1
|
Hood KE, Hurley LM. Listening to your partner: serotonin increases male responsiveness to female vocal signals in mice. Front Hum Neurosci 2024; 17:1304653. [PMID: 38328678 PMCID: PMC10847236 DOI: 10.3389/fnhum.2023.1304653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/28/2023] [Indexed: 02/09/2024] Open
Abstract
The context surrounding vocal communication can have a strong influence on how vocal signals are perceived. The serotonergic system is well-positioned for modulating the perception of communication signals according to context, because serotonergic neurons are responsive to social context, influence social behavior, and innervate auditory regions. Animals like lab mice can be excellent models for exploring how serotonin affects the primary neural systems involved in vocal perception, including within central auditory regions like the inferior colliculus (IC). Within the IC, serotonergic activity reflects not only the presence of a conspecific, but also the valence of a given social interaction. To assess whether serotonin can influence the perception of vocal signals in male mice, we manipulated serotonin systemically with an injection of its precursor 5-HTP, and locally in the IC with an infusion of fenfluramine, a serotonin reuptake blocker. Mice then participated in a behavioral assay in which males suppress their ultrasonic vocalizations (USVs) in response to the playback of female broadband vocalizations (BBVs), used in defensive aggression by females when interacting with males. Both 5-HTP and fenfluramine increased the suppression of USVs during BBV playback relative to controls. 5-HTP additionally decreased the baseline production of a specific type of USV and male investigation, but neither drug treatment strongly affected male digging or grooming. These findings show that serotonin modifies behavioral responses to vocal signals in mice, in part by acting in auditory brain regions, and suggest that mouse vocal behavior can serve as a useful model for exploring the mechanisms of context in human communication.
Collapse
Affiliation(s)
- Kayleigh E. Hood
- Hurley Lab, Department of Biology, Indiana University, Bloomington, IN, United States
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| | - Laura M. Hurley
- Hurley Lab, Department of Biology, Indiana University, Bloomington, IN, United States
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| |
Collapse
|
2
|
Cheng LQ, Shu FQ, Zhang M, Kai YZ, Tang ZQ. Resveratrol prevents hearing loss and a subregion specific- reduction of serotonin reuptake transporter induced by noise exposure in the central auditory system. Front Neurosci 2023; 17:1134153. [PMID: 37034161 PMCID: PMC10080035 DOI: 10.3389/fnins.2023.1134153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Prolonged or excessive exposure to noise can lead to hearing loss, tinnitus and hypersensitivity to sound. The effects of noise exposure on main excitatory and inhibitory neurotransmitter systems in auditory pathway have been extensively investigated. However, little is known about aberrant changes in neuromodulator systems caused by noise exposure. In the current study, we exposed 2-month-old mice to a narrow band noise at 116 dB SPL for 6 h or sham exposure, assessed auditory brainstem responses as well as examined the expression of serotonin reuptake transporter (SERT) in the cochlear nucleus (CN), inferior colliculus (IC), and primary auditory cortex (Au1) using immunohistochemistry. We found that noise exposure resulted in a significant increase in hearing thresholds at 4, 8, 16, 24, and 32 kHz, as well as led to a significant reduction of SERT in dorsal cochlear nucleus (DCN), dorsal IC (ICd), external IC (ICe), and Au1 layers I-IV. This reduction of SERT in these subregions of central auditory system was partially recovered 15 or 30 days after noise exposure. Furthermore, we examined efficacy of resveratrol (RSV) on hearing loss and loss of SERT induced by noise exposure. The results demonstrated that RSV treatment significantly attenuated threshold shifts of auditory brainstem responses and loss of SERT in DCN, ICd, ICe, and Au1 layers I-IV. These findings show that noise exposure can cause hearing loss and subregion-specific loss of SERT in the central auditory system, and RSV treatment could attenuate noise exposure-induced hearing loss and loss of SERT in central auditory system.
