1
|
Glavin CC, Dhar S. The Ins and Outs of Distortion Product Otoacoustic Emission Growth: A Review. J Assoc Res Otolaryngol 2024:10.1007/s10162-024-00969-8. [PMID: 39592507 DOI: 10.1007/s10162-024-00969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Otoacoustic emissions (OAEs) are low-level signals generated from active processes related to outer hair cell transduction in the cochlea. In current clinical applications, OAEs are typically used to detect the presence or absence of hearing loss. However, their potential extends far beyond hearing screenings. Dr. Glenis Long realized this unfulfilled potential decades ago. She subsequently devoted a large portion of her storied scientific career to understanding OAEs and cochlear mechanics, particularly at the intersection of OAEs and perceptual measures. One specific application of OAEs that has yet to be translated from research laboratories to the clinic is using them to non-invasively characterize cochlear nonlinearity-a hallmark feature of a healthy cochlea-across a wide dynamic range. This can be done by measuring OAEs across input levels to obtain an OAE growth, or input-output (I/O), function. In this review, we describe distortion product OAE (DPOAE) growth and its relation to cochlear nonlinearity and mechanics. We then review biological and measurement factors that are known to influence OAE growth and finish with a discussion of potential applications. Throughout the review, we emphasize Dr. Long's many contributions to the field.
Collapse
Affiliation(s)
- Courtney Coburn Glavin
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Evanston, IL, 60208, USA.
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, 98105, USA.
| | - Sumitrajit Dhar
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Evanston, IL, 60208, USA
- Knowles Hearing Center, Evanston, IL, 60208, USA
| |
Collapse
|
2
|
Lee C, Shokrian M, Henry KS, Carney LH, Holt JC, Nam JH. Outer hair cells stir cochlear fluids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.607009. [PMID: 39149246 PMCID: PMC11326228 DOI: 10.1101/2024.08.07.607009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery. When outer-hair-cell motility was suppressed by salicylate, the facilitation effect was compromised. A low-frequency tone was more effective than broadband noise, especially for drug delivery to apical locations. Computational model simulations provided the physical basis for our observation, which incorporated solute diffusion, fluid advection, fluid-structure interaction, and outer-hair-cell motility. Active outer hair cells deformed the organ of Corti like a peristaltic tube to generate apically streaming flows along the tunnel of Corti and basally streaming flows along the scala tympani. Our measurements and simulations coherently suggest that active outer hair cells in the tail region of cochlear traveling waves drive cochlear fluid circulation.
Collapse
Affiliation(s)
- Choongheon Lee
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, United States
| | - Mohammad Shokrian
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, United States
| | - Kenneth S. Henry
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Laurel H. Carney
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
| | - Joseph C. Holt
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Jong-Hoon Nam
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| |
Collapse
|
3
|
Feng SJ, Voruz F, Leong S, Hammer DR, Breil E, Aksit A, Yu M, Chiriboga L, Olson ES, Kysar JW, Lalwani AK. Microneedle-Mediated Delivery of siRNA via Liposomal-Based Transfection for Inner Ear Gene Therapy. Otol Neurotol 2024; 45:1068-1077. [PMID: 39165134 DOI: 10.1097/mao.0000000000004297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
HYPOTHESIS Microneedle-mediated intracochlear injection of siRNA-Lipofectamine through the round window membrane (RWM) can be used to transfect cells within the cochlea. BACKGROUND Our laboratory has developed 100-μm diameter hollow microneedles for intracochlear injection through the guinea pig RWM. In this study, we test the feasibility of microneedle-mediated injection of siRNA and Lipofectamine, a commonly used reagent with known cellular toxicity, through the RWM for cochlear transfection. METHODS Fluorescently labeled scramble siRNA was diluted into Lipofectamine RNAiMax and OptiMEM. One microliter of 5 μM siRNA was injected through the RWM of Hartley guinea pigs at a rate of 1 μl/min (n = 22). In a control group, 1.0 μl of Lipofectamine, with no siRNA, was diluted into OptiMEM and injected in a similar fashion (n = 5). Hearing tests were performed before and either at 24 hours, 48 hours, or 5 days after injection. Afterward, animals were euthanized, and cochleae were harvested for imaging. Control cochleae were processed in parallel to untreated guinea pigs. RESULTS Fluorescence, indicating successful transfection, was observed within the basal and middle turns of the cochlea with limited distribution in the apex at 24 and 48 hours. Signal was most intense in the organ of Corti, spiral ligament, and spiral ganglion. Little to no fluorescence was observed at 5 days post-injection. No significant changes in auditory brainstem response (ABR) were noted post-perforation at 5 days, suggesting that siRNA-Lipofectamine at low doses does not cause cochlear toxicity. CONCLUSIONS Small volumes of siRNA and Lipofectamine can be effectively delivered to cochlear structures using microneedles, paving the way for atraumatic cochlear gene therapy.
Collapse
Affiliation(s)
| | - François Voruz
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, New York
| | | | - Daniella R Hammer
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Eugénie Breil
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, New York
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Michelle Yu
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, New York
| | - Lauren Chiriboga
- Department of Biomedical Engineering, Columbia University, New York, New York
| | | | - Jeffrey W Kysar
- Department of Mechanical Engineering, Columbia University, New York, New York
| | | |
Collapse
|
4
|
Lukashkin AN, Russell IJ, Rybdylova O. Local cochlear mechanical responses revealed through outer hair cell receptor potential measurements. Biophys J 2024; 123:3163-3175. [PMID: 39014895 PMCID: PMC11427782 DOI: 10.1016/j.bpj.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/26/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024] Open
Abstract
Sensory hair cells, including the sensorimotor outer hair cells, which enable the sensitive, sharply tuned responses of the mammalian cochlea, are excited by radial shear between the organ of Corti and the overlying tectorial membrane. It is not currently possible to measure directly in vivo mechanical responses in the narrow cleft between the tectorial membrane and organ of Corti over a wide range of stimulus frequencies and intensities. The mechanical responses can, however, be derived by measuring hair cell receptor potentials. We demonstrate that the seemingly complex frequency- and intensity-dependent behavior of outer hair cell receptor potentials could be qualitatively explained by a two degrees of freedom system with local cochlear partition and tectorial membrane resonances strongly coupled by the outer hair cell stereocilia. A local minimum in the receptor potential below the characteristic frequency should always be observed at a frequency where the tectorial membrane mechanical impedance is minimal, i.e., at the presumed tectorial membrane resonance frequency. The tectorial membrane resonance frequency might, however, shift with stimulus intensity in accordance with a shift in the maximum of the tectorial membrane radial mechanical responses to lower frequencies, as observed in experiments.
