
Abstract
A recent advancement in enzyme-linked immunosorbent assay (ELISA) technology is the multiplex antibody array that measures multiple proteins simultaneously within a single sample. This allows reduction in sample volume, time, labor, and material costs, while increasing sensitivity over single ELISA. Current multiplex platforms include planar-based systems using microplates or slides, or bead-based suspension assay with microspheres. To determine the applicability of this technology for ear research, we used 3 different multiplex ELISA-based immunoassay arrays from 4 different companies to measure cytokine levels in mouse middle and inner ear tissue lysate extracts 24 h following transtympanic Haemophilus influenzae inoculation. Middle and inner ear tissue lysates were analyzed using testing services from Quansys Biosciences, Aushon Biosystems SearchLight (both microplate-based), MILLIPLEX MAP Sample (bead-based), and a RayBiotech, Inc (slide-based) kit. Samples were assayed in duplicate or triplicate. Results were compared to determine their relative sensitivity and reliability for measures of cytokines related to inflammation. The cytokine pg/ml amounts varied among the multiplex assays, so a comparison also was made of the mean fold increase in cytokines from untreated controls. Several cytokines and chemokines were elevated, the extent dependent upon the assay sensitivity. Those most significantly elevated were IL-1α, IL-1β, IL-6, TNFα, VEGF, and IL-8/MIP-2. The results of the multiplex systems were compared with single ELISA kits (IL-1β, IL-6) to assess sensitivity over the traditional method. Overall, the Quansys Biosciences and SearchLight arrays showed the greatest sensitivity, both employing the same multiplex methodology of a spotted array within a microplate well with chemiluminescent detection. They also were more sensitive than the traditional single ELISA performed with commercial kits and matched gene expression changes determined by quantitative RT-PCR. The Quansys array showed a limit of detection for ear IL-6 down to 2-4 pg/ml, indicating it is sufficiently sensitive to detect ear proteins present in low concentrations. Thus, the multiplex ELISA procedures appear suitable and reliable for the study of hearing related proteins, providing accurate, quantitative, reproducible results with considerable improvement in sensitivity and economy.
Collapse
Affiliation(s)
- Dennis R Trune
- Oregon Hearing Research Center, Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Mail Code NRC04, Portland, OR 97239-3098, USA.
| | | | | | | | | |
Collapse
|
30
|
Enhanced susceptibility to acute pneumococcal otitis media in mice deficient in complement C1qa, factor B, and factor B/C2. Infect Immun 2010; 78:976-83. [PMID: 20065024 DOI: 10.1128/iai.01012-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To define the roles of specific complement activation pathways in host defense against Streptococcus pneumoniae in acute otitis media (AOM), we investigated the susceptibility to AOM in mice deficient in complement factor B and C2 (Bf/C2(-/)(-)), C1qa (C1qa(-/)(-)), and factor B (Bf(-)(/)(-)). Bacterial titers of both S. pneumoniae serotype 6A and 14 in the middle ear lavage fluid samples from Bf/C2(-/)(-), Bf(-)(/)(-), and C1qa(-/)(-) mice were significantly higher than in samples from wild-type mice 24 h after transtympanical infection (P < 0.05) and remained persistently higher in samples from Bf/C2(-/)(-) mice than in samples from wild-type mice. Bacteremia occurred in Bf/C2(-/)(-), Bf(-)(/)(-), and C1qa(-/)(-) mice infected with both strains, but not in wild-type mice. Recruitment of inflammatory cells was paralleled by enhanced production of inflammatory mediators in the middle ear lavage samples from Bf/C2(-/)(-) mice. C3b deposition on both strains was greatest for sera obtained from wild-type mice, followed by C1qa(-)(/)(-) and Bf(-)(/)(-) mice, and least for Bf/C2(-)(/)(-) mice. Opsonophagocytosis and whole-blood killing capacity of both strains were significantly decreased in the presence of sera or whole blood from complement-deficient mice compared to wild-type mice. These findings indicate that both the classical and alternative complement pathways are critical for middle ear immune defense against S. pneumoniae. The reduced capacity of complement-mediated opsonization and phagocytosis in the complement-deficient mice appears to be responsible for the impaired clearance of S. pneumoniae from the middle ear and dissemination to the bloodstream during AOM.
