1
|
Deletion of the Notch ligand Jagged1 during cochlear maturation leads to inner hair cell defects and hearing loss. Cell Death Dis 2022; 13:971. [PMID: 36400760 PMCID: PMC9674855 DOI: 10.1038/s41419-022-05380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022]
Abstract
The mammalian cochlea is an exceptionally well-organized epithelium composed of hair cells, supporting cells, and innervating neurons. Loss or defects in any of these cell types, particularly the specialized sensory hair cells, leads to deafness. The Notch pathway is known to play a critical role in the decision to become either a hair cell or a supporting cell during embryogenesis; however, little is known about how Notch functions later during cochlear maturation. Uniquely amongst Notch ligands, Jagged1 (JAG1) is localized to supporting cells during cell fate acquisition and continues to be expressed into adulthood. Here, we demonstrate that JAG1 in maturing cochlear supporting cells is essential for normal cochlear function. Specifically, we show that deletion of JAG1 during cochlear maturation disrupts the inner hair cell pathway and leads to a type of deafness clinically similar to auditory neuropathy. Common pathologies associated with disruptions in inner hair cell function, including loss of hair cells, synapses, or auditory neurons, were not observed in JAG1 mutant cochleae. Instead, RNA-seq analysis of JAG1-deficient cochleae identified dysregulation of the Rho GTPase pathway, known to be involved in stereocilia development and maintenance. Interestingly, the overexpression of one of the altered genes, Diaph3, is responsible for autosomal dominant auditory neuropathy-1 (AUNA1) in humans and mice, and is associated with defects in the inner hair cell stereocilia. Strikingly, ultrastructural analyses of JAG1-deleted cochleae revealed stereocilia defects in inner hair cells, including fused and elongated bundles, that were similar to those stereocilia defects reported in AUNA1 mice. Taken together, these data indicate a novel role for Notch signaling in normal hearing development through maintaining stereocilia integrity of the inner hair cells during cochlear maturation.
Collapse
|
2
|
Li G, Yin Y, Zhang Y, Wu J, Sun S. Electrospun regenerated silk fibroin is a promising biomaterial for the maintenance of inner ear progenitors in vitro. J Biomater Appl 2021; 36:1164-1172. [PMID: 34708663 DOI: 10.1177/08853282211051501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We sought to determine the biocompatibility of electrospun regenerated silk fibroin (RSF) mats with inner ear progenitors, especially their effect on the differentiation of inner ear progenitors into hair cells. METHODS Neonatal mouse cochleae (n = 20) were collected and digested and allowed to form spheres over several days. Cells digested from the spheres were then seeded onto aligned or random RSF mats, with laminin-coated coverslips serving as controls. The inner ear progenitor cell mortality was examined by TUNEL labeling, and the adhesion of cells to the RSF mats or coverslip was determined by scanning electron microscopy. Finally, the number of hair cells that differentiated from inner ear progenitors was determined by Myosin7a expression. Unpaired Student's t-tests and one-way ANOVA followed by a Dunnett's multiple comparisons test were used in this study (p < 0.05). RESULTS After 5 days of culture, the inner ear progenitors had good adhesion to both the aligned and random RSF mats and there was no significant difference in TUNEL+ cells between the mats compared to the coverslip (p > 0.05). After 7 days of in vitro differentiation culture, the percentage of differentiated hair cells on the control, aligned, and random RSF mats was 2.5 ± 0.5%, 2.7 ± 0.4%, and 2.4 ± 0.2%, respectively, and there was no significant difference between Myosin7a+ cells on either RSF mat compared to controls (p > 0.05). CONCLUSION The aligned and random RSF mats had excellent biocompatibility with inner ear progenitors and helped the inner ear progenitors maintain their stemness. Our results thus indicate that RSF mats represent a useful scaffold for the development of new strategies for inner ear tissue engineering research.
Collapse
Affiliation(s)
- Guangfei Li
- 159395ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
| | - Yanbo Yin
- 159395ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
| | - Yaopeng Zhang
- 12475State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Jingfang Wu
- 159395ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
| | - Shan Sun
- 159395ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
| |
Collapse
|
3
|
The crosstalk between the Notch, Wnt, and SHH signaling pathways in regulating the proliferation and regeneration of sensory progenitor cells in the mouse cochlea. Cell Tissue Res 2021; 386:281-296. [PMID: 34223978 PMCID: PMC8557196 DOI: 10.1007/s00441-021-03493-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/21/2021] [Indexed: 12/04/2022]
Abstract
Sensory hair cells (HCs) are highly susceptible to damage by noise, ototoxic drugs, and aging. Although HCs cannot be spontaneously regenerated in adult mammals, previous studies have shown that signaling pathways are involved in HC regeneration in the damaged mouse cochlea. Here, we used a Notch antagonist (DAPT), a Wnt agonist (QS11), and recombinant Sonic hedgehog (SHH) protein to investigate their concerted actions underlying HC regeneration in the mouse cochlea after neomycin-induced damage both in vivo and in vitro. With DAPT, the numbers of HCs increased, and supporting cell (SC) proliferation was seen in both the intact and damaged cochlear sensory epithelia, while these numbers were unchanged in the presence of QS11. When simultaneously treated with DAPT and QS11, the number of HCs increased dramatically, and much greater SC proliferation was seen in the cochlear epithelium. In transgenic mice with both Notch1 conditional knockout and β-catenin over-expression, cochlear SC proliferation and HC regeneration were more obvious than in either Notch1 knockout or β-catenin over-expressing mice separately. When cochleae were treated with DAPT, QS11, and SHH together, SC proliferation was even greater, and this proliferation was seen in both the HC region and the greater epithelial ridge. High-throughput RNA sequencing was used to identify the differentially expressed genes between all groups, and the results showed that the SHH and Wnt signaling pathways are involved in SC proliferation. Our study suggests that co-regulation of the Notch, Wnt, and SHH signaling pathways promotes extensive cell proliferation and regeneration in the mouse cochlea.
Collapse
|
4
|
Batissoco AC, Lezirovitz K, Zanatta DB, Hemza CRML, Vasques LR, Strauss BE, Mingroni-Netto RC, Haddad LA, Bento RF, Oiticica J. Cochlea cell-specific marker expression upon in vitro Hes1 knockdown. ACTA ACUST UNITED AC 2021; 54:e10579. [PMID: 34008754 PMCID: PMC8130059 DOI: 10.1590/1414-431x2020e10579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/02/2021] [Indexed: 11/25/2022]
Abstract
NOTCH pathway proteins, including the transcriptional factor HES1, play crucial roles in the development of the inner ear by means of the lateral inhibition mechanism, in which supporting cells have their phenotype preserved while they are prevented from becoming hair cells. Genetic manipulation of this pathway has been demonstrated to increase hair cell number. The present study aimed to investigate gene expression effects in hair cells and supporting cells after Hes1-shRNA lentivirus transduction in organotypic cultures of the organ of Corti from postnatal-day-3 mice. Forty-eight hours after in vitro knockdown, Hes1 gene expression was reduced at both mRNA and protein levels. Myo7a (hair cell marker) and Sox2 (progenitor cell marker) mRNA levels also significantly increased. The modulation of gene expression in the organ of Corti upon Hes1 knockdown is consistent with cell phenotypes related to lateral inhibition mechanism interference in the inner ear. The lentivirus-based expression of Hes1-shRNA is a valuable strategy for genetic interference in the organ of Corti and for future evaluation of its efficacy in protocols aiming at the regeneration of hair cells in vivo.
Collapse
Affiliation(s)
- A C Batissoco
- Otorrinolaringologia/LIM32, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.,Departamento de Otorrinolaringologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - K Lezirovitz
- Otorrinolaringologia/LIM32, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.,Departamento de Otorrinolaringologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - D B Zanatta
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - C R M L Hemza
- Departamento de Otorrinolaringologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - L R Vasques
- Centro de Estudos sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - B E Strauss
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - R C Mingroni-Netto
- Centro de Estudos sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - L A Haddad
- Centro de Estudos sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - R F Bento
- Otorrinolaringologia/LIM32, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.,Departamento de Otorrinolaringologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - J Oiticica
- Otorrinolaringologia/LIM32, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.,Departamento de Otorrinolaringologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
5
|
Chang SY, Carpena NT, Mun S, Jung JY, Chung PS, Shim H, Han K, Ahn JC, Lee MY. Enhanced Inner-Ear Organoid Formation from Mouse Embryonic Stem Cells by Photobiomodulation. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:556-567. [PMID: 32258218 PMCID: PMC7118273 DOI: 10.1016/j.omtm.2020.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/09/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Photobiomodulation (PBM) stimulates different types of stem cells to migrate, proliferate, and differentiate in vitro and in vivo. However, little is known about the effects of PBM on the differentiation of embryonic stem cells (ESCs) toward the otic lineage. Only a few reports have documented the in vitro differentiation of ESCs into inner-ear hair cells (HCs) due to the complexity of HCs compared with other target cell types. In this study, we determined the optimal condition to differentiate the ESCs into the otic organoid using different culture techniques and PBM parameters. The efficiency of organoid formation within the embryoid body (EB) was dependent on the cell density of the hanging drop. PBM, using 630 nm wavelength light-emitting diodes (LEDs), further improved the differentiation of inner-ear hair cell-like cells coupled with reactive oxygen species (ROS) overexpression. Transcriptome analysis showed the factors that are responsible for the effect of PBM in the formation of otic organoids, notably, the downregulation of neural development-associated genes and the hairy and enhancer of split 5 (Hes5) gene, which inhibits the differentiation of prosensory cells to hair cells. These data enrich the current differentiation protocols for generating inner-ear hair cells.
