1
|
Benson MA, Peacock J, Sergison MD, Stich D, Tollin DJ. Neural and behavioral binaural hearing impairment and its recovery following moderate noise exposure. Hear Res 2025; 456:109166. [PMID: 39693785 PMCID: PMC11772110 DOI: 10.1016/j.heares.2024.109166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
Noise-induced cochlear synaptopathy has been studied for over 25 years with no known diagnosis for this disorder in humans. This type of "hidden hearing loss" induces a loss of synapses in the inner ear but no change in audiometric thresholds. Recent studies have shown that by two months post synaptopathy-inducing noise exposure, synapses in some animal species can regenerate. Animal studies to date have focused primarily on peripheral hearing measures to diagnose ribbon synapse loss, while suggesting binaural listening deficits such as speech-reception-in-noise result from this disorder, but haven't accounted for the possible regeneration of synapses. To address this, we measured binaural physiological and behavioral function, the latter utilizing the pre-pulse inhibition of acoustic startle method, in both male and female adult guinea pigs following exposure to noise that has been shown to induce cochlear synaptopathy. Physiological measurements extended to 2 months post noise exposure to characterize any deficit and subsequent recovery. While common audiological assessments showed temporary threshold shift, reduced evoked potential amplitudes indicative of synaptopathy and measurable binaural electrophysiological hearing deficits post exposure, all measures recovered by 2 months. Suspected regeneration of synaptic ribbons occurred by 2 months post exposure and cochlear histology revealed no synaptic loss 4 months post exposure. Our results show that the same noise exposure protocol demonstrated to cause synaptic loss in prior studies causes physiological binaural processing deficits in the brainstem and that the recovery of neural binaural processing coincides with the regeneration of synapses shown in previous studies and normal binaural hearing behavior.
Collapse
MESH Headings
- Animals
- Guinea Pigs
- Hearing Loss, Noise-Induced/physiopathology
- Hearing Loss, Noise-Induced/psychology
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/etiology
- Female
- Male
- Auditory Threshold
- Cochlea/physiopathology
- Cochlea/pathology
- Recovery of Function
- Noise/adverse effects
- Acoustic Stimulation
- Synapses/pathology
- Behavior, Animal
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem
- Time Factors
- Reflex, Startle
- Hearing
- Prepulse Inhibition
- Evoked Potentials, Auditory
Collapse
Affiliation(s)
- Monica A Benson
- Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - John Peacock
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Matthew D Sergison
- Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dominik Stich
- Neurotechnology Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel J Tollin
- Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
2
|
Oestreicher D, Malpede AM, Reitmeier A, Bräuer CP, Schoch L, Strenzke N, Pangrsic T. Noise-induced ribbon synapse loss in the mouse basal cochlear region does not reduce inner hair cell exocytosis. Front Cell Neurosci 2025; 18:1523978. [PMID: 39839350 PMCID: PMC11747652 DOI: 10.3389/fncel.2024.1523978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Noise-induced hearing loss is one of the most common forms of hearing loss in adults and also one of the most common occupational diseases. Extensive previous work has shown that the highly sensitive synapses of the inner hair cells (IHCs) may be the first target for irreparable damage and permanent loss in the noise-exposed cochlea, more precisely in the cochlear base. However, how such synaptic loss affects the synaptic physiology of the IHCs in this particularly vulnerable part of the cochlea has not yet been investigated. To address this question, we exposed 3-4-week-old C57BL/6J mice to 8-16 kHz noise for 2 h under isoflurane anesthesia. We then employed hearing measurements, immunohistochemistry and patch-clamp to assess IHC synaptic function. Two noise sound pressure levels (SPLs) were used to evoke acute hearing threshold elevations with different levels of recovery 2 weeks post-exposure. Regardless of noise intensity, the exposure resulted in a loss of approximately 25-36% of ribbon synapses in the basal portions of the cochlea that persisted 2 weeks after exposure. Perforated patch-clamp recordings were made in the IHCs of the basal regions of the cochlea where the greatest synaptic losses were observed. Depolarization-evoked calcium currents in IHCs 2 weeks after exposure were slightly but not significantly smaller as compared to controls from age-matched non-exposed animals. Exocytic changes monitored as changes in membrane capacitance did not follow that trend and remained similar to controls despite significant loss of ribbons, likely reflecting increased exocytosis at the remaining synapses. Additionally, we report for the first time that acute application of isoflurane reduces IHC calcium currents, which may have implications for noise-induced IHC synaptic loss.
Collapse
Affiliation(s)
- David Oestreicher
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alfonso Mauro Malpede
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Annalena Reitmeier
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Carolin Paula Bräuer
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Laura Schoch
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nicola Strenzke
- Auditory Systems Physiology Group, Institute for Auditory Neuroscience, InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Tina Pangrsic
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Blum K, Schepsky P, Derleder P, Schätzle P, Nasri F, Fischer P, Engel J, Kurt S. Noise-induced cochlear synaptopathy in C57BL/6 N mice as a function of trauma strength: ribbons are more vulnerable than postsynapses. Front Cell Neurosci 2024; 18:1465216. [PMID: 39411002 PMCID: PMC11473312 DOI: 10.3389/fncel.2024.1465216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Noise-induced cochlear synaptopathy is characterized by irreversible loss of synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) despite normal hearing thresholds. We analyzed hearing performance and cochlear structure in C57BL/6 N mice exposed to 100, 106, or 112 dB SPL broadband noise (8-16 kHz) for 2 h. Auditory brainstem responses (ABRs) were assessed before, directly after, and up to 28 days post-trauma. Finally, the number, size, and pairing of IHC presynaptic (CtBP2-positive) ribbons and postsynaptic AMPA receptor scaffold (Homer1-positive) clusters were analyzed along the cochlea. Four weeks after the 100 dB SPL trauma, a permanent threshold shift (PTS) was observed at 45 kHz, which after the higher traumata extended toward middle to low frequencies. Loss in ABR wave I amplitudes scaled with trauma strength indicating loss of functional IHC synaptic connections. Latencies of wave I mostly increased with trauma strength. No trauma-related OHC loss was found. The number of synaptic pairs was reduced in the midbasal and basal cochlear region in all trauma conditions, with ribbon loss amounting up to 46% of control. Ribbons surviving the trauma were paired, whereas 4-6 unpaired postsynapses/IHC were found in the medial, midbasal, and basal regions irrespective of trauma strength, contrasting findings in CBA/CaJ mice. Our data confirm the susceptibility of ribbon synapses and ABR wave I amplitudes to a noise trauma of 100 dB SPL or larger. Notably, peripheral dendrites bearing IHC postsynapses were less vulnerable than presynaptic ribbons in C57BL/6 N mice.
Collapse
Affiliation(s)
- Kerstin Blum
- Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Department of Biophysics, Saarland University, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), School of Medicine, Saarland University, Homburg, Germany
| | - Pauline Schepsky
- Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Department of Biophysics, Saarland University, Homburg, Germany
| | - Philip Derleder
- Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Department of Biophysics, Saarland University, Homburg, Germany
| | - Philipp Schätzle
- Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Department of Biophysics, Saarland University, Homburg, Germany
| | - Fahmi Nasri
- Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Department of Biophysics, Saarland University, Homburg, Germany
| | - Philipp Fischer
- Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Department of Biophysics, Saarland University, Homburg, Germany
| | - Jutta Engel
- Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Department of Biophysics, Saarland University, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), School of Medicine, Saarland University, Homburg, Germany
| | - Simone Kurt
- Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Department of Biophysics, Saarland University, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), School of Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
4
|
Slika E, Fuchs PA, Wood MB. Virally-Mediated Enhancement of Efferent Inhibition Reduces Acoustic Trauma in Wild Type Murine Cochleas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612688. [PMID: 39314296 PMCID: PMC11419007 DOI: 10.1101/2024.09.12.612688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Noise-induced hearing loss (NIHL) poses an emerging global health problem with only ear protection or sound avoidance as preventive strategies. In addition, however, the cochlea receives some protection from medial olivocochlear (MOC) efferent neurons, providing a potential target for therapeutic enhancement. Cholinergic efferents release ACh (Acetylycholine) to hyperpolarize and shunt the outer hair cells (OHCs), reducing sound-evoked activation. The (α9)2(α10)3 nicotinic ACh receptor (nAChR) on the OHCs mediates this effect. Transgenic knock-in mice with a gain-of-function nAChR (α9L9'T) suffer less NIHL. α9 knockout mice are more vulnerable to NIHL but can be rescued by viral transduction of the α9L9'T subunit. In this study, an HA-tagged gain-of-function α9 isoform was expressed in wildtype mice in an attempt to reduce NIHL. Synaptic integration of the virally-expressed nAChR subunit was confirmed by HA-immunopuncta in the postsynaptic membrane of OHCs. After noise exposure, α9L9'T-HA injected mice had less hearing loss (auditory brainstem response (ABR) thresholds and threshold shifts) than did control mice. ABRs of α9L9'T-HA injected mice also had larger wave1 amplitudes and better recovery of wave one amplitudes post noise exposure. Thus, virally-expressed α9L9'T combines effectively with native α9 and α10 subunits to mitigate NIHL in wildtype cochleas.
Collapse
Affiliation(s)
- Eleftheria Slika
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Paul A. Fuchs
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Megan Beers Wood
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| |
Collapse
|
5
|
Mittal R, Keith G, Lacey M, Lemos JRN, Mittal J, Assayed A, Hirani K. Diabetes mellitus, hearing loss, and therapeutic interventions: A systematic review of insights from preclinical animal models. PLoS One 2024; 19:e0305617. [PMID: 38985787 PMCID: PMC11236185 DOI: 10.1371/journal.pone.0305617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/02/2024] [Indexed: 07/12/2024] Open
Abstract
OBJECTIVES The aim of this systematic review article is to evaluate the relationship between diabetes mellitus (DM) and sensorineural hearing loss (SNHL) utilizing preclinical animal models. The review focused on studies assessing SNHL in diabetic animal models, elucidating the mechanisms of DM-associated SNHL, and exploring the response of diabetic animal models to noise overexposure. We also discussed studies investigating the efficacy of potential therapeutic strategies for amelioration of DM-associated SNHL in the animal models. METHODS A protocol of this systematic review was designed a priori and was registered in the PROSPERO database (registration number: CRD42023439961). We conducted a comprehensive search on PubMed, Science Direct, Web of Science, Scopus, and EMBASE databases. A minimum of three reviewers independently screened, selected, and extracted data. The risk of bias assessment of eligible studies was conducted using the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) tool. RESULTS Following the screening of 238 studies, twelve original articles were included in this systematic review. The studies revealed that hyperglycemia significantly affects auditory function, with various pathological mechanisms contributing to DM-induced hearing impairment, including cochlear synaptopathy, microangiopathy, neuropathy, oxidative stress, mitochondrial abnormalities, and apoptosis-mediated cell death. Emerging interventions, such as Asiaticoside, Trigonelline, Chlorogenic acid, and Huotanquyu granules, demonstrated efficacy in providing otoprotection for preserving cochlear hair cells and hearing function. CONCLUSIONS Our systematic review delves into the intricate relationship between DM and hearing impairment in animal models. Future research should focus on targeted therapies to enhance cochlear mitochondrial function, alleviate oxidative stress, and regulate apoptosis. The association between SNHL and social isolation as well as cognitive decline underscores the necessity for innovative therapeutic modalities addressing yet undiscovered mechanisms. Translating findings from animal models to human studies will validate these findings, offering a synergistic approach to effectively manage DM-associated co-morbidities such as hearing impairment.
Collapse
Affiliation(s)
- Rahul Mittal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Grant Keith
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Mitchel Lacey
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Joana R. N. Lemos
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Amro Assayed
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Khemraj Hirani
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
6
|
Shahab M, Rosati R, Stemmer PM, Dombkowski A, Jamesdaniel S. Quantitative profiling of cochlear synaptosomal proteins in cisplatin-induced synaptic dysfunction. Hear Res 2024; 447:109022. [PMID: 38705005 PMCID: PMC11116033 DOI: 10.1016/j.heares.2024.109022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
The disruption of ribbon synapses in the cochlea impairs the transmission of auditory signals from the cochlear sensory receptor cells to the auditory cortex. Although cisplatin-induced loss of ribbon synapses is well-documented, and studies have reported nitration of cochlear proteins after cisplatin treatment, yet the underlying mechanism of cochlear synaptopathy is not fully understood. This study tests the hypothesis that cisplatin treatment alters the abundance of cochlear synaptosomal proteins, and selective targeting of nitrative stress prevents the associated synaptic dysfunction. Auditory brainstem responses of mice treated with cisplatin showed a reduction in amplitude and an increase in latency of wave I, indicating cisplatin-induced synaptic dysfunction. The mass spectrometry analysis of cochlear synaptosomal proteins identified 102 proteins that decreased in abundance and 249 that increased in abundance after cisplatin treatment. Pathway analysis suggested that the dysregulated proteins were involved in calcium binding, calcium ion regulation, synapses, and endocytosis pathways. Inhibition of nitrative stress by co-treatment with MnTBAP, a peroxynitrite scavenger, attenuated cisplatin-induced changes in the abundance of 27 proteins. Furthermore, MnTBAP co-treatment prevented the cisplatin-induced decrease in the amplitude and increase in the latency of wave I. Together, these findings suggest a potential role of oxidative/nitrative stress in cisplatin-induced cochlear synaptic dysfunction.