Collapse
|
31
|
Han F, Yu H, Zhang J, Tian C, Schmidt C, Nava C, Davisson MT, Zheng QY. Otitis media in a mouse model for Down syndrome. Int J Exp Pathol 2009; 90:480-8. [PMID: 19765102 DOI: 10.1111/j.1365-2613.2009.00677.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Ts65Dn mouse shares many phenotypic characteristics of human Down syndrome. Here, we report that otitis media, characterized by effusion in the middle ear and hearing loss, was prevalent in Ts65Dn mice. Of the 53 Ts65Dn mice tested, 81.1% had high auditory-evoked brainstem response (ABR) thresholds for at least one of the stimulus frequencies (click, 8 kHz, 16 kHz and 32 kHz), in at least one ear. The ABR thresholds were variable and showed no tendency toward increase with age, from 2 to 7 months of age. Observation of pathology in mice, aged 3-4 months, revealed middle ear effusion in 11 of 15 Ts65Dn mice examined, but only in two of 11 wild-type mice. The effusion in each mouse varied substantially in volume and inflammatory cell content. The middle ear mucosae were generally thickened and goblet cells were distributed with higher density in the epithelium of the middle ear cavity of Ts65Dn mice as compared with those of wild-type controls. Bacteria of pathogenic importance to humans also were identified in the Ts65Dn mice. This is the first report of otitis media in the Ts65Dn mouse as a model characteristic of human Down syndrome.
Collapse
Affiliation(s)
- Fengchan Han
- Department of Otolaryngology-HNS, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Stol K, van Selm S, van den Berg S, Bootsma HJ, Blokx WAM, Graamans K, Tonnaer ELGM, Hermans PWM. Development of a non-invasive murine infection model for acute otitis media. MICROBIOLOGY-SGM 2009; 155:4135-4144. [PMID: 19762437 DOI: 10.1099/mic.0.033175-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Otitis media (OM) is one of the most frequent diseases in childhood, and Streptococcus pneumoniae is among the main causative bacterial agents. Since current experimental models used to study the bacterial pathogenesis of OM have several limitations, such as the invasiveness of the experimental procedures, we developed a non-invasive murine OM model. In our model, adapted from a previously developed rat OM model, a pressure cabin is used in which a 40 kPa pressure increase is applied to translocate pneumococci from the nasopharyngeal cavity into both mouse middle ears. Wild-type pneumococci were found to persist in the middle ear cavity for 144 h after infection, with a maximum bacterial load at 96 h. Inflammation was confirmed at 96 and 144 h post-infection by IL-1beta and TNF-alpha cytokine analysis and histopathology. Subsequently, we investigated the contribution of two surface-associated pneumococcal proteins, the streptococcal lipoprotein rotamase A (SlrA) and the putative proteinase maturation protein A (PpmA), to experimental OM in our model. Pneumococci lacking the slrA gene, but not those lacking the ppmA gene, were significantly reduced in virulence in the OM model. Importantly, pneumococci lacking both genes were significantly more attenuated than the DeltaslrA single mutant. This additive effect suggests that SlrA and PpmA exert complementary functions during experimental OM. In conclusion, we have developed a highly reproducible and non-invasive murine infection model for pneumococcal OM using a pressure cabin, which is very suitable to study pneumococcal pathogenesis and virulence in vivo.