Collapse
Affiliation(s)
- So-Young Chang
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Nathaniel T Carpena
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Seyoung Mun
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea.,DKU-Theragen Institute for NGS Analysis (DTiNa), 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Jae Yun Jung
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea.,Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Phil-Sang Chung
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea.,Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Hosup Shim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Kyudong Han
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea.,DKU-Theragen Institute for NGS Analysis (DTiNa), 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Jin-Chul Ahn
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea.,Department of Biomedical Science, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Min Young Lee
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea.,Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| |
Collapse
|
6
|
Novel insights into inner ear development and regeneration for targeted hearing loss therapies. Hear Res 2019; 397:107859. [PMID: 31810596 DOI: 10.1016/j.heares.2019.107859] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/06/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Sensorineural hearing loss is the most common sensory deficit in humans. Despite the global scale of the problem, only limited treatment options are available today. The mammalian inner ear is a highly specialized postmitotic organ, which lacks proliferative or regenerative capacity. Since the discovery of hair cell regeneration in non-mammalian species however, much attention has been placed on identifying possible strategies to reactivate similar responses in humans. The development of successful regenerative approaches for hearing loss strongly depends on a detailed understanding of the mechanisms that control human inner ear cellular specification, differentiation and function, as well as on the development of robust in vitro cellular assays, based on human inner ear cells, to study these processes and optimize therapeutic interventions. We summarize here some aspects of inner ear development and strategies to induce regeneration that have been investigated in rodents. Moreover, we discuss recent findings in human inner ear development and compare the results with findings from animal models. Finally, we provide an overview of strategies for in vitro generation of human sensory cells from pluripotent and somatic progenitors that may provide a platform for drug development and validation of therapeutic strategies in vitro.
Collapse
|
7
|
Chan YH, Liu TC, Liao CK, Cheng YF, Tsai CH, Lu YC, Hu CJ, Lin HJ, Lee YL, Wu CC, Hsu CJ. Consumption of betel quid contributes to sensorineural hearing impairment through arecoline-induced oxidative stress. Sci Rep 2019; 9:14554. [PMID: 31601870 PMCID: PMC6787045 DOI: 10.1038/s41598-019-49815-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/22/2019] [Indexed: 11/09/2022] Open
Abstract
Betel quid is one of the most widely used psychoactive substances, and is consumed by approximately 10% of the world’s population. In addition to its carcinogenicity, betel quid has also been reported to affect many organs, including the brain, heart, lungs, gastrointestinal tract, and reproductive organs. As betel quid contains several neurotoxic ingredients, we hypothesize that it also possesses ototoxicity and may lead to sensorineural hearing impairment (SNHI). In this study, we investigated the contribution of betel quid consumption to SNHI in a large clinical cohort, and validated the pathogenetic mechanisms in ex vivo tissue explants. We enrolled a total of 2364 volunteers, and determined their audiologic results based on Z-scores converted from their original frequency-specific hearing thresholds. Using generalized linear regression, we identified a positive correlation between betel quid consumption and the Z-scores across different frequencies. Subsequently, we explored the toxicity of arecoline, the main neuroactive component of betel quid, on tissue explants from murine cochleae. Arecoline reduced cell activity in the explant cultures and induced apoptosis in the hair cells, probably through the effects of oxidative stress. These findings have expanded the potential hazards of betel quid to common neurological disorders, and provide insights into preventive strategies against SNHI caused by neurotoxic substances.
Collapse
Affiliation(s)
- Yen-Hui Chan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Kang Liao
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Hui Tsai
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ying-Chang Lu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Ju Hu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Ju Lin
- Health Management Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Yungling Leo Lee
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| |
Collapse
|
8
|
Roccio M, Edge ASB. Inner ear organoids: new tools to understand neurosensory cell development, degeneration and regeneration. Development 2019; 146:146/17/dev177188. [PMID: 31477580 DOI: 10.1242/dev.177188] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of therapeutic interventions for hearing loss requires fundamental knowledge about the signaling pathways controlling tissue development as well as the establishment of human cell-based assays to validate therapeutic strategies ex vivo Recent advances in the field of stem cell biology and organoid culture systems allow the expansion and differentiation of tissue-specific progenitors and pluripotent stem cells in vitro into functional hair cells and otic-like neurons. We discuss how inner ear organoids have been developed and how they offer for the first time the opportunity to validate drug-based therapies, gene-targeting approaches and cell replacement strategies.
Collapse
Affiliation(s)
- Marta Roccio
- Inner Ear Research Laboratory, Department of Biomedical Research (DBMR), University of Bern, Bern 3008, Switzerland .,Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Albert S B Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
9
|
McGovern MM, Zhou L, Randle MR, Cox BC. Spontaneous Hair Cell Regeneration Is Prevented by Increased Notch Signaling in Supporting Cells. Front Cell Neurosci 2018; 12:120. [PMID: 29780306 PMCID: PMC5945818 DOI: 10.3389/fncel.2018.00120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
During embryonic development, differentiation of cochlear progenitor cells into hair cells (HCs) or supporting cells (SCs) is partially controlled through Notch signaling. Many studies have shown that inhibition of Notch signaling allows SCs to convert into HCs in both normal and drug damaged neonatal mouse cochleae. This mechanism is also implicated during HC regeneration in non-mammalian vertebrates; however, the mechanism of spontaneous HC regeneration in the neonatal mouse cochlea is less understood. While inhibition of Notch signaling can force SCs to convert into HCs and increase the number of regenerated HCs, it is currently unknown whether this pathway is involved in spontaneous HC regeneration observed in vivo. Therefore, we investigated the role of Notch signaling during the spontaneous HC regeneration process using Atoh1-CreERTM::Rosa26loxP-stop-loxP-DTA/+ mice injected with tamoxifen at postnatal day (P) 0 and P1 to ablate HCs and stimulate spontaneous HC regeneration. Expression changes of genes in the Notch pathway were measured using immunostaining and in situ hybridization, with most changes observed in the apical one-third of the cochlea where the majority of HC regeneration occurs. Expression of the Notch target genes Hes1, Hes5, Hey1, HeyL, and Jagged1 were decreased. To investigate whether reduction of Notch signaling is involved in the spontaneous HC regeneration process, we overexpressed the Notch1 intracellular fragment (N1ICD) in cochlear SCs and other non-sensory epithelial cells in the context of HC damage. Specifically, Atoh1-CreERTM::Rosa26loxP-stop-loxP-DTA/+::Sox10rtTA::TetO-LacZ::TetO-N1ICD mice were injected with tamoxifen at P0/P1 to stimulate spontaneous HC regeneration and given doxycycline from P0-P7 to induce expression of N1ICD as well as LacZ for fate-mapping. We observed a 92% reduction in the number of fate-mapped regenerated HCs in mice with N1ICD overexpression compared to controls with HC damage but no manipulation of Notch signaling. Therefore, we conclude that increased Notch signaling prevents spontaneous HC regeneration from occurring in the neonatal mouse cochlea. Understanding which components of the Notch pathway regulates regenerative plasticity in the neonatal mouse cochlea will inform investigations focused on stimulating HC regeneration in mature cochlea and eventually in humans to treat hearing loss.
