1
|
Cooper LN, Ansari MY, Capshaw G, Galazyuk A, Lauer AM, Moss CF, Sears KE, Stewart M, Teeling EC, Wilkinson GS, Wilson RC, Zwaka TP, Orman R. Bats as instructive animal models for studying longevity and aging. Ann N Y Acad Sci 2024. [PMID: 39365995 DOI: 10.1111/nyas.15233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Bats (order Chiroptera) are emerging as instructive animal models for aging studies. Unlike some common laboratory species, they meet a central criterion for aging studies: they live for a long time in the wild or in captivity, for 20, 30, and even >40 years. Healthy aging (i.e., healthspan) in bats has drawn attention to their potential to improve the lives of aging humans due to bat imperviousness to viral infections, apparent low rate of tumorigenesis, and unique ability to repair DNA. At the same time, bat longevity also permits the accumulation of age-associated systemic pathologies that can be examined in detail and manipulated, especially in captive animals. Research has uncovered additional and critical advantages of bats. In multiple ways, bats are better analogs to humans than are rodents. In this review, we highlight eight diverse areas of bat research with relevance to aging: genome sequencing, telomeres, and DNA repair; immunity and inflammation; hearing; menstruation and menopause; skeletal system and fragility; neurobiology and neurodegeneration; stem cells; and senescence and mortality. These examples demonstrate the broad relevance of the bat as an animal model and point to directions that are particularly important for human aging studies.
Collapse
Affiliation(s)
- Lisa Noelle Cooper
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Mohammad Y Ansari
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alex Galazyuk
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Amanda M Lauer
- Department of Otolaryngology - HNS, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, Department of Molecular, Cellular, and Developmental Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Mark Stewart
- Department of Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Emma C Teeling
- School of Biology and Environmental Science, Science Centre East, University College Dublin, Dublin, Ireland
| | - Gerald S Wilkinson
- Department of Biology, University of Maryland at College Park, College Park, Maryland, USA
| | - Rachel C Wilson
- Department of Biology, Whitman College, Walla Walla, Washington, USA
| | - Thomas P Zwaka
- Black Family Stem Cell Institute, Huffington Center for Cell-based Research in Parkinson's Disease, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rena Orman
- Department of Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| |
Collapse
|
2
|
Postolache M, Connelly Graham CJ, Burke K, Lauer AM, Xu-Friedman MA. Effects of Age on Responses of Principal Cells of the Mouse Anteroventral Cochlear Nucleus in Quiet and Noise. eNeuro 2024; 11:ENEURO.0215-24.2024. [PMID: 39134409 PMCID: PMC11320020 DOI: 10.1523/eneuro.0215-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
Older listeners often report difficulties understanding speech in noisy environments. It is important to identify where in the auditory pathway hearing-in-noise deficits arise to develop appropriate therapies. We tested how encoding of sounds is affected by masking noise at early stages of the auditory pathway by recording responses of principal cells in the anteroventral cochlear nucleus (AVCN) of aging CBA/CaJ and C57BL/6J mice in vivo. Previous work indicated that masking noise shifts the dynamic range of single auditory nerve fibers (ANFs), leading to elevated tone thresholds. We hypothesized that such threshold shifts could contribute to increased hearing-in-noise deficits with age if susceptibility to masking increased in AVCN units. We tested this by recording the responses of AVCN principal neurons to tones in the presence and absence of masking noise. Surprisingly, we found that masker-induced threshold shifts decreased with age in primary-like units and did not change in choppers. In addition, spontaneous activity decreased in primary-like and chopper units of old mice, with no change in dynamic range or tuning precision. In C57 mice, which undergo early-onset hearing loss, units showed similar changes in threshold and spontaneous rate at younger ages, suggesting they were related to hearing loss and not simply aging. These findings suggest that sound information carried by AVCN principal cells remains largely unchanged with age. Therefore, hearing-in-noise deficits may result from other changes during aging, such as distorted across-channel input from the cochlea and changes in sound coding at later stages of the auditory pathway.
Collapse
Affiliation(s)
- Maggie Postolache
- Department of Biological Sciences, University at Buffalo, State University of NewYork, Buffalo, New York 14260
| | - Catherine J Connelly Graham
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Kali Burke
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Solomon H. Snyder Dept. of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Matthew A Xu-Friedman
- Department of Biological Sciences, University at Buffalo, State University of NewYork, Buffalo, New York 14260
| |
Collapse
|
3
|
Zhang B, Hu Y, Du H, Han S, Ren L, Cheng H, Wang Y, Gao X, Zheng S, Cui Q, Tian L, Liu T, Sun J, Chai R. Tissue engineering strategies for spiral ganglion neuron protection and regeneration. J Nanobiotechnology 2024; 22:458. [PMID: 39085923 PMCID: PMC11293049 DOI: 10.1186/s12951-024-02742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Cochlear implants can directly activate the auditory system's primary sensory neurons, the spiral ganglion neurons (SGNs), via circumvention of defective cochlear hair cells. This bypass restores auditory input to the brainstem. SGN loss etiologies are complex, with limited mammalian regeneration. Protecting and revitalizing SGN is critical. Tissue engineering offers a novel therapeutic strategy, utilizing seed cells, biomolecules, and scaffold materials to create a cellular environment and regulate molecular cues. This review encapsulates the spectrum of both human and animal research, collating the factors contributing to SGN loss, the latest advancements in the utilization of exogenous stem cells for auditory nerve repair and preservation, the taxonomy and mechanism of action of standard biomolecules, and the architectural components of scaffold materials tailored for the inner ear. Furthermore, we delineate the potential and benefits of the biohybrid neural interface, an incipient technology in the realm of implantable devices. Nonetheless, tissue engineering requires refined cell selection and differentiation protocols for consistent SGN quality. In addition, strategies to improve stem cell survival, scaffold biocompatibility, and molecular cue timing are essential for biohybrid neural interface integration.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yangnan Hu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Haoliang Du
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
| | - Shanying Han
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Ren
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hong Cheng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yusong Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xin Gao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Shasha Zheng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Qingyue Cui
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Lei Tian
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Tingting Liu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Jiaqiang Sun
- Department of Otolaryngology-Head and Neck Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
| |
Collapse
|
4
|
Capshaw G, Diebold CA, Adams DM, Rayner J, Wilkinson GS, Moss CF, Lauer AM. Resistance to age-related hearing loss in the echolocating big brown bat ( Eptesicus fuscus ). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603592. [PMID: 39071368 PMCID: PMC11275774 DOI: 10.1101/2024.07.15.603592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Hearing mediates many behaviors critical for survival in echolocating bats, including foraging and navigation. Most mammals are susceptible to progressive age-related hearing loss; however, the evolution of biosonar, which requires the ability to hear low-intensity echoes from outgoing sonar signals, may have selected against the development of hearing deficits in echolocating bats. Although many echolocating bats exhibit exceptional longevity and rely on acoustic behaviors for survival to old age, relatively little is known about the aging bat auditory system. In this study, we used DNA methylation to estimate the ages of wild-caught big brown bats ( Eptesicus fuscus ) and measured hearing sensitivity in young and aging bats using auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). We found no evidence for hearing deficits in aging bats, demonstrated by comparable thresholds and similar ABR wave and DPOAE amplitudes across age groups. We additionally found no significant histological evidence for cochlear aging, with similar hair cell counts, afferent, and efferent innervation patterns in young and aging bats. Here we demonstrate that big brown bats show minimal evidence for age-related loss of peripheral hearing sensitivity and therefore represent informative models for investigating mechanisms that may preserve hearing function over a long lifetime.
Collapse
|
5
|
Park CR, Willott JF, Walton JP. Age-related changes of auditory sensitivity across the life span of CBA/CaJ mice. Hear Res 2024; 441:108921. [PMID: 38042127 PMCID: PMC10843596 DOI: 10.1016/j.heares.2023.108921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
The inbred mouse strain CBA/CaJ is a frequently used animal model of age-related hearing loss in humans. These mice display significant hearing loss at a relatively advanced age, similar to most humans, with progressive loss of hearing as the mouse continues to age. While important descriptions of hearing loss in this mouse strain at multiple ages have previously been published, shortcomings persist in the data for hearing over the lifespan of the mouse. Therefore, we analyzed auditory brainstem response threshold data from records maintained by our research group to yield an extensive database of thresholds over nearly the entire life span of the CBA/CaJ mouse (from 79 to 1085 days). Data was collected from in-house bred mice of CBA/CaJ stock, initially from The Jackson Laboratory. Data was collected using BiosigRZ software and TDT System III hardware. Thresholds were routinely measured in conjunction with behavioral and electrophysiological experiments; only responses from baseline or experimentally naïve animals were analyzed. The resulting data set comprised 376 female mice and 441 males. At the lowest and highest frequencies (8 & 32 kHz), initial thresholds were just under 30 dB SPL and increased slowly until they were significantly different at 16-18 months compared to 1-3 months age, with the difference increasing over subsequent ages. At the middle frequencies (12 & 16 kHz), initial thresholds were just under 20 dB SPL and increased until they became different from initial at 16-18 months. At 24 kHz, initial thresholds were just above 20 dB and became different from initial at 13-16 months of age. The rate of change of thresholds with age were similar for all frequencies until about 30 months of age, when 32 kHz threshold changes lagged behind other frequencies. Generally, CBA/CaJ mice in our colony display relatively low thresholds until approximately 16 months of age, depending on frequency. After 16-18 months, thresholds become significantly worse. After approximately 20-22 months thresholds increase linearly with age.
Collapse
Affiliation(s)
- Collin R Park
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, United States; Department of Communication Sciences and Disorders, University of South Florida, Tampa, FL, United States
| | - James F Willott
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, FL, United States
| | - Joseph P Walton
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, United States; Department of Communication Sciences and Disorders, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
6
|
Diao T, Ma X, Fang X, Duan M, Yu L. Compensation in neuro-system related to age-related hearing loss. Acta Otolaryngol 2024; 144:30-34. [PMID: 38265951 DOI: 10.1080/00016489.2023.2295400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Age-related hearing loss (ARHL) is a major cause of chronic disability among the elderly. Individuals with ARHL not only have trouble hearing sounds, but also with speech perception. As the perception of auditory information is reliant on integration between widespread brain networks to interpret auditory stimuli, both auditory and extra-auditory systems which mainly include visual, motor and attention systems, play an important role in compensating for ARHL. OBJECTIVES To better understand the compensatory mechanism of ARHL and inspire better interventions that may alleviate ARHL. METHODS We mainly focus on the existing information on ARHL-related central compensation. The compensatory effects of hearing aids (HAs) and cochlear implants (CIs) on ARHL were also discussed. RESULTS Studies have shown that ARHL can induce cochlear hair cell damage or loss and cochlear synaptopathy, which could induce central compensation including compensation of auditory and extra-auditory neural networks. The use of HAs and CIs can improve bottom-up processing by enabling 'better' input to the auditory pathways and then to the cortex by enhancing the diminished auditory signal. CONCLUSIONS The central compensation of ARHL and its possible correlation with HAs and CIs are current hotspots in the field and should be given focus in future research.
