1
|
Miura A, Nakagawa T, Sogi C, Shima H, Adachi M, Honkura Y, Kikuchi A, Kanno J. Hearing loss with two pathogenic SLC26A4 variants and positive thyroid autoantibody: A case report. Clin Pediatr Endocrinol 2024; 33:219-223. [PMID: 39359669 PMCID: PMC11442696 DOI: 10.1297/cpe.2023-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/19/2024] [Indexed: 10/04/2024] Open
Abstract
SLC26A4 causes Pendred syndrome (PS) and nonsyndromic hearing loss. PS is distinguished based on perchlorate discharge test abnormality, goiter, and hypothyroidism in some patients. The pathophysiology of thyroid dysfunction in PS differs from that of autoimmune thyroid disease, in that it is considered to be caused by an iodide organification defect. It is believed that both diseases may incidentally coexist, and that SLC26A4 may play an important role in the etiology of autoimmune thyroid disease. Herein, we describe a case of a girl with hearing loss who had two pathogenic SLC26A4 variants and tested positive for thyroid peroxidase (TPO) antibody. She was diagnosed with hearing loss and vestibular aqueduct enlargement at the age of 4 yr. Deafness gene screening revealed two pathogenic SLC26A4 variants. As SLC26A4 variants can cause PS, the patient underwent thorough thyroid examination. Her thyroid gland was within the physiological range of mild enlargement. Although thyroid function test results were normal, the patient tested positive for TPO antibody. The patient was diagnosed with "suspected PS" and "suspected Hashimoto's thyroiditis," both of which increase the risk of developing hypothyroidism. Evaluating the comorbidity of Hashimoto's thyroiditis with the SLC26A4 variant in terms of complications is critical.
Collapse
Affiliation(s)
- Akinobu Miura
- Department of Pediatrics, Tohoku University Hospital, Sendai, Japan
| | - Tomohiro Nakagawa
- Department of Pediatrics, Tohoku University Hospital, Sendai, Japan
- Department of Pediatrics, Sendai City Hospital, Sendai, Japan
| | - Chisumi Sogi
- Department of Pediatrics, Tohoku University Hospital, Sendai, Japan
- Department of Pediatrics, JCHO Sendai Hospital, Sendai, Japan
| | - Hirohito Shima
- Department of Pediatrics, Tohoku University Hospital, Sendai, Japan
| | - Mika Adachi
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Hospital, Sendai, Japan
| | - Yohei Honkura
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Hospital, Sendai, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University Hospital, Sendai, Japan
| | - Junko Kanno
- Department of Pediatrics, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
2
|
Takahashi S, Homma K. The molecular principles underlying diverse functions of the SLC26 family of proteins. J Biol Chem 2024; 300:107261. [PMID: 38582450 PMCID: PMC11078650 DOI: 10.1016/j.jbc.2024.107261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024] Open
Abstract
Mammalian SLC26 proteins are membrane-based anion transporters that belong to the large SLC26/SulP family, and many of their variants are associated with hereditary diseases. Recent structural studies revealed a strikingly similar homodimeric molecular architecture for several SLC26 members, implying a shared molecular principle. Now a new question emerges as to how these structurally similar proteins execute diverse physiological functions. In this study, we sought to identify the common versus distinct molecular mechanism among the SLC26 proteins using both naturally occurring and artificial missense changes introduced to SLC26A4, SLC26A5, and SLC26A9. We found: (i) the basic residue at the anion binding site is essential for both anion antiport of SLC26A4 and motor functions of SLC26A5, and its conversion to a nonpolar residue is crucial but not sufficient for the fast uncoupled anion transport in SLC26A9; (ii) the conserved polar residues in the N- and C-terminal cytosolic domains are likely involved in dynamic hydrogen-bonding networks and are essential for anion antiport of SLC26A4 but not for motor (SLC26A5) and uncoupled anion transport (SLC26A9) functions; (iii) the hydrophobic interaction between each protomer's last transmembrane helices, TM14, is not of functional significance in SLC26A9 but crucial for the functions of SLC26A4 and SLC26A5, likely contributing to optimally orient the axis of the relative movements of the core domain with respect to the gate domains within the cell membrane. These findings advance our understanding of the molecular mechanisms underlying the diverse physiological roles of the SLC26 family of proteins.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Center for Mechanical Excitability, The University of Chicago, Chicago, Illinois, USA
| | - Kazuaki Homma
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Center for Mechanical Excitability, The University of Chicago, Chicago, Illinois, USA; The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, Illinois, USA.
| |
Collapse
|
3
|
Takahashi S, Kojima T, Wasano K, Homma K. Functional Studies of Deafness-Associated Pendrin and Prestin Variants. Int J Mol Sci 2024; 25:2759. [PMID: 38474007 PMCID: PMC10931795 DOI: 10.3390/ijms25052759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Pendrin and prestin are evolutionary-conserved membrane proteins that are essential for normal hearing. Dysfunction of these proteins results in hearing loss in humans, and numerous deafness-associated pendrin and prestin variants have been identified in patients. However, the pathogenic impacts of many of these variants are ambiguous. Here, we report results from our ongoing efforts to experimentally characterize pendrin and prestin variants using in vitro functional assays. With previously established fluorometric anion transport assays, we determined that many of the pendrin variants identified on transmembrane (TM) 10, which contains the essential anion binding site, and on the neighboring TM9 within the core domain resulted in impaired anion transport activity. We also determined the range of functional impairment in three deafness-associated prestin variants by measuring nonlinear capacitance (NLC), a proxy for motor function. Using the results from our functional analyses, we also evaluated the performance of AlphaMissense (AM), a computational tool for predicting the pathogenicity of missense variants. AM prediction scores correlated well with our experimental results; however, some variants were misclassified, underscoring the necessity of experimentally assessing the effects of variants. Together, our experimental efforts provide invaluable information regarding the pathogenicity of deafness-associated pendrin and prestin variants.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Otolaryngology—Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Takashi Kojima
- Department of Otolaryngology—Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Otolaryngology, Head and Neck Surgery, National Hospital Organization Tochigi Medical Center, Tochigi 320-0057, Japan
| | - Koichiro Wasano
- Department of Otolaryngology—Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Otolaryngology, Head and Neck Surgery, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Kazuaki Homma
- Department of Otolaryngology—Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
4
|
Yu K, Liu X, Yang B. The correlation between deafness progression and SLC26A4 mutations in enlarged vestibular aqueduct patients. Eur Arch Otorhinolaryngol 2024; 281:649-654. [PMID: 37477685 DOI: 10.1007/s00405-023-08123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND The relationship between the hearing phenotype and the SLC26A4 mutation in enlarged vestibular aqueduct cases has not been fully elucidated. OBJECTIVES To detect SLC26A4 mutation in a group of cases with enlarged vestibular aqueduct who received cochlear implantation and to analyze the correlation between the SLC26A4 genotype and the progression of deafness. MATERIALS AND METHODS Twenty-nine enlarged vestibular aqueduct patients were selected. Using the Sanger sequence to analyze SLC26A4 gene mutations. The 29 cases were divided into group A (carrying the c.919-2A > G mutation) and group B (not carrying the c.919-2A > G mutation). The difference in the duration of deafness was analyzed between the two groups. RESULTS The detection rate of the c.1174A > T mutation in the postlingual deafness group was 37.5%, higher than that in the prelingual deafness group (0%). The difference in the duration of deafness between groups A and B was not statistically significant by the Mann-Whitney U test (p > 0.05). CONCLUSIONS The correlation between the SLC26A4 genotype and the duration of deafness in cases with enlarged vestibular aqueduct is not yet clear. However, the c.1174A > T mutation may be linked to delayed hearing loss and the progression of deafness may be relatively slow in some cases of c.919-2A > G mutation.