Collapse
Affiliation(s)
- Andrei N Lukashkin
- Sensory Neuroscience Research Group, School of Applied Science, University of Brighton, Brighton, United Kingdom.
| | - Ian J Russell
- Sensory Neuroscience Research Group, School of Applied Science, University of Brighton, Brighton, United Kingdom
| | - Oyuna Rybdylova
- Advanced Engineering Centre, School of Architecture, Technology and Engineering, University of Brighton, Brighton, United Kingdom.
| |
Collapse
|
5
|
Goodman SS, Lefler SM, Lee C, Guinan JJ, Lichtenhan JT. The Origin Along the Cochlea of Otoacoustic Emissions Evoked by Mid-Frequency Tone Pips. J Assoc Res Otolaryngol 2024; 25:363-376. [PMID: 38937327 PMCID: PMC11349973 DOI: 10.1007/s10162-024-00955-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
PURPOSE Tone-pip-evoked otoacoustic emissions (PEOAEs) are transient-evoked otoacoustic emissions (OAEs) that are hypothesized to originate from reflection of energy near the best-frequency (BF) cochlear place of the stimulus frequency. However, individual PEOAEs have energy with a wide range of delays. We sought to determine whether some PEOAE energy is consistent with having been generated far from BF. METHODS PEOAEs from 35 and 47 dB SPL tone pips were obtained by removing pip-stimulus energy by subtracting the ear-canal sound pressure from scaled-down 59 dB SPL tone pips (which evoke relatively small OAEs). PEOAE delays were measured at each peak in the PEOAE absolute-value waveforms. While measuring PEOAEs and auditory-nerve compound action potentials (CAPs), amplification was blocked sequentially from apex to base by cochlear salicylate perfusion. The perfusion time when a CAP was reduced identified when the perfusion reached the tone-pip BF place. The perfusion times when each PEOAE peak was reduced identified where along the cochlea it received cochlear amplification. PEOAEs and CAPs were measured simultaneously using one pip frequency in each ear (1.4 to 4 kHz across 16 ears). RESULTS Most PEOAE peaks received amplification primarily between the BF place and 1-2 octaves basal of the BF place. PEOAE peaks with short delays received amplification basal of BF place. PEOAE peaks with longer delays sometimes received amplification apical of BF place, consistent with previous stimulus-frequency-OAE results. CONCLUSION PEOAEs provide information about cochlear amplification primarily within ~ 1.5 octave of the tone-pip BF place, not about regions > 3 octaves basal of BF.
Collapse
Affiliation(s)
- Shawn S Goodman
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, Iowa, USA
| | - Shannon M Lefler
- Department of Otolaryngology, Washington University School of Medicine in St. Louis, Saint Louis, MO, USA
| | - Choongheon Lee
- Department of Otolaryngology, University of Rochester, Rochester, NY, USA
| | - John J Guinan
- Massachusetts Eye and Ear, Eaton-Peabody Laboratories, Boston, MA, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA
| | - Jeffery T Lichtenhan
- Department of Otolaryngology, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
6
|
Ikäheimo K, Leinonen S, Lankinen T, Lindahl M, Saarma M, Pirvola U. Stereocilia fusion pathology in the cochlear outer hair cells at the nanoscale level. J Physiol 2024; 602:3995-4025. [PMID: 39037943 DOI: 10.1113/jp286318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024] Open
Abstract
The hair bundle of cochlear hair cells comprises specialized microvilli, the stereocilia, which fulfil the role of mechanotransduction. Genetic defects and environmental noise challenge the maintenance of hair bundle structure, critically contributing to age-related hearing loss. Stereocilia fusion is a major component of the hair bundle pathology in mature hair cells, but its role in hearing loss and its molecular basis are poorly understood. Here, we utilized super-resolution expansion microscopy to examine the molecular anatomy of outer hair cell stereocilia fusion in mouse models of age-related hearing loss, heightened endoplasmic reticulum stress and prolonged noise exposure. Prominent stereocilia fusion in our model of heightened endoplasmic reticulum stress, Manf (Mesencephalic astrocyte-derived neurotrophic factor)-inactivated mice in a background with Cadherin 23 missense mutation, impaired mechanotransduction and calcium balance in stereocilia. This was indicated by reduced FM1-43 dye uptake through the mechanotransduction channels, reduced neuroplastin/PMCA2 expression and increased expression of the calcium buffer oncomodulin inside stereocilia. Sparse BAIAP2L2 and myosin 7a expression was retained in the fused stereocilia but mislocalized away from their functional sites at the tips. These hair bundle abnormalities preceded cell soma degeneration, suggesting a sequela from stereociliary molecular perturbations to cell death signalling. In the age-related hearing loss and noise-exposure models, stereocilia fusion was more restricted within the bundles, yet both models exhibited oncomodulin upregulation at the fusion sites, implying perturbed calcium homeostasis. We conclude that stereocilia fusion is linked with the failure to maintain cellular proteostasis and with disturbances in stereociliary calcium balance. KEY POINTS: Stereocilia fusion is a hair cell pathology causing hearing loss. Inactivation of Manf, a component of the endoplasmic reticulum proteostasis machinery, has a cell-intrinsic mode of action in triggering outer hair cell stereocilia fusion and the death of these cells. The genetic background with Cadherin 23 missense mutation contributes to the high susceptibility of outer hair cells to stereocilia fusion, evidenced in Manf-inactivated mice and in the mouse models of early-onset hearing loss and noise exposure. Endoplasmic reticulum stress feeds to outer hair cell stereocilia bundle pathology and impairs the molecular anatomy of calcium regulation. The maintenance of the outer hair cell stereocilia bundle cohesion is challenged by intrinsic and extrinsic stressors, and understanding the underlying mechanisms will probably benefit the development of interventions to promote hearing health.
Collapse
Affiliation(s)
- Kuu Ikäheimo
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Saija Leinonen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Tuuli Lankinen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Maria Lindahl
- Institute of Biotechnology, HILIFE Unit, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, HILIFE Unit, University of Helsinki, Helsinki, Finland
| | - Ulla Pirvola
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Horii K, Ogawa B, Nagase N, Morimoto I, Abe C, Ogawa T, Choi S, Nin F. The cochlear hook region detects harmonics beyond the canonical hearing range. PNAS NEXUS 2024; 3:pgae280. [PMID: 39055687 PMCID: PMC11272074 DOI: 10.1093/pnasnexus/pgae280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Ultrasound, or sound at frequencies exceeding the conventional range of human hearing, is not only audible to mice, microbats, and dolphins, but also creates an auditory sensation when delivered through bone conduction in humans. Although ultrasound is utilized for brain activation and in hearing aids, the physiological mechanism of ultrasonic hearing remains unknown. In guinea pigs, we found that ultrasound above the hearing range delivered through ossicles of the middle ear evokes an auditory brainstem response and a mechano-electrical transduction current through hair cells, as shown by the local field potential called the cochlear microphonic potential (CM). The CM synchronizes with ultrasound, and like the response to audible sounds is actively and nonlinearly amplified. In vivo optical nano-vibration analysis revealed that the sensory epithelium in the hook region, the basal extreme of the cochlear turns, resonates in response both to ultrasound within the hearing range and to harmonics beyond the hearing range. The results indicate that hair cells can respond to stimulation at the optimal frequency and its harmonics, and the hook region detects ultrasound stimuli with frequencies more than two octaves higher than the upper limit of the ordinary hearing range.