Collapse
Affiliation(s)
- Monazza Shahab
- Department of Pharmacology, Wayne State University, Detroit, MI, USA; Institute of Environment Health Science, Wayne State University, Detroit, MI, USA
| | - Rita Rosati
- Institute of Environment Health Science, Wayne State University, Detroit, MI, USA
| | - Paul M Stemmer
- Institute of Environment Health Science, Wayne State University, Detroit, MI, USA
| | - Alan Dombkowski
- Department of Pediatrics, Wayne State University, Detroit, MI, USA
| | - Samson Jamesdaniel
- Department of Pharmacology, Wayne State University, Detroit, MI, USA; Institute of Environment Health Science, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
7
|
Montazeri K, Farhadi M, Majdabadi A, Akbarnejad Z, Fekrazad R, Shahbazi A, Mahmoudian S. Photobiomodulation therapy in improvement of harmful neural plasticity in sodium salicylate-induced tinnitus. PLoS One 2024; 19:e0296607. [PMID: 38626075 PMCID: PMC11020422 DOI: 10.1371/journal.pone.0296607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/12/2024] [Indexed: 04/18/2024] Open
Abstract
Tinnitus is a common annoying symptom without effective and accepted treatment. In this controlled experimental study, photobiomodulation therapy (PBMT), which uses light to modulate and repair target tissue, was used to treat sodium salicylate (SS)-induced tinnitus in a rat animal model. Here, PBMT was performed simultaneously on the peripheral and central regions involved in tinnitus. The results were evaluated using objective tests including gap pre-pulse inhibition of acoustic startle (GPIAS), auditory brainstem response (ABR) and immunohistochemistry (IHC). Harmful neural plasticity induced by tinnitus was detected by doublecortin (DCX) protein expression, a known marker of neural plasticity. PBMT parameters were 808 nm wavelength, 165 mW/cm2 power density, and 99 J/cm2 energy density. In the tinnitus group, the mean gap in noise (GIN) value of GPIAS test was significantly decreased indicated the occurrence of an additional perceived sound like tinnitus and also the mean ABR threshold and brainstem transmission time (BTT) were significantly increased. In addition, a significant increase in DCX expression in the dorsal cochlear nucleus (DCN), dentate gyrus (DG) and the parafloccular lobe (PFL) of cerebellum was observed in the tinnitus group. In PBMT group, a significant increase in the GIN value, a significant decrease in the ABR threshold and BTT, and also significant reduction of DCX expression in the DG were observed. Based on our findings, PBMT has the potential to be used in the management of SS-induced tinnitus.
Collapse
Affiliation(s)
- Katayoon Montazeri
- The Five Senses Health Institute, ENT and Head and Neck Research Center, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammad Farhadi
- The Five Senses Health Institute, ENT and Head and Neck Research Center, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Abbas Majdabadi
- Dentistry Research Institute, Laser Research Center of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Zainab Akbarnejad
- The Five Senses Health Institute, ENT and Head and Neck Research Center, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
| | - Ali Shahbazi
- Faculty of Advanced Technologies in Medicine, Department of Neuroscience, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Saeid Mahmoudian
- The Five Senses Health Institute, ENT and Head and Neck Research Center, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
8
|
Saidia AR, François F, Casas F, Mechaly I, Venteo S, Veechi JT, Ruel J, Puel JL, Wang J. Oxidative Stress Plays an Important Role in Glutamatergic Excitotoxicity-Induced Cochlear Synaptopathy: Implication for Therapeutic Molecules Screening. Antioxidants (Basel) 2024; 13:149. [PMID: 38397748 PMCID: PMC10886292 DOI: 10.3390/antiox13020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
The disruption of the synaptic connection between the sensory inner hair cells (IHCs) and the auditory nerve fiber terminals of the type I spiral ganglion neurons (SGN) has been observed early in several auditory pathologies (e.g., noise-induced or ototoxic drug-induced or age-related hearing loss). It has been suggested that glutamate excitotoxicity may be an inciting element in the degenerative cascade observed in these pathological cochlear conditions. Moreover, oxidative damage induced by free hydroxyl radicals and nitric oxide may dramatically enhance cochlear damage induced by glutamate excitotoxicity. To investigate the underlying molecular mechanisms involved in cochlear excitotoxicity, we examined the molecular basis responsible for kainic acid (KA, a full agonist of AMPA/KA-preferring glutamate receptors)-induced IHC synapse loss and degeneration of the terminals of the type I spiral ganglion afferent neurons using a cochlear explant culture from P3 mouse pups. Our results demonstrated that disruption of the synaptic connection between IHCs and SGNs induced increased levels of oxidative stress, as well as altered both mitochondrial function and neurotrophin signaling pathways. Additionally, the application of exogenous antioxidants and neurotrophins (NT3, BDNF, and small molecule TrkB agonists) clearly increases synaptogenesis. These results suggest that understanding the molecular pathways involved in cochlear excitotoxicity is of crucial importance for the future clinical trials of drug interventions for auditory synaptopathies.
Collapse
Affiliation(s)
- Anissa Rym Saidia
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - Florence François
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - François Casas
- INRA, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France;
| | - Ilana Mechaly
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - Stéphanie Venteo
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - Joseph T. Veechi
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - Jérôme Ruel
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université-INSERM, 1263-INRAE 1260, 13385 Marseille, France;
| | - Jean-Luc Puel
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - Jing Wang
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| |
Collapse
|
9
|
Bramhall NF, McMillan GP. Perceptual Consequences of Cochlear Deafferentation in Humans. Trends Hear 2024; 28:23312165241239541. [PMID: 38738337 DOI: 10.1177/23312165241239541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Cochlear synaptopathy, a form of cochlear deafferentation, has been demonstrated in a number of animal species, including non-human primates. Both age and noise exposure contribute to synaptopathy in animal models, indicating that it may be a common type of auditory dysfunction in humans. Temporal bone and auditory physiological data suggest that age and occupational/military noise exposure also lead to synaptopathy in humans. The predicted perceptual consequences of synaptopathy include tinnitus, hyperacusis, and difficulty with speech-in-noise perception. However, confirming the perceptual impacts of this form of cochlear deafferentation presents a particular challenge because synaptopathy can only be confirmed through post-mortem temporal bone analysis and auditory perception is difficult to evaluate in animals. Animal data suggest that deafferentation leads to increased central gain, signs of tinnitus and abnormal loudness perception, and deficits in temporal processing and signal-in-noise detection. If equivalent changes occur in humans following deafferentation, this would be expected to increase the likelihood of developing tinnitus, hyperacusis, and difficulty with speech-in-noise perception. Physiological data from humans is consistent with the hypothesis that deafferentation is associated with increased central gain and a greater likelihood of tinnitus perception, while human data on the relationship between deafferentation and hyperacusis is extremely limited. Many human studies have investigated the relationship between physiological correlates of deafferentation and difficulty with speech-in-noise perception, with mixed findings. A non-linear relationship between deafferentation and speech perception may have contributed to the mixed results. When differences in sample characteristics and study measurements are considered, the findings may be more consistent.
Collapse
Affiliation(s)
- Naomi F Bramhall
- VA National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, Portland, OR, USA
- Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Garnett P McMillan
- VA National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
10
|
Bramhall NF, Theodoroff SM, McMillan GP, Kampel SD, Buran BN. Associations Between Physiological Correlates of Cochlear Synaptopathy and Tinnitus in a Veteran Population. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:4635-4652. [PMID: 37889209 PMCID: PMC11719394 DOI: 10.1044/2023_jslhr-23-00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
PURPOSE Animal models and human temporal bones indicate that noise exposure is a risk factor for cochlear synaptopathy, a possible etiology of tinnitus. Veterans are exposed to high levels of noise during military service. Therefore, synaptopathy may explain the high rates of noise-induced tinnitus among Veterans. Although synaptopathy cannot be directly evaluated in living humans, animal models indicate that several physiological measures are sensitive to synapse loss, including the auditory brainstem response (ABR), the middle ear muscle reflex (MEMR), and the envelope following response (EFR). The purpose of this study was to determine whether tinnitus is associated with reductions in physiological correlates of synaptopathy that parallel animal studies. METHOD Participants with normal audiograms were grouped according to Veteran status and tinnitus report (Veterans with tinnitus, Veterans without tinnitus, and non-Veteran controls). The effects of being a Veteran with tinnitus on ABR, MEMR, and EFR measurements were independently modeled using Bayesian regression analysis. RESULTS Modeled point estimates of MEMR and EFR magnitude showed reductions for Veterans with tinnitus compared with non-Veterans, with the most evident reduction observed for the EFR. Two different approaches were used to provide context for the Veteran tinnitus effect on the EFR by comparing to age-related reductions in EFR magnitude and synapse numbers observed in previous studies. These analyses suggested that EFR magnitude/synapse counts were reduced in Veterans with tinnitus by roughly the same amount as over 20 years of aging. CONCLUSION These findings suggest that cochlear synaptopathy may contribute to tinnitus perception in noise-exposed Veterans. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.24347761.
Collapse
Affiliation(s)
- Naomi F Bramhall
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Sarah M Theodoroff
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Garnett P McMillan
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
| | - Sean D Kampel
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
| | - Brad N Buran
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| |
Collapse
|
11
|
Moverman DJ, Liberman LD, Kraemer S, Corfas G, Liberman MC. Ultrastructure of noise-induced cochlear synaptopathy. Sci Rep 2023; 13:19456. [PMID: 37945811 PMCID: PMC10636047 DOI: 10.1038/s41598-023-46859-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
Acoustic overexposure can eliminate synapses between inner hair cells (IHCs) and auditory nerve fibers (ANFs), even if hair-cell function recovers. This synaptopathy has been extensively studied by confocal microscopy, however, understanding the nature and sequence of damage requires ultrastructural analysis. Here, we used focused ion-beam scanning electron microscopy to mill, image, segment and reconstruct ANF terminals in mice, 1 day and 1 week after synaptopathic exposure (8-16 kHz, 98 dB SPL). At both survivals, ANF terminals were normal in number, but 62% and 53%, respectively, lacked normal synaptic specializations. Most non-synapsing fibers (57% and 48% at 1 day and 1 week) remained in contact with an IHC and contained healthy-looking organelles. ANFs showed a transient increase in mitochondrial content (51%) and efferent innervation (34%) at 1 day. Fibers maintaining synaptic connections showed hypertrophy of pre-synaptic ribbons at both 1 day and 1 week. Non-synaptic fibers were lower in mitochondrial content and typically on the modiolar side of the IHC, where ANFs with high-thresholds and low spontaneous rates are normally found. Even 1 week post-exposure, many ANF terminals remained in IHC contact despite loss of synaptic specializations, thus, regeneration efforts at early post-exposure times should concentrate on synaptogenesis rather than neurite extension.
Collapse
Affiliation(s)
- Daniel J Moverman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles St., Boston, MA, 02114-3096, USA
| | - Leslie D Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles St., Boston, MA, 02114-3096, USA
| | - Stephan Kraemer
- Center for Nanoscale Systems, Harvard College, Cambridge, MA, 02138, USA
| | - Gabriel Corfas
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles St., Boston, MA, 02114-3096, USA.