Collapse
Affiliation(s)
- Long-Quan Cheng
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Fang-Qi Shu
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Min Zhang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Yuan-Zhong Kai
- School of Life Sciences, Anhui University, Hefei, China
- *Correspondence: Yuan-Zhong Kai,
| | - Zheng-Quan Tang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Zheng-Quan Tang,
| |
Collapse
|
3
|
Keesom SM, Hurley LM. Silence, Solitude, and Serotonin: Neural Mechanisms Linking Hearing Loss and Social Isolation. Brain Sci 2020; 10:brainsci10060367. [PMID: 32545607 PMCID: PMC7349698 DOI: 10.3390/brainsci10060367] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
For social animals that communicate acoustically, hearing loss and social isolation are factors that independently influence social behavior. In human subjects, hearing loss may also contribute to objective and subjective measures of social isolation. Although the behavioral relationship between hearing loss and social isolation is evident, there is little understanding of their interdependence at the level of neural systems. Separate lines of research have shown that social isolation and hearing loss independently target the serotonergic system in the rodent brain. These two factors affect both presynaptic and postsynaptic measures of serotonergic anatomy and function, highlighting the sensitivity of serotonergic pathways to both types of insult. The effects of deficits in both acoustic and social inputs are seen not only within the auditory system, but also in other brain regions, suggesting relatively extensive effects of these deficits on serotonergic regulatory systems. Serotonin plays a much-studied role in depression and anxiety, and may also influence several aspects of auditory cognition, including auditory attention and understanding speech in challenging listening conditions. These commonalities suggest that serotonergic pathways are worthy of further exploration as potential intervening mechanisms between the related conditions of hearing loss and social isolation, and the affective and cognitive dysfunctions that follow.
Collapse
Affiliation(s)
- Sarah M. Keesom
- Department of Biology, Utica College, Utica, NY 13502, USA
- Correspondence:
| | - Laura M. Hurley
- Center for the Integrative Study of Animal Behavior, Department of Biology, Indiana University, Bloomington, IN 47405, USA;
| |
Collapse
|
4
|
Abstract
OBJECTIVE To investigate how tinnitus affects the processing of speech and non-speech stimuli at the subcortical level. STUDY DESIGN Cross-sectional analytical study. SETTING Academic, tertiary referral center. PATIENTS Eighteen individuals with tinnitus and 20 controls without tinnitus matched based on their age and sex. All subjects had normal hearing sensitivity. INTERVENTION Diagnostic. MAIN OUTCOME MEASURES The effect of tinnitus on the parameters of auditory brainstem responses (ABR) to non-speech (click-ABR), and speech (sABR) stimuli was investigated. RESULTS Latencies of click ABR in waves III, V, and Vn, as well as inter-peak latency (IPL) of I to V were significantly longer in individuals with tinnitus compared with the controls. Individuals with tinnitus demonstrated significantly longer latencies of all sABR waves than the control group. The tinnitus patients also exhibited a significant decrease in the slope of the V-A complex and reduced encoding of the first and higher formants. A significant difference was observed between the two groups in the spectral magnitudes, the first formant frequency range (F1) and a higher frequency region (HF). CONCLUSIONS Our findings suggest that maladaptive neural plasticity resulting from tinnitus can be subcortically measured and affects timing processing of both speech and non-speech stimuli. The findings have been discussed based on models of maladaptive plasticity and the interference of tinnitus as an internal noise in synthesizing speech auditory stimuli.
Collapse
|
5
|
Kraaijenga VJC, van Munster JJCM, van Zanten GA. Association of Behavior With Noise-Induced Hearing Loss Among Attendees of an Outdoor Music Festival: A Secondary Analysis of a Randomized Clinical Trial. JAMA Otolaryngol Head Neck Surg 2019; 144:490-497. [PMID: 29710132 DOI: 10.1001/jamaoto.2018.0272] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance To date, factors associated with noise-induced hearing loss at music festivals have not yet been analyzed in a single comprehensive data set. In addition, little is known about the hearing loss-associated behavior of music festival attendees. Objectives To assess which factors are associated with the occurrence of a temporary threshold shift (TTS) after music