Collapse
Affiliation(s)
- Kazuhiro Horii
- Division of Biological Principles, Department of Physiology and Biophysics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Bakushi Ogawa
- Division of Biological Principles, Department of Physiology and Biophysics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
- Division of Sensorimotor Medicine, Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Noriko Nagase
- Division of Biological Principles, Department of Physiology and Biophysics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
- Division of Sensorimotor Medicine, Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Iori Morimoto
- Division of Biological Principles, Department of Physiology and Biophysics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Chikara Abe
- Division of Biological Principles, Department of Physiology and Biophysics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takenori Ogawa
- Division of Sensorimotor Medicine, Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Samuel Choi
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi, Nishi-ku, Niigata, 950-2181, Japan
| | - Fumiaki Nin
- Division of Biological Principles, Department of Physiology and Biophysics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
8
|
Strimbu CE, Chiriboga LA, Frost BL, Olson ES. Regional differences in cochlear nonlinearity across the basal organ of Corti of gerbil: Regional differences in cochlear nonlinearity. Hear Res 2024; 443:108951. [PMID: 38277880 PMCID: PMC10922790 DOI: 10.1016/j.heares.2024.108951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Auditory sensation is based in nanoscale vibration of the sensory tissue of the cochlea, the organ of Corti complex (OCC). Motion within the OCC is now observable due to optical coherence tomography. In a previous study (Cooper et al., 2018), the region that includes the electro-motile outer hair cells (OHC) and Deiters cells (DC) was observed to move with larger amplitude than the basilar membrane (BM) and surrounding regions and was termed the "hotspot." In addition to this quantitative distinction, the hotspot moved qualitatively differently than the BM, in that its motion scaled nonlinearly with stimulus level at all frequencies, evincing sub-BF activity. Sub-BF activity enhances non-BF motion; thus the frequency tuning of the OHC/DC region was reduced relative to the BM. In this work we further explore the motion of the gerbil basal OCC and find that regions that lack significant sub-BF activity include the BM, the medial and lateral OCC, and the reticular lamina (RL) region. The observation that the RL region does not move actively sub-BF (already observed in Cho and Puria 2022), suggests that hair cell stereocilia are not exposed to sub-BF activity in the cochlear base. The observation that the lateral and RL regions move approximately linearly sub-BF indicates that linear forces dominate non-linear OHC-based forces on these components at sub-BF frequencies. A complex difference analysis was performed to reveal the internal motion of the OHC/DC region and showed that amplitude structure and phase shifts in the directly measured OHC/DC motion emerge due to the internal OHC/DC motion destructively interfering with BM motion.
Collapse
Affiliation(s)
- C Elliott Strimbu
- Department of Otolaryngology, Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 630 West 168th Street, New York City, NY 10032, USA
| | - Lauren A Chiriboga
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York City, NY 10027, USA
| | - Brian L Frost
- Department of Electrical Engineering, Columbia University, 500 West 120th Street, New York City, NY 10027, USA
| | - Elizabeth S Olson
- Department of Otolaryngology, Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 630 West 168th Street, New York City, NY 10032, USA; Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York City, NY 10027, USA.
| |
Collapse
|
9
|
Lazzeri G, Biagioni F, Ferrucci M, Puglisi-Allegra S, Lenzi P, Busceti CL, Giannessi F, Fornai F. The Relevance of Autophagy within Inner Ear in Baseline Conditions and Tinnitus-Related Syndromes. Int J Mol Sci 2023; 24:16664. [PMID: 38068993 PMCID: PMC10706730 DOI: 10.3390/ijms242316664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Tinnitus is the perception of noise in the absence of acoustic stimulation (phantom noise). In most patients suffering from chronic peripheral tinnitus, an alteration of outer hair cells (OHC) starting from the stereocilia (SC) occurs. This is common following ototoxic drugs, sound-induced ototoxicity, and acoustic degeneration. In all these conditions, altered coupling between the tectorial membrane (TM) and OHC SC is described. The present review analyzes the complex interactions involving OHC and TM. These need to be clarified to understand which mechanisms may underlie the onset of tinnitus and why the neuropathology of chronic degenerative tinnitus is similar, independent of early triggers. In fact, the fine neuropathology of tinnitus features altered mechanisms of mechanic-electrical transduction (MET) at the level of OHC SC. The appropriate coupling between OHC SC and TM strongly depends on autophagy. The involvement of autophagy may encompass degenerative and genetic tinnitus, as well as ototoxic drugs and acoustic trauma. Defective autophagy explains mitochondrial alterations and altered protein handling within OHC and TM. This is relevant for developing novel treatments that stimulate autophagy without carrying the burden of severe side effects. Specific phytochemicals, such as curcumin and berberin, acting as autophagy activators, may mitigate the neuropathology of tinnitus.
Collapse
Affiliation(s)
- Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
| | - Francesca Biagioni
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzilli, IS, Italy; (F.B.); (S.P.-A.); (C.L.B.)
| | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
| | - Stefano Puglisi-Allegra
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzilli, IS, Italy; (F.B.); (S.P.-A.); (C.L.B.)
| | - Paola Lenzi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
| | - Carla Letizia Busceti
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzilli, IS, Italy; (F.B.); (S.P.-A.); (C.L.B.)
| | - Francesco Giannessi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzilli, IS, Italy; (F.B.); (S.P.-A.); (C.L.B.)
| |
Collapse
|
10
|
Frost BL, Janjušević NP, Strimbu CE, Hendon CP. Compressed sensing on displacement signals measured with optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:5539-5554. [PMID: 38021133 PMCID: PMC10659783 DOI: 10.1364/boe.503168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023]
Abstract
Optical coherence tomography (OCT) is capable of angstrom-scale vibrometry of particular interest to researchers of auditory mechanics. We develop a method for compressed sensing vibrometry using OCT that significantly reduces acquisition time for dense motion maps. Our method, based on total generalized variation with uniform subsampling, can reduce the number of samples needed to measure motion maps by a factor of ten with less than 5% normalized mean square error when tested on a diverse set of in vivo measurements from the gerbil cochlea. This opens up the possibility for more complex in vivo experiments for cochlear mechanics.
