1
|
Wu K, He Y, Chen K, Cui M, Yang Z, Yuan Y, Tian Y, Peng W. Enhancement of K + channel permeation by selective terahertz excitation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123538. [PMID: 37866260 DOI: 10.1016/j.saa.2023.123538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
The optical excitation effects offer an opportunity to gain insights into the structure and the function of K+ channel, contributing to the prediction of possible targets for drug design and precision therapy. Although there has been increasing research attention on the modulation of ion permeation in K+ channel by terahertz electromagnetic (THz-EM) stimuli, little exploration has been conducted regarding the dependence of ion permeation on frequencies. By using two-dimensional (2D) infrared excitation spectrum calculation for the K+ channel, we have discovered that the frequency of 53.60 THz serves as an optimal excitation modulation mode. This mode leads to an almost twofold enhancement in the rate of K+ ion permeation and a tenfold increase in selectivity efficiency. These improvements can be attributed to the coupling mode matching of the excited properties of CO groups in the K+ channel. Our findings propose a promising application of terahertz technology to improve the performance of ion channels, nanomembrane sieves, nanodevices, as well as neural therapy.
Collapse
Affiliation(s)
- Kaijie Wu
- Cross Research Center of Frontier Technology, National Institute of Science and Technology Innovation for National Defense, Beijing 100071, China; Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Yong He
- School of Electronics, Peking University, Beijing 100081, China.
| | - Kun Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, School of Basic Medicine, Air Force Medical University, Xi'an 710032, China
| | - Mengda Cui
- Cross Research Center of Frontier Technology, National Institute of Science and Technology Innovation for National Defense, Beijing 100071, China
| | - Zhikai Yang
- Cross Research Center of Frontier Technology, National Institute of Science and Technology Innovation for National Defense, Beijing 100071, China
| | - Yifang Yuan
- Cross Research Center of Frontier Technology, National Institute of Science and Technology Innovation for National Defense, Beijing 100071, China
| | - Yuchen Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an 710032, China
| | - Wenyu Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
2
|
Graham G, Chimenti MS, Knudtson KL, Grenard DN, Co L, Sumner M, Tchou T, Bieszczad KM. Learning induces unique transcriptional landscapes in the auditory cortex. Hear Res 2023; 438:108878. [PMID: 37659220 PMCID: PMC10529106 DOI: 10.1016/j.heares.2023.108878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023]
Abstract
Learning can induce neurophysiological plasticity in the auditory cortex at multiple timescales. Lasting changes to auditory cortical function that persist over days, weeks, or even a lifetime, require learning to induce de novo gene expression. Indeed, transcription is the molecular determinant for long-term memories to form with a lasting impact on sound-related behavior. However, auditory cortical genes that support auditory learning, memory, and acquired sound-specific behavior are largely unknown. Using an animal model of adult, male Sprague-Dawley rats, this report is the first to identify genome-wide changes in learning-induced gene expression within the auditory cortex that may underlie long-lasting discriminative memory formation of acoustic frequency cues. Auditory cortical samples were collected from animals in the initial learning phase of a two-tone discrimination sound-reward task known to induce sound-specific neurophysiological and behavioral effects. Bioinformatic analyses on gene enrichment profiles from bulk RNA sequencing identified cholinergic synapse (KEGG rno04725), extra-cellular matrix receptor interaction (KEGG rno04512), and neuroactive receptor interaction (KEGG rno04080) among the top biological pathways are likely to be important for auditory discrimination learning. The findings characterize candidate effectors underlying the early stages of changes in cortical and behavioral function to ultimately support the formation of long-term discriminative auditory memory in the adult brain. The molecules and mechanisms identified are potential therapeutic targets to facilitate experiences that induce long-lasting changes to sound-specific auditory function in adulthood and prime for future gene-targeted investigations.
Collapse
Affiliation(s)
- G Graham
- Neuroscience Graduate Program, Rutgers Univ., Piscataway, NJ, USA; Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - M S Chimenti
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - K L Knudtson
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - D N Grenard
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - L Co
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - M Sumner
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - T Tchou
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - K M Bieszczad
- Neuroscience Graduate Program, Rutgers Univ., Piscataway, NJ, USA; Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA; Rutgers Center for Cognitive Science, Rutgers Univ., Piscataway, NJ, USA; Dept. of Otolaryngology-Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
3
|
Graham G, Chimenti MS, Knudtson KL, Grenard DN, Co L, Sumner M, Tchou T, Bieszczad KM. Learning induces unique transcriptional landscapes in the auditory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.536914. [PMID: 37090563 PMCID: PMC10120736 DOI: 10.1101/2023.04.15.536914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Learning can induce neurophysiological plasticity in the auditory cortex at multiple timescales. Lasting changes to auditory cortical function that persist over days, weeks, or even a lifetime, require learning to induce de novo gene expression. Indeed, transcription is the molecular determinant for long-term memories to form with a lasting impact on sound-related behavior. However, auditory cortical genes that support auditory learning, memory, and acquired sound-specific behavior are largely unknown. This report is the first to identify in young adult male rats (Sprague-Dawley) genome-wide changes in learning-induced gene expression within the auditory cortex that may underlie the formation of long-lasting discriminative memory for acoustic frequency cues. Auditory cortical samples were collected from animals in the initial learning phase of a two-tone discrimination sound-reward task known to induce sound-specific neurophysiological and behavioral effects (e.g., Shang et al., 2019). Bioinformatic analyses on gene enrichment profiles from bulk RNA sequencing identified cholinergic synapse (KEGG 04725), extra-cellular matrix receptor interaction (KEGG 04512) , and neuroactive ligand-receptor interaction (KEGG 04080) as top biological pathways for auditory discrimination learning. The findings characterize key candidate effectors underlying changes in cortical function that support the initial formation of long-term discriminative auditory memory in the adult brain. The molecules and mechanisms identified are potential therapeutic targets to facilitate lasting changes to sound-specific auditory function in adulthood and prime for future gene-targeted investigations.
Collapse
Affiliation(s)
- G Graham
- Neuroscience Graduate Program, Rutgers Univ., Piscataway, NJ
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
| | - M S Chimenti
- Iowa Institute of Human Genetics, Univ. of Iowa Carver College of Medicine, Iowa City, IA
| | - K L Knudtson
- Iowa Institute of Human Genetics, Univ. of Iowa Carver College of Medicine, Iowa City, IA
| | - D N Grenard
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
| | - L Co
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
| | - M Sumner
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
| | - T Tchou
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
| | - K M Bieszczad
- Neuroscience Graduate Program, Rutgers Univ., Piscataway, NJ
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
- Rutgers Center for Cognitive Science, Rutgers Univ., Piscataway, NJ
- Dept. of Otolaryngology-Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| |
Collapse
|
4
|
Ferraguto C, Bouleau Y, Peineau T, Dulon D, Pietropaolo S. Hyperacusis in the Adult Fmr1-KO Mouse Model of Fragile X Syndrome: The Therapeutic Relevance of Cochlear Alterations and BKCa Channels. Int J Mol Sci 2023; 24:11863. [PMID: 37511622 PMCID: PMC10380266 DOI: 10.3390/ijms241411863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Hyperacusis, i.e., an increased sensitivity to sounds, is described in several neurodevelopmental disorders (NDDs), including Fragile X Syndrome (FXS). The mechanisms underlying hyperacusis in FXS are still largely unknown and effective therapies are lacking. Big conductance calcium-activated potassium (BKCa) channels were proposed as a therapeutic target to treat several behavioral disturbances in FXS preclinical models, but their role in mediating their auditory alterations was not specifically addressed. Furthermore, studies on the acoustic phenotypes of FXS animal models mostly focused on central rather than peripheral auditory pathways. Here, we provided an extensive characterization of the peripheral auditory phenotype of the Fmr1-knockout (KO) mouse model of FXS at adulthood. We also assessed whether the acute administration of Chlorzoxazone, a BKCa agonist, could rescue the auditory abnormalities of adult mutant mice. Fmr1-KO mice both at 3 and 6 months showed a hyperacusis-like startle phenotype with paradoxically reduced auditory brainstem responses associated with a loss of ribbon synapses in the inner hair cells (IHCs) compared to their wild-type (WT) littermates. BKCa expression was markedly reduced in the IHCs of KOs compared to WT mice, but only at 6 months, when Chlorzoxazone rescued mutant auditory dysfunction. Our findings highlight the age-dependent and progressive contribution of peripheral mechanisms and BKCa channels to adult hyperacusis in FXS, suggesting a novel therapeutic target to treat auditory dysfunction in NDDs.
