1
|
VDR Regulates BNP Promoting Neurite Growth and Survival of Cochlear Spiral Ganglion Neurons through cGMP-PKG Signaling Pathway. Cells 2022; 11:cells11233746. [PMID: 36497006 PMCID: PMC9739822 DOI: 10.3390/cells11233746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Spiral ganglion neurons (SGNs) are important for hearing, and their peripheral and central processes connect sensory cells of the Corti organ to the central nervous system. The resulting network forms a point-to-point auditory conduction. As a cardiac hormone, brain natriuretic peptide (BNP) binds to natriuretic peptide receptor type A leading to diuresis, vasodilatation, inhibition of renin and aldosterone production, and cardiac and vascular myocyte growth. This study primarily aimed to explore the expression and function of BNP in the rat's inner ear and elucidate its regulatory mechanism. We determined the expression and function of BNP and found that the vitamin D receptor (VDR) could upregulate the expression of BNP and enhance its function. In SGNs of the rat inner ear, BNP promotes neuron survival and prolongs neurite length through the cGMP-PKG signaling pathway, which could be regulated by VDR and provide a novel approach for neuronal regeneration therapy. To the best of our knowledge, this is the first study to report this potential transcriptional regulatory relationship and will act as a reference for research on neuronal regeneration therapy for SGNs injury.
Collapse
|
2
|
Eickhoff A, Tjaden J, Stahlke S, Vorgerd M, Theis V, Matschke V, Theiss C. Effects of progesterone on T-type-Ca 2+-channel expression in Purkinje cells. Neural Regen Res 2022; 17:2465-2471. [PMID: 35535898 PMCID: PMC9120685 DOI: 10.4103/1673-5374.339008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Plasticity of cerebellar Purkinje cells (PC) is influenced by progesterone via the classical progesterone receptors PR-A and PR-B by stimulating dendritogenesis, spinogenesis, and synaptogenesis in these cells. Dissociated PC cultures were used to analyze progesterone effects at a molecular level on the voltage-gated T-type-Ca2+-channels Cav3.1, Cav3.2, and Cav3.3 as they helped determine neuronal plasticity by regulating Ca2+-influx in neuronal cells. The results showed direct effects of progesterone on the mRNA expression of T-type-Ca2+-channels, as well as on the protein kinases A and C being involved in downstream signaling pathways that play an important role in neuronal plasticity. For the mRNA expression studies of T-type-Ca2+-channels and protein kinases of the signaling cascade, laser microdissection and purified PC cultures of different maturation stages were used. Immunohistochemical staining was also performed to characterize the localization of T-type-Ca2+-channels in PC. Experimental progesterone treatment was performed on the purified PC culture for 24 and 48 hours. Our results show that progesterone increases the expression of Cav3.1 and Cav3.3 and associated protein kinases A and C in PC at the mRNA level within 48 hours after treatment at latest. These effects extend the current knowledge of the function of progesterone in the central nervous system and provide an explanatory approach for its influence on neuronal plasticity.
Collapse
Affiliation(s)
- Annika Eickhoff
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Jonas Tjaden
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Sarah Stahlke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil, Ruhr-Universität Bochum, Bochum, Germany
| | - Verena Theis
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Zuo Z, Li L, Yan X, Zhang L. Glucose Starvation Causes ptau S409 Increase in N2a Cells Through ATF3/PKAcα Signaling Pathway. Neurochem Res 2022; 47:3298-3308. [PMID: 35857208 DOI: 10.1007/s11064-022-03686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/19/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
In this work, we report that glucose starvation (GS) causes ptauS409 increase, which may participate in GS-induced neurites retraction in neuro-2a (N2a) cells. Upon GS treatment, PKAcα was stimulated at mRNA and protein levels. Luciferase reporter gene assays indicated that GS regulated PKAcα expression through a core promoter (-345 to -95 bp upstream the transcription starting site) consisting of a cis-acting element of Activating Transcription Factor 3 (ATF3). Knockdown and over-expression experiments demonstrate that ATF3 transcriptionally regulated PKAcα expression. Moreover, GS stimulated ATF3 expression in a time-dependent manner. These findings reveal that glucose starvation induces ptauS409 increase in N2a cells through an ATF3- PKAcα axis, which shed some light on the relationship between brain glucose metabolism and neurodegenerative diseases.
Collapse
Affiliation(s)
- Zifan Zuo
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Ling Li
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Xuli Yan
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Lianwen Zhang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China. .,Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
4
|
Novel Synthetic Coumarin-Chalcone Derivative (E)-3-(3-(4-(Dimethylamino)Phenyl)Acryloyl)-4-Hydroxy-2 H-Chromen-2-One Activates CREB-Mediated Neuroprotection in A β and Tau Cell Models of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3058861. [PMID: 34812274 PMCID: PMC8605905 DOI: 10.1155/2021/3058861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022]
Abstract
Abnormal accumulations of misfolded Aβ and tau proteins are major components of the hallmark plaques and neurofibrillary tangles in the brains of Alzheimer's disease (AD) patients. These abnormal protein deposits cause neurodegeneration through a number of proposed mechanisms, including downregulation of the cAMP-response-element (CRE) binding protein 1 (CREB) signaling pathway. Using CRE-GFP reporter cells, we investigated the effects of three coumarin-chalcone derivatives synthesized in our lab on CREB-mediated gene expression. Aβ-GFP- and ΔK280 tauRD-DsRed-expressing SH-SY5Y cells were used to evaluate these agents for possible antiaggregative, antioxidative, and neuroprotective effects. Blood-brain barrier (BBB) penetration was assessed by pharmacokinetic studies in mice. Of the three tested compounds, (E)-3-(3-(4-(dimethylamino)phenyl)acryloyl)-4-hydroxy-2H-chromen-2-one (LM-021) was observed to increase CREB-mediated gene expression through protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and extracellular signal-regulated kinase (ERK) in CRE-GFP reporter cells. LM-021 exhibited antiaggregative, antioxidative, and neuroprotective effects mediated by the upregulation of CREB phosphorylation and its downstream brain-derived neurotrophic factor and BCL2 apoptosis regulator genes in Aβ-GFP- and ΔK280 tauRD-DsRed-expressing SH-SY5Y cells. Blockage of the PKA, CaMKII, or ERK pathway counteracted the beneficial effects of LM-021. LM-021 also exhibited good BBB penetration ability, with brain to plasma ratio of 5.3%, in in vivo pharmacokinetic assessment. Our results indicate that LM-021 works as a CREB enhancer to reduce Aβ and tau aggregation and provide neuroprotection. These findings suggest the therapeutic potential of LM-021 in treating AD.