Collapse
Affiliation(s)
- Brian L. Frost
- Department of Electrical Engineering, Columbia University, 500 W. 120th St., Mudd 1310, New York, NY 10027,
USA
| | - Nikola P. Janjušević
- New York University, Tandon School of
Engineering, Electrical and Computer
Engineering, 370 Jay St, Brooklyn, NY 11201, USA
| | - C. Elliott Strimbu
- Columbia
University, Department of Otolaryngology, 630 West 168th
Street, New York, NY 10032, USA
| | - Christine P. Hendon
- Department of Electrical Engineering, Columbia University, 500 W. 120th St., Mudd 1310, New York, NY 10027,
USA
| |
Collapse
|
11
|
Altoè A, Charaziak KK. Intracochlear overdrive: Characterizing nonlinear wave amplification in the mouse apex. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:3414-3428. [PMID: 38015028 PMCID: PMC10686682 DOI: 10.1121/10.0022446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
In this study, we explore nonlinear cochlear amplification by analyzing basilar membrane (BM) motion in the mouse apex. Through in vivo, postmortem, and mechanical suppression recordings, we estimate how the cochlear amplifier nonlinearly shapes the wavenumber of the BM traveling wave, specifically within a frequency range where the short-wave approximation holds. Our findings demonstrate that a straightforward mathematical model, depicting the cochlear amplifier as a wavenumber modifier with strength diminishing monotonically as BM displacement increases, effectively accounts for the various experimental observations. This empirically derived model is subsequently incorporated into a physics-based "overturned" framework of cochlear amplification [see Altoè, Dewey, Charaziak, Oghalai, and Shera (2022), J. Acoust. Soc. Am. 152, 2227-2239] and tested against additional experimental data. Our results demonstrate that the relationships established within the short-wave region remain valid over a much broader frequency range. Furthermore, the model, now exclusively calibrated to BM data, predicts the behavior of the opposing side of the cochlear partition, aligning well with recent experimental observations. The success in reproducing key features of the experimental data and the mathematical simplicity of the resulting model provide strong support for the "overturned" theory of cochlear amplification.
Collapse
Affiliation(s)
- Alessandro Altoè
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, California 90007, USA
| | - Karolina K Charaziak
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, California 90007, USA
| |
Collapse
|
12
|
Strimbu CE, Chiriboga LA, Frost BL, Olson ES. A frame and a hotspot in cochlear mechanics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547111. [PMID: 37873430 PMCID: PMC10592637 DOI: 10.1101/2023.06.29.547111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Auditory sensation is based in nanoscale vibration of the sensory tissue of the cochlea, the organ of Corti complex (OCC). Motion within the OCC is now observable due to optical coherence tomography. In the cochlear base, in response to sound stimulation, the region that includes the electro-motile outer hair cells (OHC) was observed to move with larger amplitude than the basilar membrane (BM) and surrounding regions. The intense motion is based in active cell mechanics, and the region was termed the "hotspot" (Cooper et al., 2018, Nature comm). In addition to this quantitative distinction, the hotspot moved qualitatively differently than the BM, in that its motion scaled nonlinearly with stimulus level at all frequencies, evincing sub-BF activity. Sub-BF activity enhances non-BF motion; thus the frequency tuning of the hotspot was reduced relative to the BM. Regions that did not exhibit sub-BF activity are here defined as the OCC "frame". By this definition the frame includes the BM, the medial and lateral OCC, and most significantly, the reticular lamina (RL). The frame concept groups the majority OCC as a structure that is largely shielded from sub-BF activity. This shielding, and how it is achieved, are key to the active frequency tuning of the cochlea. The observation that the RL does not move actively sub-BF indicates that hair cell stereocilia are not exposed to sub-BF activity. A complex difference analysis reveals the motion of the hotspot relative to the frame.
Collapse
|
13
|
Ashmore JF, Oghalai JS, Dewey JB, Olson ES, Strimbu CE, Wang Y, Shera CA, Altoè A, Abdala C, Elgoyhen AB, Eatock RA, Raphael RM. The Remarkable Outer Hair Cell: Proceedings of a Symposium in Honour of W. E. Brownell. J Assoc Res Otolaryngol 2023; 24:117-127. [PMID: 36648734 PMCID: PMC10121982 DOI: 10.1007/s10162-022-00852-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/02/2022] [Indexed: 01/18/2023] Open
Abstract
In 1985, Bill Brownell and colleagues published the remarkable observation that cochlear outer hair cells (OHCs) express voltage-driven mechanical motion: electromotility. They proposed OHC electromotility as the mechanism for the elusive "cochlear amplifier" required to explain the sensitivity of mammalian hearing. The finding and hypothesis stimulated an explosion of experiments that have transformed our understanding of cochlear mechanics and physiology, the evolution of hair cell structure and function, and audiology. Here, we bring together examples of current research that illustrate the continuing impact of the discovery of OHC electromotility.
Collapse
Affiliation(s)
| | - John S Oghalai
- Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, USA
| | - James B Dewey
- Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, USA
| | - Elizabeth S Olson
- Department of Otolaryngology Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York City, USA
| | - Clark E Strimbu
- Department of Otolaryngology Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York City, USA
| | - Yi Wang
- Department of Otolaryngology Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York City, USA
| | - Christopher A Shera
- Caruso Department of Otolaryngology and Department of Physics and Astronomy, University of Southern California, Los Angeles, USA
| | - Alessandro Altoè
- Caruso Department of Otolaryngology and Department of Physics and Astronomy, University of Southern California, Los Angeles, USA
| | - Carolina Abdala
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, USA
| | - Ana B Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | | |
Collapse
|
14
|
Altoè A, Shera CA. The Long Outer-Hair-Cell RC Time Constant: A Feature, Not a Bug, of the Mammalian Cochlea. J Assoc Res Otolaryngol 2023; 24:129-145. [PMID: 36725778 PMCID: PMC10121995 DOI: 10.1007/s10162-022-00884-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/23/2022] [Indexed: 02/03/2023] Open
Abstract
The cochlea of the mammalian inner ear includes an active, hydromechanical amplifier thought to arise via the piezoelectric action of the outer hair cells (OHCs). A classic problem of cochlear biophysics is that the RC (resistance-capacitance) time constant of the hair-cell membrane appears inconveniently long, producing an effective cut-off frequency much lower than that of most audible sounds. The long RC time constant implies that the OHC receptor potential-and hence its electromotile response-decreases by roughly two orders of magnitude over the frequency range of mammalian hearing, casting doubt on the hypothesized role of cycle-by-cycle OHC-based amplification in mammalian hearing. Here, we review published data and basic physics to show that the "RC problem" has been magnified by viewing it through the wrong lens. Our analysis finds no appreciable mismatch between the expected magnitude of high-frequency electromotility and the sound-evoked displacements of the organ of Corti. Rather than precluding significant OHC-based boosts to auditory sensitivity, the long RC time constant appears beneficial for hearing, reducing the effects of internal noise and distortion while increasing the fidelity of cochlear amplification.
Collapse
Affiliation(s)
- Alessandro Altoè
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, USA.
| | - Christopher A Shera
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, USA.