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Ginsberg H, Singh R, Bharadwaj HM, Heinz MG. A multi-channel EEG mini-cap can improve reliability for recording auditory brainstem responses in chinchillas. J Neurosci Methods 2023; 398:109954. [PMID: 37625650 PMCID: PMC10560491 DOI: 10.1016/j.jneumeth.2023.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Disabling hearing loss affects nearly 466 million people worldwide (World Health Organization). The auditory brainstem response (ABR) is the most common non-invasive clinical measure of evoked potentials, e.g., as an objective measure for universal newborn hearing screening. In research, the ABR is widely used for estimating hearing thresholds and cochlear synaptopathy in animal models of hearing loss. The ABR contains multiple waves representing neural activity across different peripheral auditory pathway stages, which arise within the first 10 ms after stimulus onset. Multi-channel (e.g., 32 or higher) caps provide robust measures for a wide variety of EEG applications for the study of human hearing. However, translational studies using preclinical animal models typically rely on only a few subdermal electrodes. NEW METHOD We evaluated the feasibility of a 32-channel rodent EEG mini-cap for improving the reliability of ABR measures in chinchillas, a common model of human hearing. RESULTS After confirming initial feasibility, a systematic experimental design tested five potential sources of variability inherent to the mini-cap methodology. We found each source of variance minimally affected mini-cap ABR waveform morphology, thresholds, and wave-1 amplitudes. COMPARISON WITH EXISTING METHOD The mini-cap methodology was statistically more robust and less variable than the conventional subdermal-needle methodology, most notably when analyzing ABR thresholds. Additionally, fewer repetitions were required to produce a robust ABR response when using the mini-cap. CONCLUSIONS These results suggest the EEG mini-cap can improve translational studies of peripheral auditory evoked responses. Future work will evaluate the potential of the mini-cap to improve the reliability of more centrally evoked (e.g., cortical) EEG responses.
Collapse
Affiliation(s)
- Hannah Ginsberg
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA.
| | - Ravinderjit Singh
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA; Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Hari M Bharadwaj
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA; Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, 15260, PA, USA; Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, 47907, IN, USA
| | - Michael G Heinz
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA; Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, 47907, IN, USA
| |
Collapse
|
13
|
Wang Y, Abrams KS, Youngman M, Henry KS. Histological Correlates of Auditory Nerve Injury from Kainic Acid in the Budgerigar (Melopsittacus undulatus). J Assoc Res Otolaryngol 2023; 24:473-485. [PMID: 37798548 PMCID: PMC10695905 DOI: 10.1007/s10162-023-00910-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
PURPOSE Loss of auditory nerve afferent synapses with cochlear hair cells, called cochlear synaptopathy, is a common pathology in humans caused by aging and noise overexposure. The perceptual consequences of synaptopathy in isolation from other cochlear pathologies are still unclear. Animal models provide an effective approach to resolve uncertainty regarding the physiological and perceptual consequences of auditory nerve loss, because neural lesions can be induced and readily quantified. The budgerigar, a parakeet species, has recently emerged as an animal model for synaptopathy studies based on its capacity for vocal learning and ability to behaviorally discriminate simple and complex sounds with acuity similar to humans. Kainic acid infusions in the budgerigar produce a profound reduction of compound auditory nerve responses, including wave I of the auditory brainstem response, without impacting physiological hair cell measures. These results suggest selective auditory nerve damage. However, histological correlates of neural injury from kainic acid are still lacking. METHODS We quantified the histological effects caused by intracochlear infusion of kainic acid (1 mM; 2.5 µL), and evaluated correlations between the histological and physiological assessments of auditory nerve status. RESULTS Kainic acid infusion in budgerigars produced pronounced loss of neural auditory nerve soma (60% on average) in the cochlear ganglion, and of peripheral axons, at time points 2 or more months following injury. The hair cell epithelium was unaffected by kainic acid. Neural loss was significantly correlated with reduction of compound auditory nerve responses and auditory brainstem response wave I. CONCLUSION Compound auditory nerve responses and wave I provide a useful index of cochlear synaptopathy in this animal model.
Collapse
Affiliation(s)
- Yingxuan Wang
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Kristina S Abrams
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Margaret Youngman
- Department of Otolaryngology, University of Rochester, Rochester, NY 14642, USA
| | - Kenneth S Henry
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA.
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA.
- Department of Otolaryngology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
14
|
Kurasawa S, Mohri H, Tabuchi K, Ueyama T. Loss of synaptic ribbons is an early cause in ROS-induced acquired sensorineural hearing loss. Neurobiol Dis 2023; 186:106280. [PMID: 37666363 DOI: 10.1016/j.nbd.2023.106280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
Considerable evidence of reactive oxygen species (ROS) involvement in cochlear hair cell (HC) loss, leading to acquired sensorineural hearing loss (SNHL), were reported. Cochlear synaptopathy between HCs and spiral ganglion neurons has been gathering attention as a cochlear HC loss precursor not detectable by normal auditory evaluation. However, the molecular mechanisms linking ROS with HC loss, as well as the relationship between ROS and cochlear synaptopathy have not been elucidated. Here, we examined these linkages using NOX4-TG mice, which constitutively produce ROS without stimulation. mRNA levels of Piccolo 1, a major component of the synaptic ribbon (a specialized structure surrounded by synaptic vesicles in HCs), were decreased in postnatal day 6 NOX4-TG mice cochleae compared to those in WT mice; they were also decreased by noise exposure in 2-week-old WT cochleae. As noise exposure induces ROS production, this suggests that the synaptic ribbon is a target of ROS. The level of CtBP2, another synaptic ribbon component, was significantly lower in NOX4-TG cochleae of 1-month-old and 4-month-old mice compared to that in WT mice, although no significant differences were noted at 1.5- and 2-months. The decrease in CtBP2 plateaued in 4-month-old NOX4-TG, while it gradually decreased from 1 to 6 months in WT mice. Furthermore, CtBP2 level in 2-month-old NOX4-TG mice decreased significantly after exposure to cisplatin and noise compared to that in WT mice. These findings suggest that ROS lead to developmental delays and early degeneration of synaptic ribbons, which could be potential targets for novel therapeutics for ROS-induced SNHL.
Collapse
Affiliation(s)
- Shunkou Kurasawa
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan; Department of Otolaryngology-Head and Neck Surgery, University of Tsukuba, Tsukuba 300-8575, Japan
| | - Hiroaki Mohri
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Keiji Tabuchi
- Department of Otolaryngology-Head and Neck Surgery, University of Tsukuba, Tsukuba 300-8575, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
15
|
Samelli AG, Rocha CH, Kamita MK, Lopes MEP, Andrade CQ, Matas CG. Evaluation of Subtle Auditory Impairments with Multiple Audiological Assessments in Normal Hearing Workers Exposed to Occupational Noise. Brain Sci 2023; 13:968. [PMID: 37371447 PMCID: PMC10296706 DOI: 10.3390/brainsci13060968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Recent studies involving guinea pigs have shown that noise can damage the synapses between the inner hair cells and spiral ganglion neurons, even with normal hearing thresholds-which makes it important to investigate this kind of impairment in humans. The aim was to investigate, with multiple audiological assessments, the auditory function of normal hearing workers exposed to occupational noise. Altogether, 60 workers were assessed (30 in the noise-exposure group [NEG], who were exposed to occupational noise, and 30 in the control group [CG], who were not exposed to occupational noise); the workers were matched according to age. The following procedures were used: complete audiological assessment; speech recognition threshold in noise (SRTN); speech in noise (SN) in an acoustic field; gaps-in-noise (GIN); transient evoked otoacoustic emissions (TEOAE) and inhibitory effect of the efferent auditory pathway; auditory brainstem response (ABR); and long-latency auditory evoked potentials (LLAEP). No significant difference was found between the groups in SRTN. In SN, the NEG performed worse than the CG in signal-to-noise ratio (SNR) 0 (p-value 0.023). In GIN, the NEG had a significantly lower percentage of correct answers (p-value 0.042). In TEOAE, the NEG had smaller amplitude values bilaterally (RE p-value 0.048; LE p-value 0.045) and a smaller inhibitory effect of the efferent pathway (p-value 0.009). In ABR, the NEG had greater latencies of wave V (p-value 0.017) and interpeak intervals III-V and I-V in the LE (respective p-values: 0.005 and 0.04). In LLAEP, the NEG had a smaller P3 amplitude bilaterally (RE p-value 0.001; LE p-value 0.002). The NEG performed worse than the CG in most of the assessments, suggesting that the auditory function in individuals exposed to occupational noise is impaired, even with normal audiometric thresholds.
Collapse
Affiliation(s)
- Alessandra Giannella Samelli
- Department of Physical Therapy, Speech-Language-Hearing Sciences, and Occupational Therapy, Medical School (FMUSP), University of São Paulo, São Paulo 05360-160, SP, Brazil; (C.H.R.); (M.K.K.); (M.E.P.L.); (C.Q.A.); (C.G.M.)
| | | | | | | | | | | |
Collapse
|
16
|
Trevino M, Zang A, Lobarinas E. The middle ear muscle reflex: Current and future role in assessing noise-induced cochlear damage. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:436. [PMID: 36732247 PMCID: PMC9867568 DOI: 10.1121/10.0016853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
The middle ear muscle reflex (MEMR) in humans is a bilateral contraction of the middle ear stapedial muscle in response to moderate-to-high intensity acoustic stimuli. Clinically, MEMR thresholds have been used for differential diagnosis of otopathologies for decades. More recently, changes in MEMR amplitude or threshold have been proposed as an assessment for noise-induced synaptopathy, a subclinical form of cochlear damage characterized by suprathreshold hearing problems that occur as a function of inner hair cell (IHC) synaptic loss, including hearing-in-noise deficits, tinnitus, and hyperacusis. In animal models, changes in wideband MEMR immittance have been correlated with noise-induced synaptopathy; however, studies in humans have shown more varied results. The discrepancies observed across studies could reflect the heterogeneity of synaptopathy in humans more than the effects of parametric differences or relative sensitivity of the measurement. Whereas the etiology and degree of synaptopathy can be carefully controlled in animal models, synaptopathy in humans likely stems from multiple etiologies and thus can vary greatly across the population. Here, we explore the evolving research evidence of the MEMR response in relation to subclinical noise-induced cochlear damage and the MEMR as an early correlate of suprathreshold deficits.
Collapse
Affiliation(s)
- Monica Trevino
- School of Behavioral and Brain Sciences, Department of Speech, Language and Hearing, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Andie Zang
- School of Behavioral and Brain Sciences, Department of Speech, Language and Hearing, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Edward Lobarinas
- School of Behavioral and Brain Sciences, Department of Speech, Language and Hearing, The University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
17
|
Cross-species experiments reveal widespread cochlear neural damage in normal hearing. Commun Biol 2022; 5:733. [PMID: 35869142 PMCID: PMC9307777 DOI: 10.1038/s42003-022-03691-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Animal models suggest that cochlear afferent nerve endings may be more vulnerable than sensory hair cells to damage from acoustic overexposure and aging. Because neural degeneration without hair-cell loss cannot be detected in standard clinical audiometry, whether such damage occurs in humans is hotly debated. Here, we address this debate through co-ordinated experiments in at-risk humans and a wild-type chinchilla model. Cochlear neuropathy leads to large and sustained reductions of the wideband middle-ear muscle reflex in chinchillas. Analogously, human wideband reflex measures revealed distinct damage patterns in middle age, and in young individuals with histories of high acoustic exposure. Analysis of an independent large public dataset and additional measurements using clinical equipment corroborated the patterns revealed by our targeted cross-species experiments. Taken together, our results suggest that cochlear neural damage is widespread even in populations with clinically normal hearing. Cross-species experiments on chinchillas and at-risk humans suggest cochlear synaptopathy from noise exposure and aging are widespread even among individuals with clinically normal hearing status.
Collapse
|
18
|
Suresh CH, Krishnan A. Frequency-Following Response to Steady-State Vowel in Quiet and Background Noise Among Marching Band Participants With Normal Hearing. Am J Audiol 2022; 31:719-736. [PMID: 35944059 DOI: 10.1044/2022_aja-21-00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Human studies enrolling individuals at high risk for cochlear synaptopathy (CS) have reported difficulties in speech perception in adverse listening conditions. The aim of this study is to determine if these individuals show a degradation in the neural encoding of speech in quiet and in the presence of background noise as reflected in neural phase-locking to both envelope periodicity and temporal fine structure (TFS). To our knowledge, there are no published reports that have specifically examined the neural encoding of both envelope periodicity and TFS of speech stimuli (in quiet and in adverse listening conditions) among a sample with loud-sound exposure history who are at risk for CS. METHOD Using scalp-recorded frequency-following response (FFR), the authors evaluated the neural encoding of envelope periodicity (FFRENV) and TFS (FFRTFS) for a steady-state vowel (English back vowel /u/) in quiet and in the presence of speech-shaped noise presented at +5- and 0 dB SNR. Participants were young individuals with normal hearing who participated in the marching band for at least 5 years (high-risk group) and non-marching band group with low-noise exposure history (low-risk group). RESULTS The results showed no group differences in the neural encoding of either the FFRENV or the first formant (F1) in the FFRTFS in quiet and in noise. Paradoxically, the high-risk group demonstrated enhanced representation of F2 harmonics across all stimulus conditions. CONCLUSIONS These results appear to be in line with a music experience-dependent enhancement of F2 harmonics. However, due to sound overexposure in the high-risk group, the role of homeostatic central compensation cannot be ruled out. A larger scale data set with different noise exposure background, longitudinal measurements with an array of behavioral and electrophysiological tests is needed to disentangle the nature of the complex interaction between the effects of central compensatory gain and experience-dependent enhancement.