exposure and to investigate the behavior of music festival attendees. Design, Setting, and Participants This prospective post hoc analysis gathered data from a randomized, single-blind clinical trial conducted on September 5, 2015, at an outdoor music festival in Amsterdam, the Netherlands. Adult volunteers with normal hearing were recruited via social media from August 26 through September 3, 2015. Intention to use earplugs was an exclusion criterion. Of 86 volunteers assessed, 51 were included. This post hoc analysis was performed from October 3, 2016, through February 27, 2017. Interventions Music festival visit for 4.5 hours. Main Outcomes and Measures The primary outcome was a TTS on a standard audiogram for the frequencies 3.0- and 4.0-kHz. Multivariable linear regression was performed to determine which factors are associated with a TTS. A questionnaire on behavior, hearing, and tinnitus was distributed to the participants before and after the festival visit. Results A total of 51 participants were included (18 men [35%] and 33 women [65%]) with a mean (SD) age of 27 (6) years. Mean (SD) threshold change across 3.0 and 4.0 kHz was 5.4 (5.7) dB for the right ear and 4.0 (6.1) dB for the left ear. Earplug use (absolute difference in the left ear, -6.0 dB [95% CI, -8.7 to -3.2 dB]; in the right ear, -6.4 dB [95% CI, -8.8 to -4.1 dB]), quantity of alcohol use (absolute difference per unit in the left ear, 1.1 dB [95% CI, 0.5 to 1.7 dB]; in the right ear, 0.7 dB [95% CI, 0.1 to 1.4 dB]), drug use (absolute difference in the right ear, 6.0 dB [95% CI, 0.9 to 11.1 dB]), and male sex (absolute difference in the right ear, 4.1 dB [95% CI, 0.3 to 5.9 dB]) were independently associated with hearing loss, with earplug use being the most important factor. Unprotected participants reported significantly worse subjective hearing performance and tinnitus after the festival visit than did participants using earplugs (Cramer V, 0.62 [95% CI, 0.47-0.79] and 0.39 [95% CI, 0.16-0.62], respectively). In the earplug group, the perceived loudness (r = -0.72; 95% CI, -1.00 to -0.43) and appreciation (r = 0.53; 95% CI, 0.29 to 0.78) of music and speech perception (r = 0.21; 95% CI, 0.09 to 0.35) were correlated with the duration of earplug use. Conclusions and Relevance The present study identified nonuse of earplugs, use of alcohol and drugs, and male sex as associated with a TTS at an outdoor music festival. Physicians should consider these factors to raise awareness about the combined risk of attending music festivals without using earplugs while consuming alcohol and/or drugs. The intention to use earplugs was correlated with the loudness and appreciation of music with earplugs, which may advocate for the use of personalized earplugs. Trial Registration trialregister.nl Identifier: NTR5401.
Collapse
Affiliation(s)
- Véronique J C Kraaijenga
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.,Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J J C M van Munster
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - G A van Zanten
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.,Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
6
|
Liu CT, Huang YS, Chen HC, Ma KH, Wang CH, Chiu CH, Shih JH, Kang HH, Shiue CY, Li IH. Evaluation of brain SERT with 4-[ 18F]-ADAM/micro-PET and hearing protective effects of dextromethorphan in hearing loss rat model. Toxicol Appl Pharmacol 2019; 378:114604. [PMID: 31153898 DOI: 10.1016/j.taap.2019.114604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 01/12/2023]
Abstract
This study investigated the protective effects of dextromethorphan (DXM) on noise-induced hearing loss (NIHL) in rats. This study aimed to improve the auditory threshold and to understand the protective effects of DXM against N-methyl-d-aspartate (NMDA)-induced neurite degeneration of serotonergic neurons. The animals were exposed to 8-kHz narrowband noise at a 118-dB sound pressure level for 3.5 h. The hearing thresholds were determined by measuring the auditory brainstem response to click stimuli. Serotonin transporter (SERT) expression was determined through micro-positron emission tomography (PET) using N,N-dimethyl-2-(2-amino-4-18F-fluorophenylthio)benzylamine (4-[18F]-ADAM). We also investigated the effects of DXM on NMDA-induced morphological changes in the primary cultures of rat serotonergic neurons. NIHL significantly improved after prophylactic treatment with DXM (p < .05). SERT density in DXM-treated rats was significantly higher than that in non-DXM-treated rats. Because prophylactic medication restored the NMDA-inhibited neurite length of serotonergic neurons and presented SERT density, DXM could be a potential agent in alleviating NIHL.
