1
|
Justin Margret J, Jayasankaran C, Amritkumar P, Azaiez H, Srisailapathy CRS. Unraveling the Genetic Basis of Combined Deafness and Male Infertility Phenotypes through High-Throughput Sequencing in a Unique Cohort from South India. ADVANCED GENETICS (HOBOKEN, N.J.) 2024; 5:2300206. [PMID: 38884051 PMCID: PMC11170077 DOI: 10.1002/ggn2.202300206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/15/2024] [Indexed: 06/18/2024]
Abstract
The co-occurrence of sensorineural hearing loss and male infertility has been reported in several instances, suggesting potential shared genetic underpinnings. One such example is the contiguous gene deletion of CATSPER2 and STRC genes, previously associated with deafness-infertility syndrome (DIS) in males. Fifteen males with both hearing loss and infertility from southern India after exclusion for the DIS contiguous gene deletion and the FOXI1 gene mutations are subjected to exome sequencing. This resolves the genetic etiology in four probands for both the phenotypes; In the remaining 11 probands, two each conclusively accounted for deafness and male infertility etiologies. Genetic heterogeneity is well reflected in both phenotypes. Four recessive (TRIOBP, SLC26A4, GJB2, COL4A3) and one dominant (SOX10) for the deafness; six recessive genes (LRGUK, DNAH9, ARMC4, DNAH2, RSPH6A, and ACE) for male infertility can be conclusively ascribed. LRGUK and RSPH6A genes are implicated earlier only in mice models, while the ARMC4 gene is implicated in chronic destructive airway diseases due to primary ciliary dyskinesia. This study would be the first to document the role of these genes in the male infertility phenotype in humans. The result suggests that deafness and infertility are independent events and do not segregate together among the probands.
Collapse
Affiliation(s)
- Jeffrey Justin Margret
- Department of Genetics Dr. ALM Post Graduate Institute of Basic Medical Sciences University of Madras Taramani Campus Chennai 600 113 India
- Department of Pediatrics Louisiana State University Health Sciences Center Shreveport LA 71103 USA
| | - Chandru Jayasankaran
- Department of Genetics Dr. ALM Post Graduate Institute of Basic Medical Sciences University of Madras Taramani Campus Chennai 600 113 India
- Department of Personalized Health Care Roche Products India Pvt., Ltd. Bengaluru Karnataka 560 025 India
| | - Pavithra Amritkumar
- Department of Genetics Dr. ALM Post Graduate Institute of Basic Medical Sciences University of Madras Taramani Campus Chennai 600 113 India
- Meenakshi Academy of Higher Education and Research (MAHER) Chennai 600 078 India
| | - Hela Azaiez
- Department of Otolaryngology Carver College of Medicine University of Iowa Iowa City Iowa 52242 USA
| | - C R Srikumari Srisailapathy
- Department of Genetics Dr. ALM Post Graduate Institute of Basic Medical Sciences University of Madras Taramani Campus Chennai 600 113 India
| |
Collapse
|
2
|
Kim KS, Koo HY, Bok J. Alternative splicing in shaping the molecular landscape of the cochlea. Front Cell Dev Biol 2023; 11:1143428. [PMID: 36936679 PMCID: PMC10018040 DOI: 10.3389/fcell.2023.1143428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
The cochlea is a complex organ comprising diverse cell types with highly specialized morphology and function. Until now, the molecular underpinnings of its specializations have mostly been studied from a transcriptional perspective, but accumulating evidence points to post-transcriptional regulation as a major source of molecular diversity. Alternative splicing is one of the most prevalent and well-characterized post-transcriptional regulatory mechanisms. Many molecules important for hearing, such as cadherin 23 or harmonin, undergo alternative splicing to produce functionally distinct isoforms. Some isoforms are expressed specifically in the cochlea, while some show differential expression across the various cochlear cell types and anatomical regions. Clinical phenotypes that arise from mutations affecting specific splice variants testify to the functional relevance of these isoforms. All these clues point to an essential role for alternative splicing in shaping the unique molecular landscape of the cochlea. Although the regulatory mechanisms controlling alternative splicing in the cochlea are poorly characterized, there are animal models with defective splicing regulators that demonstrate the importance of RNA-binding proteins in maintaining cochlear function and cell survival. Recent technological breakthroughs offer exciting prospects for overcoming some of the long-standing hurdles that have complicated the analysis of alternative splicing in the cochlea. Efforts toward this end will help clarify how the remarkable diversity of the cochlear transcriptome is both established and maintained.