Collapse
Affiliation(s)
- Celeste Ferraguto
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Yohan Bouleau
- Neurophysiologie de la Synapse Auditive, Université de Bordeaux, INSERM UA06, F-33000 Bordeaux, France
- Institut de l'Audition, Centre Institut Pasteur, Inserm UA06, F-75012 Paris, France
| | - Thibault Peineau
- Neurophysiologie de la Synapse Auditive, Université de Bordeaux, INSERM UA06, F-33000 Bordeaux, France
- Institut de l'Audition, Centre Institut Pasteur, Inserm UA06, F-75012 Paris, France
| | - Didier Dulon
- Neurophysiologie de la Synapse Auditive, Université de Bordeaux, INSERM UA06, F-33000 Bordeaux, France
- Institut de l'Audition, Centre Institut Pasteur, Inserm UA06, F-75012 Paris, France
| | | |
Collapse
|
5
|
Wang X, Sela-Donenfeld D, Wang Y. Axonal and presynaptic FMRP: Localization, signal, and functional implications. Hear Res 2023; 430:108720. [PMID: 36809742 PMCID: PMC9998378 DOI: 10.1016/j.heares.2023.108720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/22/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Fragile X mental retardation protein (FMRP) binds a selected set of mRNAs and proteins to guide neural circuit assembly and regulate synaptic plasticity. Loss of FMRP is responsible for Fragile X syndrome, a neuropsychiatric disorder characterized with auditory processing problems and social difficulty. FMRP actions in synaptic formation, maturation, and plasticity are site-specific among the four compartments of a synapse: presynaptic and postsynaptic neurons, astrocytes, and extracellular matrix. This review summarizes advancements in understanding FMRP localization, signals, and functional roles in axons and presynaptic terminals.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
6
|
Sibille J, Kremkow J, Koch U. Absence of the Fragile X messenger ribonucleoprotein alters response patterns to sounds in the auditory midbrain. Front Neurosci 2022; 16:987939. [PMID: 36188480 PMCID: PMC9523263 DOI: 10.3389/fnins.2022.987939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Among the different autism spectrum disorders, Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. Sensory and especially auditory hypersensitivity is a key symptom in patients, which is well mimicked in the Fmr1 -/- mouse model. However, the physiological mechanisms underlying FXS’s acoustic hypersensitivity in particular remain poorly understood. Here, we categorized spike response patterns to pure tones of different frequencies and intensities from neurons in the inferior colliculus (IC), a central integrator in the ascending auditory pathway. Based on this categorization we analyzed differences in response patterns between IC neurons of wild-type (WT) and Fmr1 -/- mice. Our results report broadening of frequency tuning, an increased firing in response to monaural as well as binaural stimuli, an altered balance of excitation-inhibition, and reduced response latencies, all expected features of acoustic hypersensitivity. Furthermore, we noticed that all neuronal response types in Fmr1 -/- mice displayed enhanced offset-rebound activity outside their excitatory frequency response area. These results provide evidence that the loss of Fmr1 not only increases spike responses in IC neurons similar to auditory brainstem neurons, but also changes response patterns such as offset spiking. One can speculate this to be an underlying aspect of the receptive language problems associated with Fragile X syndrome.
Collapse
Affiliation(s)
- Jérémie Sibille
- Institute for Biology, Freie Universität Berlin, Berlin, Germany
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- *Correspondence: Jérémie Sibille, ,
| | - Jens Kremkow
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Ursula Koch
- Institute for Biology, Freie Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- Ursula Koch,
| |
Collapse
|
7
|
Liu R, Sun L, Wang Y, Jia M, Wang Q, Cai X, Wu J. Double-edged Role of K Na Channels in Brain Tuning: Identifying Epileptogenic Network Micro-Macro Disconnection. Curr Neuropharmacol 2022; 20:916-928. [PMID: 34911427 PMCID: PMC9881102 DOI: 10.2174/1570159x19666211215104829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is commonly recognized as a disease driven by generalized hyperexcited and hypersynchronous neural activity. Sodium-activated potassium channels (KNa channels), which are encoded by the Slo 2.2 and Slo 2.1 genes, are widely expressed in the central nervous system and considered as "brakes" to adjust neuronal adaptation through regulating action potential threshold or after-hyperpolarization under physiological condition. However, the variants in KNa channels, especially gain-of-function variants, have been found in several childhood epileptic conditions. Most previous studies focused on mapping the epileptic network on the macroscopic scale while ignoring the value of microscopic changes. Notably, paradoxical role of KNa channels working on individual neuron/microcircuit and the macroscopic epileptic expression highlights the importance of understanding epileptogenic network through combining microscopic and macroscopic methods. Here, we first illustrated the molecular and physiological function of KNa channels on preclinical seizure models and patients with epilepsy. Next, we summarized current hypothesis on the potential role of KNa channels during seizures to provide essential insight into what emerged as a micro-macro disconnection at different levels. Additionally, we highlighted the potential utility of KNa channels as therapeutic targets for developing innovative anti-seizure medications.
Collapse
Affiliation(s)
- Ru Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lei Sun
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | | | - Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiang Cai
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,Address correspondence to these authors at the Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tel: +0086-18062552085; E-mail: Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Tel: +0086-13319285082; E-mail:
| | - Jianping Wu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China;,Address correspondence to these authors at the Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tel: +0086-18062552085; E-mail: Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Tel: +0086-13319285082; E-mail:
| |
Collapse
|
8
|
A BK channel-targeted peptide induces age-dependent improvement in behavioral and neural sound representation. Neurobiol Aging 2021; 110:61-72. [PMID: 34861480 DOI: 10.1016/j.neurobiolaging.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
Recent evidence suggests that modulation of the large-conductance, calcium-activated potassium (BK) channel regulates auditory processing in the brain. Because ion channel expression often changes during aging, this could be a factor in age-related hearing loss. The current study explored how the novel BK channel modulator LS3 shapes central auditory processing in young and old adult mice. In vivo extracellular recordings in the auditory midbrain demonstrated that LS3 differentially modulates neural processing along the tonotopic axis. Though sound-evoked activity was reduced in the mid and ventral tonotopic regions, LS3 enhanced excitatory drive and sound-evoked responses for some neurons in the dorsal, low-frequency region. Behavioral assessment using acoustic reflex modification audiometry indicated improved tone salience following systemic LS3 administration. Moderation of these responses with aging correlated with an age-related decline in BK channel expression. These findings suggest that targeting the BK channel enhances responsivity to tonal sounds, providing the potential to improve hearing acuity and treat hearing loss.