Collapse
Affiliation(s)
- Cheng-Tsung Liu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan
| | - Yuahn-Sieh Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Chien Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Hung Wang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Otorhinolaryngology, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Chuang-Hsin Chiu
- Department of Nuclear Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Jui-Hu Shih
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | | | - Chyng-Yann Shiue
- Department of Nuclear Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - I-Hsun Li
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
7
|
Regulation of Noise-Induced Loss of Serotonin Transporters with Resveratrol in a Rat Model Using 4-[ 18F]-ADAM/Small-Animal Positron Emission Tomography. Molecules 2019; 24:molecules24071344. [PMID: 30959762 PMCID: PMC6480549 DOI: 10.3390/molecules24071344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Serotonin (5-HT) plays a crucial role in modulating the afferent fiber discharge rate in the inferior colliculus, auditory cortex, and other nuclei of the ascending auditory system. Resveratrol, a natural polyphenol phytoalexin, can inhibit serotonin transporters (SERT) to increase synaptic 5-HT levels. In this study, we investigated the effects of resveratrol on noise-induced damage in the serotonergic system. Male Sprague-Dawley rats were anaesthetized and exposed to an 8-kHz tone at 116 dB for 3.5 h. Resveratrol (30 mg/kg, intraperitoneal injection [IP]) and citalopram (20 mg/kg, IP), a specific SERT inhibitor used as a positive control, were administered once a day for four consecutive days, with the first treatment occurring 2 days before noise exposure. Auditory brainstem response testing and positron emission tomography (PET) with N,N-dimethyl-2-(2-amino-4-[18F]fluorophenylthio)benzylamine (4-[18F]-ADAM, a specific radioligand for SERT) were used to evaluate functionality of the auditory system and integrity of the serotonergic system, respectively, before and after noise exposure. Finally, immunohistochemistry was performed 1 day after the last PET scan. Our results indicate that noise-induced serotonergic fiber loss occurred in multiple brain regions including the midbrain, thalamus, hypothalamus, striatum, auditory cortex, and frontal cortex. This noise-induced damage to the serotonergic system was ameliorated in response to treatment with resveratrol and citalopram. However, noise exposure increased the hearing threshold in the rats regardless of drug treatment status. We conclude that resveratrol has protective effects against noise-induced loss of SERT.
Collapse
|
8
|
Keesom SM, Morningstar MD, Sandlain R, Wise BM, Hurley LM. Social isolation reduces serotonergic fiber density in the inferior colliculus of female, but not male, mice. Brain Res 2018; 1694:94-103. [DOI: 10.1016/j.brainres.2018.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/15/2018] [Accepted: 05/11/2018] [Indexed: 12/26/2022]
|
9
|
Behavioral Animal Model of the Emotional Response to Tinnitus and Hearing Loss. J Assoc Res Otolaryngol 2017; 19:67-81. [PMID: 29047013 DOI: 10.1007/s10162-017-0642-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 09/28/2017] [Indexed: 12/28/2022] Open
Abstract
Increased prevalence of emotional distress is associated with tinnitus and hearing loss. The underlying mechanisms of the negative emotional response to tinnitus and hearing loss remain poorly understood, and it is challenging to disentangle the emotional consequences of hearing loss from those specific to tinnitus in listeners experiencing both. We addressed these questions in laboratory rats using three common rodent anxiety screening assays: elevated plus maze, open field test, and social interaction test. Open arm activity in the elevated plus maze decreased substantially after one trial in controls, indicating its limited utility for comparing pre- and post-treatment behavior. Open field exploration and social interaction behavior were consistent across multiple sessions in control animals. Individual sound-exposed and salicylate-treated rats showed a range of phenotypes in the open field, including reduced entries into the center in some subjects and reduced locomotion overall. In rats screened for tinnitus, less locomotion was associated with higher tinnitus scores. In salicylate-treated animals, locomotion was correlated with age. Sound-exposed and salicylate-treated rats also showed reduced social interaction. These results suggest that open field exploratory activity is a selective measure for identifying tinnitus distress in individual animals, whereas social interaction reflects the general effects of hearing loss. This animal model will facilitate future studies of the structural and functional changes in the brain pathways underlying emotional distress associated with hearing dysfunction, as well as development of novel interventions to ameliorate or prevent negative emotional responses.