Collapse
Affiliation(s)
- Kwan Soo Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hei Yeun Koo
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
- *Correspondence: Jinwoong Bok,
| |
Collapse
|
3
|
Kabahuma RI, Schubert W, Labuschagne C, Yan D, Pepper MS, Liu X. Elucidation of repeat motifs R1- and R2-related TRIOBP variants in autosomal recessive nonsyndromic hearing loss DFNB28 among indigenous South African individuals. Mol Genet Genomic Med 2022; 10:e2015. [PMID: 36029164 PMCID: PMC9544205 DOI: 10.1002/mgg3.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND DFNB28, a recessively inherited nonsyndromic form of deafness in humans, is caused by mutations in the TRIOBP gene (MIM #609761) on chromosome 22q13. Its protein TRIOBP helps to tightly bundle F-actin filaments, forming a rootlet that penetrates through the cuticular plate into the cochlear hair cell body. Repeat motifs R1 and R2, located in exon 7 of the TRIOBP-5 isoform, are the actin-binding domains. Deletion of both repeat motifs R1 and R2 results in complete disruption of both actin-binding and bundling activities, whereas deletion of the R2 motif alone retains F-actin bundling ability in stereocilia rootlets. METHODS Target sequencing, using a custom capture panel of 180 known and candidate genes associated with sensorineural hearing loss, bioinformatics processing, and data analysis were performed. Genesis 2.0 was used for variant filtering based on quality/score read depth and minor allele frequency (MAF) thresholds of 0.005 for recessive NSHL, as reported in population-based sequencing databases. All variants were reclassified based on the American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) guidelines together with other variant interpretation guidelines for genetic hearing loss . Candidate variants were confirmed via Sanger sequencing according to standard protocols, using the ABIPRISM 3730 DNA Analyzer. DNA sequence analysis was performed with DNASTAR Lasergene software. RESULTS Candidate TRIOBP variants identified among 94 indigenous sub-Saharan African individuals were characterized through segregation analysis. Family TS005 carrying variants c.572delC, p.Pro191Argfs*50, and c.3510_3513dupTGCA, p.Pro1172Cysfs*13, demonstrated perfect cosegregation with the deafness phenotype. On the other hand, variants c.505C > A p.Asp168Glu and c.3636 T > A p.Leu1212Gln in the same family did not segregate with deafness and we have classified these variants as benign. A control family, TS067, carrying variants c.2532G > T p.Leu844Arg, c.2590C > A p.Asn867Lys, c.3484C > T p.Pro1161Leu, and c.3621 T > C p.Phe1187Leu demonstrated no cosegregation allowing us to classify these variants as benign. Together with published TRIOBP variants, the results showed that genotypes combining two truncating TRIOBP variants affecting repeat motifs R1 and R2 or R2 alone lead to a deafness phenotype, while a truncating variant affecting repeat motifs R1 and R2 or R2 alone combined with a missense variant does not. Homozygous truncating variants affecting repeat motif R2 cosegregate with the deafness phenotype. CONCLUSION While a single intact R1 motif may be adequate for actin-binding and bundling in the stereocilia of cochlear hair cells, our findings indicate that a truncated R2 motif in cis seems to be incompatible with normal hearing, either by interfering with the function of an intact R1 motif or through another as yet unknown mechanism. Our study also suggests that most heterozygous missense variants involving exon 7 are likely to be tolerated.
Collapse
Affiliation(s)
- Rosemary Ida Kabahuma
- Department of OtorhinolaryngologyUniversity of PretoriaPretoriaSouth Africa,Departments of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Wolf‐Dieter Schubert
- Departments of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural SciencesUniversity of PretoriaPretoriaSouth Africa
| | | | - Denise Yan
- Department of OtolaryngologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Michael Sean Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Xue‐Zhong Liu
- Department of OtolaryngologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
4
|
Unbalanced bidirectional radial stiffness gradients within the organ of Corti promoted by TRIOBP. Proc Natl Acad Sci U S A 2022; 119:e2115190119. [PMID: 35737845 PMCID: PMC9245700 DOI: 10.1073/pnas.2115190119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Current understanding of cochlear mechanics assumes that stiffness of the cochlear partition varies only longitudinally along the cochlea. This work examines the stiffness of inner ear epithelium in individual cell types at the nanoscale level. We revealed unrecognized radial stiffness gradients of different magnitudes and opposite orientations within the epithelium. Remarkably, the observed bidirectional stiffness gradients are unbalanced between supporting and sensory cells. Deficiencies in deafness-associated Trio and F-actin binding protein (TRIOBP) caused diverse cytoskeletal ultrastructural remodeling in supporting and sensory cells and significantly diminishes the bidirectional radial stiffness gradients. These results demonstrate the complexity of the mechanical properties within the sensory epithelium and point to a hitherto unrecognized role of these gradients in sensitivity and frequency selectivity of hearing. Hearing depends on intricate morphologies and mechanical properties of diverse inner ear cell types. The individual contributions of various inner ear cell types into mechanical properties of the organ of Corti and the mechanisms of their integration are yet largely unknown. Using sub-100-nm spatial resolution atomic force microscopy (AFM), we mapped the Young’s modulus (stiffness) of the apical surface of the different cells of the freshly dissected P5–P6 cochlear epithelium from wild-type and mice lacking either Trio and F-actin binding protein (TRIOBP) isoforms 4 and 5 or isoform 5 only. Variants of TRIOBP are associated with deafness in human and in Triobp mutant mouse models. Remarkably, nanoscale AFM mapping revealed unrecognized bidirectional radial stiffness gradients of different magnitudes and opposite orientations between rows of wild-type supporting cells and sensory hair cells. Moreover, the observed bidirectional radial stiffness gradients are unbalanced, with sensory cells being stiffer overall compared to neighboring supporting cells. Deafness-associated TRIOBP deficiencies significantly disrupted the magnitude and orientation of these bidirectional radial stiffness gradients. In addition, serial sectioning with focused ion beam and backscatter scanning electron microscopy shows that a TRIOBP deficiency results in ultrastructural changes of supporting cell apical phalangeal microfilaments and bundled cortical F-actin of hair cell cuticular plates, correlating with messenger RNA and protein expression levels and AFM stiffness measurements that exposed a softening of the apical surface of the sensory epithelium in mutant mice. Altogether, this additional complexity in the mechanical properties of the sensory epithelium is hypothesized to be an essential contributor to frequency selectivity and sensitivity of mammalian hearing.