Collapse
Affiliation(s)
- Tongxiang Diao
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, China
| | - Xin Ma
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, China
| | - Xuan Fang
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Maoli Duan
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
- Department of Otolaryngology, Head and Neck Surgery & Audiology and Neurotology, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Lisheng Yu
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, China
| |
Collapse
|
7
|
Xu K, Chen S, Bai X, Xie L, Qiu Y, Liu X, Wang X, Kong W, Sun Y. Degradation of cochlear Connexin26 accelerate the development of age-related hearing loss. Aging Cell 2023; 22:e13973. [PMID: 37681746 PMCID: PMC10652327 DOI: 10.1111/acel.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
The GJB2 gene, encoding Connexin26 (Cx26), is one of the most common causes of inherited deafness. Clinically, mutations in GJB2 cause congenital deafness or late-onset progressive hearing loss. Recently, it has been reported that Cx26 haploid deficiency accelerates the development of age-related hearing loss (ARHL). However, the roles of cochlear Cx26 in the hearing function of aged animals remain unclear. In this study, we revealed that the Cx26 expression was significantly reduced in the cochleae of aged mice, and further explored the underlying molecular mechanism for Cx26 degradation. Immunofluorescence co-localization results showed that Cx26 was internalized and degraded by lysosomes, which might be one of the important ways for Cx26 degradation in the cochlea of aged mice. Currently, whether the degradation of Cx26 in the cochlea leads directly to ARHL, as well as the mechanism of Cx26 degradation-related hearing loss are still unclear. To address these questions, we generated mice with Cx26 knockout in the adult cochlea as a model for the natural degradation of Cx26. Auditory brainstem response (ABR) results showed that Cx26 knockout mice exhibited high-frequency hearing loss, which gradually progressed over time. Pathological examination also revealed the degeneration of hair cells and spiral ganglions, which is similar to the phenotype of ARHL. In summary, our findings suggest that degradation of Cx26 in the cochlea accelerates the occurrence of ARHL, which may be a novel mechanism of ARHL.
Collapse
Affiliation(s)
- Kai Xu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xue Bai
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Le Xie
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yue Qiu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiao‐zhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiao‐hui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei‐jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| |
Collapse
|
8
|
Gross J, Knipper M, Mazurek B. Candidate Key Proteins in Tinnitus: A Bioinformatic Study of Synaptic Transmission in Spiral Ganglion Neurons. Cell Mol Neurobiol 2023; 43:4189-4207. [PMID: 37736859 PMCID: PMC10661836 DOI: 10.1007/s10571-023-01405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023]
Abstract
To study key proteins associated with changes in synaptic transmission in the spiral ganglion in tinnitus, we build three gene lists from the GeneCard database: 1. Perception of sound (PoS), 2. Acoustic stimulation (AcouStim), and 3. Tinnitus (Tin). Enrichment analysis by the DAVID database resulted in similar Gene Ontology (GO) terms for cellular components in all gene lists, reflecting synaptic structures known to be involved in auditory processing. The STRING protein-protein interaction (PPI) network and the Cytoscape data analyzer were used to identify the top two high-degree proteins (HDPs) and their high-score interaction proteins (HSIPs) identified by the combined score (CS) of the corresponding edges. The top two protein pairs (key proteins) for the PoS are BDNF-GDNF and OTOF-CACNA1D and for the AcouStim process BDNF-NTRK2 and TH-CALB1. The Tin process showed BDNF and NGF as HDPs, with high-score interactions with NTRK1 and NGFR at a comparable level. Compared to the PoS and AcouStim process, the number of HSIPs of key proteins (CS > 90. percentile) increases strongly in Tin. In the PoS and AcouStim networks, BDNF receptor signaling is the dominant pathway, and in the Tin network, the NGF-signaling pathway is of similar importance. Key proteins and their HSIPs are good indicators of biological processes and of signaling pathways characteristic for the normal hearing on the one hand and tinnitus on the other.
Collapse
Affiliation(s)
- Johann Gross
- Tinnitus Center, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Leibniz Society of Science Berlin, Berlin, Germany.
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
- Leibniz Society of Science Berlin, Berlin, Germany
| | - Birgit Mazurek
- Tinnitus Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Penn C, Mayilsamy K, Zhu XX, Bauer MA, Mohapatra SS, Frisina RD, Mohapatra S. A mouse model of repeated traumatic brain injury-induced hearing impairment: Early cochlear neurodegeneration in the absence of hair cell loss. Hear Res 2023; 436:108832. [PMID: 37364367 DOI: 10.1016/j.heares.2023.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE Traumatic Brain Injury (TBI) is a major cause of death and disability worldwide. Mounting evidence suggests that even mild TBI injuries, which comprise >75% of all TBIs, can cause chronic post-concussive neurological symptoms, especially when experienced repetitively (rTBI). The most common post-concussive symptoms include auditory dysfunction in the form of hearing loss, tinnitus, or impaired auditory processing, which can occur even in the absence of direct damage to the auditory system at the time of injury. The mechanism by which indirect damage causes loss of auditory function is poorly understood, and treatment is currently limited to symptom management rather than preventative care. We reasoned that secondary injury mechanisms, such as inflammation, may lead to damage of the inner ear and parts of the brain used for hearing after rTBI. Herein, we established a model of indirect damage to the auditory system induced by rTBI and characterized the pathology of hearing loss. METHODS We established a mouse model of rTBI in order to determine a timeline of auditory pathology following multiple mild injuries. Mice were subject to controlled cortical impact at the skull midline once every 48 h, for a total of 5 hits. Auditory function was assessed via the auditory brainstem response (ABR) at various timepoints post injury. Brain and cochleae were collected to establish a timeline of cellular pathology. RESULTS We observed increased ABR thresholds and decreased (ABR) P1 amplitudes in rTBI vs sham animals at 14 days post-impact (dpi). This effect persisted for up to 60 days (dpi). Auditory temporal processing was impaired beginning at 30 dpi. Spiral ganglion degeneration was evident at 14 dpi. No loss of hair cells was detected at this time, suggesting that neuronal loss is one of the earliest notable events in hearing loss caused by this type of rTBI. CONCLUSIONS We conclude that rTBI results in chronic auditory dysfunction via damage to the spiral ganglion which occurs in the absence of any reduction in hair cell number. This suggests early neuronal damage that may be caused by systemic mechanisms similar to those leading to the spread of neuronal death in the brain following TBI. This TBI-hearing loss model provides an important first step towards identifying therapeutic targets to attenuate damage to the auditory system following head injury.
Collapse
Affiliation(s)
- Courtney Penn
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Karthick Mayilsamy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Xiao Xia Zhu
- Department of Medical Engineering, College of Engineering and Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Mark A Bauer
- Department of Medical Engineering, College of Engineering and Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Shyam S Mohapatra
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Robert D Frisina
- Department of Medical Engineering, College of Engineering and Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; James A Haley VA Hospital, Tampa, FL 33612, USA.
| |
Collapse
|
10
|
Miwa T, Katsuno T, Wei F, Tomizawa K. Mitochondrial alterations in the cochlea of Cdk5rap1-knockout mice with age-related hearing loss. FEBS Open Bio 2023; 13:1365-1374. [PMID: 37258461 PMCID: PMC10315731 DOI: 10.1002/2211-5463.13655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023] Open
Abstract
Previous studies have revealed that age-related hearing loss (AHL) in Cdk5 regulatory subunit-associated protein 1 (Cdk5rap1)-knockout mice is associated with pathology in the cochlea. Here, we aimed to identify mitochondrial alterations in the cochlea of Cdk5rap1-knockout mice with AHL. Mitochondria in the spiral ganglion neurons (SGNs) and hair cells (HCs) were normal despite senescence; however, the mitochondria of types I, II, and IV spiral ligament fibrocytes were ballooned, damaged, and ballooned, respectively, in the stria vascularis. Our results suggest that the accumulation of dysfunctional mitochondria in the lateral wall, rather than the loss of HCs and SGNs, leads to the onset of AHL. Our results provide valuable information regarding the underlying mechanisms of AHL and the relationship between aberrant tRNA modification-induced hearing loss and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology‐Head and Neck Surgery, Graduate School of MedicineKyoto UniversityJapan
- Department of Otolaryngology‐Head and Neck SurgeryOsaka Metropolitan UniversityJapan
| | - Tatsuya Katsuno
- Department of Otolaryngology‐Head and Neck SurgeryOsaka Metropolitan UniversityJapan
| | - Fan‐Yan Wei
- Department of Molecular Physiology, Faculty of Life SciencesKumamoto UniversityJapan
- Department of Modomics Biology and Medicine, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life SciencesKumamoto UniversityJapan
| |
Collapse
|
11
|
Degranulation of Murine Resident Cochlear Mast Cells: A Possible Factor Contributing to Cisplatin-Induced Ototoxicity and Neurotoxicity. Int J Mol Sci 2023; 24:ijms24054620. [PMID: 36902051 PMCID: PMC10003316 DOI: 10.3390/ijms24054620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Permanent hearing loss is one of cisplatin's adverse effects, affecting 30-60% of cancer patients treated with that drug. Our research group recently identified resident mast cells in rodents' cochleae and observed that the number of mast cells changed upon adding cisplatin to cochlear explants. Here, we followed that observation and found that the murine cochlear mast cells degranulate in response to cisplatin and that the mast cell stabilizer cromoglicic acid (cromolyn) inhibits this process. Additionally, cromolyn significantly prevented cisplatin-induced loss of auditory hair cells and spiral ganglion neurons. Our study provides the first evidence for the possible mast cell participation in cisplatin-induced damage to the inner ear.