Collapse
Affiliation(s)
- Kejia Yu
- The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Xiao Liu
- Department of Otorhinolaryngology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beibei Yang
- Department of Otorhinolaryngology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Álvarez-Córdoba M, Talaverón-Rey M, Povea-Cabello S, Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Reche-López D, Munuera-Cabeza M, Suárez-Carrillo A, Romero-González A, Romero-Domínguez JM, López-Cabrera A, Armengol JÁ, Sánchez-Alcázar JA. Patient-Derived Cellular Models for Polytarget Precision Medicine in Pantothenate Kinase-Associated Neurodegeneration. Pharmaceuticals (Basel) 2023; 16:1359. [PMID: 37895830 PMCID: PMC10609847 DOI: 10.3390/ph16101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The term neurodegeneration with brain iron accumulation (NBIA) brings together a broad set of progressive and disabling neurological genetic disorders in which iron is deposited preferentially in certain areas of the brain. Among NBIA disorders, the most frequent subtype is pantothenate kinase-associated neurodegeneration (PKAN) caused by pathologic variants in the PANK2 gene codifying the enzyme pantothenate kinase 2 (PANK2). To date, there are no effective treatments to stop the progression of these diseases. This review discusses the utility of patient-derived cell models as a valuable tool for the identification of pharmacological or natural compounds for implementing polytarget precision medicine in PKAN. Recently, several studies have described that PKAN patient-derived fibroblasts present the main pathological features associated with the disease including intracellular iron overload. Interestingly, treatment of mutant cell cultures with various supplements such as pantothenate, pantethine, vitamin E, omega 3, α-lipoic acid L-carnitine or thiamine, improved all pathophysiological alterations in PKAN fibroblasts with residual expression of the PANK2 enzyme. The information provided by pharmacological screenings in patient-derived cellular models can help optimize therapeutic strategies in individual PKAN patients.
Collapse
Affiliation(s)
- Mónica Álvarez-Córdoba
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Marta Talaverón-Rey
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Suleva Povea-Cabello
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Paula Cilleros-Holgado
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - David Gómez-Fernández
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Rocío Piñero-Pérez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Diana Reche-López
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Manuel Munuera-Cabeza
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Alejandra Suárez-Carrillo
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Ana Romero-González
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Jose Manuel Romero-Domínguez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Alejandra López-Cabrera
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - José Ángel Armengol
- Department of Physiology, Anatomy and Cellular Biology, Pablo de Olavide University, 41013 Seville, Spain;
| | - José Antonio Sánchez-Alcázar
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| |
Collapse
|
6
|
He X, Zhao S, Shi L, Lu Y, Yang Y, Zhang X. Compound heterozygous variants of the SLC26A4 gene in a Chinese family with enlarged vestibular aqueducts. BMC Med Genomics 2022; 15:152. [PMID: 35804348 PMCID: PMC9270741 DOI: 10.1186/s12920-022-01271-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Background To investigate the genetic causes of hearing loss in patients with enlarged vestibular aqueduct (EVA), the SLC26A4-related genotypes and phenotypes were analyzed. SLC26A4 gene is closely associated with EVA and its homozygous mutations or compound heterozygous mutations may cause deafness and strongly affect quality of life. Methods The patients who came to our hospital for hearing test and accompanied by bilateral hearing abnormalities were collected for fifteen deafness-related gene mutations detection. Those who are positive will be verified by Sanger sequencing, combined with family history, hearing test, and computerized tomography (CT) of the temporal bone, aiming to diagnose the enlarged vestibular aqueducts. Whole-exome sequencing were performed when necessary. Results Our patient failed hearing screening on both sides twice, and EVA (> 1.5 mm) was diagnosed by CT. This study has identified a novel missense mutation in the SLC26A4 gene, c.2069T>A, which in compound heterozygosity with c.1174A>T is likely to be the cause of hearing loss. The novel heterozygous c.2069T>A mutation of SLC26A4 gene has been submitted to Clinvar with Variation ID 1,048,780. Conclusion Our findings expand the gene mutation spectrum of SLC26A4 and provide additional knowledge for diagnosis and genetic counseling associated with EVA-induced hearing loss. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01271-3.
Collapse
Affiliation(s)
- Xiaohui He
- Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Shaozhi Zhao
- Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Lin Shi
- Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Yitong Lu
- Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Yintong Yang
- Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Xinwen Zhang
- Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China.
| |
Collapse
|
7
|
Murakoshi M, Koike Y, Koyama S, Usami S, Kamiya K, Ikeda K, Haga Y, Tsumoto K, Nakamura H, Hirasawa N, Ishihara K, Wada H. Effects of salicylate derivatives on localization of p.H723R allele product of SLC26A4. Auris Nasus Larynx 2022; 49:928-937. [PMID: 35305848 DOI: 10.1016/j.anl.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 01/24/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Pendrin is a transmembrane protein encoded by the SLC26A4 gene that functions in maintaining ion concentrations in the endolymph of the inner ear, most likely by acting as a chloride/bicarbonate transporter. Variants in the SLC26A4 gene are responsible for sensorineural hearing loss. Although pendrin localizes to the plasma membrane, we previously identified that 8 missense allele products of SLC26A4 were retained in the intracellular region and lost their anion exchange function. We also found that 10 mM salicylate induced the translocation of 4 out of 8 allele products from the intracellular region to the plasma membrane and restored their anion exchanger activity. However, since 10 mM salicylate exhibits cytotoxicity, the use of chemical compounds with less cell toxicity is needed. In the present study, therefore, salicylate derivatives were used as the chemical compounds and their effects on the p.H723R allele products of SLC26A4 were investigated. METHODS HEK293 cells were transfected with the cDNA of p.H723R. Cell proliferation, viability and toxicity assays were performed to investigate the response and health of cells in culture after treatment with four types of salicylate derivatives, i.e., 2-hydroxybenzyl alcohol, 2,3-dihydroxybenzoic acid, 2'-hydroxyacetophenone and methyl salicylate. The effects of these salicylate derivatives on the localization of the p.H723R were investigated by immunofluorescence microscopy. RESULTS The application of 10 mM salicylate showed an increase in cell toxicity and decrease in cell viability, leading to a significant decrease in cell proliferation. In contrast, the application of 1 mM salicylate derivatives did not show any significant increase in cell toxicity and decrease in cell viability, corresponding to a logarithmic increase in cell concentration with an increase in culture time. Immunofluorescence experiments showed that the p.H723R retained in the endoplasmic reticulum (ER). Among the salicylate derivatives applied, 2-hydroxybenzyl alcohol induced the translocation of p.H723R from the ER to the plasma membrane 3 h after its application. CONCLUSION The results obtained showed that 2-hydroxybenzyl alcohol restored the localization of the p.H723R allele products of SLC26A4 from the ER to the plasma membrane at a concentration of 1 mM by 3 h after its administration with less cytotoxicity than 10 mM salicylate.
Collapse
Affiliation(s)
- Michio Murakoshi
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Division of Mechanical Science and Engineering, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan.
| | - Yuhi Koike
- Division of Mechanical Science and Engineering, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Shin Koyama
- Kansokan-kyoto.com, Kyoto, Japan; Division of Creative Research and Development of Humanosphere, Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Shinichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kazusaku Kamiya
- Department of Otorhinolaryngology, Juntendo University School of Medicine, Tokyo, Japan
| | - Katsuhisa Ikeda
- Department of Otorhinolaryngology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoichi Haga
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Kohei Tsumoto
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kenji Ishihara
- Laboratory of Medical Science, Course for School Nurse Teacher, Faculty of Education, Ibaraki University, Mito, Japan
| | - Hiroshi Wada
- Department of Intelligent Information System, Tohoku Bunka Gakuen University, Sendai, Japan
| |
Collapse
|
8
|
Hu CJ, Lu YC, Tsai CY, Chan YH, Lin PH, Lee YS, Yu IS, Lin SW, Liu TC, Hsu CJ, Yang TH, Cheng YF, Wu CC. Insights into phenotypic differences between humans and mice with p.T721M and other C-terminal variants of the SLC26A4 gene. Sci Rep 2021; 11:20983. [PMID: 34697379 PMCID: PMC8545921 DOI: 10.1038/s41598-021-00448-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
Recessive variants of the SLC26A4 gene are an important cause of hereditary hearing impairment. Several transgenic mice with different Slc26a4 variants have been generated. However, none have recapitulated the auditory phenotypes in humans. Of the SLC26A4 variants identified thus far, the p.T721M variant is of interest, as it appears to confer a more severe pathogenicity than most of the other missense variants, but milder pathogenicity than non-sense and frameshift variants. Using a genotype-driven approach, we established a knock-in mouse model homozygous for p.T721M. To verify the pathogenicity of p.T721M, we generated mice with compound heterozygous variants by intercrossing Slc26a4+/T721M mice with Slc26a4919-2A>G/919-2A>G mice, which segregated the c.919-2A > G variant with abolished Slc26a4 function. We then performed serial audiological assessments, vestibular evaluations, and inner ear morphological studies. Surprisingly, both Slc26a4T721M/T721M and Slc26a4919-2A>G/T721M showed normal audiovestibular functions and inner ear morphology, indicating that p.T721M is non-pathogenic in mice and a single p.T721M allele is sufficient to maintain normal inner ear physiology. The evidence together with previous reports on mouse models with Slc26a4 p.C565Y and p.H723R variants, support our speculation that the absence of audiovestibular phenotypes in these mouse models could be attributed to different protein structures at the C-terminus of human and mouse pendrin.