Collapse
|
9
|
Expression and Localization of Kv1.1 and Kv3.1b Potassium Channels in the Cochlear Nucleus and Inferior Colliculus after Long-Term Auditory Deafferentation. Brain Sci 2020; 10:brainsci10010035. [PMID: 31936259 PMCID: PMC7017294 DOI: 10.3390/brainsci10010035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Deafness affects the expression and distribution of voltage-dependent potassium channels (Kvs) of central auditory neurons in the short-term, i.e., hours to days, but the consequences in the expression of Kvs after long-term deafness remain unknown. We tested expression and distribution of Kv1.1 and Kv3.1b, key for auditory processing, in the rat cochlear nucleus (CN), and in the inferior colliculus (IC), at 1, 15 and 90 days after mechanical lesion of the cochlea, using a combination of qRT-PCR and Western blot in the whole CN, along with semi-quantitative immunocytochemistry in the AVCN, where the role of both Kvs in the control of excitability for accurate auditory timing signal processing is well established. Neither Kv1.1/Kv3.1b mRNA or protein expression changed significantly in the CN between 1 and 15 days after deafness. At 90 days post-lesion, however, mRNA and protein expression for both Kvs increased, suggesting that regulation of Kv1.1 and Kv3.1b expression is part of cellular mechanisms for long-term adaptation to auditory deprivation in the CN. Consistent with these findings, immunocytochemistry showed increased labeling intensity for both Kvs in the AVCN at day 90 after cochlear lesion. This increase argues that up-regulation of Kv1.1 and Kv3.1b in AVCN neurons may be required to adapt intrinsic excitability to altered input over the long term after auditory deprivation. Contrary to these findings in the CN, expression levels of Kv1.1 and Kv3.1b in the IC did not undergo major changes after cochlear lesion. In particular, there was no evidence of long-term up-regulation of either Kv1.1 or Kv3.1b, supporting that such post-lesion adaptive mechanism may not be needed in the IC. These results reveal that post-lesion adaptations do not necessarily involve stereotyped plastic mechanisms along the entire auditory pathway.
Collapse
|
10
|
Müller MK, Jovanovic S, Keine C, Radulovic T, Rübsamen R, Milenkovic I. Functional Development of Principal Neurons in the Anteroventral Cochlear Nucleus Extends Beyond Hearing Onset. Front Cell Neurosci 2019; 13:119. [PMID: 30983974 PMCID: PMC6447607 DOI: 10.3389/fncel.2019.00119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/11/2019] [Indexed: 01/23/2023] Open
Abstract
Sound information is transduced into graded receptor potential by cochlear hair cells and encoded as discrete action potentials of auditory nerve fibers. In the cochlear nucleus, auditory nerve fibers convey this information through morphologically distinct synaptic terminals onto bushy cells (BCs) and stellate cells (SCs) for processing of different sound features. With expanding use of transgenic mouse models, it is increasingly important to understand the in vivo functional development of these neurons in mice. We characterized the maturation of spontaneous and acoustically evoked activity in BCs and SCs by acquiring single-unit juxtacellular recordings between hearing onset (P12) and young adulthood (P30) of anesthetized CBA/J mice. In both cell types, hearing sensitivity and characteristic frequency (CF) range are mostly adult-like by P14, consistent with rapid maturation of the auditory periphery. In BCs, however, some physiological features like maximal firing rate, dynamic range, temporal response properties, recovery from post-stimulus depression, first spike latency (FSL) and encoding of sinusoid amplitude modulation undergo further maturation up to P18. In SCs, the development of excitatory responses is even more prolonged, indicated by a gradual increase in spontaneous and maximum firing rates up to P30. In the same cell type, broadly tuned acoustically evoked inhibition is immediately effective at hearing onset, covering the low- and high-frequency flanks of the excitatory response area. Together, these data suggest that maturation of auditory processing in the parallel ascending BC and SC streams engages distinct mechanisms at the first central synapses that may differently depend on the early auditory experience.
Collapse
Affiliation(s)
- Maria Katharina Müller
- Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Sasa Jovanovic
- Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Christian Keine
- Carver College of Medicine, Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States.,Institute of Biology, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Tamara Radulovic
- Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.,Carver College of Medicine, Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
| | - Rudolf Rübsamen
- Institute of Biology, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Ivan Milenkovic
- Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.,School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
11
|
Wang X, Zorio DAR, Schecterson L, Lu Y, Wang Y. Postsynaptic FMRP Regulates Synaptogenesis In Vivo in the Developing Cochlear Nucleus. J Neurosci 2018; 38:6445-6460. [PMID: 29950504 PMCID: PMC6052239 DOI: 10.1523/jneurosci.0665-18.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/29/2022] Open
Abstract
A global loss of the fragile X mental retardation protein (FMRP; encoded by the Fmr1 gene) leads to sensory dysfunction and intellectual disabilities. One underlying mechanism of these phenotypes is structural and functional deficits in synapses. Here, we determined the autonomous function of postsynaptic FMRP in circuit formation, synaptogenesis, and synaptic maturation. In normal cochlea nucleus, presynaptic auditory axons form large axosomatic endbulb synapses on cell bodies of postsynaptic bushy neurons. In ovo electroporation of drug-inducible Fmr1-shRNA constructs produced a mosaicism of FMRP expression in chicken (either sex) bushy neurons, leading to reduced FMRP levels in transfected, but not neighboring nontransfected, neurons. Structural analyses revealed that postsynaptic FMRP reduction led to smaller size and abnormal morphology of individual presynaptic endbulbs at both early and later developmental stages. We further examined whether FMRP reduction affects dendritic development, as a potential mechanism underlying defective endbulb formation. Normally, chicken bushy neurons grow extensive dendrites at early stages and retract these dendrites when endbulbs begin to form. Neurons transfected with Fmr1 shRNA exhibited a remarkable delay in branch retraction, failing to provide necessary somatic surface for timely formation and growth of large endbulbs. Patch-clamp recording verified functional consequences of dendritic and synaptic deficits on neurotransmission, showing smaller amplitudes and slower kinetics of spontaneous and evoked EPSCs. Together, these data demonstrate that proper levels of postsynaptic FMRP are required for timely maturation of somatodendritic morphology, a delay of which may affect synaptogenesis and thus contribute to long-lasting deficits of excitatory synapses.SIGNIFICANCE STATEMENT Fragile X mental retardation protein (FMRP) regulates a large variety of neuronal activities. A global loss of FMRP affects neural circuit development and synaptic function, leading to fragile X syndrome (FXS). Using temporally and spatially controlled genetic manipulations, this study provides the first in vivo report that autonomous FMRP regulates multiple stages of dendritic development, and that selective reduction of postsynaptic FMRP leads to abnormal development of excitatory presynaptic terminals and compromised neurotransmission. These observations demonstrate secondary influence of developmentally transient deficits in neuronal morphology and connectivity to the development of long-lasting synaptic pathology in FXS.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Diego A R Zorio
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Leslayann Schecterson
- Department of Otolaryngology, Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195, and
| | - Yong Lu
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Yuan Wang
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, Florida 32306,
| |
Collapse
|
12
|
Kaczmarek LK, Zhang Y. Kv3 Channels: Enablers of Rapid Firing, Neurotransmitter Release, and Neuronal Endurance. Physiol Rev 2017; 97:1431-1468. [PMID: 28904001 PMCID: PMC6151494 DOI: 10.1152/physrev.00002.2017] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/24/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022] Open
Abstract
The intrinsic electrical characteristics of different types of neurons are shaped by the K+ channels they express. From among the more than 70 different K+ channel genes expressed in neurons, Kv3 family voltage-dependent K+ channels are uniquely associated with the ability of certain neurons to fire action potentials and to release neurotransmitter at high rates of up to 1,000 Hz. In general, the four Kv3 channels Kv3.1-Kv3.4 share the property of activating and deactivating rapidly at potentials more positive than other channels. Each Kv3 channel gene can generate multiple protein isoforms, which contribute to the high-frequency firing of neurons such as auditory brain stem neurons, fast-spiking GABAergic interneurons, and Purkinje cells of the cerebellum, and to regulation of neurotransmitter release at the terminals of many neurons. The different Kv3 channels have unique expression patterns and biophysical properties and are regulated in different ways by protein kinases. In this review, we cover the function, localization, and modulation of Kv3 channels and describe how levels and properties of the channels are altered by changes in ongoing neuronal activity. We also cover how the protein-protein interaction of these channels with other proteins affects neuronal functions, and how mutations or abnormal regulation of Kv3 channels are associated with neurological disorders such as ataxias, epilepsies, schizophrenia, and Alzheimer's disease.