Collapse
Affiliation(s)
- Melissa M. McGovern
- Department of Pharmacology, School of Medicine, Southern Illinois University, Springfield, IL, United States
| | - Luyi Zhou
- Department of Pharmacology, School of Medicine, Southern Illinois University, Springfield, IL, United States
| | - Michelle R. Randle
- Department of Pharmacology, School of Medicine, Southern Illinois University, Springfield, IL, United States
| | - Brandon C. Cox
- Department of Pharmacology, School of Medicine, Southern Illinois University, Springfield, IL, United States
- Department of Surgery, Division of Otolaryngology, School of Medicine, Southern Illinois University, Springfield, IL, United States
| |
Collapse
|
10
|
Regeneration of Cochlear Hair Cells and Hearing Recovery through Hes1 Modulation with siRNA Nanoparticles in Adult Guinea Pigs. Mol Ther 2018; 26:1313-1326. [PMID: 29680697 DOI: 10.1016/j.ymthe.2018.03.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/17/2022] Open
Abstract
Deafness is commonly caused by the irreversible loss of mammalian cochlear hair cells (HCs) due to noise trauma, toxins, or infections. We previously demonstrated that small interfering RNAs (siRNAs) directed against the Notch pathway gene, hairy and enhancer of split 1 (Hes1), encapsulated within biocompatible poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) could regenerate HCs within ototoxin-ablated murine organotypic cultures. In the present study, we delivered this sustained-release formulation of Hes1 siRNA (siHes1) into the cochleae of noise-injured adult guinea pigs. Auditory functional recovery was measured by serial auditory brainstem responses over a nine-week follow-up period, and HC regeneration was evaluated by immunohistological evaluations and scanning electron microscopy. Significant HC restoration and hearing recovery were observed across a broad tonotopic range in ears treated with siHes1 NPs, beginning at three weeks and extending out to nine weeks post-treatment. Moreover, both ectopic and immature HCs were uniquely observed in noise-injured cochleae treated with siHes1 NPs, consistent with de novo HC production. Our results indicate that durable cochlear HCs were regenerated and promoted significant hearing recovery in adult guinea pigs through reversible modulation of Hes1 expression. Therefore, PLGA-NP-mediated delivery of siHes1 to the cochlea represents a promising pharmacologic approach to regenerate functional and sustainable mammalian HCs in vivo.
Collapse
|
11
|
O'Leary TP, Shin S, Fertan E, Dingle RN, Almuklass A, Gunn RK, Yu Z, Wang J, Brown RE. Reduced acoustic startle response and peripheral hearing loss in the 5xFAD mouse model of Alzheimer's disease. GENES BRAIN AND BEHAVIOR 2017; 16:554-563. [DOI: 10.1111/gbb.12370] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/30/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022]
Affiliation(s)
- T. P. O'Leary
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| | - S. Shin
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| | - E. Fertan
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| | - R. N. Dingle
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| | - A. Almuklass
- Department of Basic Medical Sciences; King Saud Bin Abdulaziz University for Health Science; Riyadh Saudi Arabia
| | - R. K. Gunn
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| | - Z. Yu
- Department of School of Human Communication Disorders; Dalhousie University; Halifax Nova Scotia Canada
| | - J. Wang
- Department of School of Human Communication Disorders; Dalhousie University; Halifax Nova Scotia Canada
| | - R. E. Brown
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| |
Collapse
|
12
|
Role of Wnt and Notch signaling in regulating hair cell regeneration in the cochlea. Front Med 2016; 10:237-49. [PMID: 27527363 DOI: 10.1007/s11684-016-0464-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/12/2016] [Indexed: 01/22/2023]
Abstract
Sensory hair cells in the inner ear are responsible for sound recognition. Damage to hair cells in adult mammals causes permanent hearing impairment because these cells cannot regenerate. By contrast, newborn mammals possess limited regenerative capacity because of the active participation of various signaling pathways, including Wnt and Notch signaling. The Wnt and Notch pathways are highly sophisticated and conserved signaling pathways that control multiple cellular events necessary for the formation of sensory hair cells. Both signaling pathways allow resident supporting cells to regenerate hair cells in the neonatal cochlea. In this regard, Wnt and Notch signaling has gained increased research attention in hair cell regeneration. This review presents the current understanding of the Wnt and Notch signaling pathways in the auditory portion of the inner ear and discusses the possibilities of controlling these pathways with the hair cell fate determiner Atoh1 to regulate hair cell regeneration in the mammalian cochlea.
Collapse
|
13
|
Wu J, Li W, Lin C, Chen Y, Cheng C, Sun S, Tang M, Chai R, Li H. Co-regulation of the Notch and Wnt signaling pathways promotes supporting cell proliferation and hair cell regeneration in mouse utricles. Sci Rep 2016; 6:29418. [PMID: 27435629 PMCID: PMC4951696 DOI: 10.1038/srep29418] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/16/2016] [Indexed: 02/07/2023] Open
Abstract
This work sought to determine the crosstalk between the Notch and Wnt signaling pathways in regulating supporting cell (SC) proliferation and hair cell (HC) regeneration in mouse utricles. We cultured postnatal day (P)3 and P60 mouse utricles, damaged the HCs with gentamicin, and treated the utricles with the γ-secretase inhibitor DAPT to inhibit the Notch pathway and with the Wnt agonist QS11 to active the Wnt pathway. We also used Sox2-CreER, Notch1-flox (exon 1), and Catnb-flox (exon 3) transgenic mice to knock out the Notch pathway and activate the Wnt pathway in Sox2+ SCs. Notch inhibition alone increased SC proliferation and HC number in both undamaged and damaged utricles. Wnt activation alone promoted SC proliferation, but the HC number was not significantly increased. Here we demonstrated the cumulative effects of Notch inhibition and Wnt activation in regulating SC proliferation and HC regeneration. Simultaneously inhibiting Notch and overexpressing Wnt led to significantly greater SC proliferation and greater numbers of HCs than manipulating either pathway alone. Similar results were observed in the transgenic mice. This study suggests that the combination of Notch inhibition and Wnt activation can significantly promote SC proliferation and increase the number of regenerated HCs in mouse utricle.
Collapse
Affiliation(s)
- Jingfang Wu
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Wenyan Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Chen Lin
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Yan Chen
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Central laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, 200031, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, 200031, PR China
| | - Cheng Cheng
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
| | - Shan Sun
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Central laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, 200031, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, 200031, PR China
| | - Mingliang Tang
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
| | - Renjie Chai
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
| | - Huawei Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, 200031, PR China
| |
Collapse
|
14
|
Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells. Stem Cells Int 2015; 2016:8197279. [PMID: 27057177 PMCID: PMC4709769 DOI: 10.1155/2016/8197279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/15/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022] Open
Abstract
In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bundles. The hair-cell-like cells exhibited rapid permeation of FM1-43FX. The whole-cell patch-clamp technique was used to measure the membrane currents of cells differentiated for 7 days on chicken utricle stromal cells and analyze the biophysical properties of the hair-cell-like cells by recording membrane properties of cells. The results suggested that the hair-cell-like cells derived from inner ear multipotent cells were functional following differentiation in an enabling environment.
Collapse
|
15
|
Zhou Y, Hu Z. Genome-wide demethylation by 5-aza-2'-deoxycytidine alters the cell fate of stem/progenitor cells. Stem Cell Rev Rep 2015; 11:87-95. [PMID: 25096638 DOI: 10.1007/s12015-014-9542-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR) is able to cause DNA demethylation in the genome and induce the expression of silenced genes. Whether DNA demethylation can affect the gene expression of stem/progenitor cells has not been understood. Mouse utricle epithelia-derived progenitor cells (MUCs), which possess stem cell features as previously described, exhibit a potential DNA methylation status in the genome. In this study, MUCs were treated with 5-aza-CdR to determine whether DNMT inhibitor is able to induce the differentiation of MUCs. With 5-aza-CdR treatment for 72 hr, MUCs expressed epithelial genes including Cdh1, Krt8, Krt18, and Dsp. Further, hair cell genes Myo7a and Myo6 increased their expressions in response to 5-aza-CdR treatment. The decrease in the global methylated DNA values after 5-aza-CdR treatment indicated a significant DNA demethylation in the genome of MUCs, which may contribute to remarkably increased expression of epithelial genes and hair cell genes. The progenitor MUCs then turned into an epithelial-like hair cell fate with the expression of both epithelial and hair cell genes. This study suggests that stem cell differentiation can be stimulated by DNA demethylation, which may open avenues for studying stem cell fate induction using epigenetic approaches.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Otolaryngology-HNS, Wayne State University School of Medicine, 550 E Canfield St. 258, Lande Detroit, MI, 48201, USA
| | | |
Collapse
|
16
|
Żak M, Klis SFL, Grolman W. The Wnt and Notch signalling pathways in the developing cochlea: Formation of hair cells and induction of regenerative potential. Int J Dev Neurosci 2015; 47:247-58. [PMID: 26471908 DOI: 10.1016/j.ijdevneu.2015.09.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 12/21/2022] Open
Abstract
The Wnt and Notch signalling pathways control proliferation, specification, and cell fate choices during embryonic development and in adult life. Hence, there is much interest in both signalling pathways in the context of stem cell biology and tissue regeneration. In the developing ear, the Wnt and Notch signalling pathways specify otic cells and refine the ventral boundary of the otic placode. Since both signalling pathways control events essential for the formation of sensory cells, such as proliferation and hair cell differentiation, these pathways could hold promise for the regeneration of hair cells in adult mammalian cochlea. Indeed, modulating either the Wnt or Notch pathways can trigger the regenerative potential of supporting cells. In the neonatal mouse cochlea, Notch-mediated regeneration of hair cells partially depends on Wnt signalling, which implies an interaction between the pathways. This review presents how the Wnt and Notch signalling pathways regulate the formation of sensory hair cells and how modulating their activity induces regenerative potential in the mammalian cochlea.