Collapse
Affiliation(s)
- Chin-Ju Hu
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ying-Chang Lu
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan
| | - Yen-Hui Chan
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan.,Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, 427, Taiwan
| | - Pei-Hsuan Lin
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan
| | - Yi-Shan Lee
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan
| | - I-Shing Yu
- Transgenic Mouse Models Core (TMMC), Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei, 100, Taiwan
| | - Shu-Wha Lin
- Transgenic Mouse Models Core (TMMC), Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei, 100, Taiwan
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan.,Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan.,Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, 427, Taiwan
| | - Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan.
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veteran General Hospital, 201, Sec.2, Shi-Pai Rd, Taipei, 112, Taiwan. .,Department of Otolaryngology-Head and Neck Surgery, Taipei Veteran General Hospital, Taipei, 112, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan. .,Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan. .,Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, 302, Taiwan.
| |
Collapse
|
9
|
Hosoya M, Fujioka M, Murayama AY, Ogawa K, Okano H, Ozawa H. Dynamic Spatiotemporal Expression Changes in Connexins of the Developing Primate's Cochlea. Genes (Basel) 2021; 12:genes12071082. [PMID: 34356098 PMCID: PMC8307058 DOI: 10.3390/genes12071082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/03/2023] Open
Abstract
Connexins are gap junction components that are essential for acquiring normal hearing ability. Up to 50% of congenital, autosomal-recessive, non-syndromic deafness can be attributed to variants in GJB2, the gene that encodes connexin 26. Gene therapies modifying the expression of connexins are a feasible treatment option for some patients with genetic hearing losses. However, the expression patterns of these proteins in the human fetus are not fully understood due to ethical concerns. Recently, the common marmoset was used as a primate animal model for the human fetus. In this study, we examined the expression patterns of connexin 26 and connexin 30 in the developing cochlea of this primate. Primate-specific spatiotemporal expression changes were revealed, which suggest the existence of primate-specific control of connexin expression patterns and specific functions of these gap junction proteins. Moreover, our results indicate that treatments for connexin-related hearing loss established in rodent models may not be appropriate for human patients, underscoring the importance of testing these treatments in primate models before applying them in human clinical trials.
Collapse
Affiliation(s)
- Makoto Hosoya
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan; (M.H.); (K.O.); (H.O.)
| | - Masato Fujioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan; (M.H.); (K.O.); (H.O.)
- Correspondence: ; Tel.: +81-3-5363-3827
| | - Ayako Y. Murayama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan; (A.Y.M.); (H.O.)
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Kaoru Ogawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan; (M.H.); (K.O.); (H.O.)
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan; (A.Y.M.); (H.O.)
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan; (M.H.); (K.O.); (H.O.)
| |
Collapse
|
10
|
Tian Y, Xu H, Liu D, Zhang J, Yang Z, Zhang S, Liu H, Li R, Tian Y, Zeng B, Li T, Lin Q, Wang H, Li X, Lu W, Shi Y, Zhang Y, Zhang H, Jiang C, Xu Y, Chen B, Liu J, Tang W. Increased diagnosis of enlarged vestibular aqueduct by multiplex PCR enrichment and next-generation sequencing of the SLC26A4 gene. Mol Genet Genomic Med 2021; 9:e1734. [PMID: 34170635 PMCID: PMC8404235 DOI: 10.1002/mgg3.1734] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/30/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Background The enlarged vestibular aqueduct (EVA) is the commonest malformation of inner ear accompanied by sensorineural hearing loss in children. Three genes SLC26A4, FOXI1, and KCNJ10 have been associated with EVA, among them SLC26A4 being the most common. Yet, hotspot mutation screening can only diagnose a small number of patients. Methods Thus, in this study, we designed a new molecular diagnosis panel for EVA based on multiplex PCR enrichment and next‐generation sequencing of the exon and flanking regions of SLC26A4. A total of 112 hearing loss families with EVA were enrolled and the pathogenicity of the rare variants detected was interpreted according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Results Our results showed that 107/112 (95.54%) families carried SLC26A4 biallelic mutations, 4/112 (3.57%) carried monoallelic variants, and 1/112 (0.89%) had none variant, resulting in a diagnostic rate of 95.54%. A total of 49 different variants were detected in those patients and we classified 30 rare variants as pathogenic/likely pathogenic, of which 13 were not included in the Clinvar database. Conclusion Our diagnostic panel has an increased diagnostic yield with less cost, and the curated list of pathogenic variants in the SLC26A4 gene can be directly used to aid the genetic counseling to patients.
Collapse
Affiliation(s)
- Yongan Tian
- BGI College, Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Hongen Xu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danhua Liu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juanli Zhang
- Henan Province Medical Instrument Testing Institute, Zhengzhou, China
| | | | - Sen Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huanfei Liu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Ruijun Li
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | | | - Beiping Zeng
- BGI College, Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tong Li
- BGI College, Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianyu Lin
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haili Wang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Xiaohua Li
- Department of Otology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Lu
- Department of Otology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Shi
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhang
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Zhang
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chang Jiang
- Department of Otology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ying Xu
- Zhengzhou Children's Hospital, Zhengzhou, China
| | - Bei Chen
- Department of Otology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Liu
- Department of Otology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wenxue Tang
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Abstract
Congenital hearing loss is the most common birth defect, estimated to affect 2-3 in every 1000 births. Currently there is no cure for hearing loss. Treatment options are limited to hearing aids for mild and moderate cases, and cochlear implants for severe and profound hearing loss. Here we provide a literature overview of the environmental and genetic causes of congenital hearing loss, common animal models and methods used for hearing research, as well as recent advances towards developing therapies to treat congenital deafness. © 2021 The Authors.
Collapse
Affiliation(s)
- Justine M Renauld
- Department of Otolaryngology, Head & Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Martin L Basch
- Department of Otolaryngology, Head & Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Department of Genetics and Genome Sciences, Case Western Reserve School of Medicine, Cleveland, Ohio.,Department of Biology, Case Western Reserve University, Cleveland, Ohio.,Department of Otolaryngology, Head & Neck Surgery, University Hospitals, Cleveland, Ohio
| |
Collapse
|
12
|
Hu CJ, Lu YC, Yang TH, Chan YH, Tsai CY, Yu IS, Lin SW, Liu TC, Cheng YF, Wu CC, Hsu CJ. Toward the Pathogenicity of the SLC26A4 p.C565Y Variant Using a Genetically Driven Mouse Model. Int J Mol Sci 2021; 22:2789. [PMID: 33801843 PMCID: PMC8001573 DOI: 10.3390/ijms22062789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/19/2022] Open
Abstract
Recessive variants of the SLC26A4 gene are globally a common cause of hearing impairment. In the past, cell lines and transgenic mice were widely used to investigate the pathogenicity associated with SLC26A4 variants. However, discrepancies in pathogenicity between humans and cell lines or transgenic mice were documented for some SLC26A4 variants. For instance, the p.C565Y variant, which was reported to be pathogenic in humans, did not exhibit functional pathogenic consequences in cell lines. To address the pathogenicity of p.C565Y, we used a genotype-based approach in which we generated knock-in mice that were heterozygous (Slc26a4+/C565Y), homozygous (Slc26a4C565Y/C565Y), and compound heterozygous (Slc26a4919-2A>G/C565Y) for this variant. Subsequent phenotypic characterization revealed that mice with these genotypes demonstrated normal auditory and vestibular functions, and normal inner-ear morphology and pendrin expression. These findings indicate that the p.C565Y variant is nonpathogenic for mice, and that a single p.C565Y allele is sufficient to maintain normal inner-ear physiology in mice. Our results highlight the differences in pathogenicity associated with certain SLC26A4 variants between transgenic mice and humans, which should be considered when interpreting the results of animal studies for SLC26A4-related deafness.
Collapse
Affiliation(s)
- Chin-Ju Hu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Ying-Chang Lu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 112, Taiwan
| | - Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
| | - Yen-Hui Chan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
| | - I-Shing Yu
- Transgenic Mouse Models Core (TMMC), Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei 100, Taiwan; (I-S.Y.); (S.-W.L.)
| | - Shu-Wha Lin
- Transgenic Mouse Models Core (TMMC), Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei 100, Taiwan; (I-S.Y.); (S.-W.L.)