Collapse
|
5
|
Interaction of micropatterned topographical and biochemical cues to direct neurite growth from spiral ganglion neurons. Hear Res 2021; 409:108315. [PMID: 34343850 DOI: 10.1016/j.heares.2021.108315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/07/2021] [Accepted: 07/12/2021] [Indexed: 01/01/2023]
Abstract
Functional outcomes with neural prosthetic devices, such as cochlear implants, are limited in part due to physical separation between the stimulating elements and the neurons they stimulate. One strategy to close this gap aims to precisely guide neurite regeneration to position the neurites in closer proximity to electrode arrays. Here, we explore the ability of micropatterned biochemical and topographic guidance cues, singly and in combination, to direct the growth of spiral ganglion neuron (SGN) neurites, the neurons targeted by cochlear implants. Photopolymerization of methacrylate monomers was used to form unidirectional topographical features of ridges and grooves in addition to multidirectional patterns with 90o angle turns. Microcontact printing was also used to create similar uni- and multi-directional patterns of peptides on polymer surfaces. Biochemical cues included peptides that facilitate (laminin, LN) or repel (EphA4-Fc) neurite growth. On flat surfaces, SGN neurites preferentially grew on LN-coated stripes and avoided EphA4-Fc-coated stripes. LN or EphA4-Fc was selectively adsorbed onto the ridges or grooves to test the neurite response to a combination of topographical and biochemical cues. Coating the ridges with EphA4-Fc and grooves with LN lead to enhanced SGN alignment to topographical patterns. Conversely, EphA4-Fc coating on the grooves or LN coating on the ridges tended to disrupt alignment to topographical patterns. SGN neurites respond to combinations of topographical and biochemical cues and surface patterning that leverages both cues enhance guided neurite growth.
Collapse
|
6
|
Blazejewski SM, Bennison SA, Liu X, Toyo-Oka K. High-throughput kinase inhibitor screening reveals roles for Aurora and Nuak kinases in neurite initiation and dendritic branching. Sci Rep 2021; 11:8156. [PMID: 33854138 PMCID: PMC8047044 DOI: 10.1038/s41598-021-87521-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/31/2021] [Indexed: 12/25/2022] Open
Abstract
Kinases are essential regulators of a variety of cellular signaling processes, including neurite formation—a foundational step in neurodevelopment. Aberrant axonal sprouting and failed regeneration of injured axons are associated with conditions like traumatic injury, neurodegenerative disease, and seizures. Investigating the mechanisms underlying neurite formation will allow for identification of potential therapeutics. We used a kinase inhibitor library to screen 493 kinase inhibitors and observed that 45% impacted neuritogenesis in Neuro2a (N-2a) cells. Based on the screening, we further investigated the roles of Aurora kinases A, B, and C and Nuak kinases 1 and 2. The roles of Aurora and Nuak kinases have not been thoroughly studied in the nervous system. Inhibition or overexpression of Aurora and Nuak kinases in primary cortical neurons resulted in various neuromorphological defects, with Aurora A regulating neurite initiation, Aurora B and C regulating neurite initiation and elongation, all Aurora kinases regulating arborization, and all Nuak kinases regulating neurite initiation and elongation and arborization. Our high-throughput screening and analysis of Aurora and Nuak kinases revealed their functions and may contribute to the identification of therapeutics.
Collapse
Affiliation(s)
- Sara M Blazejewski
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Xiaonan Liu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
7
|
Abstract
The well-known second messenger cyclic adenosine monophosphate (cAMP) regulates the morphology and physiology of neurons and thus higher cognitive brain functions. The discovery of exchange protein activated by cAMP (Epac) as a guanine nucleotide exchange factor for Rap GTPases has shed light on protein kinase A (PKA)-independent functions of cAMP signaling in neural tissues. Studies of cAMP-Epac-mediated signaling in neurons under normal and disease conditions also revealed its diverse contributions to neurodevelopment, synaptic remodeling, and neurotransmitter release, as well as learning, memory, and emotion. In this mini-review, the various roles of Epac isoforms, including Epac1 and Epac2, highly expressed in neural tissues are summarized, and controversies or issues are highlighted that need to be resolved to uncover the critical functions of Epac in neural tissues and the potential for a new therapeutic target of mental disorders.
Collapse
Affiliation(s)
- Kyungmin Lee
- Laboratory for Behavioral Neural Circuitry and Physiology, Department of Anatomy, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
8
|
Sun F, Zhou K, Tian KY, Wang J, Qiu JH, Zha DJ. Atrial Natriuretic Peptide Improves Neurite Outgrowth from Spiral Ganglion Neurons In Vitro through a cGMP-Dependent Manner. Neural Plast 2020; 2020:8831735. [PMID: 33193754 PMCID: PMC7643369 DOI: 10.1155/2020/8831735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
The spiral ganglion neurons (SGNs) are the primary afferent neurons in the spiral ganglion (SG), while their degeneration or loss would cause sensorineural hearing loss. As a cardiac-derived hormone, atrial natriuretic peptide (ANP) plays a critical role in cardiovascular homeostasis through binding to its functional receptors (NPR-A and NPR-C). ANP and its receptors are widely expressed in the mammalian nervous system where they could be implicated in the regulation of multiple neural functions. Although previous studies have provided direct evidence for the presence of ANP and its functional receptors in the inner ear, their presence within the cochlear SG and their regulatory roles during auditory neurotransmission and development remain largely unknown. Based on our previous findings, we investigated the expression patterns of ANP and its receptors in the cochlear SG and dissociated SGNs and determined the influence of ANP on neurite outgrowth in vitro by using organotypic SG explants and dissociated SGN cultures from postnatal rats. We have demonstrated that ANP and its receptors are expressed in neurons within the cochlear SG of postnatal rat, while ANP may promote neurite outgrowth of SGNs via the NPR-A/cGMP/PKG pathway in a dose-dependent manner. These results indicate that ANP would play a role in normal neuritogenesis of SGN during cochlear development and represents a potential therapeutic candidate to enhance regeneration and regrowth of SGN neurites.