- Department of Physics & Astronomy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Samaras G, Wen H, Meaud J. Broad nonlinearity in reticular lamina vibrations requires compliant organ of Corti structures. Biophys J 2023; 122:880-891. [PMID: 36709411 PMCID: PMC10027437 DOI: 10.1016/j.bpj.2023.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023] Open
Abstract
In the mammalian cochlea, each longitudinal position of the basilar membrane (BM) has a nonlinear vibratory response in a limited frequency range around the location-dependent frequency of maximum response, known as the best frequency (BF). This nonlinear response arises from the electromechanical feedback from outer hair cells (OHCs). However, recent in vivo measurements have demonstrated that the mechanical response of other organ of Corti (OoC) structures, such as the reticular lamina (RL), and the electrical response of OHCs (measured in the local cochlear microphonic [LCM]) are nonlinear even at frequencies significantly below BF. In this work, a physiologically motivated model of the gerbil cochlea is used to demonstrate that the source of this discrepancy between the frequency range of the BM, RL, and LCM nonlinearities is greater compliance in the structures at the top of the OHCs. The predicted responses of the BM, RL, and LCM to pure tone and two-tone stimuli are shown to be in line with experimental evidence. Simulations then demonstrate that the sub-BF nonlinearity in the RL requires the structures at the top of the OHCs to be significantly more compliant than the BM. This same condition is also necessary for "optimal" gain near BF, i.e., high amplification that is in line with the experiment. This demonstrates that the conditions for OHCs to operate optimally at BF inevitably yield nonlinearity of the RL response over a broad frequency range.
Collapse
Affiliation(s)
- George Samaras
- G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Haiqi Wen
- G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Julien Meaud
- G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia; Petit Institute for Biosciences and Bioengineering, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
16
|
Leong S, Aksit A, Szeto B, Feng SJ, Ji X, Soni RK, Olson ES, Kysar JW, Lalwani AK. Anatomic, Physiologic, and Proteomic Consequences of Repeated Microneedle-Mediated Perforations of the Round Window Membrane. Hear Res 2023; 432:108739. [PMID: 36966687 DOI: 10.1016/j.heares.2023.108739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/20/2023] [Accepted: 03/12/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND We have developed 3D-printed microneedle technology for diagnostic aspiration of perilymph and intracochlear delivery of therapeutic agents. Single microneedle-mediated round window membrane (RWM) perforation does not cause hearing loss, heals within 48-72 h, and yields sufficient perilymph for proteomic analysis. In this study, we investigate the anatomic, physiologic, and proteomic consequences of repeated microneedle-mediated perforations of the same RWM at different timepoints. METHODS 100-μm-diameter hollow microneedles were fabricated using two-photon polymerization (2PP) lithography. The tympanic bullae of Hartley guinea pigs (n = 8) were opened with adequate exposure of the RWM. Distortion product otoacoustic emissions (DPOAE) and compound action potential (CAP) were recorded to assess hearing. The hollow microneedle was introduced into the bulla and the RWM was perforated; 1 μL of perilymph was aspirated from the cochlea over the course of 45 s. 72 h later, the above procedure was repeated with aspiration of an additional 1 μL of perilymph. 72 h after the second perforation, RWMs were harvested for confocal imaging. Perilymph proteomic analysis was completed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS Two perforations and aspirations were performed in 8 guinea pigs. In six, CAP, DPOAE, and proteomic analysis were obtained; in one, only CAP and DPOAE results were obtained; and in one, only proteomics results were obtained. Hearing tests demonstrated mild hearing loss at 1-4 kHz and 28 kHz, most consistent with conductive hearing loss. Confocal microscopy demonstrated complete healing of all perforations with full reconstitution of the RWM. Perilymph proteomic analysis identified 1855 proteins across 14 samples. The inner ear protein cochlin was observed in all samples, indicating successful aspiration of perilymph. Non-adjusted paired t-tests with p < 0.01 revealed significant changes in 13 of 1855 identified proteins (0.7%) between the first and second aspirations. CONCLUSIONS We demonstrate that repeated microneedle perforation of the RWM is feasible, allows for complete healing of the RWM, and minimally changes the proteomic expression profile. Thus, microneedle-mediated repeated aspirations in a single animal can be used to monitor the response to inner ear treatments over time.
Collapse
|
17
|
Puria S, Guinan JJ. The Rhode non-linearity and its impact on cochlear mechanics. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:R3. [PMID: 36859158 PMCID: PMC10836960 DOI: 10.1121/10.0017073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 06/18/2023]
Abstract
The Reflections series takes a look back on historical articles from The Journal of the Acoustical Society of America that have had a significant impact on the science and practice of acoustics.
Collapse
Affiliation(s)
- Sunil Puria
- Mass Eye and Ear, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
18
|
Frost BL, Strimbu CE, Olson ES. Reconstruction of transverse-longitudinal vibrations in the organ of Corti complex via optical coherence tomography. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:1347. [PMID: 36859114 PMCID: PMC9957605 DOI: 10.1121/10.0017345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 05/06/2023]
Abstract
Optical coherence tomography (OCT) is a common modality for measuring vibrations within the organ of Corti complex (OCC) in vivo. OCT's uniaxial nature leads to limitations that complicate the interpretation of data from cochlear mechanics experiments. The relationship between the optical axis (axis of motion measurement) and anatomically relevant axes in the cochlea varies across experiments, and generally is not known. This leads to characteristically different motion measurements taken from the same structure at different orientations. We present a method that can reconstruct two-dimensional (2-D) motion of intra-OCC structures in the cochlea's longitudinal-transverse plane. The method requires only a single, unmodified OCT system, and does not require any prior knowledge of precise structural locations or measurement angles. It uses the cochlea's traveling wave to register points between measurements taken at multiple viewing angles. We use this method to reconstruct 2-D motion at the outer hair cell/Deiters cell junction in the gerbil base, and show that reconstructed transverse motion resembles directly measured transverse motion, thus validating the method. The technique clarifies the interpretation of OCT measurements, enhancing their utility in probing the micromechanics of the cochlea.