Collapse
|
12
|
Linking Cerebrovascular Dysfunction to Age-Related Hearing Loss and Alzheimer’s Disease—Are Systemic Approaches for Diagnosis and Therapy Required? Biomolecules 2022; 12:biom12111717. [DOI: 10.3390/biom12111717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer’s disease (AD), the most common cause of dementia in the elderly, is a neurodegenerative disorder associated with neurovascular dysfunction, cognitive decline, and the accumulation of amyloid β peptide (Aβ) in the brain and tau-related lesions in neurons termed neurofibrillary tangles (NFTs). Aβ deposits and NFT formation are the central pathological hallmarks in AD brains, and the majority of AD cases have been shown to exhibit a complex combination of systemic comorbidities. While AD is the foremost common cause of dementia in the elderly, age-related hearing loss (ARHL) is the most predominant sensory deficit in the elderly. During aging, chronic inflammation and resulting endothelial dysfunction have been described and might be key contributors to AD; we discuss an intriguing possible link between inner ear strial microvascular pathology and blood–brain barrier pathology and present ARHL as a potentially modifiable and treatable risk factor for AD development. We present compelling evidence that ARHL might well be seen as an important risk factor in AD development: progressive hearing impairment, leading to social isolation, and its comorbidities, such as frailty, falls, and late-onset depression, link ARHL with cognitive decline and increased risk of dementia, rendering it tempting to speculate that ARHL might be a potential common molecular and pathological trigger for AD. Additionally, one could speculate that amyloid-beta might damage the blood–labyrinth barrier as it does to the blood–brain barrier, leading to ARHL pathology. Finally, there are options for the treatment of ARHL by targeted neurotrophic factor supplementation to the cochlea to improve cognitive outcomes; they can also prevent AD development and AD-related comorbidity in the future.
Collapse
|
13
|
Lv Z, Zhang Y, Cao H, Liu Q, Feng X, Yin H, Wang B. PIN1 protects auditory hair cells from senescence via autophagy. PeerJ 2022; 10:e14267. [PMID: 36340199 PMCID: PMC9635358 DOI: 10.7717/peerj.14267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Background Age-related hearing loss is an increasing sensorineural hearing loss. But the pathogenesis of ARHL has not been clarified. Herein, we studied the role and significance of PIN1 in regulating autophagy activity in senescence HEI-OC1cells and HCs. Methods and Results C57BL/6 mice and HEI-OC1 cells were contained in our research. Transfection of plasmids and juglone were used to upregulate or inhibit the PIN 1 expression. Immunofluorescence and Western blot were used to detect the expression of PIN1, LC3, p62, p21 and p16 protein levels in the hair cells of C57BL/6 mice cochleae and HEI-OC1 cells. Senescence-associated β-galactosidase (SA-β-gal) staining was used to investigate the senescent level.The results of this study showed that the level of autophagy increased in the senescent auditory hair cells. When inhibited the autophagy level with 3-MA, the senescent HEI-OC1 cells were alleviated. The autophagy activity in senescent HEI-OC1 cells also could be reduced by overexpressing PIN1 protein. On the contrary, inhibiting PIN1 could increase the autophagy level of senescent cells and cochlear hair cells. Conclusion PIN1 might regulate autophagy activity to induce the senescent of HEI-OC1cells and HCs, which will provide a theoretical support for the prevention and treatment of age-related hearing loss.
Collapse
Affiliation(s)
- Zhe Lv
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanzhuo Zhang
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China,Department of Otorhinolaryngology, Hebei Eye Hospital, Xingtai, Hebei, China
| | - Huan Cao
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qingjuan Liu
- Department of Pathology, Hebei Key Laboratory of Nephrology, Center of Metabolic Diseases and Cancer Research, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaojuan Feng
- Department of Pathology, Hebei Key Laboratory of Nephrology, Center of Metabolic Diseases and Cancer Research, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huan Yin
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - BaoShan Wang
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
14
|
Paciello F, Zorzi V, Raspa M, Scavizzi F, Grassi C, Mammano F, Fetoni AR. Connexin 30 deletion exacerbates cochlear senescence and age-related hearing loss. Front Cell Dev Biol 2022; 10:950837. [PMID: 36016655 PMCID: PMC9395607 DOI: 10.3389/fcell.2022.950837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Pathogenic mutations in the Gjb2 and Gjb6 genes, encoding connexin 26 (Cx26) and connexin 30 (Cx30), respectively, have been linked to the most frequent monogenic hearing impairment, nonsyndromic hearing loss, and deafness DFNB1. It is known that Cx26 plays an important role in auditory development, while the role of Cx30 in hearing remains controversial. Previous studies found that partial deletion of Cx26 can accelerate age-related hearing loss (ARHL), a multifactorial complex disorder, with both environmental and genetic factors contributing to the etiology of the disease. Here, we investigated the role of Cx30 in cochlear-aging processes using a transgenic mouse model with total deletion of Cx30 (Cx30 ΔΔ mice), in which Cx30 was removed without perturbing the surrounding sequences. We show that these mice are affected by exacerbated ARHL, with increased morphological cochlear damage, oxidative stress, inflammation, and vascular dysfunctions. Overall, our data demonstrate that Cx30 deletion can be considered a genetic risk factor for ARHL, making cochlear structures more susceptible to aging processes.
Collapse
Affiliation(s)
- Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Veronica Zorzi
- CNR Institute of Biochemistry and Cell Biology, Monterotondo (RM), Italy
| | - Marcello Raspa
- CNR Institute of Biochemistry and Cell Biology, Monterotondo (RM), Italy
| | | | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Fabio Mammano
- CNR Institute of Biochemistry and Cell Biology, Monterotondo (RM), Italy
- Department of Physics and Astronomy, University of Padova, Padova, Italy
- *Correspondence: Fabio Mammano, ; Anna Rita Fetoni,
| | - Anna Rita Fetoni
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Unit of Audiology, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
- *Correspondence: Fabio Mammano, ; Anna Rita Fetoni,
| |
Collapse
|
15
|
Hoppe U, Hocke T, Iro H. Age-Related Decline of Speech Perception. Front Aging Neurosci 2022; 14:891202. [PMID: 35813942 PMCID: PMC9257541 DOI: 10.3389/fnagi.2022.891202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
Hearing loss is one of the most common disorders worldwide. It affects communicative abilities in all age groups. However, it is well known that elderly people suffer more frequently from hearing loss. Two different model approaches were employed: A generalised linear model and a random forest regression model were used to quantify the relationship between pure-tone hearing loss, age, and speech perception. Both models were applied to a large clinical data set of 19,801 ears, covering all degrees of hearing loss. They allow the estimation of age-related decline in speech recognition for different types of audiograms. Our results show that speech scores depend on the specific type of hearing loss and life decade. We found age effects for all degrees of hearing loss. A deterioration in speech recognition of up to 25 percentage points across the whole life span was observed for constant pure-tone thresholds. The largest decrease was 10 percentage points per life decade. This age-related decline in speech recognition cannot be explained by elevated hearing thresholds as measured by pure-tone audiometry.
Collapse
Affiliation(s)
- Ulrich Hoppe
- Department of Audiology, ENT-Clinic, University of Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Ulrich Hoppe,
| | - Thomas Hocke
- Cochlear Deutschland GmbH & Co. KG, Hanover, Germany
| | - Heinrich Iro
- Department of Audiology, ENT-Clinic, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
16
|
Serra LSM, Araújo JGD, Novanta G, Lauand L, Silva EMD, Kückelhaus SAS, Sampaio ALL. Melatonin prevents age-related hearing loss in the murin experimental model. Braz J Otorhinolaryngol 2022; 88 Suppl 3:S103-S108. [DOI: 10.1016/j.bjorl.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 04/06/2022] [Accepted: 06/05/2022] [Indexed: 11/27/2022] Open
|
17
|
Bishop R, Qureshi F, Yan J. Age-related changes in neuronal receptive fields of primary auditory cortex in frequency, amplitude, and temporal domains. Hear Res 2022; 420:108504. [DOI: 10.1016/j.heares.2022.108504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022]
|
18
|
Langlie J, Finberg A, Bencie NB, Mittal J, Omidian H, Omidi Y, Mittal R, Eshraghi AA. Recent advancements in cell-based models for auditory disorders. BIOIMPACTS 2022; 12:155-169. [PMID: 35411298 PMCID: PMC8905588 DOI: 10.34172/bi.2022.23900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/09/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022]
Abstract
![]()
Introduction: Cell-based models play an important role in understanding the pathophysiology and etiology of auditory disorders. For the auditory system, models have primarily focused on restoring inner and outer hair cells. However, they have largely underrepresented the surrounding structures and cells that support the function of the hair cells.
Methods: In this article, we will review recent advancements in the evolution of cell-based models of auditory disorders in their progression towards three dimensional (3D) models and organoids that more closely mimic the pathophysiology in vivo.
Results: With the elucidation of the molecular targets and transcription factors required to generate diverse cell lines of the components of inner ear, research is starting to progress from two dimensional (2D) models to a greater 3D approach. Of note, the 3D models of the inner ear, including organoids, are relatively new and emerging in the field. As 3D models of the inner ear continue to evolve in complexity, their role in modeling disease will grow as they bridge the gap between cell culture and in vivo models.
Conclusion: Using 3D cell models to understand the etiology and molecular mechanisms underlying auditory disorders holds great potential for developing more targeted and effective novel therapeutics.
Collapse
Affiliation(s)
- Jake Langlie
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ariel Finberg
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nathalie B. Bencie
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jeenu Mittal
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Rahul Mittal
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Adrien A. Eshraghi
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
19
|
Wang M, Xu L, Han Y, Wang X, Chen F, Lu J, Wang H, Liu W. Regulation of Spiral Ganglion Neuron Regeneration as a Therapeutic Strategy in Sensorineural Hearing Loss. Front Mol Neurosci 2022; 14:829564. [PMID: 35126054 PMCID: PMC8811300 DOI: 10.3389/fnmol.2021.829564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
In the mammalian cochlea, spiral ganglion neurons (SGNs) are the primary neurons on the auditory conduction pathway that relay sound signals from the inner ear to the brainstem. However, because the SGNs lack the regeneration ability, degeneration and loss of SGNs cause irreversible sensorineural hearing loss (SNHL). Besides, the effectiveness of cochlear implant therapy, which is the major treatment of SNHL currently, relies on healthy and adequate numbers of intact SGNs. Therefore, it is of great clinical significance to explore how to regenerate the SGNs. In recent years, a number of researches have been performed to improve the SGNs regeneration strategy, and some of them have shown promising results, including the progress of SGN regeneration from exogenous stem cells transplantation and endogenous glial cells’ reprogramming. Yet, there are challenges faced in the effectiveness of SGNs regeneration, the maturation and function of newly generated neurons as well as auditory function recovery. In this review, we describe recent advances in researches in SGNs regeneration. In the coming years, regenerating SGNs in the cochleae should become one of the leading biological strategies to recover hearing loss.