Collapse
Affiliation(s)
- Leonard K Kaczmarek
- Departments of Pharmacology and of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Yalan Zhang
- Departments of Pharmacology and of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
13
|
Lu T, Wade K, Hong H, Sanchez JT. Ion channel mechanisms underlying frequency-firing patterns of the avian nucleus magnocellularis: A computational model. Channels (Austin) 2017; 11:444-458. [PMID: 28481659 PMCID: PMC5626364 DOI: 10.1080/19336950.2017.1327493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We have previously shown that late-developing avian nucleus magnocellularis (NM) neurons (embryonic [E] days 19–21) fire action potentials (APs) that resembles a band-pass filter in response to sinusoidal current injections of varying frequencies. NM neurons located in the mid- to high-frequency regions of the nucleus fire preferentially at 75 Hz, but only fire a single onset AP to frequency inputs greater than 200 Hz. Surprisingly, NM neurons do not fire APs to sinusoidal inputs less than 20 Hz regardless of the strength of the current injection. In the present study we evaluated intrinsic mechanisms that prevent AP generation to low frequency inputs. We constructed a computational model to simulate the frequency-firing patterns of NM neurons based on experimental data at both room and near physiologic temperatures. The results from our model confirm that the interaction among low- and high-voltage activated potassium channels (KLVA and KHVA, respectively) and voltage dependent sodium channels (NaV) give rise to the frequency-firing patterns observed in vitro. In particular, we evaluated the regulatory role of KLVA during low frequency sinusoidal stimulation. The model shows that, in response to low frequency stimuli, activation of large KLVA current counterbalances the slow-depolarizing current injection, likely permitting NaV closed-state inactivation and preventing the generation of APs. When the KLVA current density was reduced, the model neuron fired multiple APs per sinusoidal cycle, indicating that KLVA channels regulate low frequency AP firing of NM neurons. This intrinsic property of NM neurons may assist in optimizing response to different rates of synaptic inputs.
Collapse
Affiliation(s)
- Ting Lu
- a Roxelyn and Richard Pepper Department of Communication Sciences and Disorders , Northwestern University , Evanston , IL , USA
| | - Kirstie Wade
- a Roxelyn and Richard Pepper Department of Communication Sciences and Disorders , Northwestern University , Evanston , IL , USA
| | - Hui Hong
- a Roxelyn and Richard Pepper Department of Communication Sciences and Disorders , Northwestern University , Evanston , IL , USA
| | - Jason Tait Sanchez
- a Roxelyn and Richard Pepper Department of Communication Sciences and Disorders , Northwestern University , Evanston , IL , USA.,b Department of Neurobiology , Northwestern University , Evanston , IL , USA.,c The Hugh Knowles Hearing Research Center , Northwestern University , Evanston , IL , USA
| |
Collapse
|
14
|
Enhanced Excitatory Connectivity and Disturbed Sound Processing in the Auditory Brainstem of Fragile X Mice. J Neurosci 2017; 37:7403-7419. [PMID: 28674175 DOI: 10.1523/jneurosci.2310-16.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 06/06/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022] Open
Abstract
Hypersensitivity to sounds is one of the prevalent symptoms in individuals with Fragile X syndrome (FXS). It manifests behaviorally early during development and is often used as a landmark for treatment efficacy. However, the physiological mechanisms and circuit-level alterations underlying this aberrant behavior remain poorly understood. Using the mouse model of FXS (Fmr1 KO), we demonstrate that functional maturation of auditory brainstem synapses is impaired in FXS. Fmr1 KO mice showed a greatly enhanced excitatory synaptic input strength in neurons of the lateral superior olive (LSO), a prominent auditory brainstem nucleus, which integrates ipsilateral excitation and contralateral inhibition to compute interaural level differences. Conversely, the glycinergic, inhibitory input properties remained unaffected. The enhanced excitation was the result of an increased number of cochlear nucleus fibers converging onto one LSO neuron, without changing individual synapse properties. Concomitantly, immunolabeling of excitatory ending markers revealed an increase in the immunolabeled area, supporting abnormally elevated excitatory input numbers. Intrinsic firing properties were only slightly enhanced. In line with the disturbed development of LSO circuitry, auditory processing was also affected in adult Fmr1 KO mice as shown with single-unit recordings of LSO neurons. These processing deficits manifested as an increase in firing rate, a broadening of the frequency response area, and a shift in the interaural level difference function of LSO neurons. Our results suggest that this aberrant synaptic development of auditory brainstem circuits might be a major underlying cause of the auditory processing deficits in FXS.SIGNIFICANCE STATEMENT Fragile X Syndrome (FXS) is the most common inheritable form of intellectual impairment, including autism. A core symptom of FXS is extreme sensitivity to loud sounds. This is one reason why individuals with FXS tend to avoid social interactions, contributing to their isolation. Here, a mouse model of FXS was used to investigate the auditory brainstem where basic sound information is first processed. Loss of the Fragile X mental retardation protein leads to excessive excitatory compared with inhibitory inputs in neurons extracting information about sound levels. Functionally, this elevated excitation results in increased firing rates, and abnormal coding of frequency and binaural sound localization cues. Imbalanced early-stage sound level processing could partially explain the auditory processing deficits in FXS.
Collapse
|
15
|
Gribkoff VK, Kaczmarek LK. The need for new approaches in CNS drug discovery: Why drugs have failed, and what can be done to improve outcomes. Neuropharmacology 2017; 120:11-19. [PMID: 26979921 PMCID: PMC5820030 DOI: 10.1016/j.neuropharm.2016.03.021] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/14/2016] [Accepted: 03/11/2016] [Indexed: 12/31/2022]
Abstract
An important goal of biomedical research is to translate basic research findings into useful medical advances. In the field of neuropharmacology this requires understanding disease mechanisms as well as the effects of drugs and other compounds on neuronal function. Our hope is that this information will result in new or improved treatment for CNS disease. Despite great progress in our understanding of the structure and functions of the CNS, the discovery of new drugs and their clinical development for many CNS disorders has been problematic. As a result, CNS drug discovery and development programs have been subjected to significant cutbacks and eliminations over the last decade. While there has been recent resurgence of interest in CNS targets, these past changes in priority of the pharmaceutical and biotech industries reflect several well-documented realities. CNS drugs in general have higher failure rates than non-CNS drugs, both preclinically and clinically, and in some areas, such as the major neurodegenerative diseases, the clinical failure rate for disease-modifying treatments has been 100%. The development times for CNS drugs are significantly longer for those drugs that are approved, and post-development regulatory review is longer. In this introduction we review some of the reasons for failure, delineating both scientific and technical realities, some unique to the CNS, that have contributed to this. We will focus on major neurodegenerative disorders, which affect millions, attract most of the headlines, and yet have witnessed the fewest successes. We will suggest some changes that, when coupled with the approaches discussed in the rest of this special volume, may improve outcomes in future CNS-targeted drug discovery and development efforts. This article is part of the Special Issue entitled "Beyond small molecules for neurological disorders".