Collapse
Affiliation(s)
- Fei Sun
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ke Zhou
- Center of Clinical Laboratory Medicine of PLA, Department of Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ke-yong Tian
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710003, China
| | - Jian-hua Qiu
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ding-jun Zha
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
9
|
Bennison SA, Blazejewski SM, Smith TH, Toyo-Oka K. Protein kinases: master regulators of neuritogenesis and therapeutic targets for axon regeneration. Cell Mol Life Sci 2020; 77:1511-1530. [PMID: 31659414 PMCID: PMC7166181 DOI: 10.1007/s00018-019-03336-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/16/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
Abstract
Proper neurite formation is essential for appropriate neuronal morphology to develop and defects at this early foundational stage have serious implications for overall neuronal function. Neuritogenesis is tightly regulated by various signaling mechanisms that control the timing and placement of neurite initiation, as well as the various processes necessary for neurite elongation to occur. Kinases are integral components of these regulatory pathways that control the activation and inactivation of their targets. This review provides a comprehensive summary of the kinases that are notably involved in regulating neurite formation, which is a complex process that involves cytoskeletal rearrangements, addition of plasma membrane to increase neuronal surface area, coupling of cytoskeleton/plasma membrane, metabolic regulation, and regulation of neuronal differentiation. Since kinases are key regulators of these functions during neuromorphogenesis, they have high potential for use as therapeutic targets for axon regeneration after injury or disease where neurite formation is disrupted.
Collapse
Affiliation(s)
- Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Sara M Blazejewski
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Trevor H Smith
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
10
|
Abd-El-Basset EM, Rao MS. Dibutyryl Cyclic Adenosine Monophosphate Rescues the Neurons From Degeneration in Stab Wound and Excitotoxic Injury Models. Front Neurosci 2018; 12:546. [PMID: 30135639 PMCID: PMC6092510 DOI: 10.3389/fnins.2018.00546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/19/2018] [Indexed: 01/25/2023] Open
Abstract
Dibutyryl cyclic adenosine monophosphate (dBcAMP), a cell-permeable synthetic analog of cAMP, has been shown to induce astrogliosis in culture. However, the exact mechanism underlying how dBcAMP exerts its function in situ is not clear. The objective of this study was to examine the effects of dBcAMP on astrogliosis and survival of neurons in stab wound and kainic acid models of brain injury. Stab wound was done in cerebral cortex of BALB/c male mice. Kainic acid lesion was induced in hippocampus by injecting 1μl kainic acid into the lateral ventricle. Animals in both models of injury were divided into L+dBcAMP and L+PBS groups and treated with dBcAMP or PBS for 3, 5, and 7 days respectively. The brain sections were stained for Cresyl violet and Fluro jade-B to assess the degenerating neurons. Immunostaining for GFAP and Iba-1 was done for assessing the astrogliosis and microglial response respectively. Expression of GFAP and BDNF levels in the tissue were estimated by Western blotting and ELISA respectively. The results showed a gradual increase in the number of both astrocytes and microglia in both injuries with a significant increase in dBcAMP-treated groups. The number of degenerating neurons significantly decreased in dBcAMP treated groups. In addition, it was found that dBcAMP stimulated the expression of GFAP and BDNF in both stab wound and kainic acid injuries. Treatment with BDNF receptor inhibitor AZ-23, showed an increase in the degenerating neurons suggesting the role of BDNF in neuroprotection. This study indicates that dBcAMP protects neurons from degeneration by enhancing the production of BDNF and may be considered for use as therapeutic agent for treatment of brain injuries.
Collapse
Affiliation(s)
| | - Muddanna S Rao
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
11
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
12
|
Tuft BW, Xu L, Leigh B, Lee D, Guymon CA, Hansen MR. Photopolymerized micropatterns with high feature frequencies overcome chemorepulsive borders to direct neurite growth. J Tissue Eng Regen Med 2017; 12:e1392-e1403. [PMID: 28753740 DOI: 10.1002/term.2527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/03/2017] [Accepted: 07/24/2017] [Indexed: 01/04/2023]
Abstract
Developing and regenerating neurites respond to a variety of biophysical and biochemical cues in their micro-environment to reach target cells and establish appropriate synapses. Defining the hierarchal relationship of both types of cues to direct neurite growth carries broad significance for neural development, regeneration, and, in particular, engineering of neural prostheses that improve tissue integration with native neural networks. In this work, chemorepulsive biochemical borders are established on substrates with a range of surface microfeatures to determine the potential of physical cues to overcome conflicting biochemical cues. Physical micropatterns are fabricated using photomasking techniques to spatially control photoinitiation events of the polymerization. Temporal control of the reaction allows for generation of microfeatures with the same amplitude across a range of feature frequencies or periodicities. The micropatterned substrates are then modified with repulsive chemical borders between laminin and either EphA4-Fc or tenascin C that compete with the surface microfeatures to direct neurite growth. Behaviour of neurites from spiral ganglion and trigeminal neurons is characterized at biochemical borders as cross, turn, stop, or repel events. Both the chemical borders and physical patterns significantly influence neurite pathfinding. On unpatterned surfaces, most neurites that originate on laminin are deterred by the border with tenascin C or EphA4-Fc. Importantly, substrates with frequent micropattern features overcome the influence of the chemorepulsive border to dominate neurite trajectory. Designing prosthesis interfaces with appropriate surface features may allow for spatially organized neurite outgrowth in vivo even in the presence of conflicting biochemical cues in native target tissues.