Collapse
|
10
|
Tao CS, Dhamija P, Booij L, Menard JL. Adversity in early adolescence promotes an enduring anxious phenotype and increases serotonergic innervation of the infralimbic medial prefrontal cortex. Neuroscience 2017; 364:15-27. [PMID: 28893650 DOI: 10.1016/j.neuroscience.2017.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 08/10/2017] [Accepted: 09/01/2017] [Indexed: 01/22/2023]
Abstract
Stress during early development produces lasting effects on psychopathological outcomes. We analysed the impact of prior intermittent, physical stress (IPS) during early adolescence (PD 22-33) on anxiety-like behaviour of female rats in adulthood. After behavioural testing, we used immunohistochemistry for the 5-HT transporter (SERT) to evaluate 5-HT innervation profiles in the medial prefrontal cortex (mPFC) and ventral hippocampus (VH). Administration of IPS (i.e., water immersion, elevated platform, foot shock) in early adolescence increased rats' anxiety-like behaviour in the elevated plus-maze but had no effects in the shock-probe burying test. In the social interaction test, IPS decreased social interaction, and this effect was driven by selective decreases in the frequency of playfighting with no evident changes in contact and investigative behaviours. Selective stress-induced increases in the density of SERT-ir positive fibres were found in the infralimbic (IL) subregion of the mPFC but not in the cingulate or prelimbic (PL) subregions. IPS in early adolescence did not affect 5-HT innervation profiles in any sub-fields of the VH. Our findings confirm and extend on earlier evidence that stress during early adolescence promotes the emergence of an anxious phenotype and provide novel evidence that these effects are associated with increased 5-HT innervation of the IL mPFC.
Collapse
Affiliation(s)
- Cindy S Tao
- Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Prateek Dhamija
- Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Linda Booij
- Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Psychology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Janet L Menard
- Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
11
|
Papesh MA, Hurley LM. Modulation of auditory brainstem responses by serotonin and specific serotonin receptors. Hear Res 2015; 332:121-136. [PMID: 26688176 DOI: 10.1016/j.heares.2015.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 10/28/2015] [Accepted: 11/23/2015] [Indexed: 11/16/2022]
Abstract
The neuromodulator serotonin is found throughout the auditory system from the cochlea to the cortex. Although effects of serotonin have been reported at the level of single neurons in many brainstem nuclei, how these effects correspond to more integrated measures of auditory processing has not been well-explored. In the present study, we aimed to characterize the effects of serotonin on far-field auditory brainstem responses (ABR) across a wide range of stimulus frequencies and intensities. Using a mouse model, we investigated the consequences of systemic serotonin depletion, as well as the selective stimulation and suppression of the 5-HT1 and 5-HT2 receptors, on ABR latency and amplitude. Stimuli included tone pips spanning four octaves presented over a forty dB range. Depletion of serotonin reduced the ABR latencies in Wave II and later waves, suggesting that serotonergic effects occur as early as the cochlear nucleus. Further, agonists and antagonists of specific serotonergic receptors had different profiles of effects on ABR latencies and amplitudes across waves and frequencies, suggestive of distinct effects of these agents on auditory processing. Finally, most serotonergic effects were more pronounced at lower ABR frequencies, suggesting larger or more directional modulation of low-frequency processing. This is the first study to describe the effects of serotonin on ABR responses across a wide range of stimulus frequencies and amplitudes, and it presents an important step in understanding how serotonergic modulation of auditory brainstem processing may contribute to modulation of auditory perception.
Collapse
Affiliation(s)
- Melissa A Papesh
- Indiana University, Department of Speech and Hearing Sciences, 200 South Jordan Avenue, Bloomington, IN 47405, USA.
| | - Laura M Hurley
- Indiana University, Department of Biology, Center for the Integrative Study of Animal Behavior, 1001 E. Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
12
|
Lee AC, Godfrey DA. Cochlear damage affects neurotransmitter chemistry in the central auditory system. Front Neurol 2014; 5:227. [PMID: 25477858 PMCID: PMC4237057 DOI: 10.3389/fneur.2014.00227] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/20/2014] [Indexed: 02/04/2023] Open
Abstract
Tinnitus, the perception of a monotonous sound not actually present in the environment, affects nearly 20% of the population of the United States. Although there has been great progress in tinnitus research over the past 25 years, the neurochemical basis of tinnitus is still poorly understood. We review current research about the effects of various types of cochlear damage on the neurotransmitter chemistry in the central auditory system and document evidence that different changes in this chemistry can underlie similar behaviorally measured tinnitus symptoms. Most available data have been obtained from rodents following cochlear damage produced by cochlear ablation, intense sound, or ototoxic drugs. Effects on neurotransmitter systems have been measured as changes in neurotransmitter level, synthesis, release, uptake, and receptors. In this review, magnitudes of changes are presented for neurotransmitter-related amino acids, acetylcholine, and serotonin. A variety of effects have been found in these studies that may be related to animal model, survival time, type and/or magnitude of cochlear damage, or methodology. The overall impression from the evidence presented is that any imbalance of neurotransmitter-related chemistry could disrupt auditory processing in such a way as to produce tinnitus.
