1
|
Knight B, Mondal R, Han N, Pietra NF, Hall BA, Edgar KJ, Vaissier Welborn V, Madsen LA, De Yoreo JJ, Dove PM. Kinetics of Calcite Nucleation onto Sulfated Chitosan Derivatives and Implications for Water-Polysaccharide Interactions during Crystallization of Sparingly Soluble Salts. CRYSTAL GROWTH & DESIGN 2024; 24:6338-6353. [PMID: 39131446 PMCID: PMC11311137 DOI: 10.1021/acs.cgd.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024]
Abstract
Anionic macromolecules are found at sites of CaCO3 biomineralization in diverse organisms, but their roles in crystallization are not well-understood. We prepared a series of sulfated chitosan derivatives with varied positions and degrees of sulfation, DS(SO3 -), and measured calcite nucleation rate onto these materials. Fitting the classical nucleation theory model to the kinetic data reveals the interfacial free energy of the calcite-polysaccharide-solution system, γnet, is lowest for nonsulfated controls and increases with DS(SO3 -). The kinetic prefactor also increases with DS(SO3 -). Simulations of Ca2+-H2O-chitosan systems show greater water structuring around sulfate groups compared to uncharged substituents, independent of sulfate location. Ca2+-SO3 - interactions are solvent-separated by distances that are inversely correlated with DS(SO3 -) of the polysaccharide. The simulations also predict SO3 - and NH3 + groups affect the solvation waters and HCO3 - ions associated with Ca2+. Integrating the experimental and computational evidence suggests sulfate groups influence nucleation by increasing the difficulty of displacing near-surface water, thereby increasing γnet. By correlating γnet and net charge per monosaccharide for diverse polysaccharides, we suggest the solvent-separated interactions of functional groups with Ca2+ influence thermodynamic and kinetic components to crystallization by similar solvent-dominated processes. The findings reiterate the importance of establishing water structure and properties at macromolecule-solution interfaces.
Collapse
Affiliation(s)
- Brenna
M. Knight
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ronnie Mondal
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nizhou Han
- Department
of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nicholas F. Pietra
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Brady A. Hall
- GlycoMIP, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin J. Edgar
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Valerie Vaissier Welborn
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Louis A. Madsen
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - James J. De Yoreo
- Physical
Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department
of Materials Science and Engineering, University
of Washington, Seattle, Washington 98195, United States
| | - Patricia M. Dove
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Materials Science and Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
3
|
Brittain K, Harvey M, Cisek R, Pillai S, Christie SD, Tokarz D. Second harmonic generation microscopy of otoconia. BIOMEDICAL OPTICS EXPRESS 2022; 13:3593-3600. [PMID: 35781949 PMCID: PMC9208607 DOI: 10.1364/boe.457967] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 05/30/2023]
Abstract
The origin of second harmonic generation (SHG) signal in otoconia was investigated. SHG signal intensity from otoconia was compared to pure calcite crystals, given calcite is the primary component of otoconia and is known to emit surface SHG. The SHG intensity from calcite was found to be ∼41× weaker than the SHG intensity from otoconia signifying that the SHG signal from otoconia is likely generated from the organic matrix. Furthermore, the SHG intensity from otoconia increased when treated with a chelating agent known to dissolve calcite which confirms that calcite is not the source of SHG. Additionally, polarization-resolved SHG microscopy imaging revealed that the arrangement of the SHG emitters is radial and can form highly ordered domains.