Collapse
Affiliation(s)
- K Stol
- Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - S van Selm
- Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - S van den Berg
- Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - H J Bootsma
- Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - W A M Blokx
- Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - K Graamans
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - E L G M Tonnaer
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - P W M Hermans
- Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
33
|
MacArthur CJ, DeGagne JM, Kempton JB, Trune DR. Steroid control of acute middle ear inflammation in a mouse model. ACTA ACUST UNITED AC 2009; 135:453-7. [PMID: 19451465 DOI: 10.1001/archoto.2009.23] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To investigate steroids for their potential for therapeutic approaches to control otitis media. Glucocorticoids and mineralocorticoids have differential effects on inflammation and fluid absorption, but little is known of their control of middle and inner ear manifestations of acute otitis media. DESIGN Both glucocorticoid (prednisolone and dexamethasone) and mineralocorticoid (aldosterone and fludrocortisone) steroids were investigated for their ability to reduce inflammatory symptoms in a mouse otitis media model. SETTING Academic medical center. SUBJECTS Acute inflammation was induced by transtympanic injection of heat killed Streptococcus pneumoniae to 100 BALB/c mice. INTERVENTIONS Twenty mice in each experimental group (prednisolone, dexamethasone, aldosterone, and fludrocortisone) were given a steroid in their drinking water the day before inoculation, and these treatments were continued until the mice were killed for histologic examination. Twenty control mice were treated with water only. MAIN OUTCOME MEASURES Histologic measure of inflammation: middle ear fluid, inflammatory cell number, and tympanic membrane thickness. RESULTS Histologic middle ear morphometrics showed significant steroid effects at both 3 and 5 days in reduction of fluid area, cell number, and tympanic membrane thickness. CONCLUSIONS Glucocorticoids were most effective in controlling inflammation. Interestingly, the mineralocorticoids were also effective in reducing the inflammatory response at 5 days, suggesting that their fluid transport function helped clear disease. Thus, steroid control of middle ear disease may be useful in alleviating symptoms faster and reducing the risk to the inner ear.
Collapse
Affiliation(s)
- Carol J MacArthur
- Department of Otolaryngology-Head & Neck Surgery and Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
34
|
Role for Toll-like receptor 2 in the immune response to Streptococcus pneumoniae infection in mouse otitis media. Infect Immun 2009; 77:3100-8. [PMID: 19414550 DOI: 10.1128/iai.00204-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae is the most common pathogen associated with otitis media. To examine the role of Toll-like receptor 2 (TLR2) in host defense against Streptococcus pneumoniae infection in the middle ear, wild-type (WT; C57BL/6) and TLR2-deficient (TLR2(-/-)) mice were inoculated with Streptococcus pneumoniae (1 x 10(6) CFU) through the tympanic membrane. Nineteen of 37 TLR2(-/-) mice showed bacteremia and died within 3 days after the challenge, compared to only 4 of 32 WT mice that died. Of those that survived, more severe hearing loss in the TLR2(-/-) mice than in the WT mice was indicated by an elevation in auditory-evoked brain stem response thresholds at 3 or 7 days postinoculation. The histological pathology was characterized by effusion and tissue damage in the middle ear, and in the TLR2(-/-) mice, the outcome of infection became more severe at 7 days. At both 3 and 7 days postchallenge, the TLR2(-/-) mice had higher blood bacterial titers than the WT mice (P < 0.05), and typical bacteria were identified in the effusion from both ears of both mouse groups by acridine orange staining. Moreover, by 3 days postchallenge, the mRNA accumulation levels of NF-kappaB, tumor necrosis factor alpha, interleukin 1beta, MIP1alpha, Muc5ac, and Muc5b were significantly lower in the ears of TLR2(-/-) mice than in WT mice. In summary, TLR2(-/-) mice may produce relatively low levels of proinflammatory cytokines following pneumococcal challenge, thus hindering the clearance of bacteria from the middle ear and leading to sepsis and a high mortality rate. This study provides evidence that TLR2 is important in the molecular pathogenesis and host response to otitis media.