Collapse
Affiliation(s)
- Bradley W Tuft
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, USA
| | - Linjing Xu
- Department of Otolaryngology - Head and Neck Surgery, University of Iowa, Iowa City, IA, USA
| | - Braden Leigh
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, USA
| | - Daniel Lee
- Department of Otolaryngology - Head and Neck Surgery, University of Iowa, Iowa City, IA, USA
| | - C Allan Guymon
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, USA
| | - Marlan R Hansen
- Department of Otolaryngology - Head and Neck Surgery, University of Iowa, Iowa City, IA, USA.,Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
13
|
Wirth A, Holst K, Ponimaskin E. How serotonin receptors regulate morphogenic signalling in neurons. Prog Neurobiol 2017; 151:35-56. [DOI: 10.1016/j.pneurobio.2016.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/09/2016] [Accepted: 03/19/2016] [Indexed: 11/25/2022]
|
14
|
Xing Y, Ji Q, Li X, Ming J, Zhang N, Zha D, Lin Y. Asiaticoside protects cochlear hair cells from high glucose-induced oxidative stress via suppressing AGEs/RAGE/NF-κB pathway. Biomed Pharmacother 2017; 86:531-536. [DOI: 10.1016/j.biopha.2016.12.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/18/2016] [Accepted: 12/05/2016] [Indexed: 01/01/2023] Open
|
15
|
Zhang W, Sun JZ, Han Y, Chen J, Liu H, Wang Y, Yue B, Chen Y. CXCL12/CXCR4 signaling pathway regulates cochlear development in neonatal mice. Mol Med Rep 2016; 13:4357-64. [PMID: 27052602 DOI: 10.3892/mmr.2016.5085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 03/17/2016] [Indexed: 11/06/2022] Open
Abstract
Chemotactic cytokines (chemokines) are a highly conserved class of secreted signaling molecules that are important in various cellular processes. CXC chemokine ligand 12 (CXCL12) and its receptor, CXC chemokine receptor 4 (CXCR4) have been previously reported to be crucial for the establishment of neural networks in different neuronal systems. However, it is unclear whether the CXCL12/CXCR4 signaling pathway regulates the development of the cochlea. The current study investigated the effects of the CXCL12/CXCR4 signaling pathway on cochlear development in neonatal mice. The expression levels of CXCL12 and CXCR4 were detected using immunofluorescence, reverse transcription‑quantitative polymerase chain reaction and western blot analysis demonstrating that CXCL12 and CXCR4 expression were significantly increased during cochlear development in neonatal mice. Treatment of spiral ganglion neurons with CXCL12 significantly decreased the protein expression levels of caspase‑3 and cleaved caspase‑3, indicating that CXCL12/CXCR4 signaling increased cell survival of spiral ganglion neurons. Furthermore, CXCL12 treatment significantly increased the number and length of neurites extending from spiral ganglion neurons. By contrast, the in vitro effects of CXCL12 were significantly abrogated by AMD100, a CXCR4 antagonist. Additionally, inhibiting CXCL12/CXCR4 signaling in neonatal mice significantly reduced the cell number and altered the morphology of spiral ganglion neurons in vivo. Thus, the present study indicates that the CXCL12/CXCR4 signaling pathway is important during the development of cochleae in neonatal mice.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Otolaryngology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ji-Zhou Sun
- Department of Otolaryngology, Xi'an XD Group Hospital, Xi'an, Shaanxi 710077, P.R. China
| | - Yu Han
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jun Chen
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hui Liu
- Department of Otolaryngology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ye Wang
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bo Yue
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yang Chen
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
16
|
Novel High Content Screen Detects Compounds That Promote Neurite Regeneration from Cochlear Spiral Ganglion Neurons. Sci Rep 2015; 5:15960. [PMID: 26521685 PMCID: PMC4629150 DOI: 10.1038/srep15960] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/06/2015] [Indexed: 12/21/2022] Open
Abstract
The bipolar spiral ganglion neurons (SGN) carry sound information from cochlear hair cells to the brain. After noise, antibiotic or toxic insult to the cochlea, damage to SGN and/or hair cells causes hearing impairment. Damage ranges from fiber and synapse degeneration to dysfunction and loss of cells. New interventions to regenerate peripheral nerve fibers could help reestablish transfer of auditory information from surviving or regenerated hair cells or improve results from cochlear implants, but the biochemical mechanisms to target are largely unknown. Presently, no drugs exist that are FDA approved to stimulate the regeneration of SGN nerve fibers. We designed an original phenotypic assay to screen 440 compounds of the NIH Clinical Collection directly on dissociated mouse spiral ganglia. The assay detected one compound, cerivastatin, that increased the length of regenerating neurites. The effect, mimicked by other statins at different optimal concentrations, was blocked by geranylgeraniol. These results demonstrate the utility of screening small compound libraries on mixed cultures of dissociated primary ganglia. The success of this screen narrows down a moderately sized library to a single compound which can be elevated to in-depth in vivo studies, and highlights a potential new molecular pathway for targeting of hearing loss drugs.