Collapse
Affiliation(s)
- Chandan H Suresh
- Department of Communication Disorders, California State University, Los Angeles
| | | |
Collapse
|
19
|
Maggu AR. Auditory Evoked Potentials in Communication Disorders: An Overview of Past, Present, and Future. Semin Hear 2022; 43:137-148. [PMID: 36313051 PMCID: PMC9605805 DOI: 10.1055/s-0042-1756160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
This article provides a brief overview of auditory evoked potentials (AEPs) and their application in the areas of research and clinics within the field of communication disorders. The article begins with providing a historical perspective within the context of the key scientific developments that led to the emergence of numerous types of AEPs. Furthermore, the article discusses the different AEP techniques in the light of their feasibility in clinics. As AEPs, because of their versatility, find their use across disciplines, this article also discusses some of the research questions that are currently being addressed using AEP techniques in the field of communication disorders and beyond. At the end, this article summarizes the shortcomings of the existing AEP techniques and provides a general perspective toward the future directions. The article is aimed at a broad readership including (but not limited to) students, clinicians, and researchers. Overall, this article may act as a brief primer for the new AEP users, and as an overview of the progress in the field of AEPs along with future directions, for those who already use AEPs on a routine basis.
Collapse
Affiliation(s)
- Akshay R. Maggu
- Department of Speech-Language-Hearing Sciences, Hofstra University, Hempstead, New York
| |
Collapse
|
20
|
Kaf WA, Turntine M, Jamos A, Smurzynski J. Examining the Profile of Noise-Induced Cochlear Synaptopathy Using iPhone Health App Data and Cochlear and Brainstem Electrophysiological Responses to Fast Clicks Rates. Semin Hear 2022; 43:197-222. [PMID: 36313044 PMCID: PMC9605806 DOI: 10.1055/s-0042-1756164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Little is known about objective classifying of noise exposure risk levels in personal listening device (PLD) users and electrophysiologic evidence of cochlear synaptopathy at very fast click rates. The aim of the study was to objectively classify noise exposure risk using iPhone Health app and identify signs of cochlear synaptopathy using behavioral and electrophysiologic measures. Thirty normal-hearing females (aged 18-26 years) were grouped based on their iPhone Health app's 6-month listening level and noise exposure data into low-risk and high-risk groups. They were assessed using a questionnaire, extended high-frequency (EHF) audiometry, QuickSIN test, distortion-product otoacoustic emission (DPOAE), and simultaneous recording of electrocochleography (ECochG) and auditory brainstem response (ABR) at three click rates (19.5/s, 97.7/s, 234.4/s). A series of ANOVAs and independent samples t -test were conducted for group comparison. Both groups had within-normal EHF hearing thresholds and DPOAEs. However, the high-risk participants were over twice as likely to suffer from tinnitus, had abnormally large summating potential to action potential amplitude and area ratios at fast rates, and had slightly smaller waves I and V amplitudes. The high-risk group demonstrated a profile of behavioral and objective signs of cochlear synaptopathy based on ECochG and ABR recordings at fast click rates. The findings in this study suggest that the iPhone Health app may be a useful tool for further investigation into cochlear synaptopathy in PLD users.
Collapse
Affiliation(s)
- Wafaa A. Kaf
- Department of Communication Sciences and Disorders, Missouri State University, Springfield, Missouri
| | - Madison Turntine
- Department of Communication Sciences and Disorders, Missouri State University, Springfield, Missouri
| | - Abdullah Jamos
- Department of Communication Sciences and Disorders, Missouri State University, Springfield, Missouri
| | - Jacek Smurzynski
- Department of Audiology and Speech-Language Pathology, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
21
|
Sargsyan L, Swisher AR, Hetrick AP, Li H. Effects of Combined Gentamicin and Furosemide Treatment on Cochlear Macrophages. Int J Mol Sci 2022; 23:ijms23137343. [PMID: 35806348 PMCID: PMC9266920 DOI: 10.3390/ijms23137343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
Combining aminoglycosides and loop diuretics often serves as an effective ototoxic approach to deafen experimental animals. The treatment results in rapid hair cell loss with extended macrophage presence in the cochlea, creating a sterile inflammatory environment. Although the early recruitment of macrophages is typically neuroprotective, the delay in the resolution of macrophage activity can be a complication if the damaged cochlea is used as a model to study subsequent therapeutic strategies. Here, we applied a high dose combination of systemic gentamicin and furosemide in C57 BL/6 and CBA/CaJ mice and studied the ototoxic consequences in the cochlea, including hair cell survival, ribbon synaptic integrity, and macrophage activation up to 15-day posttreatment. The activity of macrophages in the basilar membrane was correlated to the severity of cochlear damage, particularly the hair cell damage. Comparatively, C57 BL/6 cochleae were more vulnerable to the ototoxic challenge with escalated macrophage activation. In addition, the ribbon synaptic deterioration was disproportionately limited when compared to the degree of outer hair cell loss in CBA/CaJ mice. The innate and differential otoprotection in CBA/CaJ mice appears to be associated with the rapid activation of cochlear macrophages and a certain level of synaptogenesis after the combined gentamicin and furosemide treatment.
Collapse
Affiliation(s)
- Liana Sargsyan
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (L.S.); (A.R.S.); (A.P.H.)
| | - Austin R. Swisher
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (L.S.); (A.R.S.); (A.P.H.)
| | - Alisa P. Hetrick
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (L.S.); (A.R.S.); (A.P.H.)
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (L.S.); (A.R.S.); (A.P.H.)
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA 92354, USA
- Correspondence: or ; Tel.: +1-(909)-825-7084 (ext. 2816); Fax: +1-(909)-796-4508
| |
Collapse
|
22
|
Shehabi AM, Prendergast G, Plack CJ. The Relative and Combined Effects of Noise Exposure and Aging on Auditory Peripheral Neural Deafferentation: A Narrative Review. Front Aging Neurosci 2022; 14:877588. [PMID: 35813954 PMCID: PMC9260498 DOI: 10.3389/fnagi.2022.877588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Animal studies have shown that noise exposure and aging cause a reduction in the number of synapses between low and medium spontaneous rate auditory nerve fibers and inner hair cells before outer hair cell deterioration. This noise-induced and age-related cochlear synaptopathy (CS) is hypothesized to compromise speech recognition at moderate-to-high suprathreshold levels in humans. This paper evaluates the evidence on the relative and combined effects of noise exposure and aging on CS, in both animals and humans, using histopathological and proxy measures. In animal studies, noise exposure seems to result in a higher proportion of CS (up to 70% synapse loss) compared to aging (up to 48% synapse loss). Following noise exposure, older animals, depending on their species, seem to either exhibit significant or little further synapse loss compared to their younger counterparts. In humans, temporal bone studies suggest a possible age- and noise-related auditory nerve fiber loss. Based on the animal data obtained from different species, we predict that noise exposure may accelerate age-related CS to at least some extent in humans. In animals, noise-induced and age-related CS in separation have been consistently associated with a decreased amplitude of wave 1 of the auditory brainstem response, reduced middle ear muscle reflex strength, and degraded temporal processing as demonstrated by lower amplitudes of the envelope following response. In humans, the individual effects of noise exposure and aging do not seem to translate clearly into deficits in electrophysiological, middle ear muscle reflex, and behavioral measures of CS. Moreover, the evidence on the combined effects of noise exposure and aging on peripheral neural deafferentation in humans using electrophysiological and behavioral measures is even more sparse and inconclusive. Further research is necessary to establish the individual and combined effects of CS in humans using temporal bone, objective, and behavioral measures.
Collapse
Affiliation(s)
- Adnan M. Shehabi
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Audiology and Speech Therapy, Birzeit University, Birzeit, Palestine
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
| | - Christopher J. Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
23
|
Foster AC, Szobota S, Piu F, Jacques BE, Moore DR, Sanchez VA, Anderson JJ. A neurotrophic approach to treating hearing loss: Translation from animal models to clinical proof-of-concept. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:3937. [PMID: 35778165 DOI: 10.1121/10.0011510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Currently, there are no approved medicines available for the treatment of hearing loss. However, research over the past two decades has contributed to a growing understanding of the pathological mechanisms in the cochlea that result in hearing difficulties. The concept that a loss of the synapses connecting inner hair cells with the auditory nerve (cochlear synaptopathy) contributes to hearing loss has gained considerable attention. Both animal and human post-mortem studies support the idea that these synapses (ribbon synapses) are highly vulnerable to noise, ototoxicity, and the aging process. Their degeneration has been suggested as an important factor in the speech-in-noise difficulties commonly experienced by those suffering with hearing loss. Neurotrophins such as brain derived neurotrophic factor (BDNF) have the potential to restore these synapses and provide improved hearing function. OTO-413 is a sustained exposure formulation of BDNF suitable for intratympanic administration that in preclinical models has shown the ability to restore ribbon synapses and provide functional hearing benefit. A phase 1/2 clinical trial with OTO-413 has provided initial proof-of-concept for improved speech-in-noise hearing performance in subjects with hearing loss. Key considerations for the design of this clinical study, including aspects of the speech-in-noise assessments, are discussed.
Collapse
Affiliation(s)
- Alan C Foster
- Research and Preclinical Development, Otonomy Inc., 4796 Executive Drive, San Diego, California 92121, USA
| | - Stephanie Szobota
- Research and Preclinical Development, Otonomy Inc., 4796 Executive Drive, San Diego, California 92121, USA
| | - Fabrice Piu
- Research and Preclinical Development, Otonomy Inc., 4796 Executive Drive, San Diego, California 92121, USA
| | - Bonnie E Jacques
- Research and Preclinical Development, Otonomy Inc., 4796 Executive Drive, San Diego, California 92121, USA
| | - David R Moore
- Communication Sciences Research Center, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3026, USA
| | - Victoria A Sanchez
- Department of Otolaryngology - Head & Neck Surgery, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 73, Tampa, Florida 33620, USA
| | - Jeffery J Anderson
- Clinical Sciences, Otonomy Inc., 4796 Executive Drive, San Diego, California 92121, USA
| |
Collapse
|
24
|
Shehabi AM, Prendergast G, Guest H, Plack CJ. The Effect of Lifetime Noise Exposure and Aging on Speech-Perception-in-Noise Ability and Self-Reported Hearing Symptoms: An Online Study. Front Aging Neurosci 2022; 14:890010. [PMID: 35711902 PMCID: PMC9195834 DOI: 10.3389/fnagi.2022.890010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
Animal research shows that aging and excessive noise exposure damage cochlear outer hair cells, inner hair cells, and the synapses connecting inner hair cells with the auditory nerve. This may translate into auditory symptoms such as difficulty understanding speech in noise, tinnitus, and hyperacusis. The current study, using a novel online approach, assessed and quantified the effects of lifetime noise exposure and aging on (i) speech-perception-in-noise (SPiN) thresholds, (ii) self-reported hearing ability, and (iii) the presence of tinnitus. Secondary aims involved documenting the effects of lifetime noise exposure and aging on tinnitus handicap and the severity of hyperacusis. Two hundred and ninety-four adults with no past diagnosis of hearing or memory impairments were recruited online. Participants were assigned into two groups: 217 "young" (age range: 18-35 years, females: 151) and 77 "older" (age range: 50-70 years, females: 50). Participants completed a set of online instruments including an otologic health and demographic questionnaire, a dementia screening tool, forward and backward digit span tests, a noise exposure questionnaire, the Khalfa hyperacusis questionnaire, the short-form of the Speech, Spatial, and Qualities of Hearing scale, the Tinnitus Handicap Inventory, a digits-in-noise test, and a Coordinate Response Measure speech-perception test. Analyses controlled for sex and cognitive function as reflected by the digit span. A detailed protocol was pre-registered, to guard against "p-hacking" of this extensive dataset. Lifetime noise exposure did not predict SPiN thresholds, self-reported hearing ability, or the presence of tinnitus in either age group. Exploratory analyses showed that worse hyperacusis scores, and a greater prevalence of tinnitus, were associated significantly with high lifetime noise exposure in the young, but not in the older group. Age was a significant predictor of SPiN thresholds and the presence of tinnitus, but not of self-reported hearing ability, tinnitus handicap, or severity of hyperacusis. Consistent with several lab studies, our online-derived data suggest that older adults with no diagnosis of hearing impairment have a poorer SPiN ability and a higher risk of tinnitus than their younger counterparts. Moreover, lifetime noise exposure may increase the risk of tinnitus and the severity of hyperacusis in young adults with no diagnosis of hearing impairment.