Collapse
|
20
|
Panganiban CH, Barth JL, Tan J, Noble KV, McClaskey CM, Howard BA, Jafri SH, Dias JW, Harris KC, Lang H. Two distinct types of nodes of Ranvier support auditory nerve function in the mouse cochlea. Glia 2021; 70:768-791. [DOI: 10.1002/glia.24138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/12/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Clarisse H. Panganiban
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
- Wolfson Centre for Age‐Related Diseases King's College London London UK
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology Medical University of South Carolina Charleston South Carolina USA
| | - Junying Tan
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Kenyaria V. Noble
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Carolyn M. McClaskey
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Blake A. Howard
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Shabih H. Jafri
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - James W. Dias
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Kelly C. Harris
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| |
Collapse
|
21
|
Salam SA, Mostafa F, Alnamshan MM, Elshewemi SS, Sorour JM. Thymoquinone ameliorates age-related hearing loss in C57BL/6J mice by modulating Sirt1 activity and Bak1 expression. Biomed Pharmacother 2021; 143:112149. [PMID: 34507120 DOI: 10.1016/j.biopha.2021.112149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
Age-related hearing loss (AHL) is the most common sensory disorder of aged population. Currently, one of the most important sources of experimental medicine for AHL is medicinal plants. This study performed the first investigation of the effect of thymoquinone (TQ), a potent antioxidant, on AHL. Here, we used inbred C57BL/6J mice (B6 mice) as a successful experimental model of the early onset of AHL. The behavioral assessment of hearing revealed that the injection of a high dose of TQ (40 mg/kg; TQ40) significantly improved the auditory sensitivity of B6 mice at all tested frequencies (8, 16 and 22 kHz). Histological sections of cochlea from B6 mice injected with a low dose (20 mg/kg; TQ20) and high dose showed relatively less degenerative signs in the modiolus, hair cells and spiral ligaments, the main constituents of the cochlea. In addition, TQ40 completely restored the normal pattern of hair cells in B6 mice, as shown in scanning electron micrographs. Our data indicated that TQ20 and TQ40 reduced levels of Bak1-mediated apoptosis in the cochlea of B6 mice. Interestingly, the level of Sirt1, a positive regulator of autophagy, was significantly increased in B6 mice administered TQ40. In conclusion, TQ relieves the symptoms of AHL by downregulating Bak1 and activating Sirt1 in the cochlea of B6 mice.
Collapse
Affiliation(s)
- Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Fatma Mostafa
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Mashael M Alnamshan
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Salma S Elshewemi
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Jehan M Sorour
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| |
Collapse
|
22
|
Chen Z, Huang Y, Yu C, Liu Q, Qiu C, Wan G. Cochlear Sox2 + Glial Cells Are Potent Progenitors for Spiral Ganglion Neuron Reprogramming Induced by Small Molecules. Front Cell Dev Biol 2021; 9:728352. [PMID: 34621745 PMCID: PMC8490772 DOI: 10.3389/fcell.2021.728352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
In the mammalian cochlea, spiral ganglion neurons (SGNs) relay the acoustic information to the central auditory circuits. Degeneration of SGNs is a major cause of sensorineural hearing loss and severely affects the effectiveness of cochlear implant therapy. Cochlear glial cells are able to form spheres and differentiate into neurons in vitro. However, the identity of these progenitor cells is elusive, and it is unclear how to differentiate these cells toward functional SGNs. In this study, we found that Sox2+ subpopulation of cochlear glial cells preserves high potency of neuronal differentiation. Interestingly, Sox2 expression was downregulated during neuronal differentiation and Sox2 overexpression paradoxically inhibited neuronal differentiation. Our data suggest that Sox2+ glial cells are potent SGN progenitor cells, a phenotype independent of Sox2 expression. Furthermore, we identified a combination of small molecules that not only promoted neuronal differentiation of Sox2– glial cells, but also removed glial cell identity and promoted the maturation of the induced neurons (iNs) toward SGN fate. In summary, we identified Sox2+ glial subpopulation with high neuronal potency and small molecules inducing neuronal differentiation toward SGNs.
Collapse
Affiliation(s)
- Zhen Chen
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Yuhang Huang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Chaorong Yu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Qing Liu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Cui Qiu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Institute for Brain Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
23
|
Shityakov S, Hayashi K, Störk S, Scheper V, Lenarz T, Förster CY. The Conspicuous Link between Ear, Brain and Heart-Could Neurotrophin-Treatment of Age-Related Hearing Loss Help Prevent Alzheimer's Disease and Associated Amyloid Cardiomyopathy? Biomolecules 2021; 11:biom11060900. [PMID: 34204299 PMCID: PMC8235707 DOI: 10.3390/biom11060900] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/05/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia in the elderly, is a neurodegenerative disorder associated with neurovascular dysfunction and cognitive decline. While the deposition of amyloid β peptide (Aβ) and the formation of neurofibrillary tangles (NFTs) are the pathological hallmarks of AD-affected brains, the majority of cases exhibits a combination of comorbidities that ultimately lead to multi-organ failure. Of particular interest, it can be demonstrated that Aβ pathology is present in the hearts of patients with AD, while the formation of NFT in the auditory system can be detected much earlier than the onset of symptoms. Progressive hearing impairment may beget social isolation and accelerate cognitive decline and increase the risk of developing dementia. The current review discusses the concept of a brain-ear-heart axis by which Aβ and NFT inhibition could be achieved through targeted supplementation of neurotrophic factors to the cochlea and the brain. Such amyloid inhibition might also indirectly affect amyloid accumulation in the heart, thus reducing the risk of developing AD-associated amyloid cardiomyopathy and cardiovascular disease.
Collapse
Affiliation(s)
- Sergey Shityakov
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, D-97080 Würzburg, Germany;
- Infochemistry Scientific Center, Laboratory of Chemoinformatics, ITMO University, 191002 Saint-Petersburg, Russia
| | - Kentaro Hayashi
- Advanced Stroke Center, Shimane University Hospital, 89-1 Enya, Shimane, Izumo 693-8501, Japan;
| | - Stefan Störk
- Comprehensive Heart Failure Q9 Center, University of Würzburg, D-97080 Würzburg, Germany;
| | - Verena Scheper
- Department of Otolaryngology, Hannover Medical School and Cluster of Excellence “Hearing4All”, 30625 Hannover, Germany;
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School and Cluster of Excellence “Hearing4All”, 30625 Hannover, Germany;
- Correspondence: (T.L.); (C.Y.F.)
| | - Carola Y. Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, D-97080 Würzburg, Germany;
- Correspondence: (T.L.); (C.Y.F.)
| |
Collapse
|
24
|
Herrmann B, Butler BE. Hearing loss and brain plasticity: the hyperactivity phenomenon. Brain Struct Funct 2021; 226:2019-2039. [PMID: 34100151 DOI: 10.1007/s00429-021-02313-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 06/03/2021] [Indexed: 12/22/2022]
Abstract
Many aging adults experience some form of hearing problems that may arise from auditory peripheral damage. However, it has been increasingly acknowledged that hearing loss is not only a dysfunction of the auditory periphery but also results from changes within the entire auditory system, from periphery to cortex. Damage to the auditory periphery is associated with an increase in neural activity at various stages throughout the auditory pathway. Here, we review neurophysiological evidence of hyperactivity, auditory perceptual difficulties that may result from hyperactivity, and outline open conceptual and methodological questions related to the study of hyperactivity. We suggest that hyperactivity alters all aspects of hearing-including spectral, temporal, spatial hearing-and, in turn, impairs speech comprehension when background sound is present. By focusing on the perceptual consequences of hyperactivity and the potential challenges of investigating hyperactivity in humans, we hope to bring animal and human electrophysiologists closer together to better understand hearing problems in older adulthood.
Collapse
Affiliation(s)
- Björn Herrmann
- Rotman Research Institute, Baycrest, Toronto, ON, M6A 2E1, Canada. .,Department of Psychology, University of Toronto, Toronto, ON, Canada.
| | - Blake E Butler
- Department of Psychology & The Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,National Centre for Audiology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
25
|
Miwa T, Wei FY, Tomizawa K. Cdk5 regulatory subunit-associated protein 1 knockout mice show hearing loss phenotypically similar to age-related hearing loss. Mol Brain 2021; 14:82. [PMID: 34001214 PMCID: PMC8130336 DOI: 10.1186/s13041-021-00791-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
Mitochondrial dysfunction is associated with aging and age-related hearing loss (AHL). However, the precise mechanisms underlying the pathophysiology of hearing loss remain unclear. Cdk5 regulatory subunit-associated protein 1 (CDK5RAP1) enables efficient intramitochondrial translation by catalyzing the deposition of 2-methylthio modifications on mitochondrial tRNAs. Here we investigated the effect of defective mitochondrial protein translation on hearing and AHL in a Cdk5rap1 deficiency C57BL/6 mouse model. Compared to control C57BL/6 mice, Cdk5rap1-knockout female mice displayed hearing loss phenotypically similar to AHL from an early age. The premature hearing loss in Cdk5rap1-knockout mice was associated with the degeneration of the spiral ligament and reduction of endocochlear potentials following the loss of auditory sensory cells. Furthermore, cultured primary mouse embryonic fibroblasts displayed early onset of cellular senescence associated with high oxidative stress and cell death. These results indicate that the CDK5RAP1 deficiency-induced defective mitochondrial translation might cause early hearing loss through the induction of cellular senescence and cochlear dysfunction in the inner ear. Our results suggest that the accumulation of dysfunctional mitochondria might promote AHL progression. Furthermore, our findings suggest that mitochondrial dysfunction and dysregulated mitochondrial tRNA modifications mechanistically cause AHL. Understanding the mechanisms underlying AHL will guide future clinical investigations and interventions in the attempt to mitigate the consequences of AHL.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 6068507, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, 2-4-20 Ougimaci, Kita-ku, Osaka, 5308480, Japan.
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1- Honjo, Chuo-ku, Kumamoto, 8608556, Japan
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo, Aoba-ku, Sendai, Miyagi, 9808575, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1- Honjo, Chuo-ku, Kumamoto, 8608556, Japan
| |
Collapse
|
26
|
Herrmann B, Johnsrude IS. A model of listening engagement (MoLE). Hear Res 2020; 397:108016. [DOI: 10.1016/j.heares.2020.108016] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/28/2020] [Accepted: 06/02/2020] [Indexed: 12/30/2022]
|
27
|
Kobrina A, Schrode KM, Screven LA, Javaid H, Weinberg MM, Brown G, Board R, Villavisanis DF, Dent ML, Lauer AM. Linking anatomical and physiological markers of auditory system degeneration with behavioral hearing assessments in a mouse (Mus musculus) model of age-related hearing loss. Neurobiol Aging 2020; 96:87-103. [PMID: 32950782 DOI: 10.1016/j.neurobiolaging.2020.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 08/03/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
Age-related hearing loss is a very common sensory disability, affecting one in three older adults. Establishing a link between anatomical, physiological, and behavioral markers of presbycusis in a mouse model can improve the understanding of this disorder in humans. We measured age-related hearing loss for a variety of acoustic signals in quiet and noisy environments using an operant conditioning procedure and investigated the status of peripheral structures in CBA/CaJ mice. Mice showed the greatest degree of hearing loss in the last third of their lifespan, with higher thresholds in noisy than in quiet conditions. Changes in auditory brainstem response thresholds and waveform morphology preceded behavioral hearing loss onset. Loss of hair cells, auditory nerve fibers, and signs of stria vascularis degeneration were observed in old mice. The present work underscores the difficulty in ascribing the primary cause of age-related hearing loss to any particular type of cellular degeneration. Revealing these complex structure-function relationships is critical for establishing successful intervention strategies to restore hearing or prevent presbycusis.