Collapse
Affiliation(s)
- Kennedy Brittain
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
- Department of Medical Neuroscience, Dalhousie University, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - MacAulay Harvey
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Richard Cisek
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Saranyan Pillai
- Department of Surgery (Neurosurgery), Dalhousie University, #3814-1796 Summer Street, Halifax, Nova Scotia, B3H 3A7, Canada
| | - Sean D Christie
- Department of Surgery (Neurosurgery), Dalhousie University, #3814-1796 Summer Street, Halifax, Nova Scotia, B3H 3A7, Canada
| | - Danielle Tokarz
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| |
Collapse
|
4
|
Xu Y, Yang L, Zhao X, Zhang Y, Jones TA, Jones SM, Lundberg YW. Functional cooperation between two otoconial proteins Oc90 and Nox3. J Vestib Res 2021; 31:441-449. [PMID: 33554930 DOI: 10.3233/ves-201591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Otoconia-related vertigo and balance deficits are common in humans, but the molecular etiology is unknown at present. OBJECTIVE In order to study mechanisms of otoconia formation and maintenance, we have investigated whether otoconin-90 (Oc90), the predominant otoconial constituent protein, and the NADPH oxidase Nox3, an essential regulatory protein for otoconia formation, are functionally interlinked. METHODS We performed balance behavioral, electrophysiological, morphological and molecular cellular analyses. RESULTS Double heterozygous mutant mice for Oc90 and Nox3 show severe imbalance, albeit less profound than double null mutants. In contrast, single heterozygous mutant mice have normal balance. Double heterozygous mice have otoconia defects and double null mice have no otoconia. In addition, some hair bundles in the latter mice go through accelerated degeneration. In vitro calcification analysis in cells stably expressing these proteins singly and doubly shows much more intense calcification in the double transfectants. CONCLUSIONS Oc90 and Nox3 augment each other's function, which is not only critical for otoconia formation but also for hair bundle maintenance.
Collapse
Affiliation(s)
- Yinfang Xu
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, NE, USA
| | - Liping Yang
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, NE, USA.,Current address: Changsha Environmental Protection College, 10 Jinggui Rd, Yuhua Qu, Changsha, Hunan, China
| | - Xing Zhao
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, NE, USA
| | - Yan Zhang
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, NE, USA
| | - Timothy A Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, NE, USA
| |
Collapse
|
5
|
Athanasiadou D, Jiang W, Reznikov N, Rodríguez-Navarro AB, Kröger R, Bilton M, González-Segura A, Hu Y, Nelea V, McKee MD. Nanostructure of mouse otoconia. J Struct Biol 2020; 210:107489. [PMID: 32142754 DOI: 10.1016/j.jsb.2020.107489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 11/19/2022]
Abstract
Mammalian otoconia of the inner ear vestibular apparatus are calcium carbonate-containing mineralized structures critical for maintaining balance and detecting linear acceleration. The mineral phase of otoconia is calcite, which coherently diffracts X-rays much like a single-crystal. Otoconia contain osteopontin (OPN), a mineral-binding protein influencing mineralization processes in bones, teeth and avian eggshells, for example, and in pathologic mineral deposits. Here we describe mineral nanostructure and the distribution of OPN in mouse otoconia. Scanning electron microscopy and atomic force microscopy of intact and cleaved mouse otoconia revealed an internal nanostructure (~50 nm). Transmission electron microscopy and electron tomography of focused ion beam-prepared sections of otoconia confirmed this mineral nanostructure, and identified even smaller (~10 nm) nanograin dimensions. X-ray diffraction of mature otoconia (8-day-old mice) showed crystallite size in a similar range (73 nm and smaller). Raman and X-ray absorption spectroscopy - both methods being sensitive to the detection of crystalline and amorphous forms in the sample - showed no evidence of amorphous calcium carbonate in these mature otoconia. Scanning and transmission electron microscopy combined with colloidal-gold immunolabeling for OPN revealed that this protein was located at the surface of the otoconia, correlating with a site where surface nanostructure was observed. OPN addition to calcite growing in vitro produced similar surface nanostructure. These findings provide details on the composition and nanostructure of mammalian otoconia, and suggest that while OPN may influence surface rounding and surface nanostructure in otoconia, other incorporated proteins (also possibly including OPN) likely participate in creating internal nanostructure.