Collapse
|
17
|
Dagda RK, Das Banerjee T. Role of protein kinase A in regulating mitochondrial function and neuronal development: implications to neurodegenerative diseases. Rev Neurosci 2015; 26:359-70. [PMID: 25741943 DOI: 10.1515/revneuro-2014-0085] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/08/2015] [Indexed: 11/15/2022]
Abstract
In neurons, enhanced protein kinase A (PKA) signaling elevates synaptic plasticity, promotes neuronal development, and increases dopamine synthesis. By contrast, a decline in PKA signaling contributes to the etiology of several brain degenerative diseases, including Alzheimer's disease and Parkinson's disease, suggesting that PKA predominantly plays a neuroprotective role. A-kinase anchoring proteins (AKAPs) are large multidomain scaffold proteins that target PKA and other signaling molecules to distinct subcellular sites to strategically localize PKA signaling at dendrites, dendritic spines, cytosol, and axons. PKA can be recruited to the outer mitochondrial membrane by associating with three different AKAPs to regulate mitochondrial dynamics, structure, mitochondrial respiration, trafficking, dendrite morphology, and neuronal survival. In this review, we survey the myriad of essential neuronal functions modulated by PKA but place a special emphasis on mitochondrially localized PKA. Finally, we offer an updated overview of how loss of PKA signaling contributes to the etiology of several brain degenerative diseases.
Collapse
|
18
|
Abstract
Cochlear implantation and cochlear implants (CIs) have a long history filled with innovations that have resulted in the high-performing device's currently available. Several promising technologies have been reviewed in this article, which hold the promise to drive performance even higher. Remote CI programming, totally implanted devices, improved neural health and survival through targeted drug therapy and delivery, intraneural electrode placement, electroacoustical stimulation and hybrid CIs, and methods to enhance the neural-prosthesis interface are evolving areas of innovation reviewed in this article.
Collapse
Affiliation(s)
- Joseph P Roche
- Department of Otolaryngology - Head and Neck Surgery, The University of Iowa Carver College of Medicine, 21151 Pomerantz Family Pavilion, 200 Hawkins Drive, Iowa City, IA 52242-1089, USA
| | - Marlan R Hansen
- Department of Otolaryngology - Head and Neck Surgery, The University of Iowa Carver College of Medicine, 21151 Pomerantz Family Pavilion, 200 Hawkins Drive, Iowa City, IA 52242-1089, USA; Department of Neurosurgery, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242-1089, USA.
| |
Collapse
|
19
|
Lee TM, Chen WT, Chang NC. Dipeptidyl peptidase-4 inhibition attenuates arrhythmias via a protein kinase A-dependent pathway in infarcted hearts. Circ J 2015; 79:2461-70. [PMID: 26399925 DOI: 10.1253/circj.cj-15-0515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The effect of dipeptidyl peptidase-4 (DPP-4) inhibitors on arrhythmias remains unknown. The aim of this study was to investigate whether sitagliptin attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression, focusing on cyclic adenosine monophosphate (cAMP) downstream signaling such as protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). METHODS AND RESULTS Male Wistar rats were randomized to either vehicle or sitagliptin for 4 weeks starting 24 h after ligating the coronary artery. Post-infarction was associated with increased oxidative stress. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated rats compared with sham. Compared with the vehicle, infarcted rats treated with sitagliptin had significantly increased cAMP levels, decreased DPP-4 activity, oxidative stress, NGF levels and immunofluorescence-stained sympathetic hyperinnervation. Arrhythmic scores were significantly lower in the sitagliptin-treated infarcted rats than in vehicle. Ex vivo studies showed that sitagliptin increased the phosphorylated cAMP response element-binding protein (CREB), which can be reversed by H-89 (a PKA inhibitor), not brefeldin A (an Epac inhibitor).Heme oxygenase-1(HO-1) expression was increased by a PKA agonist but not by an Epac agonist.HO-1expression was attenuated in KG-501 (a CREB inhibitor)-treated infarcted rats in the presence of a PKA agonist. CONCLUSIONS Sitagliptin protects ventricular arrhythmias by attenuating NGF-induced sympathetic innervation via upregulation ofHO-1expression in a cAMP/PKA/CREB-dependent antioxidant pathway in non-diabetic infarcted rats.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Department of Medicine, Cardiology Section, China Medical University-An Nan Hospital
| | | | | |
Collapse
|
20
|
Abstract
Three theories of regeneration dominate neuroscience today, all purporting to explain why the adult central nervous system (CNS) cannot regenerate. One theory proposes that Nogo, a molecule expressed by myelin, prevents axonal growth. The second theory emphasizes the role of glial scars. The third theory proposes that chondroitin sulfate proteoglycans (CSPGs) prevent axon growth. Blockade of Nogo, CSPG, and their receptors indeed can stop axon growth in vitro and improve functional recovery in animal spinal cord injury (SCI) models. These therapies also increase sprouting of surviving axons and plasticity. However, many investigators have reported regenerating spinal tracts without eliminating Nogo, glial scar, or CSPG. For example, many motor and sensory axons grow spontaneously in contused spinal cords, crossing gliotic tissue and white matter surrounding the injury site. Sensory axons grow long distances in injured dorsal columns after peripheral nerve lesions. Cell transplants and treatments that increase cAMP and neurotrophins stimulate motor and sensory axons to cross glial scars and to grow long distances in white matter. Genetic studies deleting all members of the Nogo family and even the Nogo receptor do not always improve regeneration in mice. A recent study reported that suppressing the phosphatase and tensin homolog (PTEN) gene promotes prolific corticospinal tract regeneration. These findings cannot be explained by the current theories proposing that Nogo and glial scars prevent regeneration. Spinal axons clearly can and will grow through glial scars and Nogo-expressing tissue under some circumstances. The observation that deleting PTEN allows corticospinal tract regeneration indicates that the PTEN/AKT/mTOR pathway regulates axonal growth. Finally, many other factors stimulate spinal axonal growth, including conditioning lesions, cAMP, glycogen synthetase kinase inhibition, and neurotrophins. To explain these disparate regenerative phenomena, I propose that the spinal cord has evolved regenerative mechanisms that are normally suppressed by multiple extrinsic and intrinsic factors but can be activated by injury, mediated by the PTEN/AKT/mTOR, cAMP, and GSK3b pathways, to stimulate neural growth and proliferation.