Collapse
Affiliation(s)
| | - Katrina M Schrode
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Laurel A Screven
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Hamad Javaid
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Madison M Weinberg
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Garrett Brown
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Ryleigh Board
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Dillan F Villavisanis
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Micheal L Dent
- Department of Psychology, University at Buffalo SUNY, Buffalo, NY, USA
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
28
|
Golovanova LE, Boboshko MY, Kvasov EA, Lapteva ES. Hearing Loss in Adults in Older Age Groups. ADVANCES IN GERONTOLOGY 2020. [DOI: 10.1134/s2079057019040064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Kaur C, Saini S, Pal I, Kumar P, Chandra Sati H, Jacob TG, Bhardwaj DN, Roy TS. Age-related changes in the number of cresyl-violet-stained, parvalbumin and NMDAR 2B expressing neurons in the human spiral ganglion. Hear Res 2020; 388:107883. [PMID: 31981822 DOI: 10.1016/j.heares.2020.107883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/12/2019] [Accepted: 12/31/2019] [Indexed: 01/11/2023]
Abstract
Animal-studies associate age-related hearing loss (presbycusis) with decreasing number of spiral ganglion neurons (SGNs) in Rosenthal's canal (RC) of cochlea. The excitatory neurotransmitter for SGNs is glutamate (through its receptor NMDAR 2B), which can be neurotoxic through Ca2+ overload. Neurotoxicity is balanced by calcium-binding proteins (CBPs) like Parvalbumin (PV), which is the predominant CBP of the SGNs. To estimate the volume of the RC and total number of SGNs that are immunoreactive to PV and NMDAR 2B, we used unbiased stereology in 35 human cochleae derived from cadavers of persons from 2nd to 8th decade of life (subsequently statistically divided into two groups) and compared them to the total number of cresyl violet (CV) stained SGNs. We also estimated the volume of individual neurons and their nuclei. Regression analysis was made on estimated parameters against age. Hierarchical-cluster analysis was done on the neuronal against neuronal nuclear volumes.The average volume of the RC did not change with increasing age (p = 0.4115). The total number of SGNs (CV-stained and those separately expressing PV and NMDAR 2B) significantly decreased with age (p < 0.001). We identified three distinct populations of neurons on the basis of their volumes among SGNs. Thus, there is significant age-related decline in the total number of SGNs, which starts early in life. It may be due to ambient noise and inadequate neutralisation of excitotoxicity.
Collapse
Affiliation(s)
- Charanjeet Kaur
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Shubhi Saini
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Indra Pal
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Punit Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Hem Chandra Sati
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Tony George Jacob
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Daya Nand Bhardwaj
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Tara Sankar Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
30
|
Bullen A, Forge A, Wright A, Richardson GP, Goodyear RJ, Taylor R. Ultrastructural defects in stereocilia and tectorial membrane in aging mouse and human cochleae. J Neurosci Res 2019; 98:1745-1763. [DOI: 10.1002/jnr.24556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Anwen Bullen
- UCL Ear Institute University College London London UK
| | - Andrew Forge
- UCL Ear Institute University College London London UK
| | | | - Guy P. Richardson
- Sussex Neuroscience School of Life Sciences University of Sussex Falmer, Brighton UK
| | - Richard J. Goodyear
- Sussex Neuroscience School of Life Sciences University of Sussex Falmer, Brighton UK
| | - Ruth Taylor
- UCL Ear Institute University College London London UK
| |
Collapse
|
31
|
Herrmann B, Buckland C, Johnsrude IS. Neural signatures of temporal regularity processing in sounds differ between younger and older adults. Neurobiol Aging 2019; 83:73-85. [DOI: 10.1016/j.neurobiolaging.2019.08.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 01/02/2023]
|
32
|
Pang J, Xiong H, Ou Y, Yang H, Xu Y, Chen S, Lai L, Ye Y, Su Z, Lin H, Huang Q, Xu X, Zheng Y. SIRT1 protects cochlear hair cell and delays age-related hearing loss via autophagy. Neurobiol Aging 2019; 80:127-137. [PMID: 31170533 DOI: 10.1016/j.neurobiolaging.2019.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022]
Abstract
Age-related hearing loss (AHL) is typically caused by the irreversible death of hair cells (HCs). Autophagy is a constitutive pathway to strengthen cell survival under normal or stress condition. Our previous work suggested that impaired autophagy played an important role in the development of AHL in C57BL/6 mice, although the underlying mechanism of autophagy in AHL still needs to be investigated. SIRT1 as an important regulator involves in AHL and is also a regulator of autophagy. Thus, we hypothesized that the modulation between SIRT1 and autophagy contribute to HC death and the progressive hearing dysfunction in aging. In the auditory cell line HEI-OC1, SIRT1 modulated autophagosome induction because of SIRT1 deacetylating a core autophagy protein ATG9A. The deacetylation of ATG9A not only affects the autophagosome membrane formation but also acts as a sensor of endoplasmic reticulum (ER) stress inducing autophagy. Moreover, the silencing of SIRT1 facilitated cell death via autophagy inhibition, whereas SIRT1 and autophagy activation reversed the SIRT1 inhibition media cell death. Notably, resveratrol, the first natural agonist of SIRT1, altered the organ of Corti autophagy impairment of the 12-month-old C57BL/6 mice and delayed AHL. The activation of SIRT1 modulates the deacetylation status of ATG9A, which acts as a sensor of ER stress, providing a novel perspective in elucidating the link between ER stress and autophagy in aging. Because SIRT1 activation restores autophagy with reduced HC death and hearing loss, it could be used as a strategy to delay AHL.
Collapse
Affiliation(s)
- Jiaqi Pang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-sen University, Guangzhou, China
| | - Yongkang Ou
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-sen University, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-sen University, Guangzhou, China
| | - Yaodong Xu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Suijun Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-sen University, Guangzhou, China
| | - Lan Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yongyi Ye
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Zhongwu Su
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Hanqing Lin
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Qiuhong Huang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-sen University, Guangzhou, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
33
|
Fischer N, Johnson Chacko L, Majerus A, Potrusil T, Riechelmann H, Schmutzhard J, Schrott-Fischer A, Glueckert R. Age-Dependent Calcium-Binding Protein Expression in the Spiral Ganglion and Hearing Performance of C57BL/6J and 129/SvJ Mice. ORL J Otorhinolaryngol Relat Spec 2019; 81:138-154. [PMID: 31170714 DOI: 10.1159/000499472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/08/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Calcium-binding proteins in neurons buffer intracellular free Ca2+ ions, which interact with proteins controlling enzymatic and ion channel activity. The heterogeneous distribution of calretinin, calbindin, and parvalbumin influences calcium homeostasis, and calcium-related neuronal processes play an important role in neuronal aging and degeneration. This study evaluated age-related changes in calretinin, calbindin, and parvalbumin immune reactivity in spiral ganglion cells. METHODS A total of 16 C57BL/6J and 16 129/SvJ mice at different ages (2, 4, 7, and 12 months) were included in the study. Hearing thresholds were assessed using auditory brainstem response before inner ears were excised for further evaluation. Semiquantitative immunohistochemistry for the aforementioned calcium-binding proteins was performed at the cellular level. RESULTS The hearing thresholds of C57BL/6J and 129/SvJ mice increased significantly by 7 months of age. The average immune reactivity of calbin-din as well as the relative number of positive cells increased significantly with aging, but no significant alterations in calretinin or parvalbumin were observed. CONCLUSIONS Upregulation of calbindin could serve as a protection to compensate for functional deficits that occur with aging. Expression of both calretinin and parvalbumin seem to be stabilizing factors in murine inner ears up to the age of 12 months in C57BL/6J and 129/SvJ mice.
Collapse
Affiliation(s)
- Natalie Fischer
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Lejo Johnson Chacko
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Alexandra Majerus
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Potrusil
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Joachim Schmutzhard
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria.,Department of Otorhinolaryngology, Tirol Kliniken, University Clinics of Innsbruck, Innsbruck, Austria
| |
Collapse
|
34
|
Paulsen AJ, Cruickshanks KJ, Pinto A, Schubert CR, Dalton DS, Fischer ME, Klein BEK, Klein R, Tsai MY, Tweed TS. Neuroprotective factors and incident hearing impairment in the epidemiology of hearing loss study. Laryngoscope 2019; 129:2178-2183. [PMID: 30698838 DOI: 10.1002/lary.27847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Hearing impairment (HI) is common in aging adults. Aldosterone, insulin-like growth factor (IGF1), and brain-derived neurotrophic factor (BDNF) have been identified as potentially protective of hearing. The present study aims to investigate these relationships. METHODS The Epidemiology of Hearing Loss Study is a longitudinal population-based study of aging in Beaver Dam, Wisconsin, that began in 1993. Baseline for the present investigation is the 1998 to 2000 phase. Follow-up exams occurred approximately every 5 years, with the most recent occurring from 2013 to 2016. Hearing was measured by pure-tone audiometry. HI was defined as a pure tone average (PTA) > 25 decibels hearing level in either ear. Change in PTA was the difference between follow-up examinations and baseline. Baseline serum samples were used to measure biomarkers in 2017. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated to assess the effect of biomarker levels in the lowest quintile (Q1) versus the highest (Q5) on incident HI and PTA change. RESULTS There were 1,088 participants (69.3% women) at risk of HI included in analyses. The mean baseline age was 63.8 years (standard deviation = 7.0). The 16-year incidence of HI was 54.9% and was higher in men (61.1%) than women (52.1%). In age- and sex-adjusted models, aldosterone (HR = 1.06, 95% CI = 0.82-1.37), IGF1 (HR = 0.92, 95% CI = 0.71-1.19), and BDNF (HR = 0.86, 95% CI = 0.66-1.12) levels were not associated with risk of HI. PTA change was similarly not affected by biomarker levels. CONCLUSION Aldosterone, IGF1, and BDNF were not associated with decreased risk of age-related hearing loss in this study. LEVEL OF EVIDENCE 2b Laryngoscope, 129:2178-2183, 2019.