Collapse
Affiliation(s)
| | - Wenge Jiang
- Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada
| | | | | | - Roland Kröger
- Department of Physics, University of York, York YO10 5DD, UK
| | - Matthew Bilton
- Imaging Centre at Liverpool, University of Liverpool, Liverpool L69 3GL, UK
| | | | - Yongfeng Hu
- Canadian Light Source, University of Saskatchewan, Saskatoon, SK S7N 2V3, Canada
| | - Valentin Nelea
- Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada
| | - Marc D McKee
- Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada.
| |
Collapse
|
6
|
Balaban CD, Black RD, Silberstein SD. Vestibular Neuroscience for the Headache Specialist. Headache 2019; 59:1109-1127. [DOI: 10.1111/head.13550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Carey D. Balaban
- Department of Otolaryngology University of Pittsburgh Pittsburgh PA USA
- Department of Neurobiology University of Pittsburgh Pittsburgh PA USA
- Department of Communication Sciences and Disorders University of Pittsburgh Pittsburgh PA USA
- Department of Bioengineering University of Pittsburgh Pittsburgh PA USA
| | | | - Stephen D. Silberstein
- Jefferson Headache Center, Department of Neurology Thomas Jefferson University Philadelphia PA USA
| |
Collapse
|
7
|
Affiliation(s)
- Alexander G. Shtukenberg
- Department of Chemistry and Molecular
Design Institute, New York University, 100 Washington Square East, New York City, New York 10003, United States
| | - Michael D. Ward
- Department of Chemistry and Molecular
Design Institute, New York University, 100 Washington Square East, New York City, New York 10003, United States
| | - Bart Kahr
- Department of Chemistry and Molecular
Design Institute, New York University, 100 Washington Square East, New York City, New York 10003, United States
| |
Collapse
|
8
|
Kniep R. Otoconia: Mimicking a calcite-based functional material of the human body. From basic research to medical aspects. PURE APPL CHEM 2015. [DOI: 10.1515/pac-2015-0201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractOtoconia (calcite-based biominerals) are part of the sensory system in the inner ear of vertebrates, acting as gravity receptors responding to linear accelerations. Biomimetic otoconia are grown by double-diffusion into gelatine-gel matrices, and represent the first example of successful imitation of a biomineral, not only in outer shape but also in composite structure and hierarchical inner architecture. Biomimetic and biogenic (human) otoconia are investigated by X-ray methods, chemical analytics, ESEM, and TEM. Shape development (morphogenesis) as well as (partial) dissolution of the calcite component of the composite underline the hierarchical inner architecture built of more dense rhombohedral branches (with plane end-faces) and a rounded, more porous belly area. Atomistic simulations are performed in order to get insight into very first nucleation steps. Based on the detailed observations made up to now, first assumptions for the function of otoconia are developed, including the questions of density distribution within the volume of the specimen, the surrounding endolymph, as well as anchoring and interconnections of otoconia. A final point concerns the degeneration of otoconia which is caused by complexing agents and/or changes in ion concentrations (and pH) of the endolymph.
Collapse
Affiliation(s)
- Rüdiger Kniep
- 1Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| |
Collapse
|
9
|
Hong M, Moreland KT, Chen J, Teng H, Thalmann R, De Yoreo JJ. Effect of Otoconial Proteins Fetuin A, Osteopontin, and Otoconin 90 on the Nucleation and Growth of Calcite. CRYSTAL GROWTH & DESIGN 2015; 15:129-136. [PMID: 25709560 PMCID: PMC4334277 DOI: 10.1021/cg501001r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/22/2014] [Indexed: 05/16/2023]
Abstract
We investigated the roles of three proteins associated with the formation of otoconia including fetuin A, osteopontin (OPN), and otoconin 90 (OC90). In situ atomic force microscopy (AFM) studies of the effects of these proteins on the growth of atomic steps on calcite surfaces were performed to obtain insight into their effects on the growth kinetics. We also used scanning electron microscopy to examine the effects of these proteins on crystal morphology. All three proteins were found to be potent inhibitors of calcite growth, although fetuin A promoted growth at concentrations below about 40 nM and only became an inhibitor at higher concentrations. We then used in situ optical microscopy to observe calcite nucleation on films of these proteins adsorbed onto mica surfaces. By measuring the calcite nucleation rate as a function of supersaturation, the value of the interfacial energy that controls the free energy barrier to heterogeneous nucleation was determined for each protein. OPN and OC90 films led to significantly reduced interfacial energies as compared to the value for homogeneous calcite nucleation in bulk solution. The value for fetuin A was equal to that for bulk solution within experimental error. Zeta potential measurements showed all of the proteins possessed negative surface charge and varied in magnitude according to sequence fetuin A > OC90 > OPN. In addition, the interfacial energies exhibited an inverse scaling with the zeta potential. In analogy to previous measurements on polysaccharide films, this scaling indicates the differences between the proteins arise from the effect of protein surface charge on the solution-substrate interfacial energy.