Collapse
|
5
|
Miyoshi T, Belyantseva IA, Kitajiri SI, Miyajima H, Nishio SY, Usami SI, Kim BJ, Choi BY, Omori K, Shroff H, Friedman TB. Human deafness-associated variants alter the dynamics of key molecules in hair cell stereocilia F-actin cores. Hum Genet 2022; 141:363-382. [PMID: 34232383 PMCID: PMC11351816 DOI: 10.1007/s00439-021-02304-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022]
Abstract
Stereocilia protrude up to 100 µm from the apical surface of vertebrate inner ear hair cells and are packed with cross-linked filamentous actin (F-actin). They function as mechanical switches to convert sound vibration into electrochemical neuronal signals transmitted to the brain. Several genes encode molecular components of stereocilia including actin monomers, actin regulatory and bundling proteins, motor proteins and the proteins of the mechanotransduction complex. A stereocilium F-actin core is a dynamic system, which is continuously being remodeled while maintaining an outwardly stable architecture under the regulation of F-actin barbed-end cappers, severing proteins and crosslinkers. The F-actin cores of stereocilia also provide a pathway for motor proteins to transport cargos including components of tip-link densities, scaffolding proteins and actin regulatory proteins. Deficiencies and mutations of stereocilia components that disturb this "dynamic equilibrium" in stereocilia can induce morphological changes and disrupt mechanotransduction causing sensorineural hearing loss, best studied in mouse and zebrafish models. Currently, at least 23 genes, associated with human syndromic and nonsyndromic hearing loss, encode proteins involved in the development and maintenance of stereocilia F-actin cores. However, it is challenging to predict how variants associated with sensorineural hearing loss segregating in families affect protein function. Here, we review the functions of several molecular components of stereocilia F-actin cores and provide new data from our experimental approach to directly evaluate the pathogenicity and functional impact of reported and novel variants of DIAPH1 in autosomal-dominant DFNA1 hearing loss using single-molecule fluorescence microscopy.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD, 20892, USA.
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD, 20892, USA
| | - Shin-Ichiro Kitajiri
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 390-8621, Matsumoto, Japan
| | - Hiroki Miyajima
- Department of Otolaryngology, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
- Department of Otolaryngology, Aizawa Hospital, Matsumoto, 390-8510, Japan
| | - Shin-Ya Nishio
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 390-8621, Matsumoto, Japan
| | - Shin-Ichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 390-8621, Matsumoto, Japan
| | - Bong Jik Kim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Chungnam National University Sejong Hospital, Sejong, 30099, South Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, South Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, 13620, South Korea
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD, 20892, USA
| |
Collapse
|
6
|
Liu W, Johansson Å, Rask-Andersen H, Rask-Andersen M. A combined genome-wide association and molecular study of age-related hearing loss in H. sapiens. BMC Med 2021; 19:302. [PMID: 34847940 PMCID: PMC8638543 DOI: 10.1186/s12916-021-02169-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Sensorineural hearing loss is one of the most common sensory deficiencies. However, the molecular contribution to age-related hearing loss is not fully elucidated. METHODS We performed genome-wide association studies (GWAS) for hearing loss-related traits in the UK Biobank (N = 362,396) and selected a high confidence set of ten hearing-associated gene products for staining in human cochlear samples: EYA4, LMX1A, PTK2/FAK, UBE3B, MMP2, SYNJ2, GRM5, TRIOBP, LMO-7, and NOX4. RESULTS All proteins were found to be expressed in human cochlear structures. Our findings illustrate cochlear structures that mediate mechano-electric transduction of auditory stimuli, neuronal conductance, and neuronal plasticity to be involved in age-related hearing loss. CONCLUSIONS Our results suggest common genetic variation to influence structural resilience to damage as well as cochlear recovery after trauma, which protect against accumulated damage to cochlear structures and the development of hearing loss over time.
Collapse
Affiliation(s)
- Wei Liu
- Department of Surgical Sciences, Section of Otorhinolaryngology and Head & Neck Surgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Section of Otorhinolaryngology and Head & Neck Surgery, Uppsala University, SE-751 85, Uppsala, Sweden.
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Genome-wide association study of trypanosome prevalence and morphometric traits in purebred and crossbred Baoulé cattle of Burkina Faso. PLoS One 2021; 16:e0255089. [PMID: 34351956 PMCID: PMC8341487 DOI: 10.1371/journal.pone.0255089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/09/2021] [Indexed: 11/27/2022] Open
Abstract
In this study, single-SNP GWAS analyses were conducted to find regions affecting tolerance against trypanosomosis and morphometrics traits in purebred and crossbred Baoulé cattle of Burkina Faso. The trypanosomosis status (positive and negative) and a wide set of morphological traits were recorded for purebred Baoulé and crossbred Zebu x Baoulé cattle, and genotyped with the Illumina Bovine SNP50 BeadChip. After quality control, 36,203 SNPs and 619 animals including 343 purebred Baoulé and 279 crossbreds were used for the GWAS analyses. Several important genes were found that can influence morphological parameters. Although there were no genes identified with a reported strong connection to size traits, many of them were previously identified in various growth-related studies. A re-occurring theme for the genes residing in the regions identified by the most significant SNPs was pleiotropic effect on growth of the body and the cardiovascular system. Regarding trypanosomosis tolerance, two potentially important regions were identified in purebred Baoulé on chromosomes 16 and 24, containing the CFH, CRBN, TRNT1 and, IL5RA genes, and one additional genomic region in Baoulé, x Zebu crossbreds on chromosome 5, containing MGAT4C and NTS. Almost all of these regions and genes were previously related to the trait of interest, while the CRBN gene was to our knowledge presented in the context of trypanosomiasis tolerance for the first time.