Collapse
Affiliation(s)
- Adam J Paulsen
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Karen J Cruickshanks
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Alex Pinto
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Carla R Schubert
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Dayna S Dalton
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Mary E Fischer
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Barbara E K Klein
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School-Minneapolis, Minneapolis, Minnesota, U.S.A
| | - Ted S Tweed
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
35
|
Microvascular networks in the area of the auditory peripheral nervous system. Hear Res 2019; 371:105-116. [DOI: 10.1016/j.heares.2018.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/14/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
|
36
|
Yu Y, Hu B, Bao J, Mulvany J, Bielefeld E, Harrison RT, Neton SA, Thirumala P, Chen Y, Lei D, Qiu Z, Zheng Q, Ren J, Perez-Flores MC, Yamoah EN, Salehi P. Otoprotective Effects of Stephania tetrandra S. Moore Herb Isolate against Acoustic Trauma. J Assoc Res Otolaryngol 2018; 19:653-668. [PMID: 30187298 PMCID: PMC6249158 DOI: 10.1007/s10162-018-00690-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/08/2018] [Indexed: 01/10/2023] Open
Abstract
Noise is the most common occupational and environmental hazard, and noise-induced hearing loss (NIHL) is the second most common form of sensorineural hearing deficit. Although therapeutics that target the free-radical pathway have shown promise, none of these compounds is currently approved against NIHL by the United States Food and Drug Administration. The present study has demonstrated that tetrandrine (TET), a traditional Chinese medicinal alkaloid and the main chemical isolate of the Stephania tetrandra S. Moore herb, significantly attenuated NIHL in CBA/CaJ mice. TET is known to exert antihypertensive and antiarrhythmic effects through the blocking of calcium channels. Whole-cell patch-clamp recording from adult spiral ganglion neurons showed that TET blocked the transient Ca2+ current in a dose-dependent manner and the half-blocking concentration was 0.6 + 0.1 μM. Consistent with previous findings that modulations of calcium-based signaling pathways have both prophylactic and therapeutic effects against neural trauma, NIHL was significantly diminished by TET administration. Importantly, TET has a long-lasting protective effect after noise exposure (48 weeks) in comparison to 2 weeks after noise exposure. The otoprotective effects of TET were achieved mainly by preventing outer hair cell damage and synapse loss between inner hair cells and spiral ganglion neurons. Thus, our data indicate that TET has great potential in the prevention and treatment of NIHL.
Collapse
Affiliation(s)
- Yan Yu
- The First People’s Hospital of Zhangjiagang, 68 W Jiyang Road, Zhangjiagang City, 215600 Jiangsu China
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| | - Bing Hu
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, 440011 Hunan China
| | - Jianxin Bao
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH 44272 USA
| | - Jessica Mulvany
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH 44272 USA
| | - Eric Bielefeld
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH 43210 USA
| | - Ryan T. Harrison
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH 43210 USA
| | - Sarah A. Neton
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH 43210 USA
| | - Partha Thirumala
- The University of Pittsburgh Medical Center, Suite B-400, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - Yingying Chen
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| | - Debin Lei
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| | - Ziyu Qiu
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH 44272 USA
| | - Qingyin Zheng
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Jihao Ren
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, 440011 Hunan China
| | - Maria Cristina Perez-Flores
- Department of Physiology and Cell Biology, University of Nevada Reno, 1664 North Virginia St, Reno, NV 89557 USA
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, University of Nevada Reno, 1664 North Virginia St, Reno, NV 89557 USA
| | - Pezhman Salehi
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| |
Collapse
|
37
|
Parthasarathy A, Herrmann B, Bartlett EL. Aging alters envelope representations of speech-like sounds in the inferior colliculus. Neurobiol Aging 2018; 73:30-40. [PMID: 30316050 DOI: 10.1016/j.neurobiolaging.2018.08.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/13/2018] [Accepted: 08/27/2018] [Indexed: 11/29/2022]
Abstract
Hearing impairment in older people is thought to arise from impaired temporal processing in auditory circuits. We used a systems-level (scalp recordings) and a microcircuit-level (extracellular recordings) approach to investigate how aging affects the sensitivity to temporal envelopes of speech-like sounds in rats. Scalp-recorded potentials suggest an age-related increase in sensitivity to temporal regularity along the ascending auditory pathway. The underlying cellular changes in the midbrain were examined using extracellular recordings from inferior colliculus neurons. We observed an age-related increase in sensitivity to the sound's onset and temporal regularity (i.e., periodicity envelope) in the spiking output of inferior colliculus neurons, relative to their synaptic inputs (local field potentials). This relative enhancement for aged animals was most prominent for multi-unit (relative to single-unit) spiking activity. Spontaneous multi-unit, but not single-unit, activity was also enhanced in aged compared with young animals. Our results suggest that aging is associated with altered sensitivity to a sound's temporal regularities, and that these effects may be due to increased gain of neural network activity in the midbrain.
Collapse
Affiliation(s)
- Aravindakshan Parthasarathy
- Departments of Biological Sciences and Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Department of Otolaryngology, Harvard Medical School, and Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Björn Herrmann
- Department of Psychology & Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Edward L Bartlett
- Departments of Biological Sciences and Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
38
|
|
39
|
Dong Y, Guo CR, Chen D, Chen SM, Peng Y, Song H, Shi JR. Association between age‑related hearing loss and cognitive decline in C57BL/6J mice. Mol Med Rep 2018; 18:1726-1732. [PMID: 29901198 DOI: 10.3892/mmr.2018.9118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 09/15/2017] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence has revealed the link between age‑related hearing loss (presbycusis) and cognitive decline; however, their exact association remains unclear. The present study aimed to investigate the association between age‑related hearing loss and cognitive decline, and to explore the underlying mechanisms. Briefly, three groups of C57BL/6J mice were evaluated, based on their age, as follows: Young group, 3 months; adult group, 6 months; and middle‑aged group, 15 months. The results of an auditory brainstem response (ABR) test demonstrated that the hearing threshold levels of the mice were increased in those aged 6 and 15 months compared with those aged 3 months, thus suggesting that significant hearing loss occurred at 6 months, and worsened at 15 months. The results of a Morris water maze test demonstrated that spatial learning and memory function was significantly decreased in 15‑month‑old mice, but not in 6‑month‑old mice. Pearson analysis indicated that the escape latency was positively correlated with hearing threshold at 16 kHz and percentage of time in the target quadrant was negatively correlated with hearing threshold at 16 kHz, thus suggesting a correlation between age‑related hearing loss and cognitive decline. The auditory cortex and hippocampal CA1 region in 15‑month‑old mice exhibited significantly decreased cell numbers, abnormal arrangement and morphological alterations. Transmission electron microscopy revealed reduced synapse numbers and synaptic vesicle density in mice aged 15 months. Furthermore, the protein expression levels of matrix metalloproteinase (MMP)‑9 in the auditory cortex and hippocampus in the 15‑month‑old mice were significantly higher than in the 3‑month‑old mice. In conclusion, these findings support the correlation between age‑related hearing loss and cognitive decline in C57BL/6J mice, and indicated that MMP‑9 expression in the auditory cortex and hippocampus may be associated with the underlying mechanisms.
Collapse
Affiliation(s)
- Yang Dong
- Experimental Teaching Center, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Chun-Rong Guo
- Experimental Teaching Center, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Dan Chen
- Experimental Teaching Center, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Sheng-Min Chen
- Experimental Teaching Center, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yinting Peng
- Experimental Teaching Center, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Haiyan Song
- Central Lab, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jian-Rong Shi
- Experimental Teaching Center, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
40
|
Ren H, Zhuang H, Xiong G. Yolk sac tumor of ear: a case report and literature review of the last 30 years. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2142-2147. [PMID: 31938324 PMCID: PMC6958189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 01/16/2018] [Indexed: 06/10/2023]
Abstract
Extra-gonadal pure yolk sac tumor of the ear is very rare. We report a case of a yolk sac tumor of the ear and review the English literature in PubMed. The initial complaint was a mass protruding out of the external auditory canal. Computed tomography (CT) showed a large irregularly enhancing isodense mass lesion measuring 42*16 mm in the right external auditory canal, the right mastoid process, and extending to the right back parapharyngeal space with unclear border. Laboratory studies revealed that serum alpha fetoprotein (AFP) was significantly elevated at 664.60 ng/ml (range, 0 to 25 ng/ml), and neuron-specific enolase (NSE) was 28.3 ng/ml (range, 0 to 16.3 ng/ml). After finishing 6 cycles of chemotherapy, the patient underwent a total resection of yolk sac tumor of the ear. In addition, we review the English literature of the yolk sac tumor of the ear.
Collapse
Affiliation(s)
- Hongmiao Ren
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University Guangzhou 510080, Guangdong, P. R. China
| | - Huiwen Zhuang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University Guangzhou 510080, Guangdong, P. R. China
| | - Guanxia Xiong
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University Guangzhou 510080, Guangdong, P. R. China
| |
Collapse
|
41
|
Noise-Induced Dysregulation of Quaking RNA Binding Proteins Contributes to Auditory Nerve Demyelination and Hearing Loss. J Neurosci 2018; 38:2551-2568. [PMID: 29437856 DOI: 10.1523/jneurosci.2487-17.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022] Open
Abstract
Noise exposure causes auditory nerve (AN) degeneration and hearing deficiency, though the proximal biological consequences are not entirely understood. Most AN fibers and spiral ganglion neurons are ensheathed by myelinating glia that provide insulation and ensure rapid transmission of nerve impulses from the cochlea to the brain. Here we show that noise exposure administered to mice of either sex rapidly affects myelinating glial cells, causing molecular and cellular consequences that precede nerve degeneration. This response is characterized by demyelination, inflammation, and widespread expression changes in myelin-related genes, including the RNA splicing regulator Quaking (QKI) and numerous QKI target genes. Analysis of mice deficient in QKI revealed that QKI production in cochlear glial cells is essential for proper myelination of spiral ganglion neurons and AN fibers, and for normal hearing. Our findings implicate QKI dysregulation as a critical early component in the noise response, influencing cochlear glia function that leads to AN demyelination and, ultimately, to hearing deficiency.SIGNIFICANCE STATEMENT Auditory glia cells ensheath a majority of spiral ganglion neurons with myelin, protect auditory neurons, and allow for fast conduction of electrical impulses along the auditory nerve. Here we show that noise exposure causes glial dysfunction leading to myelin abnormality and altered expression of numerous genes in the auditory nerve, including QKI, a gene implicated in regulating myelination. Study of a conditional mouse model that specifically depleted QKI in glia showed that QKI deficiency alone was sufficient to elicit myelin-related abnormality and auditory functional declines. These results establish QKI as a key molecular target in the noise response and a causative agent in hearing loss.