Collapse
Affiliation(s)
- Valentin K Gribkoff
- Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
16
|
Vicente PC, Kim JY, Ha J, Song M, Lee H, Kim D, Choi J, Park K. Identification and characterization of site‐specific N‐glycosylation in the potassium channel Kv3.1b. J Cell Physiol 2017; 233:549-558. [DOI: 10.1002/jcp.25915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 03/17/2017] [Indexed: 12/11/2022]
Affiliation(s)
| | - Jin Young Kim
- Biomedical Omics GroupKorea Basic Science InstituteCheongju‐si Chungcheongbuk‐doSouth Korea
| | - Jeong‐Ju Ha
- Department of Physiology, School of MedicineKyung Hee UniversitySeoulSouth Korea
| | - Min‐Young Song
- Department of Physiology, School of MedicineKyung Hee UniversitySeoulSouth Korea
- Biomedical Omics GroupKorea Basic Science InstituteCheongju‐si Chungcheongbuk‐doSouth Korea
| | - Hyun‐Kyung Lee
- Biomedical Omics GroupKorea Basic Science InstituteCheongju‐si Chungcheongbuk‐doSouth Korea
- Graduate School of Analytical Science and TechnologyChungnam National UniversityDaejeonSouth Korea
| | - Dong‐Hyun Kim
- College of PharmacyCatholic University of KoreaBucheonGyeonggi‐DoSouth Korea
| | - Jin‐Sung Choi
- College of PharmacyCatholic University of KoreaBucheonGyeonggi‐DoSouth Korea
| | - Kang‐Sik Park
- Department of Physiology, School of MedicineKyung Hee UniversitySeoulSouth Korea
| |
Collapse
|
17
|
Zorio DAR, Jackson CM, Liu Y, Rubel EW, Wang Y. Cellular distribution of the fragile X mental retardation protein in the mouse brain. J Comp Neurol 2017; 525:818-849. [PMID: 27539535 PMCID: PMC5558202 DOI: 10.1002/cne.24100] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 11/07/2022]
Abstract
The fragile X mental retardation protein (FMRP) plays an important role in normal brain development. Absence of FMRP results in abnormal neuronal morphologies in a selected manner throughout the brain, leading to intellectual deficits and sensory dysfunction in the fragile X syndrome (FXS). Despite FMRP importance for proper brain function, its overall expression pattern in the mammalian brain at the resolution of individual neuronal cell groups is not known. In this study we used FMR1 knockout and isogenic wildtype mice to systematically map the distribution of FMRP expression in the entire mouse brain. Using immunocytochemistry and cellular quantification analyses, we identified a large number of prominent cell groups expressing high levels of FMRP at the subcortical levels, in particular sensory and motor neurons in the brainstem and thalamus. In contrast, many cell groups in the midbrain and hypothalamus exhibit low FMRP levels. More important, we describe differential patterns of FMRP distribution in both cortical and subcortical brain regions. Almost all major brain areas contain high and low levels of FMRP cell groups adjacent to each other or between layers of the same cortical areas. These differential patterns indicate that FMRP expression appears to be specific to individual neuronal cell groups instead of being associated with all neurons in distinct brain regions, as previously considered. Taken together, these findings support the notion of FMRP differential neuronal regulation and strongly implicate the contribution of fundamental sensory and motor processing at subcortical levels to FXS pathology. J. Comp. Neurol. 525:818-849, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Diego A. R. Zorio
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Christine M. Jackson
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yong Liu
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Box 357923, Seattle, WA 98195, USA
| | - Yuan Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
18
|
Guo Y, Zhang P, Sheng Q, Zhao S, Hackett TA. lncRNA expression in the auditory forebrain during postnatal development. Gene 2016; 593:201-216. [PMID: 27544636 PMCID: PMC5034298 DOI: 10.1016/j.gene.2016.08.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/27/2016] [Accepted: 08/15/2016] [Indexed: 12/30/2022]
Abstract
The biological processes governing brain development and maturation depend on complex patterns of gene and protein expression, which can be influenced by many factors. One of the most overlooked is the long noncoding class of RNAs (lncRNAs), which are known to play important regulatory roles in an array of biological processes. Little is known about the distribution of lncRNAs in the sensory systems of the brain, and how lncRNAs interact with other mechanisms to guide the development of these systems. In this study, we profiled lncRNA expression in the mouse auditory forebrain during postnatal development at time points before and after the onset of hearing (P7, P14, P21, adult). First, we generated lncRNA profiles of the primary auditory cortex (A1) and medial geniculate body (MG) at each age. Then, we determined the differential patterns of expression by brain region and age. These analyses revealed that the lncRNA expression profile was distinct between both brain regions and between each postnatal age, indicating spatial and temporal specificity during maturation of the auditory forebrain. Next, we explored potential interactions between functionally-related lncRNAs, protein coding RNAs (pcRNAs), and associated proteins. The maturational trajectories (P7 to adult) of many lncRNA - pcRNA pairs were highly correlated, and predictive analyses revealed that lncRNA-protein interactions tended to be strong. A user-friendly database was constructed to facilitate inspection of the expression levels and maturational trajectories for any lncRNA or pcRNA in the database. Overall, this study provides an in-depth summary of lncRNA expression in the developing auditory forebrain and a broad-based foundation for future exploration of lncRNA function during brain development.
Collapse
Affiliation(s)
- Yan Guo
- Dept. of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Pan Zhang
- Dept. of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Quanhu Sheng
- Dept. of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Shilin Zhao
- Dept. of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Troy A Hackett
- Dept. of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
19
|
Franken TP, Smith PH, Joris PX. In vivo Whole-Cell Recordings Combined with Electron Microscopy Reveal Unexpected Morphological and Physiological Properties in the Lateral Nucleus of the Trapezoid Body in the Auditory Brainstem. Front Neural Circuits 2016; 10:69. [PMID: 27605909 PMCID: PMC4995217 DOI: 10.3389/fncir.2016.00069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 08/10/2016] [Indexed: 11/13/2022] Open
Abstract
The lateral nucleus of the trapezoid body (LNTB) is a prominent nucleus in the superior olivary complex in mammals including humans. Its physiology in vivo is poorly understood due to a paucity of recordings. It is thought to provide a glycinergic projection to the medial superior olive (MSO) with an important role in binaural processing and sound localization. We combined in vivo patch clamp recordings with labeling of individual neurons in the Mongolian gerbil. Labeling of the recorded neurons allowed us to relate physiological properties to anatomy at the light and electron microscopic level. We identified a population of quite dorsally located neurons with surprisingly large dendritic trees on which most of the synaptic input impinges. In most neurons, one or more of these dendrites run through and are then medial to the MSO. These neurons were often binaural and could even show sensitivity to interaural time differences (ITDs) of stimulus fine structure or envelope. Moreover, a subpopulation showed enhanced phase-locking to tones delivered in the tuning curve tail. We propose that these neurons constitute the gerbil main LNTB (mLNTB). In contrast, a smaller sample of neurons was identified that was located more ventrally and that we designate to be in posteroventral LNTB (pvLNTB). These cells receive large somatic excitatory terminals from globular bushy cells. We also identified previously undescribed synaptic inputs from the lateral superior olive. pvLNTB neurons are usually monaural, display a primary-like-with-notch response to ipsilateral short tones at CF and can phase-lock to low frequency tones. We conclude that mLNTB contains a population of neurons with extended dendritic trees where most of the synaptic input is found, that can show enhanced phase-locking and sensitivity to ITD. pvLNTB cells, presumed to provide glycinergic input to the MSO, get large somatic globular bushy synaptic inputs and are typically monaural with short tone responses similar to their primary input from the cochlear nucleus.