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 112, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veteran General Hospital, Taipei 112, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| |
Collapse
|
13
|
Ding N, Lee S, Lieber-Kotz M, Yang J, Gao X. Advances in genome editing for genetic hearing loss. Adv Drug Deliv Rev 2021; 168:118-133. [PMID: 32387678 DOI: 10.1016/j.addr.2020.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
According to the World Health Organization, hearing loss affects over 466 million people worldwide and is the most common human sensory impairment. It is estimated that genetic factors contribute to the causation of approximately 50% of congenital hearing loss. Yet, curative approaches to reversing or preventing genetic hearing impairment are still limited. The clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) systems enable programmable and targeted gene editing in highly versatile manners and offer new gene therapy strategies for genetic hearing loss. Here, we summarize the most common deafness-associated genes, illustrate recent strategies undertaken by using CRISPR-Cas9 systems for targeted gene editing and further compare the CRISPR strategies to non-CRISPR gene therapies. We also examine the merits of different vehicles and delivery forms of genome editing agents. Lastly, we describe the development of animal models that could facilitate the eventual clinical applications of the CRISPR technology to the treatment of genetic hearing diseases.
Collapse
|
14
|
Villalón-García I, Álvarez-Córdoba M, Suárez-Rivero JM, Povea-Cabello S, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Sánchez-Alcázar JA. Precision Medicine in Rare Diseases. Diseases 2020; 8:diseases8040042. [PMID: 33202892 PMCID: PMC7709101 DOI: 10.3390/diseases8040042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 01/06/2023] Open
Abstract
Rare diseases are those that have a low prevalence in the population (less than 5 individuals per 10,000 inhabitants). However, infrequent pathologies affect a large number of people, since according to the World Health Organization (WHO), there are about 7000 rare diseases that affect 7% of the world’s population. Many patients with rare diseases have suffered the consequences of what is called the diagnostic odyssey, that is, extensive and prolonged serial tests and clinical visits, sometimes for many years, all with the hope of identifying the etiology of their disease. For patients with rare diseases, obtaining the genetic diagnosis can mean the end of the diagnostic odyssey, and the beginning of another, the therapeutic odyssey. This scenario is especially challenging for the scientific community, since more than 90% of rare diseases do not currently have an effective treatment. This therapeutic failure in rare diseases means that new approaches are necessary. Our research group proposes that the use of precision or personalized medicine techniques can be an alternative to find potential therapies in these diseases. To this end, we propose that patients’ own cells can be used to carry out personalized pharmacological screening for the identification of potential treatments.
Collapse
|
15
|
Li M, Nishio SY, Naruse C, Riddell M, Sapski S, Katsuno T, Hikita T, Mizapourshafiyi F, Smith FM, Cooper LT, Lee MG, Asano M, Boettger T, Krueger M, Wietelmann A, Graumann J, Day BW, Boyd AW, Offermanns S, Kitajiri SI, Usami SI, Nakayama M. Digenic inheritance of mutations in EPHA2 and SLC26A4 in Pendred syndrome. Nat Commun 2020; 11:1343. [PMID: 32165640 PMCID: PMC7067772 DOI: 10.1038/s41467-020-15198-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/17/2020] [Indexed: 01/03/2023] Open
Abstract
Enlarged vestibular aqueduct (EVA) is one of the most commonly identified inner ear malformations in hearing loss patients including Pendred syndrome. While biallelic mutations of the SLC26A4 gene, encoding pendrin, causes non-syndromic hearing loss with EVA or Pendred syndrome, a considerable number of patients appear to carry mono-allelic mutation. This suggests faulty pendrin regulatory machinery results in hearing loss. Here we identify EPHA2 as another causative gene of Pendred syndrome with SLC26A4. EphA2 forms a protein complex with pendrin controlling pendrin localization, which is disrupted in some pathogenic forms of pendrin. Moreover, point mutations leading to amino acid substitution in the EPHA2 gene are identified from patients bearing mono-allelic mutation of SLC26A4. Ephrin-B2 binds to EphA2 triggering internalization with pendrin inducing EphA2 autophosphorylation weakly. The identified EphA2 mutants attenuate ephrin-B2- but not ephrin-A1-induced EphA2 internalization with pendrin. Our results uncover an unexpected role of the Eph/ephrin system in epithelial function. While biallelic mutations of the SLC26A4 gene cause non-syndromic hearing loss with enlarged vestibular aqueducts or Pendred syndrome, a considerable number of patients carry mono-allelic mutations. Here the authors identify EPHA2 as another causative gene of Pendred syndrome with SLC26A4.
Collapse
Affiliation(s)
- Mengnan Li
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany
| | - Shin-Ya Nishio
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Chie Naruse
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Meghan Riddell
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sabrina Sapski
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Tatsuya Katsuno
- Department of Otolaryngology - Head and Neck Surgery Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takao Hikita
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Fatemeh Mizapourshafiyi
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany
| | - Fiona M Smith
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Leanne T Cooper
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Min Goo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Thomas Boettger
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marcus Krueger
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Astrid Wietelmann
- MRI and µCT Service Group, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Johannes Graumann
- Scientific Service Group Biomolecular Mass Spectrometry Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site - Rhine-Main, Berlin, Germany
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andrew W Boyd
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Shin-Ichiro Kitajiri
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin-Ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masanori Nakayama
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany. .,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany. .,Kumamoto University International Research Center for Medical Scinece, Kumamoto, Japan.
| |
Collapse
|
16
|
Wasano K, Takahashi S, Rosenberg SK, Kojima T, Mutai H, Matsunaga T, Ogawa K, Homma K. Systematic quantification of the anion transport function of pendrin (SLC26A4) and its disease-associated variants. Hum Mutat 2020; 41:316-331. [PMID: 31599023 PMCID: PMC6930342 DOI: 10.1002/humu.23930] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 01/14/2023]
Abstract
Thanks to the advent of rapid DNA sequencing technology and its prevalence, many disease-associated genetic variants are rapidly identified in many genes from patient samples. However, the subsequent effort to experimentally validate and define their pathological roles is extremely slow. Consequently, the pathogenicity of most disease-associated genetic variants is solely speculated in silico, which is no longer deemed compelling. We developed an experimental approach to efficiently quantify the pathogenic effects of disease-associated genetic variants with a focus on SLC26A4, which is essential for normal inner ear function. Alterations of this gene are associated with both syndromic and nonsyndromic hereditary hearing loss with various degrees of severity. We established HEK293T-based stable cell lines that express pendrin missense variants in a doxycycline-dependent manner, and systematically determined their anion transport activities with high accuracy in a 96-well plate format using a high throughput plate reader. Our doxycycline dosage-dependent transport assay objectively distinguishes missense variants that indeed impair the function of pendrin from those that do not (functional variants). We also found that some of these putative missense variants disrupt normal messenger RNA splicing. Our comprehensive experimental approach helps determine the pathogenicity of each pendrin variant, which should guide future efforts to benefit patients.
Collapse
Affiliation(s)
- Koichiro Wasano
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Laboratory of Auditory Disorders, Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan
| | - Satoe Takahashi
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Samuel K. Rosenberg
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Takashi Kojima
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hideki Mutai
- Laboratory of Auditory Disorders, Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan
| | - Tatsuo Matsunaga
- Laboratory of Auditory Disorders, Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan
| | - Kaoru Ogawa
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazuaki Homma
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60608, USA
| |
Collapse
|
17
|
Kanavy DM, McNulty SM, Jairath MK, Brnich SE, Bizon C, Powell BC, Berg JS. Comparative analysis of functional assay evidence use by ClinGen Variant Curation Expert Panels. Genome Med 2019; 11:77. [PMID: 31783775 PMCID: PMC6884856 DOI: 10.1186/s13073-019-0683-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The 2015 American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) guidelines for clinical sequence variant interpretation state that "well-established" functional studies can be used as evidence in variant classification. These guidelines articulated key attributes of functional data, including that assays should reflect the biological environment and be analytically sound; however, details of how to evaluate these attributes were left to expert judgment. The Clinical Genome Resource (ClinGen) designates Variant Curation Expert Panels (VCEPs) in specific disease areas to make gene-centric specifications to the ACMG/AMP guidelines, including more specific definitions of appropriate functional assays. We set out to evaluate the existing VCEP guidelines for functional assays. METHODS We evaluated the functional criteria (PS3/BS3) of six VCEPs (CDH1, Hearing Loss, Inherited Cardiomyopathy-MYH7, PAH, PTEN, RASopathy). We then established criteria for evaluating functional studies based on disease mechanism, general class of assay, and the characteristics of specific assay instances described in the primary literature. Using these criteria, we extensively curated assay instances cited by each VCEP in their pilot variant classification to analyze VCEP recommendations and their use in the interpretation of functional studies. RESULTS Unsurprisingly, our analysis highlighted the breadth of VCEP-approved assays, reflecting the diversity of disease mechanisms among VCEPs. We also noted substantial variability between VCEPs in the method used to select these assays and in the approach used to specify strength modifications, as well as differences in suggested validation parameters. Importantly, we observed discrepancies between the parameters VCEPs specified as required for approved assay instances and the fulfillment of these requirements in the individual assays cited in pilot variant interpretation. CONCLUSIONS Interpretation of the intricacies of functional assays often requires expert-level knowledge of the gene and disease, and current VCEP recommendations for functional assay evidence are a useful tool to improve the accessibility of functional data by providing a starting point for curators to identify approved functional assays and key metrics. However, our analysis suggests that further guidance is needed to standardize this process and ensure consistency in the application of functional evidence.