Collapse
Affiliation(s)
- Augustine C Lee
- Department of Neurology, University of Toledo College of Medicine , Toledo, OH , USA ; Division of Otolaryngology and Dentistry, Department of Surgery, University of Toledo College of Medicine , Toledo, OH , USA
| | - Donald A Godfrey
- Department of Neurology, University of Toledo College of Medicine , Toledo, OH , USA ; Division of Otolaryngology and Dentistry, Department of Surgery, University of Toledo College of Medicine , Toledo, OH , USA
| |
Collapse
|
13
|
Smith AR, Kwon JH, Navarro M, Hurley LM. Acoustic trauma triggers upregulation of serotonin receptor genes. Hear Res 2014; 315:40-8. [PMID: 24997228 PMCID: PMC4140997 DOI: 10.1016/j.heares.2014.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/20/2014] [Accepted: 06/22/2014] [Indexed: 11/17/2022]
Abstract
Hearing loss induces plasticity in excitatory and inhibitory neurotransmitter systems in auditory brain regions. Excitatory-inhibitory balance is also influenced by a range of neuromodulatory regulatory systems, but less is known about the effects of auditory damage on these networks. In this work, we studied the effects of acoustic trauma on neuromodulatory plasticity in the auditory midbrain of CBA/J mice. Quantitative PCR was used to measure the expression of serotonergic and GABAergic receptor genes in the inferior colliculus (IC) of mice that were unmanipulated, sham controls with no hearing loss, and experimental individuals with hearing loss induced by exposure to a 116 dB, 10 kHz pure tone for 3 h. Acoustic trauma induced substantial hearing loss that was accompanied by selective upregulation of two serotonin receptor genes in the IC. The Htr1B receptor gene was upregulated tenfold following trauma relative to shams, while the Htr1A gene was upregulated threefold. In contrast, no plasticity in serotonin receptor gene expression was found in the hippocampus, a region also innervated by serotonergic projections. Analyses in the IC demonstrated that acoustic trauma also changed the coexpression of genes in relation to each other, leading to an overexpression of Htr1B compared to other genes. These data suggest that acoustic trauma induces serotonergic plasticity in the auditory system, and that this plasticity may involve comodulation of functionally-linked receptor genes.
Collapse
Affiliation(s)
- Adam R Smith
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - Jae Hyun Kwon
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Marco Navarro
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Department of Biology, Saint Louis University, Saint Louis, MO 63103, USA
| | - Laura M Hurley
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
14
|
Jougleux JL, Rioux FM, Church MW, Fiset S, Surette ME. Mild iron deficiency anaemia during pregnancy and lactation in guinea pigs alters amplitudes and auditory nerve velocity, but not brainstem transmission times in the offspring's auditory brainstem response. Nutr Neurosci 2013; 17:37-47. [PMID: 23602121 DOI: 10.1179/1476830513y.0000000067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES It is well known that postnatal/early childhood iron deficiency (ID) anaemia (IDA) adversely affects infants' cognitive development and neurophysiology. However, the effects of IDA during gestation and lactation on the offspring are largely unknown. To address this health issue, the impact of mild IDA during gestation and lactation on the offsprings' neural maturation was studied in the guinea pig, using auditory brainstem responses (ABRs) latencies and amplitudes. METHODS Female guinea pigs (n = 10/group) were fed an iron sufficient (ISD) or deficient diet (IDD) (144 and 11.7 mg iron/kg) during the gestation and lactation periods. From postnatal day (PNd) 9 onward, the ISD was given to both groups of weaned offspring. The offsprings' ABRs were collected on PNd24 using a broad range of stimulus intensities in response to 2, 4, 8, 16, and 32 kHz tone pips. RESULTS Although the IDA siblings (n = 8) did not differ in brainstem transmission times (BTTs) compared to the IS siblings (n = 8), they showed significant delayed peak I latency at 100 and 80 dB, respectively. Additionally, significantly higher ABR wave amplitudes were observed in the IDA female offspring between 35 and 50 dB (4 kHz), a phenomenon suggestive of a neural hyperactivity (hyperacusis). DISCUSSION In support to our previous findings, the present results indicate that a mild IDA during gestation and lactation can have detrimental effects on early development of the offsprings' hearing and nervous systems, particularly on neural synchrony and auditory nerve conduction velocity, but not on BTT.