Collapse
Affiliation(s)
- Tom P Franken
- Laboratory of Auditory Neurophysiology, Department of Neurosciences, Katholieke Universiteit Leuven Leuven, Belgium
| | - Philip H Smith
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health Madison, WI, USA
| | - Philip X Joris
- Laboratory of Auditory Neurophysiology, Department of Neurosciences, Katholieke Universiteit Leuven Leuven, Belgium
| |
Collapse
|
20
|
Ferron L. Fragile X mental retardation protein controls ion channel expression and activity. J Physiol 2016; 594:5861-5867. [PMID: 26864773 DOI: 10.1113/jp270675] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/14/2015] [Indexed: 01/12/2023] Open
Abstract
Fragile X-associated disorders are a family of genetic conditions resulting from the partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders is fragile X syndrome, the most common cause of inherited intellectual disability and autism. FMRP is an RNA-binding protein involved in the control of local translation, which has pleiotropic effects, in particular on synaptic function. Analysis of the brain FMRP transcriptome has revealed hundreds of potential mRNA targets encoding postsynaptic and presynaptic proteins, including a number of ion channels. FMRP has been confirmed to bind voltage-gated potassium channels (Kv 3.1 and Kv 4.2) mRNAs and regulates their expression in somatodendritic compartments of neurons. Recent studies have uncovered a number of additional roles for FMRP besides RNA regulation. FMRP was shown to directly interact with, and modulate, a number of ion channel complexes. The sodium-activated potassium (Slack) channel was the first ion channel shown to directly interact with FMRP; this interaction alters the single-channel properties of the Slack channel. FMRP was also shown to interact with the auxiliary β4 subunit of the calcium-activated potassium (BK) channel; this interaction increases calcium-dependent activation of the BK channel. More recently, FMRP was shown to directly interact with the voltage-gated calcium channel, Cav 2.2, and reduce its trafficking to the plasma membrane. Studies performed on animal models of fragile X syndrome have revealed links between modifications of ion channel activity and changes in neuronal excitability, suggesting that these modifications could contribute to the phenotypes observed in patients with fragile X-associated disorders.
Collapse
Affiliation(s)
- Laurent Ferron
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
21
|
Intrinsic plasticity induced by group II metabotropic glutamate receptors via enhancement of high-threshold KV currents in sound localizing neurons. Neuroscience 2016; 324:177-90. [PMID: 26964678 DOI: 10.1016/j.neuroscience.2016.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/05/2016] [Accepted: 03/03/2016] [Indexed: 01/18/2023]
Abstract
Intrinsic plasticity has emerged as an important mechanism regulating neuronal excitability and output under physiological and pathological conditions. Here, we report a novel form of intrinsic plasticity. Using perforated patch clamp recordings, we examined the modulatory effects of group II metabotropic glutamate receptors (mGluR II) on voltage-gated potassium (KV) currents and the firing properties of neurons in the chicken nucleus laminaris (NL), the first central auditory station where interaural time cues are analyzed for sound localization. We found that activation of mGluR II by synthetic agonists resulted in a selective increase of the high-threshold KV currents. More importantly, synaptically released glutamate (with reuptake blocked) also enhanced the high-threshold KV currents. The enhancement was frequency-coding region dependent, being more pronounced in low-frequency neurons compared to middle- and high-frequency neurons. The intracellular mechanism involved the Gβγ signaling pathway associated with phospholipase C and protein kinase C. The modulation strengthened membrane outward rectification, sharpened action potentials, and improved the ability of NL neurons to follow high-frequency inputs. These data suggest that mGluR II provides a feedforward modulatory mechanism that may regulate temporal processing under the condition of heightened synaptic inputs.
Collapse
|
22
|
Hackett TA, Guo Y, Clause A, Hackett NJ, Garbett K, Zhang P, Polley DB, Mirnics K. Transcriptional maturation of the mouse auditory forebrain. BMC Genomics 2015; 16:606. [PMID: 26271746 PMCID: PMC4536593 DOI: 10.1186/s12864-015-1709-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/01/2015] [Indexed: 02/07/2023] Open
Abstract
Background The maturation of the brain involves the coordinated expression of thousands of genes, proteins and regulatory elements over time. In sensory pathways, gene expression profiles are modified by age and sensory experience in a manner that differs between brain regions and cell types. In the auditory system of altricial animals, neuronal activity increases markedly after the opening of the ear canals, initiating events that culminate in the maturation of auditory circuitry in the brain. This window provides a unique opportunity to study how gene expression patterns are modified by the onset of sensory experience through maturity. As a tool for capturing these features, next-generation sequencing of total RNA (RNAseq) has tremendous utility, because the entire transcriptome can be screened to index expression of any gene. To date, whole transcriptome profiles have not been generated for any central auditory structure in any species at any age. In the present study, RNAseq was used to profile two regions of the mouse auditory forebrain (A1, primary auditory cortex; MG, medial geniculate) at key stages of postnatal development (P7, P14, P21, adult) before and after the onset of hearing (~P12). Hierarchical clustering, differential expression, and functional geneset enrichment analyses (GSEA) were used to profile the expression patterns of all genes. Selected genesets related to neurotransmission, developmental plasticity, critical periods and brain structure were highlighted. An accessible repository of the entire dataset was also constructed that permits extraction and screening of all data from the global through single-gene levels. To our knowledge, this is the first whole transcriptome sequencing study of the forebrain of any mammalian sensory system. Although the data are most relevant for the auditory system, they are generally applicable to forebrain structures in the visual and somatosensory systems, as well. Results The main findings were: (1) Global gene expression patterns were tightly clustered by postnatal age and brain region; (2) comparing A1 and MG, the total numbers of differentially expressed genes were comparable from P7 to P21, then dropped to nearly half by adulthood; (3) comparing successive age groups, the greatest numbers of differentially expressed genes were found between P7 and P14 in both regions, followed by a steady decline in numbers with age; (4) maturational trajectories in expression levels varied at the single gene level (increasing, decreasing, static, other); (5) between regions, the profiles of single genes were often asymmetric; (6) GSEA revealed that genesets related to neural activity and plasticity were typically upregulated from P7 to adult, while those related to structure tended to be downregulated; (7) GSEA and pathways analysis of selected functional networks were not predictive of expression patterns in the auditory forebrain for all genes, reflecting regional specificity at the single gene level. Conclusions Gene expression in the auditory forebrain during postnatal development is in constant flux and becomes increasingly stable with age. Maturational changes are evident at the global through single gene levels. Transcriptome profiles in A1 and MG are distinct at all ages, and differ from other brain regions. The database generated by this study provides a rich foundation for the identification of novel developmental biomarkers, functional gene pathways, and targeted studies of postnatal maturation in the auditory forebrain. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1709-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Yan Guo
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA.
| | - Amanda Clause
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA.
| | | | | | - Pan Zhang
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA.