Collapse
Affiliation(s)
- Magdalena Żak
- Department of Otorhinolaryngology and Head & Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - Sjaak F L Klis
- Department of Otorhinolaryngology and Head & Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Wilko Grolman
- Department of Otorhinolaryngology and Head & Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
17
|
Atkinson PJ, Huarcaya Najarro E, Sayyid ZN, Cheng AG. Sensory hair cell development and regeneration: similarities and differences. Development 2015; 142:1561-71. [PMID: 25922522 DOI: 10.1242/dev.114926] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sensory hair cells are mechanoreceptors of the auditory and vestibular systems and are crucial for hearing and balance. In adult mammals, auditory hair cells are unable to regenerate, and damage to these cells results in permanent hearing loss. By contrast, hair cells in the chick cochlea and the zebrafish lateral line are able to regenerate, prompting studies into the signaling pathways, morphogen gradients and transcription factors that regulate hair cell development and regeneration in various species. Here, we review these findings and discuss how various signaling pathways and factors function to modulate sensory hair cell development and regeneration. By comparing and contrasting development and regeneration, we also highlight the utility and limitations of using defined developmental cues to drive mammalian hair cell regeneration.
Collapse
Affiliation(s)
- Patrick J Atkinson
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elvis Huarcaya Najarro
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zahra N Sayyid
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan G Cheng
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Maass JC, Gu R, Basch ML, Waldhaus J, Lopez EM, Xia A, Oghalai JS, Heller S, Groves AK. Changes in the regulation of the Notch signaling pathway are temporally correlated with regenerative failure in the mouse cochlea. Front Cell Neurosci 2015; 9:110. [PMID: 25873862 PMCID: PMC4379755 DOI: 10.3389/fncel.2015.00110] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/10/2015] [Indexed: 12/20/2022] Open
Abstract
Sensorineural hearing loss is most commonly caused by the death of hair cells in the organ of Corti, and once lost, mammalian hair cells do not regenerate. In contrast, other vertebrates such as birds can regenerate hair cells by stimulating division and differentiation of neighboring supporting cells. We currently know little of the genetic networks which become active in supporting cells when hair cells die and that are activated in experimental models of hair cell regeneration. Several studies have shown that neonatal mammalian cochlear supporting cells are able to trans-differentiate into hair cells when cultured in conditions in which the Notch signaling pathway is blocked. We now show that the ability of cochlear supporting cells to trans-differentiate declines precipitously after birth, such that supporting cells from six-day-old mouse cochlea are entirely unresponsive to a blockade of the Notch pathway. We show that this trend is seen regardless of whether the Notch pathway is blocked with gamma secretase inhibitors, or by antibodies against the Notch1 receptor, suggesting that the action of gamma secretase inhibitors on neonatal supporting cells is likely to be by inhibiting Notch receptor cleavage. The loss of responsiveness to inhibition of the Notch pathway in the first postnatal week is due in part to a down-regulation of Notch receptors and ligands, and we show that this down-regulation persists in the adult animal, even under conditions of noise damage. Our data suggest that the Notch pathway is used to establish the repeating pattern of hair cells and supporting cells in the organ of Corti, but is not required to maintain this cellular mosaic once the production of hair cells and supporting cells is completed. Our results have implications for the proposed used of Notch pathway inhibitors in hearing restoration therapies.
Collapse
Affiliation(s)
- Juan C Maass
- Department of Neuroscience, Baylor College of Medicine Houston, TX, USA ; Department of Otolaryngology, Hospital Clínico Universidad de Chile Santiago, Chile ; Interdisciplinary Program of Physiology and Biophysics, ICBM Universidad de Chile Santiago, Chile ; Department of Otolaryngology, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo Santiago, Chile
| | - Rende Gu
- Department of Neuroscience, Baylor College of Medicine Houston, TX, USA
| | - Martin L Basch
- Department of Neuroscience, Baylor College of Medicine Houston, TX, USA
| | - Joerg Waldhaus
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine Palo Alto, CA, USA
| | | | - Anping Xia
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine Palo Alto, CA, USA
| | - John S Oghalai
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine Palo Alto, CA, USA
| | - Stefan Heller
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine Palo Alto, CA, USA
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine Houston, TX, USA ; Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA ; Program in Developmental Biology, Baylor College of Medicine Houston, TX, USA
| |
Collapse
|
19
|
Nakagawa T. Strategies for developing novel therapeutics for sensorineural hearing loss. Front Pharmacol 2014; 5:206. [PMID: 25278894 PMCID: PMC4165348 DOI: 10.3389/fphar.2014.00206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/20/2014] [Indexed: 01/01/2023] Open
Abstract
Sensorineural hearing loss (SNHL) is a common disability in the world; however, at present, options for the pharmacological treatment of SNHL are very limited. Previous studies involving human temporal bone analyses have revealed that the degeneration of the cochlea is a common mechanism of SNHL. A major problem for the development of novel pharmacotherapy for SNHL has been the limited regeneration capacity in mammalian cochlear cells. However, recent progress in basic studies has led to several effective strategies for the induction of regeneration in the mammalian cochlea, in accordance with the stage of degeneration. In addition, recent advances in the identification of human deafness genes and their characterization in mouse models have elucidated cellular and/or molecular mechanisms of SNHL, which will contribute to clarify molecular targets of pharmacotherapy for treatment of SNHL.
Collapse
Affiliation(s)
- Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University Kyoto, Japan
| |
Collapse
|
20
|
Gross J, Olze H, Mazurek B. Differential expression of transcription factors and inflammation-, ROS-, and cell death-related genes in organotypic cultures in the modiolus, the organ of Corti and the stria vascularis of newborn rats. Cell Mol Neurobiol 2014; 34:523-38. [PMID: 24595552 DOI: 10.1007/s10571-014-0036-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/14/2014] [Indexed: 12/22/2022]
Abstract
Cells respond to injury and hypoxia by changing gene expression. To study how the main compartments of the cochlea, the stria vascularis (SV), the organ of Corti (OC), and the modiolus (MOD), respond to such stress, we analyzed the expression of selected genes using microarray analysis. Organotypic cultures of SV, OC, and MOD from newborn rats were used as an experimental model. In the present study, we compare the expression of a total of 50 genes involved in apoptosis and necrosis, reactive oxygen species (ROS) metabolism, inflammation as well as selected transcription factors (TF) and analyze their role for the different cell death patterns observed in the three regions. MOD, OC, and SV differ not only in their basal gene profiles but also in their ability to respond to injury and hypoxia. The results provide two coexpression clusters across the three regions, a Hif-1a coexpression cluster and a cluster around the cell death-associated transcripts Casp3, Capn1, Capn2, and Capns1. These clusters include the TF Jun, Bmyc, Nfyc, Foxd3, Hes1, the ROS-associated molecules Sod3, and Nos2, and the inflammatory chemokine Ccl20. The evidence of both clusters indicates the complex and regulated character of gene expression following injury and hypoxia across the three regions SV, OC, and MOD. The high vulnerability of spiral ganglion neurons in the MOD region, previously explained on the basis of the availability of neuro-trophic factors, is associated with the increased endogenous production of ROS and nitric oxide and inadequate activation of protective acting genes.
Collapse
Affiliation(s)
- Johann Gross
- Molecular Biology Research Laboratory, Department of Otorhinolaryngology, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany,
| | | | | |
Collapse
|
21
|
Liu Q, Chen P, Wang J. Molecular mechanisms and potentials for differentiating inner ear stem cells into sensory hair cells. Dev Biol 2014; 390:93-101. [PMID: 24680894 DOI: 10.1016/j.ydbio.2014.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/15/2014] [Accepted: 03/18/2014] [Indexed: 12/31/2022]
Abstract
In mammals, hair cells may be damaged or lost due to genetic mutation, infectious disease, chemical ototoxicity, noise and other factors, causing permanent sensorineural deafness. Regeneration of hair cells is a basic pre-requisite for recovery of hearing in deaf animals. The inner ear stem cells in the organ of Corti and vestibular utricle are the most ideal precursors for regeneration of inner ear hair cells. This review highlights some recent findings concerning the proliferation and differentiation of inner ear stem cells. The differentiation of inner ear stem cells into hair cells involves a series of signaling pathways and regulatory factors. This paper offers a comprehensive analysis of the related studies.