Collapse
Affiliation(s)
- Adnan M. Shehabi
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Audiology and Speech Therapy, Birzeit University, Birzeit, Palestine
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
| | - Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
| | - Christopher J. Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
25
|
Suthakar K, Liberman MC. Noise Masking in Cochlear Synaptopathy: Auditory Brainstem Response vs. Auditory Nerve Response in Mouse. J Neurophysiol 2022; 127:1574-1585. [PMID: 35583974 PMCID: PMC9169830 DOI: 10.1152/jn.00402.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/22/2022] Open
Abstract
After acoustic overexposure, many auditory-nerve fiber (ANF) synapses permanently retract from surviving cochlear hair cells. This synaptopathy is hard to diagnose, since it does not elevate audiometric thresholds until almost no synapses remain, nevertheless it may degrade discrimination of complex stimuli especially in noisy environments. Here, we study an assay based on masking the auditory brainstem responses (ABRs) to a moderate-level probe tone with continuous noise of varied sound levels, and we investigate the underlying ANF responses at the single-fiber level. Synaptopathy was induced by overexposure to octave-band noise, resulting in a permanent synaptic loss of ~50%, without permanent threshold elevation except at the highest frequencies. The normal progressive delay of ABR peaks with increasing masker level is diminished in synaptopathic ears; however, the single-fiber analysis suggests that this normal latency shift does not arise because contributing ANFs shift from low-threshold fibers (with high spontaneous rates) to high-threshold fibers (with low spontaneous rates). Rather, it may arise because of a shift in the cochlear region dominating the response. Surprisingly, the dynamic range of masking, i.e. the difference between the lowest masker level that attenuates the ABR to a fixed-level probe and the lowest masker level that eliminates the ABR, is enhanced in the synaptopathic ears. This ABR behavior mirrors the single-fiber data showing a paradoxical enhancement of onset-response synchrony and resistance to masking in responses of ANFs in the synaptopathic regions. An assay based on the dynamic range of masking could be useful in diagnosing synaptic damage in human populations.
Collapse
Affiliation(s)
- Kirupa Suthakar
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Kamerer AM, Harris SE, Kopun JG, Neely ST, Rasetshwane DM. Understanding Self-reported Hearing Disability in Adults With Normal Hearing. Ear Hear 2022; 43:773-784. [PMID: 34759207 PMCID: PMC9010339 DOI: 10.1097/aud.0000000000001161] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Despite a diagnosis of normal hearing, many people experience hearing disability (HD) in their everyday lives. This study assessed the ability of a number of demographic and auditory variables to explain and predict self-reported HD in people regarded as audiologically healthy via audiometric thresholds. DESIGN One-hundred eleven adults (ages 19 to 74) with clinically normal hearing (i.e., audiometric thresholds ≤25 dB HL at all octave and interoctave frequencies between 0.25 and 8 kHz and bilaterally symmetric hearing) were asked to complete the 12-item version of the Speech, Spatial, and Qualities of Hearing Scale (SSQ12) as a measure of self-reported HD. Patient history and a number of standard and expanded measures of hearing were assessed in a multivariate regression analysis to predict SSQ12 score. Patient history included age, sex, history of noise exposure, and tinnitus. Hearing-related measures included audiometry at standard and extended high frequencies, word recognition, otoacoustic emissions, auditory brainstem response, the Montreal Cognitive Assessment, and FM detection threshold. RESULTS History of impulse noise exposure, speech-intelligibility index, and FM detection threshold accurately predicted SSQ12 and were able to account for 40% of the SSQ12 score. These three measures were also able to predict whether participants self-reported HD with a sensitivity of 89% and specificity of 86%. CONCLUSIONS Although participant audiometric thresholds were within normal limits, higher thresholds, history of impulse noise exposure, and FM detection predicted self-reported HD.
Collapse
Affiliation(s)
| | | | - Judy G. Kopun
- Boys Town National Research Hospital, Omaha, NE 68131
| | | | | |
Collapse
|
27
|
Yanov YK, Kuznetsov MS, Glaznikov LA, Dvoryanchikov VV, Syroezhkin FA, Golovanov AE, Gofman VR. [Lesions of the cortical part of the auditory analyzer in explosive injury]. Vestn Otorinolaringol 2022; 87:14-20. [PMID: 35274887 DOI: 10.17116/otorino20228701114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A survey of 48 victims aged 19-36 years with explosive trauma and combined damage to the auditory system was conducted to assess the level of damage to nerve structures by analyzing the bioelectric activity of the cerebral cortex. All patients underwent electroencephalography (EEG). It is established that akubarotrauma of explosive genesis almost always leads to lesions of the function of the cortical part of the auditory analyzer. Desynchronized activity on the EEG after acubarotrauma is a favorable prognostic sign, indicating only functional disorders of the cortical part of the auditory analyzer. On the contrary, EEG changes of an organic type of cortical or stem nature are an unfavorable prognostic factor, usually accompanied by sensorineural hearing loss with prolonged and incomplete hearing recovery. Promising drugs for the treatment of otoneurological disorders are antihypoxants, in particular, derivatives of triazine indole, which affect the molecular mechanisms of hypoxia development.
Collapse
Affiliation(s)
- Yu K Yanov
- S.M. Kirov Military Medical Academy of the Russian Defense Ministry, St. Petersburg, Russia
| | - M S Kuznetsov
- S.M. Kirov Military Medical Academy of the Russian Defense Ministry, St. Petersburg, Russia
| | - L A Glaznikov
- S.M. Kirov Military Medical Academy of the Russian Defense Ministry, St. Petersburg, Russia
| | - V V Dvoryanchikov
- S.M. Kirov Military Medical Academy of the Russian Defense Ministry, St. Petersburg, Russia
| | - F A Syroezhkin
- S.M. Kirov Military Medical Academy of the Russian Defense Ministry, St. Petersburg, Russia
| | - A E Golovanov
- S.M. Kirov Military Medical Academy of the Russian Defense Ministry, St. Petersburg, Russia
| | - V R Gofman
- S.M. Kirov Military Medical Academy of the Russian Defense Ministry, St. Petersburg, Russia
| |
Collapse
|
28
|
Bramhall NF, Reavis KM, Feeney MP, Kampel SD. The Impacts of Noise Exposure on the Middle Ear Muscle Reflex in a Veteran Population. Am J Audiol 2022; 31:126-142. [PMID: 35050699 PMCID: PMC10831927 DOI: 10.1044/2021_aja-21-00133] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Human studies of noise-induced cochlear synaptopathy using physiological indicators identified in animal models (auditory brainstem response [ABR] Wave I amplitude, envelope following response [EFR], and middle ear muscle reflex [MEMR]) have yielded mixed findings. Differences in the population studied may have contributed to the differing results. For example, due to differences in the intensity level of the noise exposure, noise-induced synaptopathy may be easier to detect in a military Veteran population than in populations with recreational noise exposure. We previously demonstrated a reduction in ABR Wave I amplitude and EFR magnitude for young Veterans with normal audiograms reporting high levels of noise exposure compared to non-Veteran controls. In this article, we expand on the previous analysis in the same population to determine if MEMR magnitude is similarly reduced. METHOD Contralateral MEMR growth functions were obtained in 92 young Veterans and non-Veterans with normal audiograms, and the relationship between noise exposure history and MEMR magnitude was assessed. Associations between MEMR magnitude and distortion product otoacoustic emission, EFR, and ABR measurements collected in the same sample were also evaluated. RESULTS The results of the statistical analysis, although not conventionally statistically significant, suggest a reduction in mean MEMR magnitude for Veterans reporting high noise exposure compared with non-Veteran controls. In addition, the MEMR appears relatively insensitive to subclinical outer hair cell dysfunction, as measured by distortion product otoacoustic emissions, and is not well correlated with ABR and EFR measurements. CONCLUSIONS When combined with our previous ABR and EFR findings in the same population, these results suggest that noise-induced synaptopathy occurs in humans. In addition, the findings indicate that the MEMR may be a good candidate for noninvasive diagnosis of cochlear synaptopathy/deafferentation and that the MEMR may reflect the integrity of different neural populations than the ABR and EFR. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.18665645.
Collapse
Affiliation(s)
- Naomi F Bramhall
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
- Department of Otolaryngology - Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Kelly M Reavis
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
| | - M Patrick Feeney
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
- Department of Otolaryngology - Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Sean D Kampel
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
| |
Collapse
|
29
|
Fetoni AR, Pisani A, Rolesi R, Paciello F, Viziano A, Moleti A, Sisto R, Troiani D, Paludetti G, Grassi C. Early Noise-Induced Hearing Loss Accelerates Presbycusis Altering Aging Processes in the Cochlea. Front Aging Neurosci 2022; 14:803973. [PMID: 35197842 PMCID: PMC8860087 DOI: 10.3389/fnagi.2022.803973] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
Several studies identified hearing loss as a risk factor for aging-related processes, including neurodegenerative diseases, as dementia and age-related hearing loss (ARHL). Although the association between hearing impairment in midlife and ARHL has been widely documented by epidemiological and experimental studies, the molecular mechanisms underlying this association are not fully understood. In this study, we used an established animal model of ARHL (C57BL/6 mice) to evaluate if early noise-induced hearing loss (NIHL) could affect the onset or progression of age-related cochlear dysfunction. We found that hearing loss can exacerbate ARHL, damaging sensory-neural cochlear epithelium and causing synaptopathy. Moreover, we studied common pathological markers shared between hearing loss and ARHL, demonstrating that noise exposure can worsen/accelerate redox status imbalance [increase of reactive oxygen species (ROS) production, lipid peroxidation, and dysregulation of endogenous antioxidant response] and vascular dysfunction [increased expression of hypoxia-inducible factor-1alpha (HIF-1α) and vascular endothelial growth factor C (VEGFC)] in the cochlea. Unveiling the molecular mechanisms underlying the link between hearing loss and aging processes could be valuable to identify effective therapeutic strategies to limit the effect of environmental risk factors on age-related diseases.
Collapse
Affiliation(s)
- Anna Rita Fetoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Università degli Studi di Napoli Federico II, Naples, Italy
| | - Anna Pisani
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rolando Rolesi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fabiola Paciello
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- *Correspondence: Fabiola Paciello,
| | - Andrea Viziano
- Department of Physics, University of Rome Tor Vergata, Rome, Italy
| | - Arturo Moleti
- Department of Physics, University of Rome Tor Vergata, Rome, Italy
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Rome, Italy
| | - Diana Troiani
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Paludetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
30
|
Cutting Through the Noise: Noise-Induced Cochlear Synaptopathy and Individual Differences in Speech Understanding Among Listeners With Normal Audiograms. Ear Hear 2022; 43:9-22. [PMID: 34751676 PMCID: PMC8712363 DOI: 10.1097/aud.0000000000001147] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Following a conversation in a crowded restaurant or at a lively party poses immense perceptual challenges for some individuals with normal hearing thresholds. A number of studies have investigated whether noise-induced cochlear synaptopathy (CS; damage to the synapses between cochlear hair cells and the auditory nerve following noise exposure that does not permanently elevate hearing thresholds) contributes to this difficulty. A few studies have observed correlations between proxies of noise-induced CS and speech perception in difficult listening conditions, but many have found no evidence of a relationship. To understand these mixed results, we reviewed previous studies that have examined noise-induced CS and performance on speech perception tasks in adverse listening conditions in adults with normal or near-normal hearing thresholds. Our review suggests that superficially similar speech perception paradigms used in previous investigations actually placed very different demands on sensory, perceptual, and cognitive processing. Speech perception tests that use low signal-to-noise ratios and maximize the importance of fine sensory details- specifically by using test stimuli for which lexical, syntactic, and semantic cues do not contribute to performance-are more likely to show a relationship to estimated CS levels. Thus, the current controversy as to whether or not noise-induced CS contributes to individual differences in speech perception under challenging listening conditions may be due in part to the fact that many of the speech perception tasks used in past studies are relatively insensitive to CS-induced deficits.