Collapse
|
8
|
Ivarsdottir EV, Holm H, Benonisdottir S, Olafsdottir T, Sveinbjornsson G, Thorleifsson G, Eggertsson HP, Halldorsson GH, Hjorleifsson KE, Melsted P, Gylfason A, Arnadottir GA, Oddsson A, Jensson BO, Jonasdottir A, Jonasdottir A, Juliusdottir T, Stefansdottir L, Tragante V, Halldorsson BV, Petersen H, Thorgeirsson G, Thorsteinsdottir U, Sulem P, Hinriksdottir I, Jonsdottir I, Gudbjartsson DF, Stefansson K. The genetic architecture of age-related hearing impairment revealed by genome-wide association analysis. Commun Biol 2021; 4:706. [PMID: 34108613 PMCID: PMC8190123 DOI: 10.1038/s42003-021-02224-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/17/2021] [Indexed: 02/05/2023] Open
Abstract
Age-related hearing impairment (ARHI) is the most common sensory disorder in older adults. We conducted a genome-wide association meta-analysis of 121,934 ARHI cases and 591,699 controls from Iceland and the UK. We identified 21 novel sequence variants, of which 13 are rare, under either additive or recessive models. Of special interest are a missense variant in LOXHD1 (MAF = 1.96%) and a tandem duplication in FBF1 covering 4 exons (MAF = 0.22%) associating with ARHI (OR = 3.7 for homozygotes, P = 1.7 × 10-22 and OR = 4.2 for heterozygotes, P = 5.7 × 10-27, respectively). We constructed an ARHI genetic risk score (GRS) using common variants and showed that a common variant GRS can identify individuals at risk comparable to carriers of rare high penetrance variants. Furthermore, we found that ARHI and tinnitus share genetic causes. This study sheds a new light on the genetic architecture of ARHI, through several rare variants in both Mendelian deafness genes and genes not previously linked to hearing.
Collapse
Affiliation(s)
- Erna V Ivarsdottir
- deCODE Genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Hilma Holm
- deCODE Genetics/Amgen, Reykjavik, Iceland
| | | | | | | | | | | | - Gisli H Halldorsson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Kristjan E Hjorleifsson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Pall Melsted
- deCODE Genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | | | | | | | | | - Bjarni V Halldorsson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | - Hannes Petersen
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Akureyri Hospital, Akureyri, Iceland
| | - Gudmundur Thorgeirsson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Division of Cardiology, Department of Internal Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Ingileif Jonsdottir
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali University Hospital, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Reykjavik, Iceland.
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland.
| | - Kari Stefansson
- deCODE Genetics/Amgen, Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
9
|
Zaharija B, Samardžija B, Bradshaw NJ. The TRIOBP Isoforms and Their Distinct Roles in Actin Stabilization, Deafness, Mental Illness, and Cancer. Molecules 2020; 25:molecules25214967. [PMID: 33121024 PMCID: PMC7663296 DOI: 10.3390/molecules25214967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
The TRIOBP (TRIO and F-actin Binding Protein) gene encodes multiple proteins, which together play crucial roles in modulating the assembly of the actin cytoskeleton. Splicing of the TRIOBP gene is complex, with the two most studied TRIOBP protein isoforms sharing no overlapping amino acid sequence with each other. TRIOBP-1 (also known as TARA or TAP68) is a mainly structured protein that is ubiquitously expressed and binds to F-actin, preventing its depolymerization. It has been shown to be important for many processes including in the cell cycle, adhesion junctions, and neuronal differentiation. TRIOBP-1 has been implicated in schizophrenia through the formation of protein aggregates in the brain. In contrast, TRIOBP-4 is an entirely disordered protein with a highly specialized expression pattern. It is known to be crucial for the bundling of actin in the stereocilia of the inner ear, with mutations in it causing severe or profound hearing loss. Both of these isoforms are implicated in cancer. Additional longer isoforms of TRIOBP exist, which overlap with both TRIOBP-1 and 4. These appear to participate in the functions of both shorter isoforms, while also possessing unique functions in the inner ear. In this review, the structures and functions of all of these isoforms are discussed, with a view to understanding how they operate, both alone and in combination, to modulate actin and their consequences for human illness.