Collapse
Affiliation(s)
- Quanwen Liu
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ping Chen
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China; Department of Cell Biology and Otolaryngology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Jinfu Wang
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
22
|
Sensational placodes: neurogenesis in the otic and olfactory systems. Dev Biol 2014; 389:50-67. [PMID: 24508480 PMCID: PMC3988839 DOI: 10.1016/j.ydbio.2014.01.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 11/22/2022]
Abstract
For both the intricate morphogenetic layout of the sensory cells in the ear and the elegantly radial arrangement of the sensory neurons in the nose, numerous signaling molecules and genetic determinants are required in concert to generate these specialized neuronal populations that help connect us to our environment. In this review, we outline many of the proteins and pathways that play essential roles in the differentiation of otic and olfactory neurons and their integration into their non-neuronal support structures. In both cases, well-known signaling pathways together with region-specific factors transform thickened ectodermal placodes into complex sense organs containing numerous, diverse neuronal subtypes. Olfactory and otic placodes, in combination with migratory neural crest stem cells, generate highly specialized subtypes of neuronal cells that sense sound, position and movement in space, odors and pheromones throughout our lives.
Collapse
|
23
|
Toward Translating Molecular Ear Development to Generate Hair Cells from Stem Cells. ADULT STEM CELLS 2014. [DOI: 10.1007/978-1-4614-9569-7_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Du X, Li W, Gao X, West MB, Saltzman WM, Cheng CJ, Stewart C, Zheng J, Cheng W, Kopke RD. Regeneration of mammalian cochlear and vestibular hair cells through Hes1/Hes5 modulation with siRNA. Hear Res 2013; 304:91-110. [PMID: 23850665 DOI: 10.1016/j.heares.2013.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/16/2013] [Accepted: 06/27/2013] [Indexed: 12/31/2022]
Abstract
The Notch pathway is a cell signaling pathway determining initial specification and subsequent cell fate in the inner ear. Previous studies have suggested that new hair cells (HCs) can be regenerated in the inner ear by manipulating the Notch pathway. In the present study, delivery of siRNA to Hes1 and Hes5 using a transfection reagent or siRNA to Hes1 encapsulated within poly(lactide-co-glycolide acid) (PLGA) nanoparticles increased HC numbers in non-toxin treated organotypic cultures of cochleae and maculae of postnatal day 3 mouse pups. An increase in HCs was also observed in cultured cochleae and maculae of mouse pups pre-conditioned with a HC toxin (4-hydroxy-2-nonenal or neomycin) and then treated with the various siRNA formulations. Treating cochleae with siRNA to Hes1 associated with a transfection reagent or siRNA to Hes1 delivered by PLGA nanoparticles decreased Hes1 mRNA and up-regulated Atoh1 mRNA expression allowing supporting cells (SCs) to acquire a HC fate. Experiments using cochleae and maculae of p27(kip1)/-GFP transgenic mouse pups demonstrated that newly generated HCs trans-differentiated from SCs. Furthermore, PLGA nanoparticles are non-toxic to inner ear tissue, readily taken up by cells within the tissue of interest, and present a synthetic delivery system that is a safe alternative to viral vectors. These results indicate that when delivered using a suitable vehicle, Hes siRNAs are potential therapeutic molecules that may have the capacity to regenerate new HCs in the inner ear and possibly restore human hearing and balance function.
Collapse
Affiliation(s)
- Xiaoping Du
- Hough Ear Institute, P.O. Box 23206, Oklahoma City, OK 73112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hu Z, Luo X, Zhang L, Lu F, Dong F, Monsell E, Jiang H. Generation of human inner ear prosensory-like cells via epithelial-to-mesenchymal transition. Regen Med 2013; 7:663-73. [PMID: 22954437 DOI: 10.2217/rme.12.53] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM To identify human hair cell progenitors from adult inner ear sensory epithelium. MATERIALS & METHODS We collected discarded utricles from translabyrinthine surgery and isolated human utricular sensory epithelial cells (HUCs) to explore whether they can proliferate and obtain features of stem/progenitor cells in vitro using reverse transcription PCR and immunofluorescence. RESULTS When cultured in vitro, HUCs expressed genes and proteins that are usually present in prosensory cells and stem cells. Additionally, dissociated HUCs expanded on the substrates and presented properties of mesenchymal cells via epithelial-to-mesenchymal transition. CONCLUSION The results reveal that sensory epithelial cells from the adult human inner ear can re-enter the cell cycle and adopt a stem/progenitor cell fate. The outcomes of this study may open avenues for human hair cell progenitor generation, which could potentially provide a novel stem cell-based replacement for hearing loss and other inner ear disorders.
Collapse
Affiliation(s)
- Zhengqing Hu
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Nakagawa T. [Strategies for development of therapeutics for inner ear disorders according to the stage of degeneration]. Nihon Yakurigaku Zasshi 2013; 141:184-7. [PMID: 23575421 DOI: 10.1254/fpj.141.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Mizutari K, Fujioka M, Hosoya M, Bramhall N, Okano HJ, Okano H, Edge ASB. Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron 2013; 77:58-69. [PMID: 23312516 DOI: 10.1016/j.neuron.2012.10.032] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 02/07/2023]
Abstract
Hearing loss due to damage to auditory hair cells is normally irreversible because mammalian hair cells do not regenerate. Here, we show that new hair cells can be induced and can cause partial recovery of hearing in ears damaged by noise trauma, when Notch signaling is inhibited by a γ-secretase inhibitor selected for potency in stimulating hair cell differentiation from inner ear stem cells in vitro. Hair cell generation resulted from an increase in the level of bHLH transcription factor Atoh1 in response to inhibition of Notch signaling. In vivo prospective labeling of Sox2-expressing cells with a Cre-lox system unambiguously demonstrated that hair cell generation resulted from transdifferentiation of supporting cells. Manipulating cell fate of cochlear sensory cells in vivo by pharmacological inhibition of Notch signaling is thus a potential therapeutic approach to the treatment of deafness.
Collapse
Affiliation(s)
- Kunio Mizutari
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Wang B, Liu Y, Chi F, Zhang Y, Yang M, Zhu X. Dexamethasone suppresses cochlear Hes1 expression after noise exposure. Acta Otolaryngol 2013; 133:233-8. [PMID: 23106616 DOI: 10.3109/00016489.2012.732709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONCLUSION Dexamethasone provides protection against noise-induced hearing loss (NIHL) possibly by suppressing cochlear Hes1 expression via a glucocorticoid receptor (GR)-dependent mechanism. OBJECTIVES The purpose of the present study was to explore whether hairy and enhancer of split 1 (Hes1) was involved in the protective effect of dexamethasone against NIHL. METHODS Guinea pigs, which were administered intraperitoneal injections of either saline, 1.0 mg/kg dexamethasone, 20.0 mg/kg RU38,486, or a combination of both drugs (dexamethasone plus RU38,486) for 5 consecutive days, were exposed to white-band noise (115 dB sound pressure level). The expression level of Hes1 in cochleae was compared using real-time RT-PCR and Western blot analysis. RESULTS Noise exposure for 3 h induced auditory brainstem response (ABR) threshold elevations, outer hair cell losses, and increase of Hes1 expression. Dexamethasone pretreatment prevented the NIHL with decreased Hes1 expression, which could be blocked by GR antagonist RU38,486.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
29
|
Jung JY, Avenarius MR, Adamsky S, Alpert E, Feinstein E, Raphael Y. siRNA targeting Hes5 augments hair cell regeneration in aminoglycoside-damaged mouse utricle. Mol Ther 2013; 21:834-41. [PMID: 23439501 DOI: 10.1038/mt.2013.18] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Notch signaling is active during the development of mosaic epithelial sheets and during their turnover and regeneration. After the loss of hair cells in the mosaic sheet of the vestibular sensory epithelium, new hair cells can be spontaneously generated by transdifferentiation of supporting cells. This regenerative process involves downregulation of the Hes5 gene and is known to be limited and incomplete, especially when the lesion is severe. Here, we test whether further downregulation of Hes5 gene accomplished by the use of siRNA after a severe lesion induced by an aminoglycoside in the mouse utricle can enhance the transdifferentiation of supporting cells and lead to the increased production of new hair cells. We demonstrate that Hes5 levels in the utricle decreased after the application of siRNA and that the number of hair cells in these utricles was significantly larger than following control treatment. The data suggest that siRNA technology may be useful for inducing repair and regeneration in the inner ear and that the Notch signaling pathway is a potentially useful target for specific gene expression inhibition.