Collapse
Affiliation(s)
- Mina Hong
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
- Department
of Chemistry, The George Washington University, Washington, D.C. 20052, United States
- The Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - K. Trent Moreland
- Department
of Otolaryngology-Head and Neck Surgery, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Jiajun Chen
- The Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Henry
H. Teng
- Department
of Chemistry, The George Washington University, Washington, D.C. 20052, United States
| | - Ruediger Thalmann
- Department
of Otolaryngology-Head and Neck Surgery, Washington University in St. Louis, St. Louis, Missouri 63110, United States
- (R.T.) E-mail:
| | - James J. De Yoreo
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
- (J.J.D.) E-mail:
| |
Collapse
|
10
|
Coelho CM, Balaban CD. Visuo-vestibular contributions to anxiety and fear. Neurosci Biobehav Rev 2014; 48:148-59. [PMID: 25451199 DOI: 10.1016/j.neubiorev.2014.10.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/25/2014] [Accepted: 10/28/2014] [Indexed: 12/30/2022]
Abstract
The interactive roles of the visual and vestibular systems allow for postural control within boundaries of perceived safety. In specific circumstances, visual vestibular and postural interactions act as a cue that trigger fear, similarly to what occurs in motion sickness. Unusual patterns of visuo-vestibular interaction that emerge without warning can elicit fear, which can then become associated to a certain stimuli or situation, creating a CS-US association, (i.e., phobia), or can emerge without warning but also without becoming associated to a particular concomitant event (i.e., panic). Depending on the individual sensitivity to visuo-vestibular unusual patterns and its impact in postural control, individuals will be more or less vulnerable to develop these disorders. As such, the mechanism we here propose is also sufficient to explain the lack of certain fears albeit exposure. Following this rationale, a new subcategory of anxiety disorders, named visuo-vestibular fears can be considered. This model brings important implications for developmental and evolutionary psychological science, and invites to place visuo-vestibular fears in a particular subtype or specification within the DSM-5 diagnostic criteria.
Collapse
Affiliation(s)
- Carlos M Coelho
- University of Minho, School of Engineering, Centro Algoritmi, Guimarães, Portugal; University of Queensland, Queensland Brain Institute, Brisbane, Australia.