Collapse
|
35
|
Trune DR, Zheng QY. Mouse models for human otitis media. Brain Res 2009; 1277:90-103. [PMID: 19272362 DOI: 10.1016/j.brainres.2009.02.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/11/2009] [Accepted: 02/23/2009] [Indexed: 12/20/2022]
Abstract
Otitis media (OM) remains the most common childhood disease and its annual costs exceed $5 billion. Its potential for permanent hearing impairment also emphasizes the need to better understand and manage this disease. The pathogenesis of OM is multifactorial and includes infectious pathogens, anatomy, immunologic status, genetic predisposition, and environment. Recent progress in mouse model development is helping to elucidate the respective roles of these factors and to significantly contribute toward efforts of OM prevention and control. Genetic predisposition is recognized as an important factor in OM and increasing numbers of mouse models are helping to uncover the potential genetic bases for human OM. Furthermore, the completion of the mouse genome sequence has offered a powerful set of tools for investigating gene function and is generating a rich resource of mouse mutants for studying the genetic factors underlying OM.
Collapse
Affiliation(s)
- Dennis R Trune
- Oregon Hearing Research Center, Mail Code NRC04, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | |
Collapse
|
36
|
Abstract
SUMMARY Streptococcus pneumoniae is a colonizer of human nasopharynx, but it is also an important pathogen responsible for high morbidity, high mortality, numerous disabilities, and high health costs throughout the world. Major diseases caused by S. pneumoniae are otitis media, pneumonia, sepsis, and meningitis. Despite the availability of antibiotics and vaccines, pneumococcal infections still have high mortality rates, especially in risk groups. For this reason, there is an exceptionally extensive research effort worldwide to better understand the diseases caused by the pneumococcus, with the aim of developing improved therapeutics and vaccines. Animal experimentation is an essential tool to study the pathogenesis of infectious diseases and test novel drugs and vaccines. This article reviews both historical and innovative laboratory pneumococcal animal models that have vastly added to knowledge of (i) mechanisms of infection, pathogenesis, and immunity; (ii) efficacies of antimicrobials; and (iii) screening of vaccine candidates. A comprehensive description of the techniques applied to induce disease is provided, the advantages and limitations of mouse, rat, and rabbit models used to mimic pneumonia, sepsis, and meningitis are discussed, and a section on otitis media models is also included. The choice of appropriate animal models for in vivo studies is a key element for improved understanding of pneumococcal disease.
Collapse
|
37
|
Sabirov A, Metzger DW. Mouse models for the study of mucosal vaccination against otitis media. Vaccine 2008; 26:1501-24. [PMID: 18295938 PMCID: PMC2323831 DOI: 10.1016/j.vaccine.2008.01.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 01/10/2008] [Accepted: 01/11/2008] [Indexed: 12/20/2022]
Abstract
Otitis media (OM) is one of the most common infectious diseases in humans. The pathogenesis of OM involves nasopharyngeal (NP) colonization and retrograde ascension of the pathogen up the Eustachian tube into the middle ear (ME). Due to increasing rates of antibiotic resistance, there is an urgent need for vaccines to prevent infections caused by the most common causes of bacterial OM, including nontypeable Haemophilus influenzae, Streptococcus pneumoniae and Moraxella catarrhalis. Current vaccine strategies aim to diminish bacterial NP carriage, thereby reducing the likelihood of developing acute OM. To be effective, vaccination should induce local mucosal immunity both in the ME and in the NP. Studies in animal models have demonstrated that the intranasal route of vaccination is particularly effective at inducing immune responses in the nasal passage and ME for protection against OM. The mouse is increasingly used in these models, because of the availability of murine reagents and the existence of technology to manipulate murine models of disease immunologically and genetically. Previous studies confirmed the suitability of the mouse as a model for inflammatory processes in acute OM. Here, we discuss various murine models of OM and review the applicability of these models to assess the efficacy of mucosal vaccination and the mechanisms responsible for protection. In addition, we discuss various mucosal vaccine antigens, mucosal adjuvants and mucosal delivery systems.
Collapse
Affiliation(s)
- Albert Sabirov
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208
| | - Dennis W. Metzger
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208
| |
Collapse
|