Collapse
Affiliation(s)
- Dona M Kanavy
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shannon M McNulty
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Meera K Jairath
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah E Brnich
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chris Bizon
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bradford C Powell
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan S Berg
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Oza AM, DiStefano MT, Hemphill SE, Cushman BJ, Grant AR, Siegert RK, Shen J, Chapin A, Boczek NJ, Schimmenti LA, Murry JB, Hasadsri L, Nara K, Kenna M, Booth KT, Azaiez H, Griffith A, Avraham KB, Kremer H, Rehm HL, Amr SS, Abou Tayoun AN. Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss. Hum Mutat 2019; 39:1593-1613. [PMID: 30311386 DOI: 10.1002/humu.23630] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/23/2018] [Accepted: 08/25/2018] [Indexed: 12/23/2022]
Abstract
Due to the high genetic heterogeneity of hearing loss (HL), current clinical testing includes sequencing large numbers of genes, which often yields a significant number of novel variants. Therefore, the standardization of variant interpretation is crucial to provide consistent and accurate diagnoses. The Hearing Loss Variant Curation Expert Panel was created within the Clinical Genome Resource to provide expert guidance for standardized genomic interpretation in the context of HL. As one of its major tasks, our Expert Panel has adapted the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines for the interpretation of sequence variants in HL genes. Here, we provide a comprehensive illustration of the newly specified ACMG/AMP HL rules. Three rules remained unchanged, four rules were removed, and the remaining 21 rules were specified. These rules were further validated and refined using a pilot set of 51 variants assessed by curators and disease experts. Of the 51 variants evaluated in the pilot, 37% (19/51) changed category based upon application of the expert panel specified rules and/or aggregation of evidence across laboratories. These HL-specific ACMG/AMP rules will help standardize variant interpretation, ultimately leading to better care for individuals with HL.
Collapse
Affiliation(s)
- Andrea M Oza
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts.,Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts
| | - Marina T DiStefano
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Sarah E Hemphill
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Brandon J Cushman
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Andrew R Grant
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Rebecca K Siegert
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Jun Shen
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham & Women's Hospital, Boston, Massachusetts
| | | | - Nicole J Boczek
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Lisa A Schimmenti
- Department of Otorhinolaryngology, Clinical Genomics and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Jaclyn B Murry
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Linda Hasadsri
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Kiyomitsu Nara
- Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Margaret Kenna
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospital and Clinics, Iowa City, Iowa.,The Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Andrew Griffith
- Audiology Unit, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hannie Kremer
- Department of Otorhinolaryngology and Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heidi L Rehm
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Sami S Amr
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham & Women's Hospital, Boston, Massachusetts
| | - Ahmad N Abou Tayoun
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | | |
Collapse
|
19
|
Pourahmadiyan A, Alipour P, Fattahi N, Kasiri M, Rezaeian F, Taghipour-Sheshdeh A, Mohammadi-Asl J, Tabatabaiefar MA, Hashemzadeh Chaleshtori M. A pathogenic variant in SLC26A4 is associated with Pendred syndrome in a consanguineous Iranian family. Int J Audiol 2019; 58:628-634. [PMID: 31187663 DOI: 10.1080/14992027.2019.1619945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: Hearing loss (HL) is a common sensory deficit with high phenotypic and genotypic heterogeneity. A large Iranian family with HL was genetically assessed in this study. Design: A proband from a consanguineous multiplex HL family from Iran was examined via Targeted Next-Generation Sequencing (TNGS). Sanger sequencing allowed the segregation analysis of the variant of interest and the investigation of its presence in a cohort of 50 ethnicity-matched healthy control individuals. The gene was previously associated with HL. Therefore, to determine whether the variant was specifically associated with Pendred Syndrome (PDS) or DFNB4, biochemical analyses, PTA, thyroid scans by Tc99m, perchlorate discharge test and high-resolution CT scan of the temporal bone were carried out on the affected family members. Study sample: Ten members of a large multiplex Iranian family with HL were recruited in this study. In addition, 50 unrelated healthy controls of the same ethnic group were randomly selected to genotype the variant. Results: A homozygous missense variant (NM_000441.1: c.1211C > T/p.Thr404Ile) in exon 10 was found segregating in the family. Based on the ACMG's guidelines, the variant was classified as pathogenic. Conclusion: This study expands the spectrum of SLC26A4 pathogenic variants in hearing loss.
Collapse
Affiliation(s)
- Azam Pourahmadiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Paria Alipour
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Najmeh Fattahi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Mahbubeh Kasiri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Fateme Rezaeian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Afsaneh Taghipour-Sheshdeh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Javad Mohammadi-Asl
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences , Isfahan , Iran.,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Morteza Hashemzadeh Chaleshtori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord , Iran
| |
Collapse
|
20
|
Alvarez-Cordoba M, Villanueva-Paz M, Villalón-García I, Povea-Cabello S, Suárez-Rivero JM, Talaverón-Rey M, Abril-Jaramillo J, Vintimilla-Tosi AB, Sánchez-Alcázar JA. Precision medicine in pantothenate kinase-associated neurodegeneration. Neural Regen Res 2019; 14:1177-1185. [PMID: 30804242 PMCID: PMC6425824 DOI: 10.4103/1673-5374.251203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Neurodegeneration with brain iron accumulation is a broad term that describes a heterogeneous group of progressive and invalidating neurologic disorders in which iron deposits in certain brain areas, mainly the basal ganglia. The predominant clinical symptoms include spasticity, progressive dystonia, Parkinson’s disease-like symptoms, neuropsychiatric alterations, and retinal degeneration. Among the neurodegeneration with brain iron accumulation disorders, the most frequent subtype is pantothenate kinase-associated neurodegeneration (PKAN) caused by defects in the gene encoding the enzyme pantothenate kinase 2 (PANK2) which catalyzed the first reaction of the coenzyme A biosynthesis pathway. Currently there is no effective treatment to prevent the inexorable course of these disorders. The aim of this review is to open up a discussion on the utility of using cellular models derived from patients as a valuable tool for the development of precision medicine in PKAN. Recently, we have described that dermal fibroblasts obtained from PKAN patients can manifest the main pathological changes of the disease such as intracellular iron accumulation accompanied by large amounts of lipofuscin granules, mitochondrial dysfunction and a pronounced increase of markers of oxidative stress. In addition, PKAN fibroblasts showed a morphological senescence-like phenotype. Interestingly, pantothenate supplementation, the substrate of the PANK2 enzyme, corrected all pathophysiological alterations in responder PKAN fibroblasts with low/residual PANK2 enzyme expression. However, pantothenate treatment had no favourable effect on PKAN fibroblasts harbouring mutations associated with the expression of a truncated/incomplete protein. The correction of pathological alterations by pantothenate in individual mutations was also verified in induced neurons obtained by direct reprograming of PKAN fibroblasts. Our observations indicate that pantothenate supplementation can increase/stabilize the expression levels of PANK2 in specific mutations. Fibroblasts and induced neurons derived from patients can provide a useful tool for recognizing PKAN patients who can respond to pantothenate treatment. The presence of low but significant PANK2 expression which can be increased in particular mutations gives valuable information which can support the treatment with high dose of pantothenate. The evaluation of personalized treatments in vitro of fibroblasts and neuronal cells derived from PKAN patients with a wide range of pharmacological options currently available, and monitoring its effect on the pathophysiological changes, can help for a better therapeutic strategy. In addition, these cell models will be also useful for testing the efficacy of new therapeutic options developed in the future.