| | - Carey D Balaban
- University of Pittsburgh, School of Med, Department of Otolaryngology, Eye & Ear Inst., Pittsburgh, PA, USA; University of Pittsburgh, Department of Neurobiology, Pittsburgh, PA, USA; University of Pittsburgh, Department of Communication Sciences & Disorders, Pittsburgh, PA, USA; University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014; 244:239-53. [PMID: 25255879 DOI: 10.1002/dvdy.24195] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
12
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014. [PMID: 25255879 DOI: 10.1002/dvdy.24195(2014)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
13
|
Walther LE, Blödow A, Buder J, Kniep R. Principles of calcite dissolution in human and artificial otoconia. PLoS One 2014; 9:e102516. [PMID: 25048115 PMCID: PMC4105460 DOI: 10.1371/journal.pone.0102516] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/19/2014] [Indexed: 12/03/2022] Open
Abstract
Human otoconia provide mechanical stimuli to deflect hair cells of the vestibular sensory epithelium for purposes of detecting linear acceleration and head tilts. During lifetime, the volume and number of otoconia are gradually reduced. In a process of degeneration morphological changes occur. Structural changes in human otoconia are assumed to cause vertigo and balance disorders such as benign paroxysmal positional vertigo (BPPV). The aim of this study was to investigate the main principles of morphological changes in human otoconia in dissolution experiments by exposure to hydrochloric acid, EDTA, demineralized water and completely purified water respectively. For comparison reasons artificial (biomimetic) otoconia (calcite gelatin nanocomposits) and natural calcite were used. Morphological changes were detected in time steps by the use of environmental scanning electron microscopy (ESEM). Under in vitro conditions three main dissolution mechanisms were identified as causing characteristic morphological changes of the specimen under consideration: pH drops in the acidic range, complex formation with calcium ions and changes of ion concentrations in the vicinity of otoconia. Shifts in pH cause a more uniform reduction of otoconia size (isotropic dissolution) whereas complexation reactions and changes of the ionic concentrations within the surrounding medium bring about preferred attacks at specific areas (anisotropic dissolution) of human and artificial otoconia. Owing to successive reduction of material, all the dissolution mechanisms finally produce fragments and remnants of otoconia. It can be assumed that the organic component of otoconia is not significantly attacked under the given conditions. Artificial otoconia serve as a suitable model system mimicking chemical attacks on biogenic specimens. The underlying principles of calcite dissolution under in vitro conditions may play a role in otoconia degeneration processes such as BPPV.
Collapse
Affiliation(s)
- Leif Erik Walther
- Department of Otorhinolaryngology & Head and Neck Surgery, University Medicine Mannheim, University of Heidelberg, Mannheim, Germany
- * E-mail:
| | - Alexander Blödow
- Department of Otorhinolaryngology, Helios Clinic Berlin-Buch, Berlin, Germany
| | - Jana Buder
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - Rüdiger Kniep
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| |
Collapse
|
14
|
Abstract
Benign paroxysmal positional vertigo (BPPV), the most common cause of dizziness, occurs in all age groups. It presents with vertigo on head movement, but in older patients presentation may be typical and thus accounting for a low recognition rate in the primary care setting. It may be recurrent in up to 50% of cases. BPPV is associated with displacement of fragments of utricular otoconia into the semicircular canals, most commonly the posterior semicircular canal. Otoconia are composed of otoconin and otolin forming the organic matrix on which calcium carbonate mineralizes. Otoconia may fragment with trauma, age, or changes in the physiology of endolymph (e.g., pH and calcium concentration). Presentation varied because otoconia fragments can be displaced into any of the semicircular canals on either (or both) side and may be free floating (canalolithiasis) or attached to the cupula (cupulolithiasis). Most cases of BPPV are idiopathic, but head trauma, otologic disorders, and systemic disease appear to be contributory in a subset. Positional maneuvers are used to diagnose and treat the majority of cases. In rare intractable cases surgical management may be considered. A strong association with osteoporosis suggests that idiopathic BPPV may have diagnostic and management implications beyond that of a purely otologic condition.
Collapse
|
15
|
In vitro calcite crystal morphology is modulated by otoconial proteins otolin-1 and otoconin-90. PLoS One 2014; 9:e95333. [PMID: 24748133 PMCID: PMC3991680 DOI: 10.1371/journal.pone.0095333] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/25/2014] [Indexed: 11/19/2022] Open
Abstract
Otoconia are formed embryonically and are instrumental in detecting linear acceleration and gravity. Degeneration and fragmentation of otoconia in elderly patients leads to imbalance resulting in higher frequency of falls that are positively correlated with the incidence of bone fractures and death. In this work we investigate the roles otoconial proteins Otolin-1 and Otoconin 90 (OC90) perform in the formation of otoconia. We demonstrate by rotary shadowing and atomic force microscopy (AFM) experiments that Otolin-1 forms homomeric protein complexes and self-assembled networks supporting the hypothesis that Otolin-1 serves as a scaffold protein of otoconia. Our calcium carbonate crystal growth data demonstrate that Otolin-1 and OC90 modulate in vitro calcite crystal morphology but neither protein is sufficient to produce the shape of otoconia. Coadministration of these proteins produces synergistic effects on crystal morphology that contribute to morphology resembling otoconia.