Collapse
Affiliation(s)
- Brian L Frost
- Department of Electrical Engineering, Columbia University, 500 West 120th Street, Mudd 1310, New York, New York 10027, USA
| | - Clark Elliott Strimbu
- Department of Otolaryngology Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, New York 10032, USA
| | - Elizabeth S Olson
- Department of Otolaryngology Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, New York 10032, USA
| |
Collapse
|
19
|
Guinan JJ. Cochlear amplification in the short-wave region by outer hair cells changing organ-of-Corti area to amplify the fluid traveling wave. Hear Res 2022. [DOI: 10.1016/j.heares.2022.108641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
The reticular lamina and basilar membrane vibrations in the transverse direction in the basal turn of the living gerbil cochlea. Sci Rep 2022; 12:19810. [PMID: 36396720 PMCID: PMC9671912 DOI: 10.1038/s41598-022-24394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
The prevailing theory of cochlear function states that outer hair cells amplify sound-induced vibration to improve hearing sensitivity and frequency specificity. Recent micromechanical measurements in the basal turn of gerbil cochleae through the round window have demonstrated that the reticular lamina vibration lags the basilar membrane vibration, and it is physiologically vulnerable not only at the best frequency but also at the low frequencies. These results suggest that outer hair cells from a broad cochlear region enhance hearing sensitivity through a global hydromechanical mechanism. However, the time difference between the reticular lamina and basilar membrane vibration has been thought to result from a systematic measurement error caused by the optical axis non-perpendicular to the cochlear partition. To address this concern, we measured the reticular lamina and basilar membrane vibrations in the transverse direction through an opening in the cochlear lateral wall in this study. Present results show that the phase difference between the reticular lamina and basilar membrane vibration decreases with frequency by ~ 180 degrees from low frequencies to the best frequency, consistent with those measured through the round window. Together with the round-window measurement, the low-coherence interferometry through the cochlear lateral wall demonstrates that the time difference between the reticular lamina and basilar membrane vibration results from the cochlear active processing rather than a measurement error.
Collapse
|
21
|
Cho NH, Puria S. Cochlear motion across the reticular lamina implies that it is not a stiff plate. Sci Rep 2022; 12:18715. [PMID: 36333415 PMCID: PMC9636238 DOI: 10.1038/s41598-022-23525-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Within the cochlea, the basilar membrane (BM) is coupled to the reticular lamina (RL) through three rows of piezo-like outer hair cells (OHCs) and supporting cells that endow mammals with sensitive hearing. Anatomical differences across OHC rows suggest differences in their motion. Using optical coherence tomography, we measured in vivo and postmortem displacements through the gerbil round-window membrane from approximately the 40-47 kHz best-frequency (BF) regions. Our high spatial resolution allowed measurements across the RL surface at the tops of the three rows of individual OHCs and their bottoms, and across the BM. RL motion varied radially; the third-row gain was more than 3 times greater than that of the first row near BF, whereas the OHC-bottom motions remained similar. This implies that the RL mosaic, comprised of OHC and phalangeal-process tops joined together by adhesion molecules, is much more flexible than the Deiters' cells connected to the OHCs at their bottom surfaces. Postmortem, the measured points moved together approximately in phase. These imply that in vivo, the RL does not move as a stiff plate hinging around the pillar-cell heads near the first row as has been assumed, but that its mosaic-like structure may instead bend and/or stretch.
Collapse
Affiliation(s)
- Nam Hyun Cho
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02114, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
| | - Sunil Puria
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02114, USA.
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA.
- Speech and Hearing Bioscience and Technology Program, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
22
|
Altoè A, Dewey JB, Charaziak KK, Oghalai JS, Shera CA. Overturning the mechanisms of cochlear amplification via area deformations of the organ of Corti. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:2227. [PMID: 36319240 PMCID: PMC9578757 DOI: 10.1121/10.0014794] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/17/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The mammalian ear embeds a cellular amplifier that boosts sound-induced hydromechanical waves as they propagate along the cochlea. The operation of this amplifier is not fully understood and is difficult to disentangle experimentally. In the prevailing view, cochlear waves are amplified by the piezo-electric action of the outer hair cells (OHCs), whose cycle-by-cycle elongations and contractions inject power into the local motion of the basilar membrane (BM). Concomitant deformations of the opposing (or "top") side of the organ of Corti are assumed to play a minor role and are generally neglected. However, analysis of intracochlear motions obtained using optical coherence tomography calls this prevailing view into question. In particular, the analysis suggests that (i) the net local power transfer from the OHCs to the BM is either negative or highly inefficient; and (ii) vibration of the top side of the organ of Corti plays a primary role in traveling-wave amplification. A phenomenological model derived from these observations manifests realistic cochlear responses and suggests that amplification arises almost entirely from OHC-induced deformations of the top side of the organ of Corti. In effect, the model turns classic assumptions about spatial impedance relations and power-flow direction within the sensory epithelium upside down.
Collapse
Affiliation(s)
- Alessandro Altoè
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, California 90033, USA
| | - James B Dewey
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, California 90033, USA
| | - Karolina K Charaziak
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, California 90033, USA
| | - John S Oghalai
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, California 90033, USA
| | - Christopher A Shera
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
23
|
Meenderink SWF, Lin X, Park BH, Dong W. Sound Induced Vibrations Deform the Organ of Corti Complex in the Low-Frequency Apical Region of the Gerbil Cochlea for Normal Hearing : Sound Induced Vibrations Deform the Organ of Corti Complex. J Assoc Res Otolaryngol 2022; 23:579-591. [PMID: 35798901 PMCID: PMC9613840 DOI: 10.1007/s10162-022-00856-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022] Open
Abstract
Human speech primarily contains low frequencies. It is well established that such frequencies maximally excite the cochlea near its apex. But, the micromechanics that precede and are involved in this transduction are not well understood. We measured vibrations from the low-frequency, second turn in intact gerbil cochleae using optical coherence tomography (OCT). The data were used to create spatial maps that detail the sound-evoked motions across the sensory organ of Corti complex (OCC). These maps were remarkably similar across animals and showed little variation with frequency or level. We identify four, anatomically distinct, response regions within the OCC: the basilar membrane (BM), the outer hair cells (OHC), the lateral compartment (lc), and the tectorial membrane (TM). Results provide evidence that active processes in the OHC play an important role in the mechanical interplay between different OCC structures which increases the amplitude and tuning sharpness of the traveling wave. The angle between the OCT beam and the OCC makes that we captured radial motions thought to be the effective stimulus to the mechano-sensitive hair bundles. We found that TM responses were relatively weak, arguing against a role in enhancing mechanical hair bundle deflection. Rather, BM responses were found to closely resemble the frequency selectivity and sensitivity found in auditory nerve fibers (ANF) that innervate the low-frequency cochlea.
Collapse
Affiliation(s)
| | - Xiaohui Lin
- VA Loma Linda Healthcare System, Loma Linda, CA, 92374, USA
| | - B Hyle Park
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Wei Dong
- VA Loma Linda Healthcare System, Loma Linda, CA, 92374, USA.