Collapse
Affiliation(s)
- Mónica Alvarez-Cordoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | | | | | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| |
Collapse
|
21
|
Yu Y, Yang Y, Lu J, Jin Y, Yang Y, Hong E, Shi J, Chen F, Han S, Chu P, Guo Y, Ni X. Two Compound Heterozygous Were Identified in SLC26A4 Gene in Two Chinese Families With Enlarged Vestibular Aqueduct. Clin Exp Otorhinolaryngol 2018; 12:50-57. [PMID: 30086623 PMCID: PMC6315218 DOI: 10.21053/ceo.2018.00213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/01/2018] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES To investigate the genetic causes of hearing loss with enlarged vestibular aqueduct (EVA) in two children from unrelated two Chinese families. METHODS Sanger sequencing of all coding exons in SLC26A4 (encoding Pendrin protein) was performed on the two patients, their sibling and parents respectively. To predict and visualize the potential functional outcome of the novel variant, model building, structure analysis, and in silico analysis were further conducted. RESULTS The results showed that the proband from family I harbored a compound heterozygote of SLC26A4 c.1174A>T (p.N392Y) mutation and c.1181delTCT (p.F394del) variant in exon 10, potentially altering Pendrin protein structure. In family II, the proband was identified in compound heterozygosity with a known mutation of c.919-2A>G in the splice site of intron 7 and a novel mutation of c.1023insC in exon 9, which results in a frameshift and translational termination, consequently leading to truncated Pendrin protein. Sequence homology analysis indicated that all the mutations localized at high conservation sites, which emphasized the significance of these mutations on Pendrin spatial organization and function. CONCLUSION In summary, this study revealed two compound heterozygous mutations (c.1174A>T/c.1181delTCT; c.919- 2A>G/c.1023insC) in Pendrin protein, which might account for the deafness of the two probands clinically diagnosed with EVA. Thus this study contributes to improve understanding of the causes of hearing loss associated with EVA and develop a more scientific screening strategy for deafness.
Collapse
Affiliation(s)
- Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, National Center for Children's Health, Beijing, China.,Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yang Yang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, National Center for Children's Health, Beijing, China
| | - Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, National Center for Children's Health, Beijing, China
| | - Yeran Yang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, National Center for Children's Health, Beijing, China
| | - Enyu Hong
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, National Center for Children's Health, Beijing, China
| | - Jin Shi
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, National Center for Children's Health, Beijing, China
| | - Feng Chen
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, National Center for Children's Health, Beijing, China
| | - Shujing Han
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, National Center for Children's Health, Beijing, China
| | - Ping Chu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, National Center for Children's Health, Beijing, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, National Center for Children's Health, Beijing, China
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, National Center for Children's Health, Beijing, China.,Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
22
|
Roesch S, Bernardinelli E, Nofziger C, Tóth M, Patsch W, Rasp G, Paulmichl M, Dossena S. Functional Testing of SLC26A4 Variants-Clinical and Molecular Analysis of a Cohort with Enlarged Vestibular Aqueduct from Austria. Int J Mol Sci 2018; 19:ijms19010209. [PMID: 29320412 PMCID: PMC5796158 DOI: 10.3390/ijms19010209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 12/29/2022] Open
Abstract
The prevalence and spectrum of sequence alterations in the SLC26A4 gene, which codes for the anion exchanger pendrin, are population-specific and account for at least 50% of cases of non-syndromic hearing loss associated with an enlarged vestibular aqueduct. A cohort of nineteen patients from Austria with hearing loss and a radiological alteration of the vestibular aqueduct underwent Sanger sequencing of SLC26A4 and GJB2, coding for connexin 26. The pathogenicity of sequence alterations detected was assessed by determining ion transport and molecular features of the corresponding SLC26A4 protein variants. In this group, four uncharacterized sequence alterations within the SLC26A4 coding region were found. Three of these lead to protein variants with abnormal functional and molecular features, while one should be considered with no pathogenic potential. Pathogenic SLC26A4 sequence alterations were only found in 12% of patients. SLC26A4 sequence alterations commonly found in other Caucasian populations were not detected. This survey represents the first study on the prevalence and spectrum of SLC26A4 sequence alterations in an Austrian cohort and further suggests that genetic testing should always be integrated with functional characterization and determination of the molecular features of protein variants in order to unequivocally identify or exclude a causal link between genotype and phenotype.
Collapse
Affiliation(s)
- Sebastian Roesch
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, Müllner Hauptstraße 48, A-5020 Salzburg, Austria.
| | - Emanuele Bernardinelli
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria.
| | - Charity Nofziger
- PharmGenetix Gmbh, Sonystrasse 20, A-5081 Niederalm Anif, Austria.
| | - Miklós Tóth
- Department of Otorhinolaryngology, Head & Neck Surgery and Oncology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20251 Hamburg, Germany.
| | - Wolfgang Patsch
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria.
| | - Gerd Rasp
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, Müllner Hauptstraße 48, A-5020 Salzburg, Austria.
| | - Markus Paulmichl
- Center for Health and Bioresources, Austrian Institute of Technology, Muthgasse 11, A-1190 Vienna, Austria.
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria.
| |
Collapse
|
23
|
Discovery of (2-aminophenyl)methanol as a new molecular chaperone that rescues the localization of P123S mutant pendrin stably expressed in HEK293 cells. Bioorg Med Chem 2017; 25:2601-2608. [PMID: 28341401 DOI: 10.1016/j.bmc.2017.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/11/2017] [Accepted: 03/11/2017] [Indexed: 11/22/2022]
Abstract
Pendred syndrome is the most common form of syndromic deafness. It is associated with a mutation in the SLC26A4 gene that encodes pendrin, which is thought to maintain the ion concentration of endolymph in the inner ear most likely by acting as a chloride/bicarbonate transporter. Mutations in the SLC26A4 gene are responsible for sensorineural hearing loss. In this study, we established a stable HEK293 cell line expressing P123S mutant pendrin and developed screening methods for compounds that show pharmacological chaperone activity by image analysis using CellInsight™. Morphological analysis of stained cells in each well of 96-well plates yielded six compounds in the compound library. Furthermore, fluorescence intensity analysis of the intracellular localization of P123S mutant pendrin in HEK293 cells using FLUOVIEW™ and cytotoxicity experiments revealed that (2-aminophenyl)methanol 8 is the most promising molecular chaperone to rescue P123S mutant pendrin: the plasma membrane (M)/cytoplasm (C) ratios are 1.5 and 0.9 at the concentrations of 0.3 and 0.1mM, respectively, and a sustained effect was observed 12h after removal of the compound from the cell medium. Because the M/C ratio of salicylate, which was previously discovered as a molecular chaperone of P123S mutant pendrin, was approximately 1 at 10mM concentration and a sustained effect was not observed even at 6h, (2-aminophenyl)methanol 8 was 100 times more potent and exhibited a longer sustained effect than salicylate. These findings suggest that (2-aminophenyl)methanol 8 is an attractive candidate for therapeutic agent for Pendred syndrome patients.
Collapse
|
24
|
Mapping pathogenic mutations suggests an innovative structural model for the pendrin (SLC26A4) transmembrane domain. Biochimie 2016; 132:109-120. [PMID: 27771369 DOI: 10.1016/j.biochi.2016.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/03/2016] [Indexed: 12/16/2022]
Abstract
Human pendrin (SLC26A4) is an anion transporter mostly expressed in the inner ear, thyroid and kidney. SLC26A4 gene mutations are associated with a broad phenotypic spectrum, including Pendred Syndrome and non-syndromic hearing loss with enlarged vestibular aqueduct (ns-EVA). No experimental structure of pendrin is currently available, making phenotype-genotype correlations difficult as predictions of transmembrane (TM) segments vary in number. Here, we propose a novel three-dimensional (3D) pendrin transmembrane domain model based on the SLC26Dg transporter. The resulting 14 TM topology was found to include two non-canonical transmembrane segments crucial for pendrin activity. Mutation mapping of 147 clinically validated pathological mutations shows that most affect two previously undescribed TM regions.