Collapse
|
42
|
Espino Guarch M, Font-Llitjós M, Murillo-Cuesta S, Errasti-Murugarren E, Celaya AM, Girotto G, Vuckovic D, Mezzavilla M, Vilches C, Bodoy S, Sahún I, González L, Prat E, Zorzano A, Dierssen M, Varela-Nieto I, Gasparini P, Palacín M, Nunes V. Mutations in L-type amino acid transporter-2 support SLC7A8 as a novel gene involved in age-related hearing loss. eLife 2018; 7:31511. [PMID: 29355479 PMCID: PMC5811215 DOI: 10.7554/elife.31511] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/18/2018] [Indexed: 12/19/2022] Open
Abstract
Age-related hearing loss (ARHL) is the most common sensory deficit in the elderly. The disease has a multifactorial etiology with both environmental and genetic factors involved being largely unknown. SLC7A8/SLC3A2 heterodimer is a neutral amino acid exchanger. Here, we demonstrated that SLC7A8 is expressed in the mouse inner ear and that its ablation resulted in ARHL, due to the damage of different cochlear structures. These findings make SLC7A8 transporter a strong candidate for ARHL in humans. Thus, a screening of a cohort of ARHL patients and controls was carried out revealing several variants in SLC7A8, whose role was further investigated by in vitro functional studies. Significant decreases in SLC7A8 transport activity was detected for patient’s variants (p.Val302Ile, p.Arg418His, p.Thr402Met and p.Val460Glu) further supporting a causative role for SLC7A8 in ARHL. Moreover, our preliminary data suggest that a relevant proportion of ARHL cases could be explained by SLC7A8 mutations. Age-related hearing loss affects about one in three individuals between the ages of 65 and 74. The first symptom is difficulty hearing high-pitched sounds like children’s voices. The disease starts gradually and worsens over time. Changes in the ear, the nerve that connects it to the brain, or the brain itself can cause hearing loss. Sometimes all three play a role. Genetics, exposure to noise, disease, and aging may all contribute. The condition is so complex it is difficult for scientists to pinpoint a primary suspect or develop treatments. Now, Guarch, Font-Llitjós et al. show that errors in a protein called SLC7A8 cause age-related hearing loss in mice and humans. The SLC7A8 protein acts like a door that allows amino acids – the building blocks of proteins – to enter or leave a cell. This door is blocked in mice lacking SLC7A8 and damage occurs in the part of their inner ear responsible for hearing. As a result, the animals lose their hearing. Next, Guarch, Font-Llitjós et al. scanned the genomes of 147 people from isolated villages in Italy for mutations in the gene for SLC7A8. The people also underwent hearing tests. Mutations in the gene for SLC7A8 that partially block the door and prevent the flow of amino acids were found in people with hearing loss. Some mutations in SLC7A8 that allow the door to stay open where found in people who could hear. The experiments suggest that certain mutations in the gene for SLC7A8 are likely an inherited cause of age-related hearing loss. It is possible that other proteins that control the flow of amino acids into or out of cells also may play a role in hearing. More studies are needed to see if it is possible to fix errors in the SLC7A8 protein to delay or restore the hearing loss.
Collapse
Affiliation(s)
- Meritxell Espino Guarch
- Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar.,Genes, Disease and Therapy Program, Molecular Genetics Laboratory - IDIBELL, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mariona Font-Llitjós
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory - IDIBELL, Barcelona, Spain.,Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain
| | - Silvia Murillo-Cuesta
- Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain.,Alberto Sols Biomedical Research Institute (CSIC/UAM), Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Ekaitz Errasti-Murugarren
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain
| | - Adelaida M Celaya
- Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain.,Alberto Sols Biomedical Research Institute (CSIC/UAM), Madrid, Spain
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Medical Genetics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Dragana Vuckovic
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Medical Genetics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | | | - Clara Vilches
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory - IDIBELL, Barcelona, Spain
| | - Susanna Bodoy
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain
| | - Ignasi Sahún
- Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain.,Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Laura González
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory - IDIBELL, Barcelona, Spain.,Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain
| | - Esther Prat
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory - IDIBELL, Barcelona, Spain.,Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain.,Genetics Section, Physiological Sciences Department, Health Sciences and Medicine Faculty, University of Barcelona, Barcelona, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Biochemistry and Molecular Biomedicine Department, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre on Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
| | - Mara Dierssen
- Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain.,Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Isabel Varela-Nieto
- Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain.,Alberto Sols Biomedical Research Institute (CSIC/UAM), Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Medical Genetics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Manuel Palacín
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain.,Biochemistry and Molecular Biomedicine Department, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Virginia Nunes
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory - IDIBELL, Barcelona, Spain.,Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain.,Genetics Section, Physiological Sciences Department, Health Sciences and Medicine Faculty, University of Barcelona, Barcelona, Spain
| |
Collapse
|
43
|
Rodríguez-de la Rosa L, Lassaletta L, Calvino M, Murillo-Cuesta S, Varela-Nieto I. The Role of Insulin-Like Growth Factor 1 in the Progression of Age-Related Hearing Loss. Front Aging Neurosci 2017; 9:411. [PMID: 29311900 PMCID: PMC5733003 DOI: 10.3389/fnagi.2017.00411] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022] Open
Abstract
Aging is associated with impairment of sensorial functions and with the onset of neurodegenerative diseases. As pari passu circulating insulin-like growth factor 1 (IGF-1) bioavailability progressively decreases, we see a direct correlation with sensory impairment and cognitive performance in older humans. Age-related sensory loss is typically caused by the irreversible death of highly differentiated neurons and sensory receptor cells. Among sensory deficits, age-related hearing loss (ARHL), also named presbycusis, affects one third of the population over 65 years of age and is a major factor in the progression of cognitive problems in the elderly. The genetic and molecular bases of ARHL are largely unknown and only a few genes related to susceptibility to oxidative stress, excitotoxicity, and cell death have been identified. IGF-1 is known to be a neuroprotective agent that maintains cellular metabolism, activates growth, proliferation and differentiation, and limits cell death. Inborn IGF-1 deficiency leads to profound sensorineural hearing loss both in humans and mice. IGF-1 haploinsufficiency has also been shown to correlate with ARHL. There is not much information available on the effect of IGF-1 deficiency on other human sensory systems, but experimental models show a long-term impact on the retina. A secondary action of IGF-1 is the control of oxidative stress and inflammation, thus helping to resolve damage situations, acute or made chronic by aging. Here we will review the primary actions of IGF-1 in the auditory system and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lourdes Rodríguez-de la Rosa
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Luis Lassaletta
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Otorhinolaryngology Department, Hospital La Paz, Madrid, Spain
| | - Miryam Calvino
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Otorhinolaryngology Department, Hospital La Paz, Madrid, Spain
| | - Silvia Murillo-Cuesta
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Isabel Varela-Nieto
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| |
Collapse
|
44
|
Potheraveedu VN, Schöpel M, Stoll R, Heumann R. Rheb in neuronal degeneration, regeneration, and connectivity. Biol Chem 2017; 398:589-606. [PMID: 28212107 DOI: 10.1515/hsz-2016-0312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/02/2017] [Indexed: 01/31/2023]
Abstract
The small GTPase Rheb was originally detected as an immediate early response protein whose expression was induced by NMDA-dependent synaptic activity in the brain. Rheb's activity is highly regulated by its GTPase activating protein (GAP), the tuberous sclerosis complex protein, which stimulates the conversion from the active, GTP-loaded into the inactive, GDP-loaded conformation. Rheb has been established as an evolutionarily conserved molecular switch protein regulating cellular growth, cell volume, cell cycle, autophagy, and amino acid uptake. The subcellular localization of Rheb and its interacting proteins critically regulate its activity and function. In stem cells, constitutive activation of Rheb enhances differentiation at the expense of self-renewal partially explaining the adverse effects of deregulated Rheb in the mammalian brain. In the context of various cellular stress conditions such as oxidative stress, ER-stress, death factor signaling, and cellular aging, Rheb activation surprisingly enhances rather than prevents cellular degeneration. This review addresses cell type- and cell state-specific function(s) of Rheb and mainly focuses on neurons and their surrounding glial cells. Mechanisms will be discussed in the context of therapy that interferes with Rheb's activity using the antibiotic rapamycin or low molecular weight compounds.
Collapse
Affiliation(s)
- Veena Nambiar Potheraveedu
- Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätstr. 150, D-44780 Bochum
| | - Miriam Schöpel
- Biomolecular NMR, Ruhr University of Bochum, D-44780 Bochum
| | - Raphael Stoll
- Biomolecular NMR, Ruhr University of Bochum, D-44780 Bochum
| | - Rolf Heumann
- Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätstr. 150, D-44780 Bochum
| |
Collapse
|
45
|
Naples JG. Calcium-channel blockers as therapeutic agents for acquired sensorineural hearing loss. Med Hypotheses 2017; 104:121-125. [PMID: 28673569 DOI: 10.1016/j.mehy.2017.05.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/28/2017] [Accepted: 05/31/2017] [Indexed: 11/27/2022]
Abstract
Acquired sensorineural hearing loss represents a challenging clinical scenario. Currently, there are few approved therapies for treating this type of hearing loss, and diagnosis is often made after permanent damage has occurred. There are numerous etiologies for acquired hearing loss, with complex mechanisms underlying each cause. Despite these complexities, apoptosis of the structures within the inner ear, is a theme common to many forms of acquired hearing loss. Apoptosis is a calcium-dependent process, and within the inner ear, L- and T-type calcium channels are believed to contribute to calcium availability during this process. There are few studies limited to animal models evaluating the role of calcium-channel blockers (CCBs) as otoprotective agents in the setting of acquired hearing loss. Here, I hypothesize that CCBs will provide utility as a therapy against acquired forms of sensorineural hearing loss by preventing calcium influx that occurs during inner ear cellular apoptosis.