- Loma Linda University Health, Loma Linda, CA, 92350, USA.
| |
Collapse
|
24
|
Burwood G, Hakizimana P, Nuttall AL, Fridberger A. Best frequencies and temporal delays are similar across the low-frequency regions of the guinea pig cochlea. SCIENCE ADVANCES 2022; 8:eabq2773. [PMID: 36149949 PMCID: PMC9506724 DOI: 10.1126/sciadv.abq2773] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The cochlea maps tones with different frequencies to distinct anatomical locations. For instance, a faint 5000-hertz tone produces brisk responses at a place approximately 8 millimeters into the 18-millimeter-long guinea pig cochlea, but little response elsewhere. This place code pervades the auditory pathways, where neurons have "best frequencies" determined by their connections to the sensory cells in the hearing organ. However, frequency selectivity in cochlear regions encoding low-frequency sounds has not been systematically studied. Here, we show that low-frequency hearing works according to a unique principle that does not involve a place code. Instead, sound-evoked responses and temporal delays are similar across the low-frequency regions of the cochlea. These findings are a break from theories considered proven for 100 years and have broad implications for understanding information processing in the brainstem and cortex and for optimizing the stimulus delivery in auditory implants.
Collapse
Affiliation(s)
- George Burwood
- Oregon Hearing Research Center, Department of Otolaryngology–Head and Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Pierre Hakizimana
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden
| | - Alfred L Nuttall
- Oregon Hearing Research Center, Department of Otolaryngology–Head and Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Corresponding author. (A.L.N.); (A.F.)
| | - Anders Fridberger
- Oregon Hearing Research Center, Department of Otolaryngology–Head and Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden
- Corresponding author. (A.L.N.); (A.F.)
| |
Collapse
|
25
|
Burwood G, He WX, Fridberger A, Ren TY, Nuttall AL. Outer hair cell driven reticular lamina mechanical distortion in living cochleae. Hear Res 2022; 423:108405. [PMID: 34916081 PMCID: PMC9170269 DOI: 10.1016/j.heares.2021.108405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/25/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022]
Abstract
Cochlear distortions afford researchers and clinicians a glimpse into the conditions and properties of inner ear signal processing mechanisms. Until recently, our examination of these distortions has been limited to measuring the vibration of the basilar membrane or recording acoustic distortion output in the ear canal. Despite its importance, the generation mechanism of cochlear distortion remains a substantial task to understand. The ability to measure the vibration of the reticular lamina in rodent models is a recent experimental advance. Surprising mechanical properties have been revealed. These properties merit both discussion in context with our current understanding of distortion, and appraisal of the significance of new interpretations of cochlear mechanics. This review focusses on some of the recent data from our research groups and discusses the implications of these data on our understanding of vocalization processing in the periphery, and their influence upon future experimental directions. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.
Collapse
Affiliation(s)
- G Burwood
- Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland OR, United States
| | - W X He
- Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland OR, United States
| | - A Fridberger
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - T Y Ren
- Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland OR, United States
| | - A L Nuttall
- Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland OR, United States.
| |
Collapse
|
26
|
Strimbu CE, Olson ES. Salicylate-induced changes in organ of Corti vibrations. Hear Res 2022; 423:108389. [PMID: 34774368 PMCID: PMC9058039 DOI: 10.1016/j.heares.2021.108389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 11/04/2022]
Abstract
Intra organ of Corti (OC) vibrations differ from those measured at the basilar membrane (BM), with higher amplitudes and a wide-band nonlinearity extending well below a region's best frequency. The vibrations are boosted by the cochlear amplifier, the active processes within the mammalian hearing organ, and are thus sensitive to metabolic or pharmacological manipulation. We introduced salicylate, a known blocker of outer hair cell (OHC) based electromotility, into the perilymphatic space by applying sodium salicylate onto the round window membrane. Vibration patterns of an area of the OC were mapped with phase sensitive optical coherence tomography before and after treatment; distortion product otoacoustic emissions (DPOAEs) were measured at similar times to assess the cochlear condition. Following treatment, all regions showed a loss of vibration amplitude and tuning while OHC-region vibrations retained their wide-band nonlinearity. OC vibrations, which had been relatively confined in a region including OHCs and extending to the BM at the outer pillar foot, became less confined with structures lateral to the OHCs sometimes exhibiting the highest amplitudes. Vibrations and DPOAEs could recover to baseline levels over approximately three hours post treatment. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.
Collapse
Affiliation(s)
- C. Elliott Strimbu
- Columbia University, Department of Otolaryngology, 630 West 168th Street, New York, NY 10032, USA
| | - Elizabeth S. Olson
- Columbia University, Department of Otolaryngology, 630 West 168th Street, New York, NY 10032, USA
- Columbia University, Department of Biomedical Engineering, 1210 Amsterdam Avenue, New York, NY 10027 USA
| |
Collapse
|
27
|
He W, Burwood G, Fridberger A, Nuttall AL, Ren T. An outer hair cell-powered global hydromechanical mechanism for cochlear amplification. Hear Res 2022; 423:108407. [PMID: 34922772 PMCID: PMC9156726 DOI: 10.1016/j.heares.2021.108407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/04/2022]
Abstract
It is a common belief that the mammalian cochlea achieves its exquisite sensitivity, frequency selectivity, and dynamic range through an outer hair cell-based active process, or cochlear amplification. As a sound-induced traveling wave propagates from the cochlear base toward the apex, outer hair cells at a narrow region amplify the low level sound-induced vibration through a local feedback mechanism. This widely accepted theory has been tested by measuring sound-induced sub-nanometer vibrations within the organ of Corti in the sensitive living cochleae using heterodyne low-coherence interferometry and optical coherence tomography. The aim of this short review is to summarize experimental findings on the cochlear active process by the authors' group. Our data show that outer hair cells are able to generate substantial forces for driving the cochlear partition at all audible frequencies in vivo. The acoustically induced reticular lamina vibration is larger and more broadly tuned than the basilar membrane vibration. The reticular lamina and basilar membrane vibrate approximately in opposite directions at low frequencies and in the same direction at the best frequency. The group delay of the reticular lamina is larger than that of the basilar membrane. The magnitude and phase differences between the reticular lamina and basilar membrane vibration are physiologically vulnerable. These results contradict predictions based on the local feedback mechanism but suggest a global hydromechanical mechanism for cochlear amplification. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.
Collapse
Affiliation(s)
- Wenxuan He
- Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland OR, United States
| | - George Burwood
- Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland OR, United States
| | - Anders Fridberger
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Alfred L Nuttall
- Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland OR, United States
| | - Tianying Ren
- Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland OR, United States.
| |
Collapse
|
28
|
Toward Personalized Diagnosis and Therapy for Hearing Loss: Insights From Cochlear Implants. Otol Neurotol 2022; 43:e903-e909. [PMID: 35970169 DOI: 10.1097/mao.0000000000003624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Sensorineural hearing loss (SNHL) is the most common sensory deficit, disabling nearly half a billion people worldwide. The cochlear implant (CI) has transformed the treatment of patients with SNHL, having restored hearing to more than 800,000 people. The success of CIs has inspired multidisciplinary efforts to address the unmet need for personalized, cellular-level diagnosis, and treatment of patients with SNHL. Current limitations include an inability to safely and accurately image at high resolution and biopsy the inner ear, precluding the use of key structural and molecular information during diagnostic and treatment decisions. Furthermore, there remains a lack of pharmacological therapies for hearing loss, which can partially be attributed to challenges associated with new drug development. We highlight advances in diagnostic and therapeutic strategies for SNHL that will help accelerate the push toward precision medicine. In addition, we discuss technological improvements for the CI that will further enhance its functionality for future patients. This report highlights work that was originally presented by Dr. Stankovic as part of the Dr. John Niparko Memorial Lecture during the 2021 American Cochlear Implant Alliance annual meeting.