Collapse
Affiliation(s)
- Jae Yun Jung
- KHRI, Otolaryngology, Head & Neck Surgery, The University of Michigan, Ann Arbor, Michigan 48109-5648, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Basic helix-loop-helix (bHLH) transcription factors (TFs) are crucial for inner ear neurosensory development. The proneural TF Atoh1 regulates the differentiation of hair cells (HCs) whereas Neurog1 and Neurod1 regulate specification and differentiation of neurons, respectively, but also affect HC development. Expression of Delta and Jagged ligands in nascent HCs and Notch receptors in supporting cells induce supporting cell differentiation through the regulation of neurogenic bHLH TFs (such as Hes1, Hes5) and suppression of limited Atoh1 expression. In sensorineural hearing loss, HCs are lost followed by supporting cells and progressive degeneration of neurons, at least in rodents. Regaining complete hearing may require reconstituting the organ of Corti from scratch, including the two types of HCs, inner and outer hair cells with the precise sorting of two types of afferent (type I and II) and efferent (lateral and medial olivo-cochlear) innervation. We review effects of bHLH TF dosage and their cross-regulation to differentiate HC types in the organ of Corti. We categorize findings of specific gene expressions in HCs: 1. as markers without meaning for the regeneration task, 2. as stabilizers who are needed to maintain or complete differentiation, and 3. as decision-making genes, expressed and acting early enough to be useful in this process. Only one TF has been characterized that fits the last aspect: Atoh1. We propose that temporal and intensity variations of Atoh1 are naturally modulated to differentiate specific types of HCs. Importantly, the molecular means to modify the Atoh1 expression are at least partially understood and can be readily implemented in the attempts to regenerate specific types of HCs.
Collapse
|
31
|
Kopecky B, Fritzsch B. The myc road to hearing restoration. Cells 2012; 1:667-98. [PMID: 24710525 PMCID: PMC3901154 DOI: 10.3390/cells1040667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/12/2012] [Accepted: 09/14/2012] [Indexed: 01/01/2023] Open
Abstract
Current treatments for hearing loss, the most common neurosensory disorder, do not restore perfect hearing. Regeneration of lost organ of Corti hair cells through forced cell cycle re-entry of supporting cells or through manipulation of stem cells, both avenues towards a permanent cure, require a more complete understanding of normal inner ear development, specifically the balance of proliferation and differentiation required to form and to maintain hair cells. Direct successful alterations to the cell cycle result in cell death whereas regulation of upstream genes is insufficient to permanently alter cell cycle dynamics. The Myc gene family is uniquely situated to synergize upstream pathways into downstream cell cycle control. There are three Mycs that are embedded within the Myc/Max/Mad network to regulate proliferation. The function of the two ear expressed Mycs, N-Myc and L-Myc were unknown less than two years ago and their therapeutic potentials remain speculative. In this review, we discuss the roles the Mycs play in the body and what led us to choose them to be our candidate gene for inner ear therapies. We will summarize the recently published work describing the early and late effects of N-Myc and L-Myc on hair cell formation and maintenance. Lastly, we detail the translational significance of our findings and what future work must be performed to make the ultimate hearing aid: the regeneration of the organ of Corti.
Collapse
Affiliation(s)
- Benjamin Kopecky
- Department of Biology, 143 Biology Building, University of Iowa, Iowa City, IA 52242, USA.
| | - Bernd Fritzsch
- Department of Biology, 143 Biology Building, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
32
|
TFE2 and GATA3 enhance induction of POU4F3 and myosin VIIa positive cells in nonsensory cochlear epithelium by ATOH1. Dev Biol 2012; 372:68-80. [PMID: 22985730 DOI: 10.1016/j.ydbio.2012.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 08/01/2012] [Accepted: 09/08/2012] [Indexed: 11/21/2022]
Abstract
Transcription factors (TFs) can regulate different sets of genes to determine specific cell types by means of combinatorial codes. We previously identified closely-spaced TF binding motifs located 8.2-8.5 kb 5' to the ATG of the murine Pou4f3 gene, a gene required for late hair cell (HC) differentiation and survival. These motifs, 100% conserved among four mammalian species, include a cluster of E-boxes preferred by TCF3/ATOH1 heterodimers as well as motifs for GATA factors and SP1. We hypothesized that these factors might interact to regulate the Pou4f3 gene and possibly induce a HC phenotype in non-sensory cells of the cochlea. Cochlear sensory epithelium explants were prepared from postnatal day 1.5 transgenic mice in which expression of GFP is driven by 8.5 kb of Pou4f3 5' genomic DNA (Pou4f3/GFP). Electroporation was used to transfect cells of the greater epithelial ridge with multiple plasmids encoding human ATOH1 (hATOH1), hTCF3 (also known as E2A or TEF2), hGATA3, and hSP1. hATOH1 or hTCF3 alone induced Pou4f3/GFP cells but hGATA3 and hSP1 did not. hATOH1 but not hTCF3 induced conversion of greater epithelial ridge cells into Pou4f3/GFP and myosin VIIa double-positive cells. Transfection of hATOH1 in combination with hTCF3 or hGATA3 induced 2-3X more Pou4f3/GFP cells, and similarly enhanced Pou4f3/GFP and myosin VIIa double-positive cells, when compared to hATOH1 alone. Triple or quadruple TF combinations were generally not more effective than double TF combinations except in the middle turn, where co-transfection of hATOH1, hE2A, and hGATA3 was more effective than hATOH1 plus either hTCF3 or hGATA3. The results demonstrate that TFs can cooperate in regulation of the Pou4f3 gene and in the induction of at least one other element of a HC phenotype. Our data further indicate that combinations of TFs can be more effective than individual TFs in the inner ear.
Collapse
|
33
|
Lewis RM, Hume CR, Stone JS. Atoh1 expression and function during auditory hair cell regeneration in post-hatch chickens. Hear Res 2012; 289:74-85. [PMID: 22543087 PMCID: PMC3371146 DOI: 10.1016/j.heares.2012.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/06/2012] [Accepted: 04/11/2012] [Indexed: 11/24/2022]
Abstract
Loss of hair cells in humans leads to irreversible hearing deficits, since auditory hair cells are not replaced. In contrast, hair cells are regenerated in the auditory epithelium of mature birds after damage by non-sensory supporting cells that transdifferentiate into hair cells by mitotic and/or non-mitotic mechanisms. Factors controlling these processes are poorly understood. The basic helix-loop-helix transcription factor ATOH1 is both necessary and sufficient for developmental hair cell differentiation, but it is unclear if it plays the same role in the mitotic and non-mitotic pathways in hair cell regeneration. We examined Atoh1 expression and function during hair cell regeneration in chickens. Atoh1 transcripts were increased in many supporting cells in the damaged auditory epithelium shortly after ototoxin administration and later became restricted to differentiating hair cells. Fate-mapping in vitro using an Atoh1 enhancer reporter demonstrated that only 56% of the supporting cells that spontaneously upregulate Atoh1 enhancer activity after damage acquired the hair cell fate. Inhibition of notch signaling using a gamma secretase antagonist stimulated an increase in Atoh1 reporter activity and induced a higher proportion of supporting cells with Atoh1 activity (73%) to differentiate as hair cells. Forced overexpression of Atoh1 in supporting cells triggered 66% of them to acquire the hair cell fate and nearly tripled their likelihood of cell cycle entry. These findings demonstrate that Atoh1 is broadly upregulated in supporting cells after damage, but a substantial proportion of supporting cells with Atoh1 activation fails to acquire hair cell features, in part due to gamma secretase-dependent activities.
Collapse
Affiliation(s)
- Rebecca M. Lewis
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Clifford R. Hume
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
- Department of Otolaryngology e Head and Neck Surgery, University of Washington, Seattle, WA, USA
| | - Jennifer S. Stone
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
- Department of Otolaryngology e Head and Neck Surgery, University of Washington, Seattle, WA, USA
| |
Collapse
|
34
|
Pan N, Kopecky B, Jahan I, Fritzsch B. Understanding the evolution and development of neurosensory transcription factors of the ear to enhance therapeutic translation. Cell Tissue Res 2012; 349:415-32. [PMID: 22688958 DOI: 10.1007/s00441-012-1454-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/18/2012] [Indexed: 01/08/2023]
Abstract
Reconstructing a functional organ of Corti is the ultimate target towards curing hearing loss. Despite the impressive technical gains made over the last few years, many complications remain ahead for the two main restoration avenues: in vitro transformation of pluripotent cells into hair cell-like cells and adenovirus-mediated gene therapy. Most notably, both approaches require a more complete understanding of the molecular networks that ensure specific cell types form in the correct places to allow proper function of the restored organ of Corti. Important to this understanding are the basic helix-loop-helix (bHLH) transcription factors (TFs) that are highly diverse and serve to increase functional complexity but their evolutionary implementation in the inner ear neurosensory development is less conspicuous. To this end, we review the evolutionary and developmentally dynamic interactions of the three bHLH TFs that have been identified as the main players in neurosensory evolution and development, Neurog1, Neurod1 and Atoh1. These three TFs belong to the neurogenin/atonal family and evolved from a molecular precursor that likely regulated single sensory cell development in the ectoderm of metazoan ancestors but are now also expressed in other parts of the body, including the brain. They interact extensively via intracellular and intercellular cross-regulation to establish the two main neurosensory cell types of the ear, the hair cells and sensory neurons. Furthermore, the level and duration of their expression affect the specification of hair cell subtypes (inner hair cells vs. outer hair cells). We propose that appropriate manipulation of these TFs through their characterized binding sites may offer a solution by itself, or in conjunction with the two other approaches currently pursued by others, to restore the organ of Corti.