Collapse
|
16
|
Andrade LR, Lins U, Farina M, Kachar B, Thalmann R. Immunogold TEM of otoconin 90 and otolin - relevance to mineralization of otoconia, and pathogenesis of benign positional vertigo. Hear Res 2012; 292:14-25. [PMID: 22841569 PMCID: PMC3587656 DOI: 10.1016/j.heares.2012.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 11/19/2022]
Abstract
Implementation of the deep-etch technique enabled unprecedented definition of substructural elements of otoconia, including the fibrillar meshwork of the inner core with its globular attachments. Subsequently the effects of the principal soluble otoconial protein, otoconin 90, upon calcite crystal growth in vitro were determined, including an increased rate of nucleation, inhibition of growth kinetics and significant morphologic changes. The logical next step, ultrastructural localization of otoconin 90, by means of immunogold TEM in young mature mice, demonstrated a high density of gold particles in the inner core in spite of a relatively low level of mineralization. Here gold particles are typically arranged in oval patterns implying that otoconin 90 is attached to a scaffold consisting of the hexagonal fibrillar meshwork, characteristic of otolin. The level of mineralization is much higher in the outer cortex where mineralized fiber bundles are arranged parallel to the surface. Following decalcification, gold particles, as well as matrix fibrils, presumed to consist of a linear structural phenotype of otolin, are aligned in identical direction, suggesting that they serve as scaffold to guide mineralization mediated by otoconin 90. In the faceted tips, the level of mineralization is highest, even though the density of gold particles is relatively low, conceivably due to the displacement by the dense mineral phase. TEM shows that individual crystallites assemble into iso-oriented columns. Columns are arranged in parallel lamellae which convert into mineralized blocks for hierarchical assembly into the complex otoconial mosaic. Another set of experiments based on immunogold TEM in young mice demonstrates that the fibrils interconnecting otoconia consist of the short chain collagen otolin. By two years of age the superficial layer of mouse otoconia (corresponding to mid-life human) has become demineralized resulting in weakening or loss of anchoring of the fibrils interconnecting otoconia. Consequently, otoconia detached from each other may be released into the endolymphatic space by minor mechanical disturbances. In humans, benign positional vertigo (BPV) is believed to result from translocation of otoconia from the endolymphatic space into the semi-circular canals rendering their receptors susceptible to stimulation by gravity causing severe attacks of vertigo. The combinations of these observations in humans, together with the presented animal experiments, provide a tentative pathogenetic basis of the early stage of BPV.