Collapse
Affiliation(s)
- Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
21
|
Inner ear stem cells derived feeder layer promote directional differentiation of amniotic fluid stem cells into functional neurons. Hear Res 2014; 316:57-64. [PMID: 25124154 DOI: 10.1016/j.heares.2014.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/15/2014] [Accepted: 07/29/2014] [Indexed: 01/15/2023]
Abstract
Intact spiral ganglion neurons are required for cochlear implantation or conventional hearing amplification as an intervention for sensorineural hearing loss. Treatment strategies to replace the loss of spiral ganglion neurons are needed. Recent reports have suggested that amniotic fluid-derived stem cells are capable of differentiating into neuron-like cells in response to cytokines and are not tumorigenic. Amniotic fluid stem cells represent a potential resource for cellular therapy of neural deafness due to spiral ganglion pathology. However, the directional differentiation of amniotic fluid stem cells is undetermined in the absence of cytokines and the consequence of inner ear supporting cells from the mouse cochlea organ of Corti on the differentiation of amniotic fluid stem cells remains to be defined. In an effort to circumvent these limitations, we investigated the effect of inner ear stem cells derived feeder layer on amniotic fluid stem cells differentiation in vitro. An inner ear stem cells derived feeder layer direct contact system was established to induce differentiation of amniotic fluid stem cells. Our results showed that inner ear stem cells derived feeder layer successfully promoted directional differentiation of amniotic fluid stem cells into neurons with characteristics of functionality. Furthermore, we showed that Wnt signaling may play an essential role in triggering neurogenesis. These findings indicate the potential use of inner ear stem cells derived feeder layer as a nerve-regenerative scaffold. A reliable and effective amniotic fluid stem cell differentiation support structure provided by inner ear stem cells derived feeder layer should contribute to efforts to translate cell-based strategies to the clinic.
Collapse
|
22
|
Cyclic AMP and the regeneration of retinal ganglion cell axons. Int J Biochem Cell Biol 2014; 56:66-73. [PMID: 24796847 DOI: 10.1016/j.biocel.2014.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/10/2014] [Accepted: 04/22/2014] [Indexed: 01/12/2023]
Abstract
In this paper we present a brief review of studies that have reported therapeutic benefits of elevated cAMP on plasticity and regeneration after injury to the central nervous system (CNS). We also provide new data on the cellular mechanisms by which elevation of cyclic adenosine monophosphate (cAMP) promotes cytokine driven regeneration of adult CNS axons, using the visual system as the experimental model. cAMP is a second messenger for many intracellular signalling pathways. Elevation of cAMP in the eye by intravitreal injection of the cell permeant analogue (8-(4-chlorophenylthio)-adenosine-3',5'-cyclic monophosphate; CPT-cAMP), when added to recombinant ciliary neurotrophic factor (rCNTF), significantly enhances rCNTF-induced regeneration of adult rat retinal ganglion cell (RGC) axons into peripheral nerve (PN) grafted onto transected optic nerve. This effect is mediated to some extent by protein kinase A (PKA) signalling, but CPT-cAMP also acts via PI3K/Akt signalling to reduce suppressor of cytokine signalling protein 3 (SOCS3) activity in RGCs. Another target for cAMP is the exchange protein activated by cAMP (Epac), which can also mediate cAMP-induced axonal growth. Here we describe some novel results and discuss to what extent the pro-regenerative effects of CPT-cAMP on adult RGCs are mediated via Epac as well as via PKA-dependent pathways. We used the established PN-optic nerve graft model and quantified the survival and regenerative growth of adult rat RGCs after intravitreal injection of rCNTF in combination with a selective activator of PKA and/or a specific activator of Epac. Viable RGCs were identified by βIII-tubulin immunohistochemistry and regenerating RGCs retrogradely labelled and quantified after an injection of fluorogold into the distal end of the PN grafts, 4 weeks post-transplantation. The specific agonists of either PKA or Epac were both effective in enhancing the effects of rCNTF on RGC axonal regeneration, but interestingly, injections that combined rCNTF with both agonists were significantly less effective. The results are discussed in relation to previous CPT-cAMP studies on RGCs, and we also consider the need to modulate cAMP levels in order to obtain the most functionally effective regenerative response after CNS trauma. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.
Collapse
|
23
|
Kuffler DP. An assessment of current techniques for inducing axon regeneration and neurological recovery following peripheral nerve trauma. Prog Neurobiol 2014; 116:1-12. [DOI: 10.1016/j.pneurobio.2013.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 12/11/2013] [Accepted: 12/17/2013] [Indexed: 12/20/2022]
|
24
|
Kranz K, Warnecke A, Lenarz T, Durisin M, Scheper V. Phosphodiesterase type 4 inhibitor rolipram improves survival of spiral ganglion neurons in vitro. PLoS One 2014; 9:e92157. [PMID: 24642701 PMCID: PMC3958480 DOI: 10.1371/journal.pone.0092157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/17/2014] [Indexed: 12/11/2022] Open
Abstract
Sensorineural deafness is caused by damage of hair cells followed by degeneration of the spiral ganglion neurons and can be moderated by cochlear implants. However, the benefit of the cochlear implant depends on the excitability of the spiral ganglion neurons. Therefore, current research focuses on the identification of agents that will preserve their degeneration. In this project we investigated the neuroprotective effect of Rolipram as a promising agent to improve the viability of the auditory neurons. It is a pharmaceutical agent that acts by selective inhibition of the phosphodiesterase 4 leading to an increase in cyclic AMP. Different studies reported a neuroprotective effect of Rolipram. However, its significance for the survival of SGN has not been reported so far. Thus, we isolated spiral ganglion cells of neonatal rats for cultivation with different Rolipram concentrations and determined the neuronal survival rate. Furthermore, we examined immunocytologically distinct proteins that might be involved in the neuroprotective signalling pathway of Rolipram and determined endogenous BDNF by ELISA. When applied at a concentration of 0.1 nM, Rolipram improved the survival of SGN in vitro. According to previous studies, our immunocytological data showed that Rolipram application induces the phosphorylation and thereby activation of the transcription factor CREB. This activation can be mediated by the cAMP-PKA-signalling pathway as well as via ERK as a part of the MAP-kinase pathway. However, only in cultures pre-treated with BDNF, an endogenous increase of BDNF was detected. We conclude that Rolipram has the potential to improve the vitality of neonatal auditory nerve cells in vitro. Further investigations are necessary to prove the effect of Rolipram in vivo in the adult organism after lesion of the hair cells and insertion of cochlear implants.