Collapse
Affiliation(s)
- Ning Pan
- Department of Biology, University of Iowa, College of Liberal Arts and Sciences, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
35
|
Waldhaus J, Cimerman J, Gohlke H, Ehrich M, Müller M, Löwenheim H. Stemness of the organ of Corti relates to the epigenetic status of Sox2 enhancers. PLoS One 2012; 7:e36066. [PMID: 22570694 PMCID: PMC3343037 DOI: 10.1371/journal.pone.0036066] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/30/2012] [Indexed: 12/11/2022] Open
Abstract
In the adult mammalian auditory epithelium, the organ of Corti, loss of sensory hair cells results in permanent hearing loss. The underlying cause for the lack of regenerative response is the depletion of otic progenitors in the cell pool of the sensory epithelium. Here, we show that an increase in the sequence-specific methylation of the otic Sox2 enhancers NOP1 and NOP2 is correlated with a reduced self-renewal potential in vivo and in vitro; additionally, the degree of methylation of NOP1 and NOP2 is correlated with the dedifferentiation potential of postmitotic supporting cells into otic stem cells. Thus, the stemness the organ of Corti is related to the epigenetic status of the otic Sox2 enhancers. These observations validate the continued exploration of treatment strategies for dedifferentiating or reprogramming of differentiated supporting cells into progenitors to regenerate the damaged organ of Corti.
Collapse
Affiliation(s)
- Jörg Waldhaus
- Department of Otorhinolaryngology, Head and Neck Surgery, Hearing Research Center Tübingen, University of Tübingen Medical Center, Tübingen, Germany
| | - Jelka Cimerman
- Department of Otorhinolaryngology, Head and Neck Surgery, Hearing Research Center Tübingen, University of Tübingen Medical Center, Tübingen, Germany
| | | | - Mathias Ehrich
- SEQUENOM Inc., San Diego, California, United States of America
| | - Marcus Müller
- Department of Otorhinolaryngology, Head and Neck Surgery, Hearing Research Center Tübingen, University of Tübingen Medical Center, Tübingen, Germany
| | - Hubert Löwenheim
- Department of Otorhinolaryngology, Head and Neck Surgery, Hearing Research Center Tübingen, University of Tübingen Medical Center, Tübingen, Germany
- * E-mail:
| |
Collapse
|
36
|
Beyer LA, Galano MM, Nair TS, Kommareddi PK, Sha SH, Raphael Y, Carey TE. Age-related changes in expression of CTL2/SLC44A2 and its isoforms in the mouse inner ear. Hear Res 2011; 282:63-8. [PMID: 21986210 DOI: 10.1016/j.heares.2011.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 08/26/2011] [Accepted: 09/19/2011] [Indexed: 11/19/2022]
Abstract
The membrane glycoprotein CTL2/SLC44A2 is expressed by supporting cells in the inner ear and has been identified as a target of antibodies that may induce auto-immune hearing loss. To determine if CTL2/SLC44A2 also has roles in inner ear development and to distinguish between isoform-specific roles, we assessed age-related changes in expression of CTL2/SLC44A2 isoforms and protein in the developing murine inner ear. We determined that both isoform p1 and isoform p2 (named for the upstream p1 and proximal p2 promoters that control alternate exons 1a and 1b) were robustly expressed as early as E14 and persisted during embryonic development, but after birth the p1 isoform fell to barely detectable levels while isoform p2 levels were maintained. This trend continued and became even more apparent later in post-natal development and remained in mature ears until at least 6 weeks of age. In aged (18 mo old) mice, the level of isoform p1 transcripts rose again to levels similar to the p2 isoform like that seen early in development. At the earliest stage examined, CTL2/SLC44A2 protein was expressed in both immature supporting cells and immature sensory cells, but after birth expression in the sensory cells declined in both the utricle and cochlea and by day P1 expression of CTL2/SLC44A2 was restricted to supporting cells. The changes we observed in isoform distribution are indicative of differential developmental roles and age related changes between the two isoforms of CTL2/SLC44A2 in the inner ear.
Collapse
Affiliation(s)
- Lisa A Beyer
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Tsao PN, Wei SC, Wu MF, Huang MT, Lin HY, Lee MC, Lin KMC, Wang IJ, Kaartinen V, Yang LT, Cardoso WV. Notch signaling prevents mucous metaplasia in mouse conducting airways during postnatal development. Development 2011; 138:3533-43. [PMID: 21791528 PMCID: PMC3148592 DOI: 10.1242/dev.063727] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2011] [Indexed: 01/03/2023]
Abstract
Goblet cell metaplasia and mucus overproduction contribute to the pathogenesis of chronic lung diseases, including asthma and chronic obstructive pulmonary disease (COPD). Notch signaling regulates cell fate decisions and is crucial in controlling goblet cell differentiation in the gut epithelium. Little is known, however, about how endogenous Notch signaling influences the goblet cell differentiation program that takes place in the postnatal lung. Using a combination of genetic and in vitro approaches here we provide evidence of a novel role for Notch in restricting goblet cell differentiation in the airway epithelium during the postnatal period. Conditional inactivation of the essential Notch pathway component Pofut1 (protein O-fucosyltransferase1) in Tgfb3-Cre-expressing mice resulted in an aberrant postnatal airway phenotype characterized by marked goblet cell metaplasia, decreased Clara cell number and increase in ciliated cells. The presence of the same phenotype in mice in which the Notch transcriptional effector Rbpjk was deleted indicated the involvement of the canonical Notch pathway. Lineage study in vivo suggested that goblet cells originated from a subpopulation of Clara cells largely present in proximal airways in which Notch was disrupted. The phenotype was confirmed by a panel of goblet cell markers, showed no changes in cell proliferation or altered expression of proinflammatory cytokines and was associated with significant downregulation of the bHLH transcriptional repressor Hes5. Luciferase reporter analysis suggested that Notch directly repressed MUC5AC transcription in lung epithelial cells. The data suggested that during postnatal life Notch is required to prevent Clara cells from differentiating into goblet cells.
Collapse
Affiliation(s)
- Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Hospital, Taipei 100, Taiwan
- The Research Center of Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Shu-Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Ming-Fang Wu
- Animal Medical Center, College of Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Miao-Tzu Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Hsien-Yi Lin
- Institute of Cellular and Systems Medicine, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan
| | - Ming-Cheng Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Kurt Ming-Chao Lin
- Division of Medical Engineering, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | - Liang-Tung Yang
- Institute of Cellular and Systems Medicine, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan
| | | |
Collapse
|
38
|
Kopecky B, Fritzsch B. Regeneration of Hair Cells: Making Sense of All the Noise. Pharmaceuticals (Basel) 2011; 4:848-879. [PMID: 21966254 PMCID: PMC3180915 DOI: 10.3390/ph4060848] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/04/2011] [Accepted: 06/08/2011] [Indexed: 12/17/2022] Open
Abstract
Hearing loss affects hundreds of millions of people worldwide by dampening or cutting off their auditory connection to the world. Current treatments for sensorineural hearing loss (SNHL) with cochlear implants are not perfect, leaving regenerative medicine as the logical avenue to a perfect cure. Multiple routes to regeneration of damaged hair cells have been proposed and are actively pursued. Each route not only requires a keen understanding of the molecular basis of ear development but also faces the practical limitations of stem cell regulation in the delicate inner ear where topology of cell distribution is essential. Improvements in our molecular understanding of the minimal essential genes necessary for hair cell formation and recent advances in stem cell manipulation, such as seen with inducible pluripotent stem cells (iPSCs) and epidermal neural crest stem cells (EPI-NCSCs), have opened new possibilities to advance research in translational stem cell therapies for individuals with hearing loss. Despite this, more detailed network maps of gene expression are needed, including an appreciation for the roles of microRNAs (miRs), key regulators of transcriptional gene networks. To harness the true potential of stem cells for hair cell regeneration, basic science and clinical medicine must work together to expedite the transition from bench to bedside by elucidating the full mechanisms of inner ear hair cell development, including a focus on the role of miRs, and adapting this knowledge safely and efficiently to stem cell technologies.