Collapse
|
31
|
Buran BN, McMillan GP, Keshishzadeh S, Verhulst S, Bramhall NF. Predicting synapse counts in living humans by combining computational models with auditory physiology. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:561. [PMID: 35105019 PMCID: PMC8800592 DOI: 10.1121/10.0009238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 05/28/2023]
Abstract
Aging, noise exposure, and ototoxic medications lead to cochlear synapse loss in animal models. As cochlear function is highly conserved across mammalian species, synaptopathy likely occurs in humans as well. Synaptopathy is predicted to result in perceptual deficits including tinnitus, hyperacusis, and difficulty understanding speech-in-noise. The lack of a method for diagnosing synaptopathy in living humans hinders studies designed to determine if noise-induced synaptopathy occurs in humans, identify the perceptual consequences of synaptopathy, or test potential drug treatments. Several physiological measures are sensitive to synaptopathy in animal models including auditory brainstem response (ABR) wave I amplitude. However, it is unclear how to translate these measures to synaptopathy diagnosis in humans. This work demonstrates how a human computational model of the auditory periphery, which can predict ABR waveforms and distortion product otoacoustic emissions (DPOAEs), can be used to predict synaptic loss in individual human participants based on their measured DPOAE levels and ABR wave I amplitudes. Lower predicted synapse numbers were associated with advancing age, higher noise exposure history, increased likelihood of tinnitus, and poorer speech-in-noise perception. These findings demonstrate the utility of this modeling approach in predicting synapse counts from physiological data in individual human subjects.
Collapse
Affiliation(s)
- Brad N Buran
- Oregon Hearing Research Center (OHRC), Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Garnett P McMillan
- Veterans Affairs (VA) Rehabilitation Research & Development Service (RR&D) National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, Oregon, USA
| | - Sarineh Keshishzadeh
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Belgium
| | - Sarah Verhulst
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Belgium
| | - Naomi F Bramhall
- Veterans Affairs (VA) Rehabilitation Research & Development Service (RR&D) National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
32
|
Mahdi P, Pourbakht A, Karimi Yazdi A, Rabbani Anari M, Pirhajati Mahabadi V, Kamali M. Metabotropic glutamate receptor: A new possible therapeutic target for cochlear synaptopathy. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:75-83. [PMID: 35656439 PMCID: PMC9118270 DOI: 10.22038/ijbms.2021.59970.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/24/2021] [Indexed: 11/08/2022]
Abstract
Objectives Cochlear synaptopathy is a common cause of auditory disorders in which glutamate over-activation occurs. Modulating glutamatergic pathways has been proposed to down-regulate post-synaptic excitation. Materials and Methods 12-guinea pigs as sham and test groups were exposed to a 4-kHz noise at 104 dB SPL, for 2 hr. Pre-exposure intra-tympanic injection with LY354740 and normal saline 9% was applied in the test and sham groups. The amplitude growth of ABR-wave-I and wave-III latency shift with noise were considered in pre- and post-exposure times. The synapses were observed by transmission electron-microscopy. Results ABR thresholds recovered 1-week post-exposure in both groups. The reduction of wave-I amplitude at 4, 6, and 8 kHz were statistically different between pre- and 1- day post-exposure and recovered mostly in the sham group. The amount of latency shift in masked ABR was different between pre- and all post-exposure, and the response could not be detected at higher than 50 dB SL noise. However, the response detectability increased to 60 dB SL noise, and the significance of differences between pre- and post-exposure persisted only at the high level of noise in the test group. In electron-microscopy of sham samples, the size of the ribbon was larger, spherical with an irregularity, and hollow. The post-synaptic density was thicker and missed its flat orientation. Conclusion The higher slope of the ABR-wave I amplitude, the more tolerance of noise in masked ABR, concomitant with the histological finding that revealed less synaptic damage, confirmed the therapeutic effect of LY354740 in cochlear synaptopathy.
Collapse
Affiliation(s)
- Parvane Mahdi
- Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences. Tehran, Iran
| | - Akram Pourbakht
- Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences. Tehran, Iran,Rehabilitation Research Center, Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences. Tehran, Iran,Corresponding author: Akram Pourbakht. Rehabilitation Research Center, Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran. Tel: +98-21-22250541;
| | - Alireza Karimi Yazdi
- Department of Otorhinolaryngology-Head and Neck Surgery, Imam Khomeini Educational Hospital Complex, Tehran University of Medical Sciences. Tehran, Iran
| | - Mahtab Rabbani Anari
- Otorhinolaryngology Research Center, Amir-Alam Educational Complex, Tehran University of Medical Sciences. Tehran, Iran
| | - Vahid Pirhajati Mahabadi
- Department of Neurosciences, School of Medicine. Iran University of Medical Sciences. Tehran, Iran
| | - Mohammad Kamali
- Department of Rehabilitation Management, School of Rehabilitation Sciences, Iran University of Medical Sciences. Tehran, Iran
| |
Collapse
|
33
|
Otsuka KS, Nielson C, Firpo MA, Park AH, Beaudin AE. Early Life Inflammation and the Developing Hematopoietic and Immune Systems: The Cochlea as a Sensitive Indicator of Disruption. Cells 2021; 10:cells10123596. [PMID: 34944105 PMCID: PMC8700005 DOI: 10.3390/cells10123596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence indicates that perinatal infection and inflammation can influence the developing immune system and may ultimately affect long-term health and disease outcomes in offspring by perturbing tissue and immune homeostasis. We posit that perinatal inflammation influences immune outcomes in offspring by perturbing (1) the development and function of fetal-derived immune cells that regulate tissue development and homeostasis, and (2) the establishment and function of developing hematopoietic stem cells (HSCs) that continually generate immune cells across the lifespan. To disentangle the complexities of these interlinked systems, we propose the cochlea as an ideal model tissue to investigate how perinatal infection affects immune, tissue, and stem cell development. The cochlea contains complex tissue architecture and a rich immune milieu that is established during early life. A wide range of congenital infections cause cochlea dysfunction and sensorineural hearing loss (SNHL), likely attributable to early life inflammation. Furthermore, we show that both immune cells and bone marrow hematopoietic progenitors can be simultaneously analyzed within neonatal cochlear samples. Future work investigating the pathogenesis of SNHL in the context of congenital infection will therefore provide critical information on how perinatal inflammation drives disease susceptibility in offspring.
Collapse
Affiliation(s)
- Kelly S. Otsuka
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA;
| | - Christopher Nielson
- Division of Otolaryngology—Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (C.N.); (A.H.P.)
| | - Matthew A. Firpo
- Department of Surgery, University of Utah, Salt Lake City, UT 84112, USA;
| | - Albert H. Park
- Division of Otolaryngology—Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (C.N.); (A.H.P.)
| | - Anna E. Beaudin
- Division of Hematology and Hematologic Malignancies, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Correspondence:
| |
Collapse
|
34
|
Chen F, Zhao F, Mahafza N, Lu W. Detecting Noise-Induced Cochlear Synaptopathy by Auditory Brainstem Response in Tinnitus Patients With Normal Hearing Thresholds: A Meta-Analysis. Front Neurosci 2021; 15:778197. [PMID: 34987358 PMCID: PMC8721093 DOI: 10.3389/fnins.2021.778197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/15/2021] [Indexed: 01/10/2023] Open
Abstract
Noise-induced cochlear synaptopathy (CS) is defined as a permanent loss of synapses in the auditory nerve pathway following noise exposure. Several studies using auditory brainstem response (ABR) have indicated the presence of CS and increased central gain in tinnitus patients with normal hearing thresholds (TNHT), but the results were inconsistent. This meta-analysis aimed to review the evidence of CS and its pathological changes in the central auditory system in TNHT. Published studies using ABR to study TNHT were reviewed. PubMed, EMBASE, and Scopus databases were selected to search for relevant literature. Studies (489) were retrieved, and 11 were included for meta-analysis. The results supported significantly reduced wave I amplitude in TNHT, whereas the alternations in wave V amplitude were inconsistent among the studies. Consistently increased V/I ratio indicated noise-induced central gain enhancement. The results indicated the evidence of noise-induced cochlear synaptopathy in tinnitus patients with normal hearing. However, inconsistent changes in wave V amplitude may be explained by that the failure of central gain that triggers the pathological neural changes in the central auditory system and/or that increased central gain may be necessary to generate tinnitus but not to maintain tinnitus.
Collapse
Affiliation(s)
- Feifan Chen
- Centre for Speech and Language Therapy and Hearing Science, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Fei Zhao
- Centre for Speech and Language Therapy and Hearing Science, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
- Department of Hearing and Speech Science, Guangzhou Xinhua College, Guangzhou, China
| | - Nadeem Mahafza
- Centre for Speech and Language Therapy and Hearing Science, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Wei Lu
- Department of Otolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
35
|
Current topics in hearing research: Deafferentation and threshold independent hearing loss. Hear Res 2021; 419:108408. [PMID: 34955321 DOI: 10.1016/j.heares.2021.108408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022]
Abstract
Hearing research findings in recent years have begun to change how we think about hearing loss and how we consider the risk of auditory damage from noise exposure. These findings include evidence of noise-induced cochlear damage in the absence of corresponding permanent threshold elevation or evidence of hair cell loss. Animal studies in several species have shown that noise exposures that produce robust but only temporary threshold shifts can permanently damage inner hair cell synaptic ribbons. This type of synaptic degeneration has also been shown to occur as a result of aging in animals and humans. The emergence of these data has motivated a number of clinical studies aimed at identifying the perceptual correlates associated with synaptopathy. The deficits believed to arise from synaptopathy include poorer hearing in background noise, tinnitus and hyperacusis (loudness intolerance). However, the findings from human studies have been mixed. Key questions remain as to whether synaptopathy reliably produces suprathreshold perceptual deficits or whether it serves as an early indicator of auditory damage with suprathreshold deficits emerging later as a function of further cochlear damage. Here, we provide an overview of both human and animal studies that explore the relationship among inner hair cell damage, including loss of afferent synapses, auditory thresholds, and suprathreshold measures of hearing.
Collapse
|
36
|
Bramhall NF. Use of the auditory brainstem response for assessment of cochlear synaptopathy in humans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:4440. [PMID: 34972291 PMCID: PMC10880747 DOI: 10.1121/10.0007484] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/07/2021] [Indexed: 06/14/2023]
Abstract
Although clinical use of the auditory brainstem response (ABR) to detect retrocochlear disorders has been largely replaced by imaging in recent years, the discovery of cochlear synaptopathy has thrown this foundational measure of auditory function back into the spotlight. Whereas modern imaging now allows for the noninvasive detection of vestibular schwannomas, imaging technology is not currently capable of detecting cochlear synaptopathy, the loss of the synaptic connections between the inner hair cells and afferent auditory nerve fibers. However, animal models indicate that the amplitude of the first wave of the ABR, a far-field evoked potential generated by the synchronous firing of auditory nerve fibers, is highly correlated with synaptic integrity. This has led to many studies investigating the use of the ABR as a metric of synaptopathy in humans. However, these studies have yielded mixed results, leading to a lack of consensus about the utility of the ABR as an indicator of synaptopathy. This review summarizes the animal and human studies that have investigated the ABR as a measure of cochlear synaptic function, discusses factors that may have contributed to the mixed findings and the lessons learned, and provides recommendations for future use of this metric in the research and clinical settings.
Collapse
Affiliation(s)
- Naomi F Bramhall
- Veterans Affairs (VA) Rehabilitation Research & Development Service (RR&D) National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System Portland, Oregon 97239, USA
| |
Collapse
|
37
|
Suthakar K, Liberman MC. Auditory-nerve responses in mice with noise-induced cochlear synaptopathy. J Neurophysiol 2021; 126:2027-2038. [PMID: 34788179 DOI: 10.1152/jn.00342.2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cochlear synaptopathy is the noise-induced or age-related loss of ribbon synapses between inner hair cells (IHCs) and auditory-nerve fibers (ANFs), first reported in CBA/CaJ mice. Recordings from single ANFs in anesthetized, noise-exposed guinea pigs suggested that neurons with low spontaneous rates (SRs) and high thresholds are more vulnerable than low-threshold, high-SR fibers. However, there is extensive postexposure regeneration of ANFs in guinea pigs but not in mice. Here, we exposed CBA/CaJ mice to octave-band noise and recorded sound-evoked and spontaneous activity from single ANFs at least 2 wk later. Confocal analysis of cochleae immunostained for pre- and postsynaptic markers confirmed the expected loss of 40%-50% of ANF synapses in the basal half of the cochlea; however, our data were not consistent with a selective loss of low-SR fibers. Rather they suggested a loss of both SR groups in synaptopathic regions. Single-fiber thresholds and frequency tuning recovered to pre-exposure levels; however, response to tone bursts showed increased peak and steady-state firing rates, as well as decreased jitter in first-spike latencies. This apparent gain-of-function increased the robustness of tone-burst responses in the presence of continuous masking noise. This study suggests that the nature of noise-induced synaptic damage varies between different species and that, in mouse, the noise-induced hyperexcitability seen in central auditory circuits is also observed at the level of the auditory nerve.NEW & NOTEWORTHY Noise-induced damage to synapses between inner hair cells and auditory-nerve fibers (ANFs) can occur without permanent hair cell damage, resulting in pathophysiology that "hides" behind normal thresholds. Prior single-fiber neurophysiology in guinea pig suggested that noise selectively targets high-threshold ANFs. Here, we show that the lingering pathophysiology differs in mouse, with both ANF groups affected and a paradoxical gain-of-function in surviving low-threshold fibers, including increased onset rate, decreased onset jitter, and reduced maskability.