Collapse
|
10
|
Tekin AM, de Ceulaer G, Govaerts P, Bayazit Y, Wuyts W, Van de Heyning P, Topsakal V. A New Pathogenic Variant in the TRIOBP Associated with Profound Deafness Is Remediable with Cochlear Implantation. Audiol Neurootol 2020; 26:76-84. [PMID: 32877897 DOI: 10.1159/000508434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/05/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVES A rare type of nonsyndromic autosomal recessive hereditary hearing loss is caused by pathogenic mutations in the TRIOBP gene mostly involving exons 6 and 7. These mutations cause hearing loss originating from dysfunction of sensory inner ear hair cells. Of all the affected siblings, 2 brothers and 1 sister, part of an Afghan family, were referred to our clinic for diagnostic workup and candidacy selection for cochlear implantation (CI). METHODS Molecular analysis showed a homozygous c.1342C > T p. (Arg448*) pathogenic variant in exon 7 of the TRIOBP gene (reference sequence NM_001039141.2) in all 3 affected siblings. Clinical audiometry demonstrated profound sensorineural hearing loss in all 3 affected siblings (2 males and 1 female), and they were implanted unilaterally. RESULTS One month after activation, the pure-tone averages with the CI processor were between 30 and 23 dBHL. Ten months after the first activation of the implant, open-set speech audiometry test could be performed for the first time in the 2 younger CI recipients (S5 and S9), and they could identify up to a maximum 77% phonemes correctly. The oldest brother (S12) could not yet perform open-set speech audiometry at that moment. CONCLUSIONS Implant outcomes are better with normal inner ear anatomy in general. The earlier congenital patients are implanted, the better their outcomes. Here, we demonstrate both statements are true in a homozygous c.1342C > T p. (Arg448*) pathogenic variant in the TRIOBP gene in all 3 affected siblings.
Collapse
Affiliation(s)
- Ahmet M Tekin
- Department of Otolaryngology and Head and Neck Surgery, University of Medipol/Medipol University Hospital, Istanbul, Turkey
| | | | | | - Yıldırım Bayazit
- Department of Otolaryngology and Head and Neck Surgery, University of Medipol/Medipol University Hospital, Istanbul, Turkey
| | - Wim Wuyts
- Faculty of Medicine and Health Sciences, Center of Medical Genetics/University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Paul Van de Heyning
- Department of Otolaryngology and Head and Neck Surgery, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium.,Department of Translational Neurosciences, Faculty of Medicine and Health Sciences/University of Antwerp, Antwerp, Belgium
| | - Vedat Topsakal
- Department of Otolaryngology and Head and Neck Surgery, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium, .,Department of Translational Neurosciences, Faculty of Medicine and Health Sciences/University of Antwerp, Antwerp, Belgium,
| |
Collapse
|
11
|
Zhou B, Yu L, Wang Y, Shang W, Xie Y, Wang X, Han F. A novel mutation in TRIOBP gene leading to congenital deafness in a Chinese family. BMC MEDICAL GENETICS 2020; 21:121. [PMID: 32487028 PMCID: PMC7268695 DOI: 10.1186/s12881-020-01055-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/20/2020] [Indexed: 02/05/2023]
Abstract
Background The autosomal recessive non-syndromic deafness DFNB28 is characterized by prelingual sensorineural hearing loss. The disease is related with mutations in TRIOBP (Trio- and F-actin-Binding Protein) gene, which has three transcripts referred to as TRIOBP-5, TRIOBP − 4 and TRIOBP-1. Among them, TRIOBP-5/− 4 are expressed in the inner ears and crucial for maintaining the structure and function of the stereocilia. Methods The proband is a 26-year-old Chinese female. She and her younger brother have being suffered from severe deafness since birth, whereas her parents, who are cousins, have normal communication ability. Hearing impairment of the two siblings was determined by pure tone audiometry. Whole Exome Sequencing (WES) was performed on the genomic DNA of the proband and Sanger sequencing was conducted on the DNA samples of the four family members. Results Tests of pure tone hearing thresholds showed a severe to profound symmetric hearing loss for the proband and her younger brother. Moreover, a novel TRIOBP c.1342C > T (p.Arg448*) variant was identified by WES in the DNA sample of the proband and confirmed by Sanger sequencing in DNA of the family members. Conclusions The TRIOBP c.1342C > T (p.Arg448*) variant is predicted to disrupt TRIOBP-5 and TRIOBP-4, which may lead to the congenital deafness. The results will broaden the spectrum of pathogenic variants in TRIOBP gene. The characteristics of deafness in the family imply that marriage between close relatives should be avoided.
Collapse
Affiliation(s)
- Bingxin Zhou
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, P. R. China.,Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, P. R. China
| | - Lili Yu
- Reproductive Medicine Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Yan Wang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, P. R. China.,Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, P. R. China
| | - Wenjing Shang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, P. R. China.,Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, P. R. China
| | - Yi Xie
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, P. R. China.,Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, P. R. China
| | - Xiong Wang
- Reproductive Medicine Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China.
| | - Fengchan Han
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, P. R. China. .,Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, P. R. China.
| |
Collapse
|
12
|
Nagtegaal AP, Broer L, Zilhao NR, Jakobsdottir J, Bishop CE, Brumat M, Christiansen MW, Cocca M, Gao Y, Heard-Costa NL, Evans DS, Pankratz N, Pratt SR, Price TR, Spankovich C, Stimson MR, Valle K, Vuckovic D, Wells H, Eiriksdottir G, Fransen E, Ikram MA, Li CM, Longstreth WT, Steves C, Van Camp G, Correa A, Cruickshanks KJ, Gasparini P, Girotto G, Kaplan RC, Nalls M, Schweinfurth JM, Seshadri S, Sotoodehnia N, Tranah GJ, Uitterlinden AG, Wilson JG, Gudnason V, Hoffman HJ, Williams FMK, Goedegebure A. Genome-wide association meta-analysis identifies five novel loci for age-related hearing impairment. Sci Rep 2019; 9:15192. [PMID: 31645637 PMCID: PMC6811684 DOI: 10.1038/s41598-019-51630-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 10/04/2019] [Indexed: 12/23/2022] Open
Abstract
Previous research has shown that genes play a substantial role in determining a person's susceptibility to age-related hearing impairment. The existing studies on this subject have different results, which may be caused by difficulties in determining the phenotype or the limited number of participants involved. Here, we have gathered the largest sample to date (discovery n = 9,675; replication n = 10,963; validation n = 356,141), and examined phenotypes that represented low/mid and high frequency hearing loss on the pure tone audiogram. We identified 7 loci that were either replicated and/or validated, of which 5 loci are novel in hearing. Especially the ILDR1 gene is a high profile candidate, as it contains our top SNP, is a known hearing loss gene, has been linked to age-related hearing impairment before, and in addition is preferentially expressed within hair cells of the inner ear. By verifying all previously published SNPs, we can present a paper that combines all new and existing findings to date, giving a complete overview of the genetic architecture of age-related hearing impairment. This is of importance as age-related hearing impairment is highly prevalent in our ageing society and represents a large socio-economic burden.