Collapse
Affiliation(s)
- Leonardo R. Andrade
- Laboratory of Cell Structure and Dynamics, NIDCD, NIH, Bethesda, MD 20892, USA
- Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Ulysses Lins
- Instituto de Microbiologia Professor Paulo de Góes, CCS, Universidade Federal do Rio de Janeiro, 21941-590 RJ, Brazil
| | - Marcos Farina
- Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Bechara Kachar
- Laboratory of Cell Structure and Dynamics, NIDCD, NIH, Bethesda, MD 20892, USA
| | - Ruediger Thalmann
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
17
|
Simon P, Carrillo-Cabrera W, Huang YX, Buder J, Borrmann H, Cardoso-Gil R, Rosseeva E, Yarin Y, Zahnert T, Kniep R. Structural Relationship between Calcite-Gelatine Composites and Biogenic (Human) Otoconia. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201100756] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 2011; 111:6130-85. [PMID: 21910409 PMCID: PMC3196595 DOI: 10.1021/cr200085w] [Citation(s) in RCA: 835] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Edward A. Dennis
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Jian Cao
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Yuan-Hao Hsu
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| |
Collapse
|
19
|
Yang H, Zhao X, Xu Y, Wang L, He Q, Lundberg YW. Matrix recruitment and calcium sequestration for spatial specific otoconia development. PLoS One 2011; 6:e20498. [PMID: 21655225 PMCID: PMC3105080 DOI: 10.1371/journal.pone.0020498] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/28/2011] [Indexed: 11/19/2022] Open
Abstract
Otoconia are bio-crystals anchored to the macular sensory epithelium of the utricle and saccule in the inner ear for motion sensing and bodily balance. Otoconia dislocation, degeneration and ectopic calcification can have detrimental effects on balance and vertigo/dizziness, yet the mechanism underlying otoconia formation is not fully understood. In this study, we show that selected matrix components are recruited to form the crystal matrix and sequester Ca(2+) for spatial specific formation of otoconia. Specifically, otoconin-90 (Oc90) binds otolin through both domains (TH and C1q) of otolin, but full-length otolin shows the strongest interaction. These proteins have much higher expression levels in the utricle and saccule than other inner ear epithelial tissues in mice. In vivo, the presence of Oc90 in wildtype (wt) mice leads to an enrichment of Ca(2+) in the luminal matrices of the utricle and saccule, whereas absence of Oc90 in the null mice leads to drastically reduced matrix-Ca(2+). In vitro, either Oc90 or otolin can increase the propensity of extracellular matrix to calcify in cell culture, and co-expression has a synergistic effect on calcification. Molecular modeling and sequence analysis predict structural features that may underlie the interaction and Ca(2+)-sequestering ability of these proteins. Together, the data provide a mechanism for the otoconial matrix assembly and the role of this matrix in accumulating micro-environmental Ca(2+) for efficient CaCO(3) crystallization, thus uncover a critical process governing spatial specific otoconia formation.
Collapse
Affiliation(s)
- Hua Yang
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Xing Zhao
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Yinfang Xu
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Lili Wang
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Quanyuan He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yunxia Wang Lundberg
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| |
Collapse
|
20
|
Thalmann R, Thalmann I, Lu W. Significance of tertiary conformation of otoconial matrix proteins - clinical implications. Acta Otolaryngol 2011; 131:382-90. [PMID: 21401448 DOI: 10.3109/00016489.2010.548401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION Co-option of the enzyme secretory phospholipase A2 (sPLA2) and adoption of tertiary conformation are essential factors in the multifunctionality of otoconin 90 (OC90) and homologous modulators. OBJECTIVE To present results of in vitro studies of recombinant otoconial proteins for the understanding of current concepts of biomolecular mechanisms controlling otoconial mineralization. METHODS In vitro characterization of recombinant otoconial proteins with respect to crystal growth parameters and solution state behavior. Evaluation by HR-SEM, micro-Raman, circular dichroism, in combination with molecular modeling of individual domains and whole OC90. RESULTS Polymorph selection: recombinant otoconin 22 (rOC22) in vitro selects calcite rather than aragonite, expression of which requires association with an insoluble scaffold most likely provided by Otolin. Alternate folding of rOC22 results in formation of vaterite, the polymorph of primitive fish otoconia and of diseased human otoconia (e.g. Potter's syndrome). Molecular models of OC90 exhibit a surface of uniform negative electrostatic potential, enabling localized supersaturation. We propose that OC90 interacts with Otolin in formation of iso-oriented columns of nano-crystallites, which should ultimately result in assembly of the complex mosaic of native otoconia.
Collapse
Affiliation(s)
- Ruediger Thalmann
- Department of Otolaryngology-Head and Neck Surgery, Washington University in St Louis, Missouri, USA.
| | | | | |
Collapse
|