Collapse
Affiliation(s)
- Kirupa Suthakar
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
38
|
Differential effects of noise exposure between substrains of CBA mice. Hear Res 2021; 415:108395. [PMID: 34836742 DOI: 10.1016/j.heares.2021.108395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022]
Abstract
Noise trauma involves a plethora of mechanisms including reactive oxygen species, apoptosis, tissue damage, and inflammation. Recently, circadian mechanisms were also found to contribute to the vulnerability to noise trauma in mice, with greater damage occurring during their active phase (nighttime), when compared to similar noise exposures during their inactive phase (daytime). These effects seem to be regulated by mechanisms involving Bdnf responses to noise trauma and circulating levels of corticosterone (CORT). However, recent studies using different noise paradigms show contradicting results and it remains unclear how universal these findings are. Here we show that these findings differ even between substrains of mice and are restricted to a narrow window of noise intensity. We found that CBA/Sca mice exposed to 103 dB SPL display differential day/night noise sensitivity as measured by auditory brainstem responses (ABRs), but not at 100 (where full recovery is observed in day or night exposed mice) or 105 dB SPL (where permanent damage is found in both groups). In contrast, neither CBA/CaJ or CBA/JRj displayed such differences in day/night noise sensitivity, whatever noise intensity used. These effects appeared to be independent from outer hair cell function, as distortion product otoacoustic emissions appeared equally affected by day or night noise exposure, in all strains and in all noise conditions. Minor differences in ribbon counts or synaptic pairing were found in CBA/Sca mice, which were inconsistent with ABR wave 1 amplitude changes. Interestingly, CORT levels peaked in CBA/Sca mice at the onset of darkness at zeitgeber time 12 reaching levels of 43.8 ng/ml, while in the CBA/CaJ and the CBA/JRj, levels were 11.9 and 15.6 ng/ml respectively and peaking 4 h earlier (zeitgeber time 8). These findings were consistent with higher period of daily rhythm in CBA/Sca mice when measured in complete darkness using running wheels (23.7 h), than in CBA/CaJ (23.45 h) or CBA/JRj (23.13 h). In conclusion, our study suggests that the differential vulnerability to noise trauma between inactive and active phase is not universal and is as sensitive as substrain differences that might be governed by the circadian amplitude of the circulating CORT profiles.
Collapse
|
39
|
Occelli F, Hasselmann F, Bourien J, Puel JL, Desvignes N, Wiszniowski B, Edeline JM, Gourévitch B. Temporal Alterations to Central Auditory Processing without Synaptopathy after Lifetime Exposure to Environmental Noise. Cereb Cortex 2021; 32:1737-1754. [PMID: 34494109 DOI: 10.1093/cercor/bhab310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
People are increasingly exposed to environmental noise through the cumulation of occupational and recreational activities, which is considered harmless to the auditory system, if the sound intensity remains <80 dB. However, recent evidence of noise-induced peripheral synaptic damage and central reorganizations in the auditory cortex, despite normal audiometry results, has cast doubt on the innocuousness of lifetime exposure to environmental noise. We addressed this issue by exposing adult rats to realistic and nontraumatic environmental noise, within the daily permissible noise exposure limit for humans (80 dB sound pressure level, 8 h/day) for between 3 and 18 months. We found that temporary hearing loss could be detected after 6 months of daily exposure, without leading to permanent hearing loss or to missing synaptic ribbons in cochlear hair cells. The degraded temporal representation of sounds in the auditory cortex after 18 months of exposure was very different from the effects observed after only 3 months of exposure, suggesting that modifications to the neural code continue throughout a lifetime of exposure to noise.
Collapse
Affiliation(s)
- Florian Occelli
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France
| | - Florian Hasselmann
- Institute for Neurosciences of Montpellier (INM), INSERM, University of Montpellier, Montpellier F-34091, France
| | - Jérôme Bourien
- Institute for Neurosciences of Montpellier (INM), INSERM, University of Montpellier, Montpellier F-34091, France
| | - Jean-Luc Puel
- Institute for Neurosciences of Montpellier (INM), INSERM, University of Montpellier, Montpellier F-34091, France
| | - Nathalie Desvignes
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France
| | - Bernadette Wiszniowski
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France
| | - Jean-Marc Edeline
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France
| | - Boris Gourévitch
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France.,Institut de l'Audition, Institut Pasteur, INSERM, Paris F-75012, France.,CNRS, France
| |
Collapse
|
40
|
Bramhall NF, McMillan GP, Kampel SD. Envelope following response measurements in young veterans are consistent with noise-induced cochlear synaptopathy. Hear Res 2021; 408:108310. [PMID: 34293505 PMCID: PMC10857793 DOI: 10.1016/j.heares.2021.108310] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Animal studies have demonstrated that noise exposure can lead to the loss of the synapses between the inner hair cells and their afferent auditory nerve fiber targets without impacting auditory thresholds. Although several non-invasive physiological measures appear to be sensitive to cochlear synaptopathy in animal models, including auditory brainstem response (ABR) wave I amplitude, the envelope following response (EFR), and the middle ear muscle reflex (MEMR), human studies of these measures in samples that are expected to vary in terms of the degree of noise-induced synaptopathy have resulted in mixed findings. One possible explanation for the differing results is that synaptopathy risk is lower for recreational noise exposure than for occupational or military noise exposure. The goal of this analysis was to determine if EFR magnitude and ABR wave I amplitude are reduced among young Veterans with a history of military noise exposure compared with non-Veteran controls with minimal noise exposure. EFRs and ABRs were obtained in a sample of young (19-35 years) Veterans and non-Veterans with normal audiograms and robust distortion product otoacoustic emissions (DPOAEs). The statistical analysis is consistent with a reduction in mean EFR magnitude and ABR wave I amplitude (at 90 dB peSPL) for Veterans with a significant history of noise exposure compared with non-Veteran controls. These findings are in agreement with previous ABR wave I amplitude findings in young Veterans and are consistent with animal models of noise-induced cochlear synaptopathy.
Collapse
Affiliation(s)
- Naomi F Bramhall
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR, USA; Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA.
| | - Garnett P McMillan
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR, USA; Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA.
| | - Sean D Kampel
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
41
|
Hickman TT, Hashimoto K, Liberman LD, Liberman MC. Cochlear Synaptic Degeneration and Regeneration After Noise: Effects of Age and Neuronal Subgroup. Front Cell Neurosci 2021; 15:684706. [PMID: 34434091 PMCID: PMC8380781 DOI: 10.3389/fncel.2021.684706] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/30/2021] [Indexed: 01/24/2023] Open
Abstract
In CBA/CaJ mice, confocal analysis has shown that acoustic overexposure can immediately destroy synapses between auditory-nerve fibers (ANFs) and their peripheral targets, the inner hair cells (IHCs), and that years later, a corresponding number of ANF cell bodies degenerate. In guinea pig, post-exposure disappearance of pre-synaptic ribbons can be equally dramatic, however, post-exposure recovery to near-baseline counts has been reported. Since confocal counts are confounded by thresholding issues, the fall and rise of synaptic ribbon counts could represent “regeneration,” i.e., terminal retraction, re-extension and synaptogenesis, or “recovery,” i.e., down- and subsequent up-regulation of synaptic markers. To clarify, we counted pre-synaptic ribbons, assessed their juxtaposition with post-synaptic receptors, measured the extension of ANF terminals, and quantified the spatial organization and size gradients of these synaptic elements around the hair cell. Present results in guinea pigs exposed as adults (14 months), along with prior results in juveniles (1 month), suggest there is post-exposure neural regeneration in the guinea pig, but not the CBA/CaJ mouse, and that this regenerative capacity extends into adulthood. The results also show, for the first time, that the acute synaptic loss is concentrated on the modiolar side of IHCs, consistent with a selective loss of the high-threshold ANFs with low spontaneous rates. The morphological similarities between the post-exposure neurite extension and synaptogenesis, seen spontaneously in the guinea pig, and in CBA/CaJ only with forced overexpression of neurotrophins, suggest that the key difference may be in the degree of sustained or injury-induced expression of these signaling molecules in the cochlea.
Collapse
Affiliation(s)
- Tyler T Hickman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Ken Hashimoto
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Leslie D Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
42
|
Jeffers PWC, Bourien J, Diuba A, Puel JL, Kujawa SG. Noise-Induced Hearing Loss in Gerbil: Round Window Assays of Synapse Loss. Front Cell Neurosci 2021; 15:699978. [PMID: 34385909 PMCID: PMC8354318 DOI: 10.3389/fncel.2021.699978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/05/2021] [Indexed: 01/31/2023] Open
Abstract
Previous work in animals with recovered hearing thresholds but permanent inner hair cell synapse loss after noise have suggested initial vulnerability of low spontaneous rate (SR) auditory nerve fibers (ANF). As these fibers have properties of response that facilitate robust sound coding in continuous noise backgrounds, their targeted loss would have important implications for function. To address the issue of relative ANF vulnerabilities after noise, we assessed cochlear physiologic and histologic consequences of temporary threshold shift-producing sound over-exposure in the gerbil, a species with well-characterized distributions of auditory neurons by SR category. The noise exposure targeted a cochlear region with distributed innervation (low-, medium- and high-SR neurons). It produced moderate elevations in outer hair cell-based distortion-product otoacoustic emission and whole nerve compound action potential thresholds in this region, with accompanying reductions in suprathreshold response amplitudes, quantified at 24 h. These parameters of response recovered well with post-exposure time. Chronic synapse loss was maximum in the frequency region initially targeted by the noise. Cochlear round window recorded mass potentials (spontaneous neural noise and sound-driven peri-stimulus time responses, PSTR) reflected parameters of the loss not detected by the conventional assays. Spontaneous activity was acutely reduced. Steady-state (PSTR plateau) activity was correlated with synapse loss in frequency regions with high concentrations of low-SR neurons, whereas the PSTR onset peak and spontaneous round window noise, both dominated by high-SR fiber activity, were relatively unaltered across frequency in chronic ears. Together, results suggest that acute targets of noise were of mixed SR subtypes, but chronic targets were predominantly low-SR neurons. PSTRs captured key properties of the auditory nerve response and vulnerability to injury that should yield important diagnostic information in hearing loss etiologies producing cochlear synaptic and neural loss.
Collapse
Affiliation(s)
- Penelope W C Jeffers
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA, United States.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
| | - Jérôme Bourien
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Artem Diuba
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Jean-Luc Puel
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Sharon G Kujawa
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA, United States.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
43
|
Nam GS, Kim JY, Hong SA, Kim SG, Son EJ. Limitation of Conventional Audiometry in Identifying Hidden Hearing Loss in Acute Noise Exposure. Yonsei Med J 2021; 62:615-621. [PMID: 34164959 PMCID: PMC8236352 DOI: 10.3349/ymj.2021.62.7.615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/19/2021] [Accepted: 04/19/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The concept of hidden hearing loss can explain the discrepancy between a listener's perception of hearing ability and hearing evaluation using pure tone audiograms. This study investigated the utility of the suprathreshold auditory brainstem response (ABR) for the evaluation of hidden hearing loss in noise-exposed ear with normal audiograms. MATERIALS AND METHODS A total of 15 patients (24 ears) with normal auditory thresholds and normal distortion product otoacoustic emissions were included in a retrospective analysis of medical records of 80 patients presenting with histories of acute noise exposure. The control group included 12 subjects (24 ears) with normal audiograms and no history of noise exposure. Pure tone audiometry and suprathreshold ABR testing at 90 dB peSPL were performed. The amplitudes and latencies of ABR waves I and V were compared between the noise-exposed and control groups. RESULTS We found no significant difference in the wave I or V amplitude, or the wave I/V ratio, between the two groups. The latencies of ABR wave I, V, and I-V interpeak interval were compared, and no significant intergroup difference was observed. CONCLUSION The results suggest that either hidden hearing loss may not be significant in this cohort of patients with acute noise exposure history, or the possible damage by noise exposure is not reflected in the ABRs. Further studies are needed to inquire about the role of ABR in identification of hidden hearing loss.