Collapse
|
25
|
Kim BG, Roh KJ, Park AY, Lee SC, Kang BS, Seo YJ, Lee JD, Choi JY. Early deterioration of residual hearing in patients with SLC
26
A
4
mutations. Laryngoscope 2015; 126:E286-91. [DOI: 10.1002/lary.25786] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Bo Gyung Kim
- Department of Otorhinolaryngology-Head and Neck Surgery; Soonchunhyang University College of Medicine; Bucheon Korea
| | - Kyung Jin Roh
- Department of Otorhinolaryngology; Yonsei University, College of Medicine; Seoul Korea
| | - Ah Young Park
- Department of Otorhinolaryngology; Yonsei University, College of Medicine; Seoul Korea
| | - Seung Chul Lee
- Department of Otorhinolaryngology-Head and Neck Surgery; Soonchunhyang University College of Medicine; Bucheon Korea
| | - Bo Sung Kang
- Department of Otorhinolaryngology-Head and Neck Surgery; Soonchunhyang University College of Medicine; Seoul Korea
| | - Young Joon Seo
- Department of Otorhinolaryngology; Yonsei University WonJu College of Medicine; Wonju Korea
| | - Jong Dae Lee
- Department of Otorhinolaryngology-Head and Neck Surgery; Soonchunhyang University College of Medicine; Bucheon Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology; Yonsei University, College of Medicine; Seoul Korea
| |
Collapse
|
26
|
Hay Mele B, Citro V, Andreotti G, Cubellis MV. Drug repositioning can accelerate discovery of pharmacological chaperones. Orphanet J Rare Dis 2015; 10:55. [PMID: 25947946 PMCID: PMC4429356 DOI: 10.1186/s13023-015-0273-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/23/2015] [Indexed: 11/10/2022] Open
Abstract
A promising strategy for the treatment of genetic diseases, pharmacological chaperone therapy, has been proposed recently. It exploits small molecules which can be administered orally, reach difficult tissues such as the brain and have low cost. This strategy has a vast field of application. In order to make drug development as fast as possible, it is important to exploit drug repositioning. We evaluated the impact and limitations of this approach for rare diseases and we provide a shortcut in finding drugs for off-target usage.
Collapse
Affiliation(s)
- Bruno Hay Mele
- Department of Agricultural and Food Sciences, University Federico II, Naples, Italy.
| | - Valentina Citro
- Department of Biology, University Federico II, Naples, Italy.
| | | | | |
Collapse
|
27
|
Patient with an SLC26A4 gene mutation who had low-frequency sensorineural hearing loss and endolymphatic hydrops. The Journal of Laryngology & Otology 2015; 129:95-7. [PMID: 25572613 DOI: 10.1017/s0022215114003399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To report magnetic resonance imaging findings in a patient with an SLC26A4 gene mutation who had low-frequency sensorineural hearing loss. CASE REPORT A 13-year-old girl had bilateral and symmetric low-frequency sensorineural hearing loss. Upon genetic testing, a heterozygous c.1105A > G (p.K369E) mutation of the SLC26A4 gene was detected. Mild endolymphatic hydrops in the right cochlea and marked endolymphatic hydrops in the left vestibulum were seen by magnetic resonance imaging 4 hours after an intravenous gadolinium injection. CONCLUSION This is the first reported case of a patient with the SLC26A4 gene mutation c.1105A > G (p.K369E) who had low-frequency sensorineural hearing loss. Co-occurrence of cochlear and vestibular endolymphatic hydrops suggests an association with that pathology.
Collapse
|
28
|
Jang JH, Jung J, Kim AR, Cho YM, Kim MY, Lee SY, Choi JY, Lee JH, Choi BY. Identification of Novel Functional Null Allele of SLC26A4 Associated with Enlarged Vestibular Aqueduct and Its Possible Implication. Audiol Neurootol 2014; 19:319-26. [DOI: 10.1159/000366190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/28/2014] [Indexed: 11/19/2022] Open
|
29
|
Lu YC, Wu CC, Yang TH, Lin YH, Yu IS, Lin SW, Chang Q, Lin X, Wong JM, Hsu CJ. Differences in the pathogenicity of the p.H723R mutation of the common deafness-associated SLC26A4 gene in humans and mice. PLoS One 2013; 8:e64906. [PMID: 23755160 PMCID: PMC3670936 DOI: 10.1371/journal.pone.0064906] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 04/19/2013] [Indexed: 11/23/2022] Open
Abstract
Mutations in the SLC26A4 gene are a common cause of human hereditary hearing impairment worldwide. Previous studies have demonstrated that different SLC26A4 mutations have different pathogenetic mechanisms. By using a genotype-driven approach, we established a knock-in mouse model (i.e., Slc26a4tm2Dontuh/tm2Dontuh mice) homozygous for the common p.H723R mutation in the East Asian population. To verify the pathogenicity of the p.H723R allele in mice, we further generated mice with compound heterozygous mutations (i.e., Slc26a4tm1Dontuh/tm2Dontuh) by intercrossing Slc26a4+/tm2Dontuh mice with Slc26a4tm1Dontuh/tm1Dontuh mice, which segregated the c.919-2A>G mutation with an abolished Slc26a4 function. Mice were then subjected to audiologic assessments, a battery of vestibular evaluations, inner ear morphological studies, and noise exposure experiments. The results were unexpected; both Slc26a4tm2Dontuh/tm2Dontuh and Slc26a4tm1Dontuh/tm2Dontuh mice showed normal audiovestibular phenotypes and inner ear morphology, and they did not show significantly higher shifts in hearing thresholds after noise exposure than the wild-type mice. The results indicated not only the p.H723R allele was non-pathogenic in mice, but also a single p.H723R allele was sufficient to maintain normal inner ear physiology in heterozygous compound mice. There might be discrepancies in the pathogenicity of specific SLC26A4 mutations in humans and mice; therefore, precautions should be taken when extrapolating the results of animal studies to humans.
Collapse
Affiliation(s)
- Ying-Chang Lu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yin-Hung Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - I-Shing Yu
- Transgenic Mouse Models Core (TMMC), Division of Genomic Medicine, Research Center For Medical Excellence, National Taiwan University, Taipei, Taiwan
| | - Shu-Wha Lin
- Transgenic Mouse Models Core (TMMC), Division of Genomic Medicine, Research Center For Medical Excellence, National Taiwan University, Taipei, Taiwan
| | - Qing Chang
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jau-Min Wong
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
30
|
Sagong B, Baek JI, Oh SK, Na KJ, Bae JW, Choi SY, Jeong JY, Choi JY, Lee SH, Lee KY, Kim UK. A rapid method for simultaneous screening of multi-gene mutations associated with hearing loss in the Korean population. PLoS One 2013; 8:e57237. [PMID: 23469187 PMCID: PMC3585873 DOI: 10.1371/journal.pone.0057237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/18/2013] [Indexed: 12/20/2022] Open
Abstract
Hearing loss (HL) is a congenital disease with a high prevalence, and patients with hearing loss need early diagnosis for treatment and prevention. The GJB2, MT-RNR1, and SLC26A4 genes have been reported as common causative genes of hearing loss in the Korean population and some mutations of these genes are the most common mutations associated with hearing loss. Accordingly, we developed a method for the simultaneous detection of seven mutations (c.235delC of GJB2, c.439A>G, c.919-2A>G, c.1149+3A>G, c.1229C>T, c.2168A>G of SLC26A4, and m.1555A>G of the MT-RNR1 gene) using multiplex SNaPshot minisequencing to enable rapid diagnosis of hereditary hearing loss. This method was confirmed in patients with hearing loss and used for genetic diagnosis of controls with normal hearing and neonates. We found that 4.06% of individuals with normal hearing and 4.32% of neonates were heterozygous carriers. In addition, we detected that an individual is heterozygous for two different mutations of GJB2 and SLC26A4 gene, respectively and one normal hearing showing the heteroplasmy of m.1555A>G. These genotypes corresponded to those determined by direct sequencing. Overall, we successfully developed a robust and cost-effective diagnosis method that detects common causative mutations of hearing loss in the Korean population. This method will be possible to detect up to 40% causative mutations associated with prelingual HL in the Korean population and serve as a useful genetic technique for diagnosis of hearing loss for patients, carriers, neonates, and fetuses.