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA.
| | - Karoly Mirnics
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA. .,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, 37235, USA. .,Department of Psychiatry, University of Szeged, 6725, Szeged, Hungary. .,Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
23
|
Sastre A, Campillo NE, Gil C, Martinez A. Therapeutic approaches for the future treatment of Fragile X. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2015.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Rotschafer SE, Marshak S, Cramer KS. Deletion of Fmr1 alters function and synaptic inputs in the auditory brainstem. PLoS One 2015; 10:e0117266. [PMID: 25679778 PMCID: PMC4332492 DOI: 10.1371/journal.pone.0117266] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/21/2014] [Indexed: 01/27/2023] Open
Abstract
Fragile X Syndrome (FXS), a neurodevelopmental disorder, is the most prevalent single-gene cause of autism spectrum disorder. Autism has been associated with impaired auditory processing, abnormalities in the auditory brainstem response (ABR), and reduced cell number and size in the auditory brainstem nuclei. FXS is characterized by elevated cortical responses to sound stimuli, with some evidence for aberrant ABRs. Here, we assessed ABRs and auditory brainstem anatomy in Fmr1-/- mice, an animal model of FXS. We found that Fmr1-/- mice showed elevated response thresholds to both click and tone stimuli. Amplitudes of ABR responses were reduced in Fmr1-/- mice for early peaks of the ABR. The growth of the peak I response with sound intensity was less steep in mutants that in wild type mice. In contrast, amplitudes and response growth in peaks IV and V did not differ between these groups. We did not observe differences in peak latencies or in interpeak latencies. Cell size was reduced in Fmr1-/- mice in the ventral cochlear nucleus (VCN) and in the medial nucleus of the trapezoid body (MNTB). We quantified levels of inhibitory and excitatory synaptic inputs in these nuclei using markers for presynaptic proteins. We measured VGAT and VGLUT immunolabeling in VCN, MNTB, and the lateral superior olive (LSO). VGAT expression in MNTB was significantly greater in the Fmr1-/- mouse than in wild type mice. Together, these observations demonstrate that FXS affects peripheral and central aspects of hearing and alters the balance of excitation and inhibition in the auditory brainstem.
Collapse
Affiliation(s)
- Sarah E. Rotschafer
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, 92697, United States of America
| | - Sonya Marshak
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, 92697, United States of America
| | - Karina S. Cramer
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, 92697, United States of America
- * E-mail:
| |
Collapse
|
25
|
Wang Y, Sakano H, Beebe K, Brown MR, de Laat R, Bothwell M, Kulesza RJ, Rubel EW. Intense and specialized dendritic localization of the fragile X mental retardation protein in binaural brainstem neurons: a comparative study in the alligator, chicken, gerbil, and human. J Comp Neurol 2015; 522:2107-28. [PMID: 24318628 DOI: 10.1002/cne.23520] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 11/09/2022]
Abstract
Neuronal dendrites are structurally and functionally dynamic in response to changes in afferent activity. The fragile X mental retardation protein (FMRP) is an mRNA binding protein that regulates activity-dependent protein synthesis and morphological dynamics of dendrites. Loss and abnormal expression of FMRP occur in fragile X syndrome (FXS) and some forms of autism spectrum disorders. To provide further understanding of how FMRP signaling regulates dendritic dynamics, we examined dendritic expression and localization of FMRP in the reptilian and avian nucleus laminaris (NL) and its mammalian analogue, the medial superior olive (MSO), in rodents and humans. NL/MSO neurons are specialized for temporal processing of low-frequency sounds for binaural hearing, which is impaired in FXS. Protein BLAST analyses first demonstrate that the FMRP amino acid sequences in the alligator and chicken are highly similar to human FMRP with identical mRNA-binding and phosphorylation sites, suggesting that FMRP functions similarly across vertebrates. Immunocytochemistry further reveals that NL/MSO neurons have very high levels of dendritic FMRP in low-frequency hearing vertebrates including alligator, chicken, gerbil, and human. Remarkably, dendritic FMRP in NL/MSO neurons often accumulates at branch points and enlarged distal tips, loci known to be critical for branch-specific dendritic arbor dynamics. These observations support an important role for FMRP in regulating dendritic properties of binaural neurons that are essential for low-frequency sound localization and auditory scene segregation, and support the relevance of studying this regulation in nonhuman vertebrates that use low frequencies in order to further understand human auditory processing disorders.
Collapse
Affiliation(s)
- Yuan Wang
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA, 98195-7923
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kim GE, Kronengold J, Barcia G, Quraishi IH, Martin HC, Blair E, Taylor JC, Dulac O, Colleaux L, Nabbout R, Kaczmarek LK. Human slack potassium channel mutations increase positive cooperativity between individual channels. Cell Rep 2014; 9:1661-1672. [PMID: 25482562 DOI: 10.1016/j.celrep.2014.11.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/06/2014] [Accepted: 11/10/2014] [Indexed: 11/24/2022] Open
Abstract
Disease-causing mutations in ion channels generally alter intrinsic gating properties such as activation, inactivation, and voltage dependence. We examined nine different mutations of the KCNT1 (Slack) Na(+)-activated K(+) channel that give rise to three distinct forms of epilepsy. All produced many-fold increases in current amplitude compared to the wild-type channel. This could not be accounted for by increases in the intrinsic open probability of individual channels. Rather, greatly increased opening was a consequence of cooperative interactions between multiple channels in a patch. The degree of cooperative gating was much greater for all of the mutant channels than for the wild-type channel, and could explain increases in current even in a mutant with reduced unitary conductance. We also found that the same mutation gave rise to different forms of epilepsy in different individuals. Our findings indicate that a major consequence of these mutations is to alter channel-channel interactions.
Collapse
Affiliation(s)
- Grace E Kim
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | - Jack Kronengold
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA
| | - Giulia Barcia
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Imran H Quraishi
- Comprehensive Epilepsy Center, Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Hilary C Martin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Edward Blair
- Oxford University Hospitals Trust, Oxford OX3 9DU, UK
| | - Jenny C Taylor
- Oxford Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Olivier Dulac
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Laurence Colleaux
- INSERM U781, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Rima Nabbout
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
27
|
Kohashi T, Carlson BA. A fast BK-type KCa current acts as a postsynaptic modulator of temporal selectivity for communication signals. Front Cell Neurosci 2014; 8:286. [PMID: 25278836 PMCID: PMC4166317 DOI: 10.3389/fncel.2014.00286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/29/2014] [Indexed: 11/13/2022] Open
Abstract
Temporal patterns of spiking often convey behaviorally relevant information. Various synaptic mechanisms and intrinsic membrane properties can influence neuronal selectivity to temporal patterns of input. However, little is known about how synaptic mechanisms and intrinsic properties together determine the temporal selectivity of neuronal output. We tackled this question by recording from midbrain electrosensory neurons in mormyrid fish, in which the processing of temporal intervals between communication signals can be studied in a reduced in vitro preparation. Mormyrids communicate by varying interpulse intervals (IPIs) between electric pulses. Within the midbrain posterior exterolateral nucleus (ELp), the temporal patterns of afferent spike trains are filtered to establish single-neuron IPI tuning. We performed whole-cell recording from ELp neurons in a whole-brain preparation and examined the relationship between intrinsic excitability and IPI tuning. We found that spike frequency adaptation of ELp neurons was highly variable. Postsynaptic potentials (PSPs) of strongly adapting (phasic) neurons were more sharply tuned to IPIs than weakly adapting (tonic) neurons. Further, the synaptic filtering of IPIs by tonic neurons was more faithfully converted into variation in spiking output, particularly at short IPIs. Pharmacological manipulation under current- and voltage-clamp revealed that tonic firing is mediated by a fast, large-conductance Ca(2+)-activated K(+) (KCa) current (BK) that speeds up action potential repolarization. These results suggest that BK currents can shape the temporal filtering of sensory inputs by modifying both synaptic responses and PSP-to-spike conversion. Slow SK-type KCa currents have previously been implicated in temporal processing. Thus, both fast and slow KCa currents can fine-tune temporal selectivity.