Collapse
Affiliation(s)
- Katharina Kranz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Martin Durisin
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Verena Scheper
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
25
|
Dagda RK, Pien I, Wang R, Zhu J, Wang KZQ, Callio J, Banerjee TD, Dagda RY, Chu CT. Beyond the mitochondrion: cytosolic PINK1 remodels dendrites through protein kinase A. J Neurochem 2013; 128:864-77. [PMID: 24151868 DOI: 10.1111/jnc.12494] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 11/27/2022]
Abstract
The subcellular compartmentalization of kinase activity allows for regulation of distinct cellular processes involved in cell differentiation or survival. The PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, is a neuroprotective kinase localized to cytosolic and mitochondrial compartments. While mitochondrial targeting of PINK1 is important for its activities regulating mitochondrial homeostasis, the physiological role of the cytosolic pool of PINK1 remains unknown. Here, we demonstrate a novel role for cytosolic PINK1 in neuronal differentiation/neurite maintenance. Over-expression of wild-type PINK1, but not a catalytically inactive form of PINK1(K219M), promoted neurite outgrowth in SH-SY5Y cells and increased dendritic lengths in primary cortical and midbrain dopaminergic neurons. To identify the subcellular pools of PINK1 involved in promoting neurite outgrowth, we transiently transfected cells with PINK1 constructs designed to target PINK1 to the outer mitochondrial membrane (OMM-PINK1) or restrict PINK1 to the cytosol (ΔN111-PINK1). Both constructs blocked cell death associated with loss of endogenous PINK1. However, transient expression of ΔN111-PINK1, but not of OMM-PINK1 or ΔN111-PINK1(K219M), promoted dendrite outgrowth in primary neurons, and rescued the decreased dendritic arborization of PINK1-deficient neurons. Mechanistically, the cytosolic pool of PINK1 regulated neurite morphology through enhanced anterograde transport of dendritic mitochondria and amplification of protein kinase A-related signaling pathways. Our data support a novel role for PINK1 in regulating dendritic morphogenesis.
Collapse
Affiliation(s)
- Ruben K Dagda
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pale T, Frisch EB, McClellan AD. Cyclic AMP stimulates neurite outgrowth of lamprey reticulospinal neurons without substantially altering their biophysical properties. Neuroscience 2013; 245:74-89. [PMID: 23603516 PMCID: PMC3672336 DOI: 10.1016/j.neuroscience.2013.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 01/03/2023]
Abstract
Reticulospinal (RS) neurons are critical for initiation of locomotor behavior, and following spinal cord injury (SCI) in the lamprey, the axons of these neurons regenerate and restore locomotor behavior within a few weeks. For lamprey RS neurons in culture, experimental induction of calcium influx, either in the growth cone or cell body, is inhibitory for neurite outgrowth. Following SCI, these neurons partially downregulate calcium channel expression, which would be expected to reduce calcium influx and possibly provide supportive conditions for axonal regeneration. In the present study, it was tested whether activation of second messenger signaling pathways stimulates neurite outgrowth of lamprey RS neurons without altering their electrical properties (e.g. spike broadening) so as to possibly increase calcium influx and compromise axonal growth. First, activation of cAMP pathways with forskolin or dbcAMP stimulated neurite outgrowth of RS neurons in culture in a PKA-dependent manner, while activation of cGMP signaling pathways with dbcGMP inhibited outgrowth. Second, neurophysiological recordings from uninjured RS neurons in isolated lamprey brain-spinal cord preparations indicated that dbcAMP or dbcGMP did not significantly affect any of the measured electrical properties. In contrast, for uninjured RS neurons, forskolin increased action potential duration, which might have increased calcium influx, but did not significantly affect most other electrical properties. Importantly, for injured RS neurons during the period of axonal regeneration, forskolin did not significantly alter their electrical properties. Taken together, these results suggest that activation of cAMP signaling by dbcAMP stimulates neurite outgrowth, but does not alter the electrical properties of lamprey RS neurons in such a way that would be expected to induce calcium influx. In conclusion, our results suggest that activation of cAMP pathways alone, without compensation for possible deleterious effects on electrical properties, is an effective approach for stimulating axonal regeneration of RS neuron following SCI.