Collapse
Affiliation(s)
- Andries Paul Nagtegaal
- Department of Otorhinolaryngology, Erasmus Medical Center, 3015 CE, Rotterdam, The Netherlands.
| | - Linda Broer
- Department of Internal Medicine, Erasm us Medical Center, 3015 CE, Rotterdam, The Netherlands
| | - Nuno R Zilhao
- Icelandic Heart Association, Holtasmari 1, Kopavogur, IS-201, Iceland
| | | | - Charles E Bishop
- Department of Otolaryngology and Communicative Sciences, The University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Marco Brumat
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Mark W Christiansen
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98195, USA
| | - Massimiliano Cocca
- Medical Genetics, Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Yan Gao
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | | | - Daniel S Evans
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, 94158, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sheila R Pratt
- Department of Communication Science & Disorders, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA
| | - T Ryan Price
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, 20892, USA
| | - Christopher Spankovich
- Department of Otolaryngology and Communicative Sciences, The University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Mary R Stimson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Karen Valle
- Jackson Heart Study, 350 W. Woodrow Wilson Blvd, Suite 701, Jackson, MS, 39213, USA
| | - Dragana Vuckovic
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Helena Wells
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | | | - Erik Fransen
- Center for Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, BE-2650, Edegem, Antwerp, Belgium
| | - Mohammad Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, 3015 CE, Rotterdam, The Netherlands
| | - Chuang-Ming Li
- Epidemiology and Statistics Program, Division of Scientific Programs, National Institute on Deafness and Other Communication Disorders (NIDCD) National Institutes of Health (NIH), Neuroscience Center Building, Suite 8300, 6001 Executive Blvd, Bethesda, MD, 20892, USA
| | - W T Longstreth
- Departments of Neurology and Epidemiology, University of Washington, Seattle, WA, 98195, USA
| | - Claire Steves
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Guy Van Camp
- Center for Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, BE-2650, Edegem, Antwerp, Belgium
| | - Adolfo Correa
- Jackson Heart Study, 350 W. Woodrow Wilson Blvd, Suite 701, Jackson, MS, 39213, USA
| | - Karen J Cruickshanks
- Departments of Ophthalmology and Visual Sciences and Population Health Sciences, University of Wisconsin, Madison, WI, 53726, USA
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Michael Nalls
- Data Tecnica International, Glen Echo, MD, 20812, USA
| | - John M Schweinfurth
- Department of Otolaryngology and Communicative Sciences, The University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health, San Antonio, 78229, TX, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98195, USA
| | - Gregory J Tranah
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, 94158, USA
| | - André G Uitterlinden
- Department of Internal Medicine, Erasm us Medical Center, 3015 CE, Rotterdam, The Netherlands
| | - James G Wilson
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | | | - Howard J Hoffman
- Epidemiology and Statistics Program, Division of Scientific Programs, National Institute on Deafness and Other Communication Disorders (NIDCD) National Institutes of Health (NIH), Neuroscience Center Building, Suite 8300, 6001 Executive Blvd, Bethesda, MD, 20892, USA
| | - Frances M K Williams
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - André Goedegebure
- Department of Otorhinolaryngology, Erasmus Medical Center, 3015 CE, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Katsuno T, Belyantseva IA, Cartagena-Rivera AX, Ohta K, Crump SM, Petralia RS, Ono K, Tona R, Imtiaz A, Rehman A, Kiyonari H, Kaneko M, Wang YX, Abe T, Ikeya M, Fenollar-Ferrer C, Riordan GP, Wilson EA, Fitzgerald TS, Segawa K, Omori K, Ito J, Frolenkov GI, Friedman TB, Kitajiri SI. TRIOBP-5 sculpts stereocilia rootlets and stiffens supporting cells enabling hearing. JCI Insight 2019; 4:128561. [PMID: 31217345 DOI: 10.1172/jci.insight.128561] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/08/2019] [Indexed: 01/19/2023] Open
Abstract
TRIOBP remodels the cytoskeleton by forming unusually dense F-actin bundles and is implicated in human cancer, schizophrenia, and deafness. Mutations ablating human and mouse TRIOBP-4 and TRIOBP-5 isoforms are associated with profound deafness, as inner ear mechanosensory hair cells degenerate after stereocilia rootlets fail to develop. However, the mechanisms regulating formation of stereocilia rootlets by each TRIOBP isoform remain unknown. Using 3 new Triobp mouse models, we report that TRIOBP-5 is essential for thickening bundles of F-actin in rootlets, establishing their mature dimensions and for stiffening supporting cells of the auditory sensory epithelium. The coiled-coil domains of this isoform are required for reinforcement and maintenance of stereocilia rootlets. A loss of TRIOBP-5 in mouse results in dysmorphic rootlets that are abnormally thin in the cuticular plate but have increased widths and lengths within stereocilia cores, and causes progressive deafness recapitulating the human phenotype. Our study extends the current understanding of TRIOBP isoform-specific functions necessary for life-long hearing, with implications for insight into other TRIOBPopathies.