Collapse
Affiliation(s)
- Gi Sung Nam
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Chosun University College of Medicine, Gwangju, Korea
| | - Ju Young Kim
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Ah Hong
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seon Geum Kim
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jin Son
- Department of Otorhinolaryngology-Head and Neck Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea.
| |
Collapse
|
44
|
Vijayasarathy S, Mohan M, Nagalakshmi P, Barman A. Speech perception in noise, gap detection and amplitude modulation detection in suspected hidden hearing loss. HEARING, BALANCE AND COMMUNICATION 2021. [DOI: 10.1080/21695717.2021.1876494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Srikar Vijayasarathy
- Department of Audiology, All India Institute of Speech and Hearing, Mysuru, India
| | - Meghana Mohan
- Department of Audiology, All India Institute of Speech and Hearing, Mysuru, India
| | - Pratibha Nagalakshmi
- Department of Audiology, All India Institute of Speech and Hearing, Mysuru, India
| | - Animesh Barman
- Department of Audiology, All India Institute of Speech and Hearing, Mysuru, India
| |
Collapse
|
45
|
McJury MJ. Acoustic Noise and Magnetic Resonance Imaging: A Narrative/Descriptive Review. J Magn Reson Imaging 2021; 55:337-346. [PMID: 33629790 DOI: 10.1002/jmri.27525] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
Magnetic resonance imaging generates unwanted acoustic noise. This review describes the work characterizing the acoustic noise, and the various solutions to control and attenuate the acoustic noise. There are also discussions about the permissible limits, and guidance regarding acoustic noise exposure for staff, patients, and volunteers. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Mark J McJury
- Department of Clinical Physics & Bio-Engineering, Level 2, Imaging Centre of Excellence, Queen Elizabeth University Hospital Campus, Glasgow, UK
| |
Collapse
|
46
|
Keshishzadeh S, Garrett M, Verhulst S. Towards Personalized Auditory Models: Predicting Individual Sensorineural Hearing-Loss Profiles From Recorded Human Auditory Physiology. Trends Hear 2021; 25:2331216520988406. [PMID: 33526004 PMCID: PMC7871356 DOI: 10.1177/2331216520988406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/13/2020] [Accepted: 12/21/2020] [Indexed: 01/15/2023] Open
Abstract
Over the past decades, different types of auditory models have been developed to study the functioning of normal and impaired auditory processing. Several models can simulate frequency-dependent sensorineural hearing loss (SNHL) and can in this way be used to develop personalized audio-signal processing for hearing aids. However, to determine individualized SNHL profiles, we rely on indirect and noninvasive markers of cochlear and auditory-nerve (AN) damage. Our progressive knowledge of the functional aspects of different SNHL subtypes stresses the importance of incorporating them into the simulated SNHL profile, but has at the same time complicated the task of accomplishing this on the basis of noninvasive markers. In particular, different auditory-evoked potential (AEP) types can show a different sensitivity to outer-hair-cell (OHC), inner-hair-cell (IHC), or AN damage, but it is not clear which AEP-derived metric is best suited to develop personalized auditory models. This study investigates how simulated and recorded AEPs can be used to derive individual AN- or OHC-damage patterns and personalize auditory processing models. First, we individualized the cochlear model parameters using common methods of frequency-specific OHC-damage quantification, after which we simulated AEPs for different degrees of AN damage. Using a classification technique, we determined the recorded AEP metric that best predicted the simulated individualized cochlear synaptopathy profiles. We cross-validated our method using the data set at hand, but also applied the trained classifier to recorded AEPs from a new cohort to illustrate the generalizability of the method.
Collapse
Affiliation(s)
- Sarineh Keshishzadeh
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Belgium
| | - Markus Garrett
- Medizinische Physik and Cluster of Excellence Hearing4all, Department of Medical Physics and Acoustics, University of Oldenburg, Oldenburg, Germany
| | - Sarah Verhulst
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Belgium
| |
Collapse
|
47
|
Causon A, Munro KJ, Plack CJ, Prendergast G. The Role of the Clinically Obtained Acoustic Reflex as a Research Tool for Subclinical Hearing Pathologies. Trends Hear 2020; 24:2331216520972860. [PMID: 33357018 PMCID: PMC7768875 DOI: 10.1177/2331216520972860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The acoustic reflex (AR) shows promise as an objective test for the presence of cochlear synaptopathy in rodents. The AR has also been shown to be reduced in humans with tinnitus compared to those without. The aim of the present study was twofold: (a) to determine if AR strength (quantified as both threshold and growth) varied with lifetime noise exposure, and thus provided an estimate of the degree of synaptopathy and (b) to identify which factors should be considered when using the AR as a quantitative measure rather than just present/absent responses. AR thresholds and growth functions were measured using ipsilateral and contralateral, broadband and tonal elicitors in adults with normal hearing and varying levels of lifetime noise exposure. Only the clinical standard 226 Hz probe tone was used. AR threshold and growth were not related to lifetime noise exposure, suggesting that routine clinical AR measures are not a sensitive measure when investigating the effects of noise exposure in audiometrically normal listeners. Our secondary, exploratory analyses revealed that AR threshold and growth were significantly related to middle-ear compliance. Listeners with higher middle-ear compliance (though still in the clinically normal range) showed lower AR thresholds and steeper AR growth functions. Furthermore, there was a difference in middle-ear compliance between the sexes, with males showing higher middle-ear compliance values than females. Therefore, it may be necessary to factor middle-ear compliance values into any analysis that uses the AR as an estimate of auditory function.
Collapse
Affiliation(s)
- Andrew Causon
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, UK.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, England
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, UK.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, England
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, UK.,Department of Psychology, Lancaster University, Lancaster, England
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, UK
| |
Collapse
|
48
|
Enhancing the sensitivity of the envelope-following response for cochlear synaptopathy screening in humans: The role of stimulus envelope. Hear Res 2020; 400:108132. [PMID: 33333426 DOI: 10.1016/j.heares.2020.108132] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Auditory de-afferentation, a permanent reduction in the number of inner-hair-cells and auditory-nerve synapses due to cochlear damage or synaptopathy, can reliably be quantified using temporal bone histology and immunostaining. However, there is an urgent need for non-invasive markers of synaptopathy to study its perceptual consequences in live humans and to develop effective therapeutic interventions. While animal studies have identified candidate auditory-evoked-potential (AEP) markers for synaptopathy, their interpretation in humans has suffered from translational issues related to neural generator differences, unknown hearing-damage histopathologies or lack of measurement sensitivity. To render AEP-based markers of synaptopathy more sensitive and differential to the synaptopathy aspect of sensorineural hearing loss, we followed a combined computational and experimental approach. Starting from the known characteristics of auditory-nerve physiology, we optimized the stimulus envelope to stimulate the available auditory-nerve population optimally and synchronously to generate strong envelope-following-responses (EFRs). We further used model simulations to explore which stimuli evoked a response that was sensitive to synaptopathy, while being maximally insensitive to possible co-existing outer-hair-cell pathologies. We compared the model-predicted trends to AEPs recorded in younger and older listeners (N=44, 24f) who had normal or impaired audiograms with suspected age-related synaptopathy in the older cohort. We conclude that optimal stimulation paradigms for EFR-based quantification of synaptopathy should have sharply rising envelope shapes, a minimal plateau duration of 1.7-2.1 ms for a 120-Hz modulation rate, and inter-peak intervals which contain near-zero amplitudes. From our recordings, the optimal EFR-evoking stimulus had a rectangular envelope shape with a 25% duty cycle and a 95% modulation depth. Older listeners with normal or impaired audiometric thresholds showed significantly reduced EFRs, which were consistent with how (age-induced) synaptopathy affected these responses in the model.
Collapse
|
49
|
Carcagno S, Plack CJ. Effects of age on psychophysical measures of auditory temporal processing and speech reception at low and high levels. Hear Res 2020; 400:108117. [PMID: 33253994 PMCID: PMC7812372 DOI: 10.1016/j.heares.2020.108117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/18/2020] [Accepted: 11/17/2020] [Indexed: 01/21/2023]
Abstract
We found little evidence of greater age-related hearing declines at high sound levels. There are age-related temporal-processing declines independent of hearing loss. No evidence of age-related speech-reception deficits independent of hearing loss.
Age-related cochlear synaptopathy (CS) has been shown to occur in rodents with minimal noise exposure, and has been hypothesized to play a crucial role in age-related hearing declines in humans. It is not known to what extent age-related CS occurs in humans, and how it affects the coding of supra-threshold sounds and speech in noise. Because in rodents CS affects mainly low- and medium-spontaneous rate (L/M-SR) auditory-nerve fibers with rate-level functions covering medium-high levels, it should lead to greater deficits in the processing of sounds at high than at low stimulus levels. In this cross-sectional study the performance of 102 listeners across the age range (34 young, 34 middle-aged, 34 older) was assessed in a set of psychophysical temporal processing and speech reception in noise tests at both low, and high stimulus levels. Mixed-effect multiple regression models were used to estimate the effects of age while partialing out effects of audiometric thresholds, lifetime noise exposure, cognitive abilities (assessed with additional tests), and musical experience. Age was independently associated with performance deficits on several tests. However, only for one out of 13 tests were age effects credibly larger at the high compared to the low stimulus level. Overall these results do not provide much evidence that age-related CS, to the extent to which it may occur in humans according to the rodent model of greater L/M-SR synaptic loss, has substantial effects on psychophysical measures of auditory temporal processing or on speech reception in noise.
Collapse
Affiliation(s)
- Samuele Carcagno
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF, United Kingdom.
| | - Christopher J Plack
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF, United Kingdom; Manchester Centre for Audiology and Deafness, University of Manchester, Academic Health Science Centre, M13 9PL, United Kingdom
| |
Collapse
|
50
|
Almishaal A, Mathur PD, Franklin L, Shi K, Haller T, Martinovic A, Hirschmugl K, Earl BR, Zhang C, Yang J, Deans MR, Firpo MA, Park AH. Role of cochlear synaptopathy in cytomegalovirus infected mice and in children. Int J Pediatr Otorhinolaryngol 2020; 138:110275. [PMID: 32828018 PMCID: PMC8663027 DOI: 10.1016/j.ijporl.2020.110275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Determine whether a murine model of cytomegalovirus (CMV) and CMV- infected children show evidence of synaptopathy. STUDY DESIGN Murine model of CMV infection and case series. SUBJECTS AND METHODS C57 BL/6 mice were inoculated with murine-CMV (mCMV). Auditory function was assessed using Auditory Brainstem Response (ABR) and distortion product otoacoustic emission (DPOAE) testing. Temporal bones from mCMV-infected mice were used for both ribbon synapse and hair cell quantification. Four groups of children (non-CMV normal hearing, non-CMV hearing impaired, CMV normal hearing and CMV hearing impaired) underwent ABRs between 2014 and 2018. The outcomes included raw amplitude, wave I:V amplitude ratio, absolute latency, and interpeak latency. RESULTS Mice at 8 weeks post mCMV infection had higher ABR and DPOAE (P < 0.05) thresholds and increased outer hair cell loss compared to uninfected mice and mCMV-infected mice at 4 and 6 weeks post infection, indicating progressive hearing loss. A reduction in the wave I amplitude and synaptic counts were noted earlier at 4 weeks in CMV-infected mice (P < 0.05). The human data indicated that the wave I:V amplitude ratio was lower on average in CMV-infected groups when compared to the uninfected cohorts. The wave I:V amplitude ratio for the click and 4k stimuli were not significantly different between the congenital CMV-infected and uninfected children with normal or with hearing loss. CONCLUSION This study suggests mCMV infection results in a synaptopathy before hair cell damage. Additional studies need to be performed to determine whether this effect is also observed in CMV-infected children. LEVEL OF EVIDENCE Animal studies and basic science- NA; human studies: level 4.
Collapse
Affiliation(s)
- Ali Almishaal
- College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Pranav Dinesh Mathur
- Otonomy Inc, San Diego, CA, USA; Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Lesley Franklin
- Department of Audiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kevin Shi
- Division of Otolaryngology, University of Utah, UT, USA; Department of Surgery, University of Utah, UT, USA
| | - Travis Haller
- Division of Otolaryngology, University of Utah, UT, USA; Department of Surgery, University of Utah, UT, USA
| | | | - Kayla Hirschmugl
- Hearing and Speech Center, Children's National, Washington. D.C., USA
| | - Brian R Earl
- Department of Communication Sciences and Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Chong Zhang
- Department of Internal Medicine- Epidemiology, University of Utah, UT, USA
| | - Jun Yang
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Michael R Deans
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA; Division of Otolaryngology, University of Utah, UT, USA; Department of Surgery, University of Utah, UT, USA
| | | | - Albert H Park
- Division of Otolaryngology, University of Utah, UT, USA; Department of Surgery, University of Utah, UT, USA.
| |
Collapse
|