Collapse
Affiliation(s)
- Timothée Pale
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211-6190
| | - Emily B. Frisch
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211-6190
| | - Andrew D. McClellan
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211-6190
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211-6190
| |
Collapse
|
27
|
Shah SM, Patel CH, Feng AS, Kollmar R. Lithium alters the morphology of neurites regenerating from cultured adult spiral ganglion neurons. Hear Res 2013; 304:137-44. [PMID: 23856237 DOI: 10.1016/j.heares.2013.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 06/23/2013] [Accepted: 07/01/2013] [Indexed: 01/13/2023]
Abstract
The small-molecule drug lithium (as a monovalent ion) promotes neurite regeneration and functional recovery, is easy to administer, and is approved for human use to treat bipolar disorder. Lithium exerts its neuritogenic effect mainly by inhibiting glycogen synthase kinase 3, a constitutively-active serine/threonine kinase that is regulated by neurotrophin and "wingless-related MMTV integration site" (Wnt) signaling. In spiral ganglion neurons of the cochlea, the effects of lithium and the function of glycogen synthase kinase 3 have not been investigated. We, therefore, set out to test whether lithium modulates neuritogenesis from adult spiral ganglion neurons. Primary cultures of dissociated spiral ganglion neurons from adult mice were exposed to lithium at concentrations between 0 and 12.5 mM. The resulting neurite morphology and growth-cone appearance were measured in detail by using immunofluorescence microscopy and image analysis. We found that lithium altered the morphology of regenerating neurites and their growth cones in a differential, concentration-dependent fashion. Low concentrations of 0.5-2.5 mM (around the half-maximal inhibitory concentration for glycogen synthase kinase 3 and the recommended therapeutic serum concentration for bipolar disorder) enhanced neurite sprouting and branching. A high concentration of 12.5 mM, in contrast, slowed elongation. As the lithium concentration rose from low to high, the microtubules became increasingly disarranged and the growth cones more arborized. Our results demonstrate that lithium selectively stimulates phases of neuritogenesis that are driven by microtubule reorganization. In contrast, most other drugs that have previously been tested on spiral ganglion neurons are reported to inhibit neurite outgrowth or affect only elongation. Lithium sensitivity is a necessary, but not sufficient condition for the involvement of glycogen synthase kinase 3. Our results are, therefore, consistent with, but do not prove lithium inhibiting glycogen synthase kinase 3 activity in spiral ganglion neurons. Experiments with additional drugs and molecular-genetic tools will be necessary to test whether glycogen synthase kinase 3 regulates neurite regeneration from spiral ganglion neurons, possibly by integrating neurotrophin and Wnt signals at the growth cone.
Collapse
Affiliation(s)
- S M Shah
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Neuroscience Graduate Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Medical Scholars Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
28
|
Schmidt M, Dekker FJ, Maarsingh H. Exchange protein directly activated by cAMP (epac): a multidomain cAMP mediator in the regulation of diverse biological functions. Pharmacol Rev 2013; 65:670-709. [PMID: 23447132 DOI: 10.1124/pr.110.003707] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since the discovery nearly 60 years ago, cAMP is envisioned as one of the most universal and versatile second messengers. The tremendous feature of cAMP to tightly control highly diverse physiologic processes, including calcium homeostasis, metabolism, secretion, muscle contraction, cell fate, and gene transcription, is reflected by the award of five Nobel prizes. The discovery of Epac (exchange protein directly activated by cAMP) has ignited a new surge of cAMP-related research and has depicted novel cAMP properties independent of protein kinase A and cyclic nucleotide-gated channels. The multidomain architecture of Epac determines its activity state and allows cell-type specific protein-protein and protein-lipid interactions that control fine-tuning of pivotal biologic responses through the "old" second messenger cAMP. Compartmentalization of cAMP in space and time, maintained by A-kinase anchoring proteins, phosphodiesterases, and β-arrestins, contributes to the Epac signalosome of small GTPases, phospholipases, mitogen- and lipid-activated kinases, and transcription factors. These novel cAMP sensors seem to implement certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Agonists and antagonists selective for Epac are developed and will support further studies on the biologic net outcome of the activation of Epac. This will increase our current knowledge on the pathophysiology of devastating diseases, such as diabetes, cognitive impairment, renal and heart failure, (pulmonary) hypertension, asthma, and chronic obstructive pulmonary disease. Further insights into the cAMP dynamics executed by the Epac signalosome will help to optimize the pharmacological treatment of these diseases.
Collapse
Affiliation(s)
- Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
29
|
Meyer H, Stöver T, Fouchet F, Bastiat G, Saulnier P, Bäumer W, Lenarz T, Scheper V. Lipidic nanocapsule drug delivery: neuronal protection for cochlear implant optimization. Int J Nanomedicine 2012; 7:2449-64. [PMID: 22654517 PMCID: PMC3363950 DOI: 10.2147/ijn.s29712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective Sensorineural hearing loss leads to the progressive degeneration of spiral ganglion cells (SGC). Next to postoperative fibrous tissue growth, which should be suppressed to assure a close nerve–electrode interaction, the density of healthy SGC is one factor that influences the efficiency of cochlear implants (CI), the choice of treatment for affected patients. Rolipram, a phosphodiesterase-4 inhibitor, has proven neuroprotective and anti-inflammatory effects and might also reduce SGC degeneration and fibrosis, but it has to pass the cellular membrane to be biologically active. Methods Lipidic nanocapsules (LNC) can be used as biodegradable drug carriers to increase the efficacy of conventional application methods. We examined the biological effects of rolipram and LNC’s core encapsulated rolipram on SGC and dendritic cell (DC) tumor necrosis factor-α (TNF-α) production in vitro and on SGC survival in systemically-deafened guinea pigs in vivo. Results Our results prove that rolipram does not have a beneficial effect on cultured SGC. Incorporation of rolipram in LNC increased the survival of SGC significantly. In the DC study, rolipram significantly inhibited TNF-α in a dose-dependent manner. The rolipram-loaded LNC provided a significant cytokine inhibition as well. In vivo data do not confirm the in vitro results. Conclusion By transporting rolipram into the SGC cytoplasm, LNC enabled the neuroprotective effect of rolipram in vitro, but not in vivo. This might be due to dilution of test substances by perilymph or an inadequate release of rolipram based on differing in vivo and in vitro conditions. Nevertheless, based on in vitro results, proving a significantly increased neuronal survival when using LNC-rolipram compared to pure rolipram and pure LNC application, we believe that the combination of rolipram and LNC can potentially reduce neuronal degeneration and fibrosis after CI implantation. We conclude that rolipram is a promising drug that can be used in inner ear therapy and that LNC have potential as an inner ear drug-delivery system. Further experiments with modified conditions might reveal in vivo biological effects.
Collapse
Affiliation(s)
- Hartwig Meyer
- Department of Otolaryngology, Hannover Medical School, University of Veterinary Medicine Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|