Collapse
Affiliation(s)
- Benjamin Kopecky
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
39
|
TAK1 expression in the cochlea: a specific marker for adult supporting cells. J Assoc Res Otolaryngol 2011; 12:471-83. [PMID: 21472480 DOI: 10.1007/s10162-011-0265-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 03/08/2011] [Indexed: 10/18/2022] Open
Abstract
Transforming growth factor-β-activated kinase-1 (TAK1) is a mitogen activated protein kinase kinase kinase that is involved in diverse biological roles across species. Functioning downstream of TGF-β and BMP signaling, TAK1 mediates the activation of the c-Jun N-terminal kinase signaling pathway, serves as the target of pro-inflammatory cytokines, such as TNF-α, mediates NF-κβ activation, and plays a role in Wnt/Fz signaling in mesenchymal stem cells. Expression of TAK1 in the cochlea has not been defined. Data mining of previously published murine cochlear gene expression databases indicated that TAK1, along with TAK1 interacting proteins 1 (TAB1), and 2 (TAB2), is expressed in the developing and adult cochlea. The expression of TAK1 in the developing cochlea was confirmed using RT-PCR and immunohistochemistry. Immunolabeling of TAK1 in embryonic, neonatal, and mature cochleas via DAB chromogenic and fluorescent immunohistochemistry indicated that TAK1 is broadly expressed in both the developing otocyst and periotic mesenchyme at E12.5 but becomes more restricted to specific types of supporting cells as the organ of Corti matures. By P1, TAK1 immunolabeling is found in cells of the stria vascularis, hair cells, supporting cells, and Kölliker's organ. By P16, TAK1 labeling is limited to cochlear supporting cells. In the adult cochlea, TAK1 immunostaining is only present in the cytoplasm of Deiters' cells, pillar cells, inner phalangeal cells, and inner border cells, with no expression in any other cochlear cell types. While the role of TAK1 in the inner ear is unclear, TAK1 expression may be used as a novel marker for specific sub-populations of supporting cells.
Collapse
|
40
|
Fritzsch B, Jahan I, Pan N, Kersigo J, Duncan J, Kopecky B. Dissecting the molecular basis of organ of Corti development: Where are we now? Hear Res 2011; 276:16-26. [PMID: 21256948 DOI: 10.1016/j.heares.2011.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 11/28/2022]
Abstract
This review summarizes recent progress in our understanding of the molecular basis of cochlear duct growth, specification of the organ of Corti, and differentiation of the different types of hair cells. Studies of multiple mutations suggest that developing hair cells are involved in stretching the organ of Corti through convergent extension movements. However, Atoh1 null mutants have only undifferentiated and dying organ of Corti precursors but show a near normal extension of the cochlear duct, implying that organ of Corti precursor cells can equally drive this process. Some factors influence cochlear duct growth by regulating the cell cycle and proliferation. Shortened cell cycle and premature cell cycle exit can lead to a shorter organ of Corti with multiple rows of hair cells (e.g., Foxg1 null mice). Other genes affect the initial formation of a cochlear duct with or without affecting the organ of Corti. Such observations are consistent with evolutionary data that suggest some developmental uncoupling of cochlear duct from organ of Corti formation. Positioning the organ of Corti requires multiple genes expressed in the organ of Corti and the flanking region. Several candidate factors have emerged but how they cooperate to specify the organ of Corti and the topology of hair cells remains unclear. Atoh1 is required for differentiation of all hair cells, but regulation of inner versus outer hair cell differentiation is still unidentified. In summary, the emerging molecular complexity of organ of Corti development demands further study before a rational approach towards regeneration of unique types of hair cells in specific positions is possible.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, College of Liberal Arts and Sciences, 143 BB, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Wang GP, Chatterjee I, Batts SA, Wong HT, Gong TW, Gong SS, Raphael Y. Notch signaling and Atoh1 expression during hair cell regeneration in the mouse utricle. Hear Res 2010; 267:61-70. [PMID: 20433915 PMCID: PMC2902641 DOI: 10.1016/j.heares.2010.03.085] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/19/2010] [Accepted: 03/20/2010] [Indexed: 01/07/2023]
Abstract
The mammalian vestibular epithelium has a limited capacity for spontaneous hair cell regeneration. The mechanism underlying the regeneration is not well understood. Because the Notch signaling pathway mediates the formation of the sensory epithelial mosaic patterning during ear development, it may also play a role in hair cell regeneration in the mature mammalian vestibular epithelium after a lesion. To investigate the process of spontaneous regeneration in the vestibular epithelium vis-à-vis changes in Notch signaling, we induced a unilateral lesion by infusing streptomycin into the mouse posterior semicircular canal, and examined Notch signaling molecules and their mRNA expression levels by immunohistochemistry and quantitative real-time polymerase chain reaction (qRTPCR), respectively. We detected Jagged1 in supporting cells in both normal and lesioned utricles. Atoh1, a marker for early developing hair cells, was absent in the intact mature tissue, but re-appeared after the lesion. Many cells were either positive for both Atoh1 and myosin VIIa, or for one of them. qRTPCR data showed a post trauma decrease of Hes5 and an increase in Atoh1. Atoh1 up-regulation may either be a result of Hes5 down-regulation or mediated by another signaling pathway.
Collapse
Affiliation(s)
- Guo-Peng Wang
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ishani Chatterjee
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shelley A. Batts
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305, USA
| | - Hiu Tung Wong
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tzy-Wen Gong
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shu-Sheng Gong
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education), Capital Medical University, Beijing 100730, China
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
42
|
Hair cell fate decisions in cochlear development and regeneration. Hear Res 2010; 266:18-25. [PMID: 20438823 DOI: 10.1016/j.heares.2010.04.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/26/2010] [Accepted: 04/27/2010] [Indexed: 11/28/2022]
Abstract
The discovery of avian cochlear hair cell regeneration in the late 1980s and the concurrent development of new techniques in molecular and developmental biology generated a renewed interest in understanding the genetic mechanisms that regulate hair cell development in the embryonic avian and mammalian cochlea and regeneration in the mature avian cochlea. Research from many labs has demonstrated that the development of the inner ear utilizes a complex series of genetic signals and pathways to generate the endorgans, specify cell identities, and establish innervation patterns found in the inner ear. Recent studies have shown that the Notch signaling pathway, the Atoh1/Hes signaling cascade, the stem cell marker Sox2, and some of the unconventional myosin motor proteins are utilized to regulate distinct steps in inner ear development. While many of the individual genes involved in these pathways have been identified from studies of mutant and knockout mouse cochleae, the interplay of all these signals into a single systemic program that directs this process needs to be explored. We need to know not only what genes are involved, but understand how their gene products interact with one another in a structural and temporal framework to guide hair cell and supporting cell differentiation and maturation.
Collapse
|
43
|
Time sequence of auditory nerve and spiral ganglion cell degeneration following chronic kanamycin-induced deafness in the guinea pig. Brain Res 2010; 1331:28-38. [DOI: 10.1016/j.brainres.2010.02.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 02/07/2010] [Accepted: 02/19/2010] [Indexed: 02/06/2023]
|
44
|
Abstract
Sensory hair cells of the inner ear are responsible for translating auditory or vestibular stimuli into electrical energy that can be perceived by the nervous system. Although hair cells are exquisitely mechanically sensitive, they can be easily damaged by excessive stimulation by ototoxic drugs and by the effects of aging. In mammals, auditory hair cells are never replaced, such that cumulative damage to the ear causes progressive and permanent deafness. In contrast, non-mammalian vertebrates are capable of replacing lost hair cells, which has led to efforts to understand the molecular and cellular basis of regenerative responses in different vertebrate species. In this review, we describe recent progress in understanding the limits to hair cell regeneration in mammals and discuss the obstacles that currently exist for therapeutic approaches to hair cell replacement.
Collapse
Affiliation(s)
- Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, BCM 295, 1 Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
45
|
Bodson M, Breuskin I, Lefebvre P, Malgrange B. Hair cell progenitors: identification and regulatory genes. Acta Otolaryngol 2010. [DOI: 10.3109/00016480903121057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Ono K, Nakagawa T, Kojima K, Matsumoto M, Kawauchi T, Hoshino M, Ito J. Silencing p27 reverses post-mitotic state of supporting cells in neonatal mouse cochleae. Mol Cell Neurosci 2009; 42:391-8. [DOI: 10.1016/j.mcn.2009.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/30/2009] [Accepted: 08/30/2009] [Indexed: 11/24/2022] Open
|