Collapse
|
15
|
Kang HH, Wang CH, Chen HC, Li IH, Cheng CY, Liu RS, Huang WS, Shiue CY, Ma KH. Investigating the effects of noise-induced hearing loss on serotonin transporters in rat brain using 4-[18F]-ADAM/small animal PET. Neuroimage 2013; 75:262-269. [DOI: 10.1016/j.neuroimage.2012.06.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 06/08/2012] [Accepted: 06/26/2012] [Indexed: 01/10/2023] Open
|
16
|
Church MW, Zhang JS, Langford MM, Perrine SA. 'Ecstasy' enhances noise-induced hearing loss. Hear Res 2013; 302:96-106. [PMID: 23711768 DOI: 10.1016/j.heares.2013.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/07/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
Abstract
'Ecstasy' or 3,4-methylenedioxy-N-methamphetamine (MDMA) is an amphetamine abused for its euphoric, empathogenic, hallucinatory, and stimulant effects. It is also used to treat certain psychiatric disorders. Common settings for Ecstasy use are nightclubs and "rave" parties where participants consume MDMA and dance to loud music. One concern with the club setting is that exposure to loud sounds can cause permanent sensorineural hearing loss. Another concern is that consumption of MDMA may enhance such hearing loss. Whereas this latter possibility has not been investigated, this study tested the hypothesis that MDMA enhances noise-induced hearing loss (NIHL) by exposing rats to either MDMA, noise trauma, both MDMA and noise, or neither treatment. MDMA was given in a binge pattern of 5 mg/kg per intraperitoneal injections every 2 h for a total of four injections to animals in the two MDMA-treated groups (MDMA-only and Noise + MDMA). Saline injections were given to the animals in the two non-MDMA groups (Control and Noise-only). Following the final injection, noise trauma was induced by a 10 kHz tone at 120 dB SPL for 1 h to animals in the two noise trauma-treated groups (Noise-only and Noise + MDMA). Hearing loss was assessed by the auditory brainstem response (ABR) and cochlear histology. Results showed that MDMA enhanced NIHL compared to Noise-only and that MDMA alone caused no hearing loss. This implies that "clubbers" and "rave-goers" are exacerbating the amount of NIHL when they consume MDMA and listen to loud sounds. In contrast to earlier reports, the present study found that MDMA by itself caused no changes in the click-evoked ABR's wave latencies or amplitudes.
Collapse
Affiliation(s)
- Michael W Church
- Department of Otolaryngology & Head Neck Surgery, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
17
|
Hurley LM, Sullivan MR. From behavioral context to receptors: serotonergic modulatory pathways in the IC. Front Neural Circuits 2012; 6:58. [PMID: 22973195 PMCID: PMC3434355 DOI: 10.3389/fncir.2012.00058] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/10/2012] [Indexed: 12/18/2022] Open
Abstract
In addition to ascending, descending, and lateral auditory projections, inputs extrinsic to the auditory system also influence neural processing in the inferior colliculus (IC). These types of inputs often have an important role in signaling salient factors such as behavioral context or internal state. One route for such extrinsic information is through centralized neuromodulatory networks like the serotonergic system. Serotonergic inputs to the IC originate from centralized raphe nuclei, release serotonin in the IC, and activate serotonin receptors expressed by auditory neurons. Different types of serotonin receptors act as parallel pathways regulating specific features of circuitry within the IC. This results from variation in subcellular localizations and effector pathways of different receptors, which consequently influence auditory responses in distinct ways. Serotonin receptors may regulate GABAergic inhibition, influence response gain, alter spike timing, or have effects that are dependent on the level of activity. Serotonin receptor types additionally interact in nonadditive ways to produce distinct combinatorial effects. This array of effects of serotonin is likely to depend on behavioral context, since the levels of serotonin in the IC transiently increase during behavioral events including stressful situations and social interaction. These studies support a broad model of serotonin receptors as a link between behavioral context and reconfiguration of circuitry in the IC, and the resulting possibility that plasticity at the level of specific receptor types could alter the relationship between context and circuit function.
Collapse
Affiliation(s)
- Laura M Hurley
- Department of Biology, Center for the Integrative Study of Animal Behavior, Indiana University Bloomington, IN, USA
| | | |
Collapse
|