Collapse
Affiliation(s)
- Tatsuya Katsuno
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Alexander X Cartagena-Rivera
- Section on Auditory Mechanics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Keisuke Ohta
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, Japan
| | - Shawn M Crump
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Kazuya Ono
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Risa Tona
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Ayesha Imtiaz
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Atteeq Rehman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, Riken Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, Riken Center for Biosystems Dynamics Research, Kobe, Japan
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, Riken Center for Biosystems Dynamics Research, Kobe, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA.,Laboratory of Molecular and Cellular Neurobiology, National Institute of Mental Health, NIH, Bethesda, Maryland, USA
| | - Gavin P Riordan
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Elisabeth A Wilson
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Tracy S Fitzgerald
- Mouse Auditory Testing Core Facility, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Kohei Segawa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Juichi Ito
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Shin-Ichiro Kitajiri
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
14
|
Wang H, Pardeshi LA, Rong X, Li E, Wong KH, Peng Y, Xu RH. Novel Variants Identified in Multiple Sclerosis Patients From Southern China. Front Neurol 2018; 9:582. [PMID: 30140248 PMCID: PMC6094994 DOI: 10.3389/fneur.2018.00582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Multiple sclerosis (MS) is an autoimmune and demyelinating disease. Genome-wide association studies have shown that MS is associated with many genetic variants in some human leucocyte antigen genes and other immune-related genes, however, those studies were mostly specific to Caucasian populations. We attempt to address whether the same associations are also true for Asian populations by conducting whole-exome sequencing on MS patients from southern China. Methods: Genomic DNA was extracted from the peripheral blood mononucleocytes of 8 MS patients and 26 healthy controls and followed by exome sequencing. Results: In total, 41,227 variants were found to have moderate to high impact on their protein products. After filtering per allele frequencies according to known database, 17 variants with the allele frequency <1% or variants with undetermined frequency were identified to be unreported and have significantly different frequencies between the MS patients and healthy controls. After validation via Sanger sequencing, one rare variant located in exon 7 of TRIOBP (Chr22: 37723520G>T, Ala322Ser, rs201693690) was found to be a novel missense variant. Conclusion: MS in southern China may have association with unique genetic variants, our data suggest TRIOBP as a potential novel risk gene.
Collapse
Affiliation(s)
- Hongxuan Wang
- Department of Neurology, Sun Yat-sen Memorial Hospital,Sun Yat-sen University, Guangzhou, China.,Faculty of Health Sciences, University of Macau, Taipa, Macau
| | | | - Xiaoming Rong
- Department of Neurology, Sun Yat-sen Memorial Hospital,Sun Yat-sen University, Guangzhou, China
| | - Enqin Li
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Ying Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital,Sun Yat-sen University, Guangzhou, China
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
15
|
Park S, Lee H, Kim M, Park J, Kim SH, Park J. Emerging roles of TRIO and F-actin-binding protein in human diseases. Cell Commun Signal 2018; 16:29. [PMID: 29890989 PMCID: PMC5996455 DOI: 10.1186/s12964-018-0237-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022] Open
Abstract
TRIO and F-actin-binding protein (TRIOBP) also referred to as Tara, was originally isolated as a cytoskeleton remodeling protein. TRIOBP-1 is important for regulating F-actin filament reorganization. TRIOBP variants are broadly classified as variant-1 or − 4 and do not share exons. TRIOBP variant-5 contains all exons. Earlier studies indicated that TRIOBP-4/5 mutation is a pivotal element of autosomal recessive nonsyndromic hearing loss. However, recent studies provide clues that TRIOBP variants are associated with other human diseases including cancer and brain diseases. In this review, recent functional studies focusing on TRIOBP variants and its possible disease models are described.
Collapse
Affiliation(s)
- Sungjin Park
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Hyunji Lee
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Minhee Kim
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Jisoo Park
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.
| | - Jongsun Park
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea. .,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
16
|
Jones DK, Johnson AC, Roti Roti EC, Liu F, Uelmen R, Ayers RA, Baczko I, Tester DJ, Ackerman MJ, Trudeau MC, Robertson GA. Localization and functional consequences of a direct interaction between TRIOBP-1 and hERG proteins in the heart. J Cell Sci 2018; 131:jcs.206730. [PMID: 29507111 DOI: 10.1242/jcs.206730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
Reduced levels of the cardiac human (h)ERG ion channel protein and the corresponding repolarizing current IKr can cause arrhythmia and sudden cardiac death, but the underlying cellular mechanisms controlling hERG surface expression are not well understood. Here, we identified TRIOBP-1, an F-actin-binding protein previously associated with actin polymerization, as a putative hERG-interacting protein in a yeast-two hybrid screen of a cardiac library. We corroborated this interaction by performing Förster resonance energy transfer (FRET) in HEK293 cells and co-immunoprecipitation in HEK293 cells and native cardiac tissue. TRIOBP-1 overexpression reduced hERG surface expression and current density, whereas reducing TRIOBP-1 expression via shRNA knockdown resulted in increased hERG protein levels. Immunolabeling in rat cardiomyocytes showed that native TRIOBP-1 colocalized predominantly with myosin-binding protein C and secondarily with rat ERG. In human stem cell-derived cardiomyocytes, TRIOBP-1 overexpression caused intracellular co-sequestration of hERG signal, reduced native IKr and disrupted action potential repolarization. Ca2+ currents were also somewhat reduced and cell capacitance was increased. These findings establish that TRIOBP-1 interacts directly with hERG and can affect protein levels, IKr magnitude and cardiac membrane excitability.