Collapse
Affiliation(s)
- Borum Sagong
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Jeong-In Baek
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Se-Kyung Oh
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Kyung Jin Na
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jae Woong Bae
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Soo Young Choi
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ji Yun Jeong
- Department of Endocrinology and Metabolism, Kyungpook National University Hospital, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Heun Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyungpook National University, Daegu, South Korea
- * E-mail: (KYL); (UKK)
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
- * E-mail: (KYL); (UKK)
| |
Collapse
|
31
|
Cirello V, Bazzini C, Vezzoli V, Muzza M, Rodighiero S, Castorina P, Maffini A, Bottà G, Persani L, Beck-Peccoz P, Meyer G, Fugazzola L. Molecular and functional studies of 4 candidate loci in Pendred syndrome and nonsyndromic hearing loss. Mol Cell Endocrinol 2012; 351:342-50. [PMID: 22285650 DOI: 10.1016/j.mce.2012.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/09/2012] [Accepted: 01/13/2012] [Indexed: 12/13/2022]
Abstract
Patients with PS or non-syndromic deafness were submitted to genetic/functional analyzes of SLC26A4, of its binding domain for FOXI1 (FOXI1-DBD), of the transcription activator FOXI1, and of the potassium channel KCNJ10. SLC26A4 was the most frequently mutated gene. An altered intracellular localization with immunocytochemistry, and a hampered maturation process were demonstrated for two novel SLC26A4 variants. Biochemical and immunocytochemical analyzes led to the development of a more sensitive fluorometric functional assay able to reveal the partial loss-of-function of SLC26A4 mutations. A novel missense variant was found in FOXI1 gene, though functional analysis showed no significant impairment in the transcriptional activation of SLC26A4. Finally, 3 patients were found to harbor a variant in KCNJ10, which was classified as polymorphism. The novelty of the study resides in the analysis of all the 4 candidate genetic loci linked to PS/non-syndromic deafness, and in the precise definition of the thyroid phenotype. PS was invariably associated with biallelic mutations of SLC26A4, whereas the genetic origin of non-syndromic deafness remained largely undetermined, since monoallelic SLC26A4 variants accounted for one fourth of the cases and FOXI1 and KCNJ10 were not involved in this series.
Collapse
|
32
|
Dossena S, Nofziger C, Tamma G, Bernardinelli E, Vanoni S, Nowak C, Grabmayer E, Kössler S, Stephan S, Patsch W, Paulmichl M. Molecular and functional characterization of human pendrin and its allelic variants. Cell Physiol Biochem 2011; 28:451-66. [PMID: 22116358 DOI: 10.1159/000335107] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2011] [Indexed: 12/13/2022] Open
Abstract
Pendrin (SLC26A4, PDS) is an electroneutral anion exchanger transporting I(-), Cl(-), HCO(3)(-), OH(-), SCN(-) and formate. In the thyroid, pendrin is expressed at the apical membrane of the follicular epithelium and may be involved in mediating apical iodide efflux into the follicle; in the inner ear, it plays a crucial role in the conditioning of the pH and ion composition of the endolymph; in the kidney, it may exert a role in pH homeostasis and regulation of blood pressure. Mutations of the pendrin gene can lead to syndromic and non-syndromic hearing loss with EVA (enlarged vestibular aqueduct). Functional tests of mutated pendrin allelic variants found in patients with Pendred syndrome or non-syndromic EVA (ns-EVA) revealed that the pathological phenotype is due to the reduction or loss of function of the ion transport activity. The diagnosis of Pendred syndrome and ns-EVA can be difficult because of the presence of phenocopies of Pendred syndrome and benign polymorphisms occurring in the general population. As a consequence, defining whether or not an allelic variant is pathogenic is crucial. Recently, we found that the two parameters used so far to assess the pathogenic potential of a mutation, i.e. low incidence in the control population, and substitution of evolutionary conserved amino acids, are not always reliable for predicting the functionality of pendrin allelic variants; actually, we identified mutations occurring with the same frequency in the cohort of hearing impaired patients and in the control group of normal hearing individuals. Moreover, we identified functional polymorphisms affecting highly conserved amino acids. As a general rule however, we observed a complete loss of function for all truncations and amino acid substitutions involving a proline. In this view, clinical and radiological studies should be combined with genetic and molecular studies for a definitive diagnosis. In performing genetic studies, the possibility that the mutation could affect regions other than the pendrin coding region, such as its promoter region and/or the coding regions of functionally related genes (FOXI1, KCNJ10), should be taken into account. The presence of benign polymorphisms in the population suggests that genetic studies should be corroborated by functional studies; in this context, the existence of hypo-functional variants and possible differences between the I(-)/Cl(-) and Cl(-)/HCO(3)(-) exchange activities should be carefully evaluated.
Collapse
Affiliation(s)
- Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Huang S, Han D, Yuan Y, Wang G, Kang D, Zhang X, Yan X, Meng X, Dong M, Dai P. Extremely discrepant mutation spectrum of SLC26A4 between Chinese patients with isolated Mondini deformity and enlarged vestibular aqueduct. J Transl Med 2011; 9:167. [PMID: 21961810 PMCID: PMC3204245 DOI: 10.1186/1479-5876-9-167] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 09/30/2011] [Indexed: 11/16/2022] Open
Abstract
Background Mutations in SLC26A4 cause Pendred syndrome (hearing loss with goiter) or DFNB4 (non-syndromic hearing loss with inner ear malformation, such as enlarged vestibular aqueduct or Mondini deformity). The relationship between mutations in SLC26A4 and Mondini deformity without enlarged vestibular aqueduct has not been studied in any Chinese deaf population. The purpose of this study was to assess whether mutations in the SLC26A4 gene cause Mondini deformity without an enlarged vestibular aqueduct (isolated Mondini deformity) in a Chinese population. Methods In total, 144 patients with sensorineural hearing loss were included and subjected to high-resolution temporal bone CT. Among them, 28 patients with isolated Mondini dysplasia (MD group), 50 patients with enlarged vestibular aqueduct with Mondini dysplasia (EVA with MD group), 50 patients with enlarged vestibular aqueduct without Mondini dysplasia (EVA group), and 16 patients with other types of inner ear malformations (IEM group) were identified. The coding exons of SLC26A4 were analyzed in all subjects. Results DNA sequence analysis of SLC26A4 was performed in all 144 patients. In the different groups, the detection rate of the SLC26A4 mutation differed. In the isolated MD group, only one single allelic mutation in SLC26A4 was found in one patient (1/28, 3.6%). In the EVA with MD group, biallelic and monoallelic SLC26A4 mutations were identified in 46 patients (46/50, 92.0%) and three patients (3/50, 6.0%), respectively. Also, in the EVA group, biallelic and monoallelic SLC26A4 mutations were identified in 46 patients (46/50, 92.0%) and three patients (3/50, 6.0%), respectively. These percentages were identical to those in the EVA plus MD group. Only two patients carried monoallelic mutations of the SLC26A4 gene in the IEM group (2/16, 12.5%). There were significant differences in the frequency of SLC26A4 mutation among the groups (P < 0.001). The detection rate of SLC26A4 mutation in the isolated MD group was significantly lower than in the EVA group (with or without MD; P < 0.001), and there was no significant difference in the detection rate of SLC26A4 between the MD group and IEM group (P > 0.5). Conclusion Although mutations in the SLC26A4 gene were frequently found in Chinese EVA patients with and without MD, there was no evidence to show a relationship between isolated MD and the SLC26A4 gene in the Chinese population examined. Hearing impairment in patients with isolated MD may be caused by factors other than mutations in the SLC26A4 gene.
Collapse
Affiliation(s)
- Shasha Huang
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kopp P, Bizhanova A. Clinical and molecular characteristics of Pendred syndrome. ANNALES D'ENDOCRINOLOGIE 2011; 72:88-94. [PMID: 21511235 DOI: 10.1016/j.ando.2011.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pendred syndrome is an autosomal recessive disorder defined by sensorineural deafness, goiter and a partial defect in the organification of iodide. It is caused by biallelic mutations in the SLC26A4 gene, which encodes pendrin, a multifunctional anion exchanger. At the level of the inner ear, pendrin is important for the creation of a normal endolymph composition and the maintenance of the endocochlear potential. In the thyroid, pendrin is expressed at the apical membrane of thyroid follicular cells and it appears to be involved in mediating iodide efflux into the lumen and/or maintenance of the follicular pH. Goiter development and hypothyroidism vary among affected individuals and seem to be partially dependent on nutritional iodide intake. In the kidney, pendrin functions as a chloride/bicarbonate exchanger. Elucidation of the molecular basis of Pendred syndrome and the function of pendrin has provided unexpected novel insights into the pathophysiology of the inner ear, thyroid hormone synthesis, and chloride/bicarbonate exchange in the kidney.
Collapse
Affiliation(s)
- P Kopp
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago IL60611, USA.
| | | |
Collapse
|