Collapse
Affiliation(s)
- James G Naples
- University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030, United States.
| |
Collapse
|
46
|
Zhong C, Zhang X. Age-associated expression of erythropoietin and its receptor in rat spiral ganglion neurons and its association with neuronal apoptosis and hearing alterations. Mol Med Rep 2016; 15:228-234. [PMID: 27959434 PMCID: PMC5355685 DOI: 10.3892/mmr.2016.6010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 11/04/2016] [Indexed: 01/03/2023] Open
Abstract
The present study aimed to determine the expression of erythropoietin (EPO) and the EPO receptor (EPOR) in spiral ganglion neurons (SGNs) in the inner ear of rats of various ages, and the associated neuronal apoptosis and hearing alterations. A total of 15 healthy rats (n=30 ears), were divided into three groups: i) A nominated infant group at post-natal day (PND) 12–14, ii) an adult group at PND 60 and iii) a 3-year postnatal aged group. Auditory brainstem response (ABR) measurements were performed on all rats. EPO and EPOR expression in the inner ear was detected by immunohistochemistry. In situ terminal deoxynucleotidyl transferase dUTP nick end labeling assays were performed to detect the apoptosis of SGNs. The average hearing thresholds of the ABR (decibels above normal hearing level) were 5.625±4.955 in the infant, 15.000±8.498 in the adult and 23.500±13.134 in the aged groups. Hearing thresholds for aged and adult rats increased significantly compared with infant rats. However, the difference in latencies of peak I was not significant (P>0.05). EPO in SGNs was detected during different developmental periods without significant alterations, but were reduced compared with Corti's organ or the stria vascularis. EPOR expression increased significantly from infant to adult stage, and this increased expression was maintained in the aged group. An age-associated increase in the apoptosis of SGNs was detected in all three groups (P=0.0347). The potential neuroprotective effects of EPO in SGNs may not be revealed during the aging process under natural conditions, and may be associated with spontaneous neuronal apoptosis and consequently, hearing diminution. However, the age-associated increase in EPOR in SGNs may exert a role in neuroprotection when necessary, for example in presbycusis.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of Otolaryngology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xueyuan Zhang
- Department of Otolaryngology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
47
|
Yu F, Hao S, Yang B, Zhao Y, Yang J. Low Iron Diet Increases Susceptibility to Noise-Induced Hearing Loss in Young Rats. Nutrients 2016; 8:nu8080456. [PMID: 27483303 PMCID: PMC4997371 DOI: 10.3390/nu8080456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 12/25/2022] Open
Abstract
We evaluated the role of iron deficiency (ID) without anemia on hearing function and cochlear pathophysiology of young rats before and after noise exposure. We used rats at developmental stages as an animal model to induce ID without anemia by dietary iron restriction. We have established this dietary restriction model in the rat that should enable us to study the effects of iron deficiency in the absence of severe anemia on hearing and ribbon synapses. Hearing function was measured on Postnatal Day (PND) 21 after induction of ID using auditory brainstem response (ABR). Then, the young rats were exposed to loud noise on PND 21. After noise exposure, hearing function was again measured. We observed the morphology of ribbon synapses, hair cells and spiral ganglion cells (SGCs), and assessed the expression of myosin VIIa, vesicular glutamate transporter 3 and prestin in the cochlea. ID without anemia did not elevate ABR threshold shifts, but reduced ABR wave I peak amplitude of young rats. At 70, 80, and 90 dB SPL, amplitudes of wave I (3.11 ± 0.96 µV, 3.52 ± 1.31 µV, and 4.37 ± 1.08 µV, respectively) in pups from the ID group were decreased compared to the control (5.92 ± 1.67 µV, 6.53 ± 1.70 µV, and 6.90 ± 1.76 µV, respectively) (p < 0.05). Moreover, ID without anemia did not impair the morphology hair cells and SGCs, but decreased the number of ribbon synapses. Before noise exposure, the mean number of ribbon synapses per inner hair cell (IHC) was significantly lower in the ID group (8.44 ± 1.21) compared to that seen in the control (13.08 ± 1.36) (p < 0.05). In addition, the numbers of ribbon synapses per IHC of young rats in the control (ID group) were 6.61 ± 1.59, 3.07 ± 0.83, 5.85 ± 1.63 and 12.25 ± 1.97 (3.75 ± 1.45, 2.03 ± 1.08, 3.81 ± 1.70 and 4.01 ± 1.65) at 1, 4, 7 and 14 days after noise exposure, respectively. Moreover, ABR thresholds at 4 and 8 kHz in young rats from the ID group were significantly elevated at 7 and 14 days after noise exposure compared to control (p < 0.05). The average number of young rat SGCs from the ID group were significantly decreased in the basal turn of the cochlea compared to the control (p < 0.05). Therefore, ID without anemia delayed the recovery from noise-induced hearing loss and ribbon synapses damage, increased SGCs loss, and upregulated prestin after noise exposure. Thus, the cochleae in rat pups with ID without anemia were potentially susceptible to loud noise exposure, and this deficit may be attributed to the reduction of ribbon synapses and SGCs.
Collapse
MESH Headings
- Anemia, Iron-Deficiency/diet therapy
- Anemia, Iron-Deficiency/metabolism
- Anemia, Iron-Deficiency/pathology
- Anemia, Iron-Deficiency/physiopathology
- Animals
- Auditory Cortex/metabolism
- Auditory Cortex/physiopathology
- Auditory Cortex/ultrastructure
- Auditory Threshold/radiation effects
- Brain Stem/metabolism
- Brain Stem/physiopathology
- Brain Stem/ultrastructure
- Cochlea/innervation
- Cochlea/metabolism
- Cochlea/physiopathology
- Cochlea/ultrastructure
- Cochlear Nerve/metabolism
- Cochlear Nerve/physiopathology
- Cochlear Nerve/radiation effects
- Cochlear Nerve/ultrastructure
- Disease Models, Animal
- Disease Susceptibility
- Female
- Gene Expression Regulation, Developmental/radiation effects
- Hearing Loss, Noise-Induced/etiology
- Hearing Loss, Noise-Induced/prevention & control
- Iron, Dietary/therapeutic use
- Male
- Microscopy, Electron, Scanning
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Noise/adverse effects
- Nutritional Status
- Random Allocation
- Rats, Sprague-Dawley
- Spiral Ganglion/metabolism
- Spiral Ganglion/physiopathology
- Spiral Ganglion/ultrastructure
- Weaning
Collapse
Affiliation(s)
- Fei Yu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Shuai Hao
- Department of Otolaryngology, First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110001, China.
| | - Bo Yang
- Department of Otolaryngology, First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110001, China.
| | - Yue Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Jun Yang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| |
Collapse
|
48
|
Kwon DN, Park WJ, Choi YJ, Gurunathan S, Kim JH. Oxidative stress and ROS metabolism via down-regulation of sirtuin 3 expression in Cmah-null mice affect hearing loss. Aging (Albany NY) 2016; 7:579-94. [PMID: 26319214 PMCID: PMC4586103 DOI: 10.18632/aging.100800] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CMP-Neu5Ac hydroxylase (Cmah) disruption caused several abnormalities and diseases including hearing loss in old age. However, underling molecular mechanisms that give rise to age-related hearing loss (AHL) in Cmah-null mouse are still obscure. In this study, Cmah-null mice showed age-related decline of hearing associated with loss of sensory hair cells, spiral ganglion neurons, and/or stria vascularis degeneration in the cochlea. To identify differential gene expression profiles and pathway associated with AHL, we performed microarray analysis using Illumina MouseRef-8 v2 Expression BeadChip and pathway-focused PCR array in the cochlear tissues of Cmah-null mouse. Pathway and molecular mechanism analysis using differentially expressed genes provided evidences that altered biological pathway due to oxidative damage by low expressed antioxidants and dysregulated reactive oxygen species (ROS) metabolism. Especially, low sirtuin 3 (Sirt3) gene expressions in Cmah-null mice decreased both of downstream regulator (Foxo1 and MnSod) and regulatory transcription factor (Hif1αand Foxo3α) gene expression. Taken together, we suggest that down-regulation of Sirt3 expression leads to oxidative stress and mitochondrial dysfunction by regulation of ROS and that it could alter various signaling pathways in Cmah-null mice with AHL.
Collapse
Affiliation(s)
- Deug-Nam Kwon
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Woo-Jin Park
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Yun-Jung Choi
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | | | - Jin-Hoi Kim
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
49
|
Peelle JE, Wingfield A. The Neural Consequences of Age-Related Hearing Loss. Trends Neurosci 2016; 39:486-497. [PMID: 27262177 DOI: 10.1016/j.tins.2016.05.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 01/02/2023]
Abstract
During hearing, acoustic signals travel up the ascending auditory pathway from the cochlea to auditory cortex; efferent connections provide descending feedback. In human listeners, although auditory and cognitive processing have sometimes been viewed as separate domains, a growing body of work suggests they are intimately coupled. Here, we review the effects of hearing loss on neural systems supporting spoken language comprehension, beginning with age-related physiological decline. We suggest that listeners recruit domain general executive systems to maintain successful communication when the auditory signal is degraded, but that this compensatory processing has behavioral consequences: even relatively mild levels of hearing loss can lead to cascading cognitive effects that impact perception, comprehension, and memory, leading to increased listening effort during speech comprehension.
Collapse
Affiliation(s)
- Jonathan E Peelle
- Department of Otolaryngology, Washington University in St Louis, St Louis, MO, USA.
| | - Arthur Wingfield
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
50
|
Jung DJ, Jang JH, Lee KY. Is Body Mass Index Associated With the Development of Age-Related Hearing Impairment in Koreans? The Korean National Health and Nutrition Examination Survey 2009-2012. Clin Exp Otorhinolaryngol 2016; 9:123-30. [PMID: 27090278 PMCID: PMC4881314 DOI: 10.21053/ceo.2015.00955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/05/2015] [Accepted: 08/10/2015] [Indexed: 01/19/2023] Open
Abstract
Objectives The aim of this study was to evaluate whether body mass index (BMI) is associated with age-related hearing loss (ARHL) in the Asian elderly population. Methods Data from the Korean National Health and Nutrition Examination Survey 2009–2012 were used for the analyses. The pure tones at 0.5 and 1 kHz of both ears of each subject were averaged to obtain the low-frequency, those at 2 and 3 kHz were averaged to obtain the mid-frequency, and those at 4 and 6 kHz were averaged to obtain the high-frequency. The average hearing threshold (AHT) was calculated as pure tone average at 4 frequencies in the better ear. ARHL was defined as the AHT >25 dB. Results Univariate analyses revealed an increase in the BMI tertile in men was associated with a decreased low-frequency threshold, while an increase in the BMI tertile in women was associated with decreased mid- and high-frequency thresholds. Multivariate analyses adjusted for confounders show no significant differences in low-, mid-, or high-frequency. There was no significant difference in the prevalence of ARHL by BMI tertiles. Linear regression analyses show no association between BMI and low-, mid-, and high-frequency or AHTs. The area under the receiver operating characteristic curve values for AHT was 0.515 in men and 0.522 in women. The logistic regression analyses showed no association between BMI and ARHL in either sex. Conclusion BMI is not advantageous for the prediction of ARHL. In future epidemiological studies, BMI as a covariate of obesity may be replaced by other active metabolic parameters that have better predictive ability of ARHL than BMI.
Collapse
Affiliation(s)
- Da Jung Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Kyungpook National University Hospital, Kyungpook National University College of Medicine, Daegu, Korea
| | - Jeong Hun Jang
- Department of Otorhinolaryngology-Head and Neck Surgery, Kyungpook National University Hospital, Kyungpook National University College of Medicine, Daegu, Korea
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Kyungpook National University Hospital, Kyungpook National University College of Medicine, Daegu, Korea
| |
Collapse
|