Collapse
Affiliation(s)
- David K Jones
- Department of Neuroscience, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison SMPH, 1111 Highland Ave. #5505, Madison, WI 53705, USA
| | - Ashley C Johnson
- Department of Physiology, University of Maryland School of Medicine, 660 W. Redwood St., Baltimore, MD 21201, USA
| | - Elon C Roti Roti
- Department of Neuroscience, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison SMPH, 1111 Highland Ave. #5505, Madison, WI 53705, USA
| | - Fang Liu
- Department of Neuroscience, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison SMPH, 1111 Highland Ave. #5505, Madison, WI 53705, USA
| | - Rebecca Uelmen
- Department of Neuroscience, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison SMPH, 1111 Highland Ave. #5505, Madison, WI 53705, USA
| | - Rebecca A Ayers
- Department of Neuroscience, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison SMPH, 1111 Highland Ave. #5505, Madison, WI 53705, USA
| | - Istvan Baczko
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged 6720, Hungary
| | - David J Tester
- Department of Cardiovascular Diseases, Division of Heart Rhythm Service, Mayo Clinic, Rochester, NY 55905, USA
| | - Michael J Ackerman
- Department of Cardiovascular Diseases, Division of Heart Rhythm Service, Mayo Clinic, Rochester, NY 55905, USA
| | - Matthew C Trudeau
- Department of Physiology, University of Maryland School of Medicine, 660 W. Redwood St., Baltimore, MD 21201, USA
| | - Gail A Robertson
- Department of Neuroscience, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison SMPH, 1111 Highland Ave. #5505, Madison, WI 53705, USA
| |
Collapse
|
17
|
Pollak A, Lechowicz U, Murcia Pieńkowski VA, Stawiński P, Kosińska J, Skarżyński H, Ołdak M, Płoski R. Whole exome sequencing identifies TRIOBP pathogenic variants as a cause of post-lingual bilateral moderate-to-severe sensorineural hearing loss. BMC MEDICAL GENETICS 2017; 18:142. [PMID: 29197352 PMCID: PMC5712175 DOI: 10.1186/s12881-017-0499-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022]
Abstract
Background Implementation of whole exome sequencing has provided unique opportunity for a wide screening of causative variants in genetically heterogeneous diseases, including nonsyndromic hearing impairment. TRIOBP in the inner ear is responsible for proper structure and function of stereocilia and is necessary for sound transduction. Methods Whole exome sequencing followed by Sanger sequencing was conducted on patients derived from Polish hearing loss family. Results Based on whole exome analysis, we identified two TRIOBP pathogenic variants (c.802_805delCAGG, p.Gln268Leufs*610 and c.5014G>T, p.Gly1672*, the first of which was novel) causative of nonsyndromic, peri- to postlingual, moderate-to-severe hearing loss in three siblings from a Polish family. Typically, TRIOBP pathogenic variants lead to prelingual, severe-to-profound hearing loss, thus the onset and degree of hearing impairment in our patients represent a distinct phenotypic manifestation caused by TRIOBP variants. The pathogenic variant p.Gln268Leufs*610 disrupts the TRIOBP-4 and TRIOBP-5 isoforms (both expressed exclusively in the inner ear and retina) whereas the second pathogenic variant c.514G>T, p.Gly1672* affects only TRIOBP-5. Conclusions The onset and degree of hearing impairment, characteristic for our patients, represent a unique phenotypic manifestation caused by TRIOBP pathogenic variants. Although TRIOBP alterations are not a frequent cause of hearing impairment, this gene should be thoroughly analyzed especially in patients with a postlingual hearing loss. A delayed onset of hearing impairment due to TRIOBP pathogenic variants creates a potential therapeutic window for future targeted therapies.
Collapse
Affiliation(s)
- Agnieszka Pollak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Mochnackiego 10, Warsaw, 02-042, Poland
| | - Urszula Lechowicz
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Mochnackiego 10, Warsaw, 02-042, Poland
| | - Victor Abel Murcia Pieńkowski
- Department of Medical Genetics, Warsaw Medical University, Pawinskiego 3c, Warsaw, 02-106, Poland.,Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| | - Piotr Stawiński
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Mochnackiego 10, Warsaw, 02-042, Poland
| | - Joanna Kosińska
- Department of Medical Genetics, Warsaw Medical University, Pawinskiego 3c, Warsaw, 02-106, Poland
| | - Henryk Skarżyński
- Oto-Rhino-Laryngology Surgery Clinic, Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Mochnackiego 10, Warsaw, 02-042, Poland.
| | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, Pawinskiego 3c, Warsaw, 02-106, Poland.
| |
Collapse
|