Collapse
Affiliation(s)
- Tsunehiko Kohashi
- Department of Biology, Washington University in St. Louis St. Louis, MO, USA ; Division of Biological Science, Graduate School of Science, Nagoya University Nagoya, Japan
| | - Bruce A Carlson
- Department of Biology, Washington University in St. Louis St. Louis, MO, USA
| |
Collapse
|
28
|
Baker CA, Kohashi T, Lyons-Warren AM, Ma X, Carlson BA. Multiplexed temporal coding of electric communication signals in mormyrid fishes. ACTA ACUST UNITED AC 2014; 216:2365-79. [PMID: 23761462 DOI: 10.1242/jeb.082289] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The coding of stimulus information into patterns of spike times occurs widely in sensory systems. Determining how temporally coded information is decoded by central neurons is essential to understanding how brains process sensory stimuli. Mormyrid weakly electric fishes are experts at time coding, making them an exemplary organism for addressing this question. Mormyrids generate brief, stereotyped electric pulses. Pulse waveform carries information about sender identity, and it is encoded into submillisecond-to-millisecond differences in spike timing between receptors. Mormyrids vary the time between pulses to communicate behavioral state, and these intervals are encoded into the sequence of interspike intervals within receptors. Thus, the responses of peripheral electroreceptors establish a temporally multiplexed code for communication signals, one consisting of spike timing differences between receptors and a second consisting of interspike intervals within receptors. These signals are processed in a dedicated sensory pathway, and recent studies have shed light on the mechanisms by which central circuits can extract behaviorally relevant information from multiplexed temporal codes. Evolutionary change in the anatomy of this pathway is related to differences in electrosensory perception, which appears to have influenced the diversification of electric signals and species. However, it remains unknown how this evolutionary change relates to differences in sensory coding schemes, neuronal circuitry and central sensory processing. The mormyrid electric communication pathway is a powerful model for integrating mechanistic studies of temporal coding with evolutionary studies of correlated differences in brain and behavior to investigate neural mechanisms for processing temporal codes.
Collapse
Affiliation(s)
- Christa A Baker
- Department of Biology, Washington University in St Louis, St Louis, MO, USA
| | | | | | | | | |
Collapse
|
29
|
Markham MR, Kaczmarek LK, Zakon HH. A sodium-activated potassium channel supports high-frequency firing and reduces energetic costs during rapid modulations of action potential amplitude. J Neurophysiol 2013; 109:1713-23. [PMID: 23324315 DOI: 10.1152/jn.00875.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the ionic mechanisms that allow dynamic regulation of action potential (AP) amplitude as a means of regulating energetic costs of AP signaling. Weakly electric fish generate an electric organ discharge (EOD) by summing the APs of their electric organ cells (electrocytes). Some electric fish increase AP amplitude during active periods or social interactions and decrease AP amplitude when inactive, regulated by melanocortin peptide hormones. This modulates signal amplitude and conserves energy. The gymnotiform Eigenmannia virescens generates EODs at frequencies that can exceed 500 Hz, which is energetically challenging. We examined how E. virescens meets that challenge. E. virescens electrocytes exhibit a voltage-gated Na(+) current (I(Na)) with extremely rapid recovery from inactivation (τ(recov) = 0.3 ms) allowing complete recovery of Na(+) current between APs even in fish with the highest EOD frequencies. Electrocytes also possess an inwardly rectifying K(+) current and a Na(+)-activated K(+) current (I(KNa)), the latter not yet identified in any gymnotiform species. In vitro application of melanocortins increases electrocyte AP amplitude and the magnitudes of all three currents, but increased I(KNa) is a function of enhanced Na(+) influx. Numerical simulations suggest that changing I(Na) magnitude produces corresponding changes in AP amplitude and that K(Na) channels increase AP energy efficiency (10-30% less Na(+) influx/AP) over model cells with only voltage-gated K(+) channels. These findings suggest the possibility that E. virescens reduces the energetic demands of high-frequency APs through rapidly recovering Na(+) channels and the novel use of KNa channels to maximize AP amplitude at a given Na(+) conductance.
Collapse
Affiliation(s)
- Michael R Markham
- Section of Neurobiology and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| | | | | |
Collapse
|
30
|
Lee S, Kwag J. M-channels modulate the intrinsic excitability and synaptic responses of layer 2/3 pyramidal neurons in auditory cortex. Biochem Biophys Res Commun 2012; 426:448-53. [PMID: 22925893 DOI: 10.1016/j.bbrc.2012.08.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 08/13/2012] [Indexed: 11/18/2022]
Abstract
Neurons in the auditory cortex are believed to utilize temporal patterns of neural activity to accurately process auditory information but the intrinsic neuronal mechanism underlying the control of auditory neural activity is not known. The slowly activating, persistent K(+) channel, also called M-channel that belongs to the Kv7 family, is already known to be important in regulating subthreshold neural excitability and synaptic summation in neocortical and hippocampal pyramidal neurons. However, its functional role in the primary auditory cortex (A1) has never been characterized. In this study, we investigated the roles of M-channels on neuronal excitability, short-term plasticity, and synaptic summation of A1 layer 2/3 regular spiking pyramidal neurons with whole-cell current-clamp recordings in vitro. We found that blocking M-channels with a selective M-channel blocker, XE991, significantly increased neural excitability of A1 layer 2/3 pyramidal neurons. Furthermore, M-channels controled synaptic responses of intralaminar-evoked excitatory postsynaptic potentials (EPSPs); XE991 significantly increased EPSP amplitude, decreased the rate of short-term depression, and increased the synaptic summation. These results suggest that M-channels are involved in controlling spike output patterns and synaptic responses of A1 layer 2/3 pyramidal neurons, which would have important implications in auditory information processing.
Collapse
Affiliation(s)
- Sujeong Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | | |
Collapse
|
31
|
Kopp-Scheinpflug C, Steinert JR, Forsythe ID. Modulation and control of synaptic transmission across the MNTB. Hear Res 2011; 279:22-31. [PMID: 21397677 DOI: 10.1016/j.heares.2011.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/04/2011] [Accepted: 02/27/2011] [Indexed: 12/13/2022]
Abstract
The aim of this review is to consider the various forms and functions of transmission across the calyx of Held/MNTB synapse and how its modulation might contribute to auditory processing. The calyx of Held synapse is the largest synapse in the mammalian brain which uses the conventional excitatory synaptic transmitter, glutamate. It is sometimes portrayed as the 'ultimate' in synaptic signalling: it is a synaptic relay in which a single axon forms one synaptic terminal onto one specific target neuron. Questions that are often raised are: "Why does such a large and secure synapse need any form of modulation? Surely it is built simply to guarantee firing an action potential in the target neuron? If this synapse is so secure, why is a synapse needed at all?" Investigating these questions explains some general limitations of transmission at synapses and provides insight into the ionic basis of neuronal function by bringing together in vivo and in vitro approaches. We will start by defining the firing behaviour of MNTB neurons in vitro (in response to synaptic stimulation or current injection) and in vivo (in response to sound) and examining the reasons for different types of firing under the two conditions. Then we will consider some of the mechanisms by which transmission can be regulated. We will finish by discussing the following hypothesis: modulation and adaptation of presynaptic and postsynaptic conductances at the calyx of Held relay synapse are aimed at maximising the security of sound onset encoding while providing secondary information on frequency spectrum, harmonic envelope and duration of sound throughout the later part of the response.
Collapse
Affiliation(s)
- Cornelia Kopp-Scheinpflug
- Neurotoxicity at the Synaptic Interface, MRC Toxicology Unit, Hodgkin Bldg, University of Leicester, Leicester LE1 9HN, UK
| | | | | |
Collapse
|