Collapse
|
29
|
Cho NH, Wang H, Puria S. Cochlear Fluid Spaces and Structures of the Gerbil High-Frequency Region Measured Using Optical Coherence Tomography (OCT). J Assoc Res Otolaryngol 2022; 23:195-211. [PMID: 35194695 PMCID: PMC8964889 DOI: 10.1007/s10162-022-00836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022] Open
Abstract
Since it has been difficult to directly observe the morphology of the living cochlea, our ability to infer the mechanical functioning of the living ear has been limited. Nearly all our knowledge about cochlear morphology comes from postmortem tissue that was fixed and processed using procedures that possibly distort the structures and fluid spaces of the organ of Corti. In this study, optical coherence tomography was employed to obtain volumetric images of the high-frequency hook region of the gerbil cochlea, as viewed through the round window, with far better resolution capability than had been possible before. The anatomical structures and fluid spaces of the organ of Corti were segmented and quantified in vivo and over a 90-min postmortem period. We find that the arcuate-zone and pectinate-zone widths change very little postmortem. The volume of the scala tympani between the round-window membrane and basilar membrane and the volume of the inner spiral sulcus decrease in the first 60-min postmortem. While textbook drawings of the mammalian organ of Corti and cortilymph prominently depict the tunnel of Corti, the outer tunnel is typically missing. This is likely because textbook drawings are typically made from images obtained by histological methods. Here, we show that the outer tunnel is nearly twice as big as the tunnel of Corti or the space of Nuel. This larger outer tunnel fluid space could have a substantial, little-appreciated effect on cochlear micromechanics. We speculate that the outer tunnel forms a resonant structure that may affect reticular-lamina motion.
Collapse
Affiliation(s)
- Nam Hyun Cho
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02114, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
| | - Haobing Wang
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02114, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
| | - Sunil Puria
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02114, USA.
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA.
- Speech and Hearing Bioscience and Technology Program, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
30
|
Frost BL, Strimbu CE, Olson ES. Using volumetric optical coherence tomography to achieve spatially resolved organ of Corti vibration measurements. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:1115. [PMID: 35232061 PMCID: PMC8853734 DOI: 10.1121/10.0009576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 05/22/2023]
Abstract
Optical coherence tomography (OCT) has become a powerful tool for measuring vibrations within the organ of Corti complex (OCC) in cochlear mechanics experiments. However, the one-dimensional nature of OCT measurements, combined with experimental and anatomical constraints, make these data ambiguous: Both the relative positions of measured structures and their orientation relative to the direction of measured vibrations are not known a priori. We present a method by which these measurement features can be determined via the use of a volumetric OCT scan to determine the relationship between the imaging/measurement axes and the canonical anatomical axes. We provide evidence that the method is functional by replicating previously measured radial vibration patterns of the basilar membrane (BM). We used the method to compare outer hair cell and BM vibration phase in the same anatomical cross section (but different optical cross sections), and found that outer hair cell region vibrations lead those of the BM across the entire measured frequency range. In contrast, a phase lead is only present at low frequencies in measurements taken within a single optical cross section. Relative phase is critical to the workings of the cochlea, and these results emphasize the importance of anatomically oriented measurement and analysis.
Collapse
Affiliation(s)
- Brian L Frost
- Department of Electrical Engineering, Columbia University, 500 W. 120th St., Mudd 1310, New York, New York 1002, USA
| | - Clark Elliott Strimbu
- Department of Otolaryngology Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, 630 W. 168th St., New York, New York 10032, USA
| | - Elizabeth S Olson
- Department of Otolaryngology Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, 630 W. 168th St., New York, New York 10032, USA
| |
Collapse
|
31
|
Cochlear outer hair cell electromotility enhances organ of Corti motion on a cycle-by-cycle basis at high frequencies in vivo. Proc Natl Acad Sci U S A 2021; 118:2025206118. [PMID: 34686590 DOI: 10.1073/pnas.2025206118] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
Mammalian hearing depends on an amplification process involving prestin, a voltage-sensitive motor protein that enables cochlear outer hair cells (OHCs) to change length and generate force. However, it has been questioned whether this prestin-based somatic electromotility can operate fast enough in vivo to amplify cochlear vibrations at the high frequencies that mammals hear. In this study, we measured sound-evoked vibrations from within the living mouse cochlea and found that the top and bottom of the OHCs move in opposite directions at frequencies exceeding 20 kHz, consistent with fast somatic length changes. These motions are physiologically vulnerable, depend on prestin, and dominate the cochlea's vibratory response to high-frequency sound. This dominance was observed despite mechanisms that clearly low-pass filter the in vivo electromotile response. Low-pass filtering therefore does not critically limit the OHC's ability to move the organ of Corti on a cycle-by-cycle basis. Our data argue that electromotility serves as the primary high-frequency amplifying mechanism within the mammalian cochlea.
Collapse
|
32
|
Altoè A, Charaziak KK, Dewey JB, Moleti A, Sisto R, Oghalai JS, Shera CA. The Elusive Cochlear Filter: Wave Origin of Cochlear Cross-Frequency Masking. J Assoc Res Otolaryngol 2021; 22:623-640. [PMID: 34677710 DOI: 10.1007/s10162-021-00814-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 08/23/2021] [Indexed: 11/28/2022] Open
Abstract
The mammalian cochlea achieves its remarkable sensitivity, frequency selectivity, and dynamic range by spatially segregating the different frequency components of sound via nonlinear processes that remain only partially understood. As a consequence of the wave-based nature of cochlear processing, the different frequency components of complex sounds interact spatially and nonlinearly, mutually suppressing one another as they propagate. Because understanding nonlinear wave interactions and their effects on hearing appears to require mathematically complex or computationally intensive models, theories of hearing that do not deal specifically with cochlear mechanics have often neglected the spatial nature of suppression phenomena. Here we describe a simple framework consisting of a nonlinear traveling-wave model whose spatial response properties can be estimated from basilar-membrane (BM) transfer functions. Without invoking jazzy details of organ-of-Corti mechanics, the model accounts well for the peculiar frequency-dependence of suppression found in two-tone suppression experiments. In particular, our analysis shows that near the peak of the traveling wave, the amplitude of the BM response depends primarily on the nonlinear properties of the traveling wave in more basal (high-frequency) regions. The proposed framework provides perhaps the simplest representation of cochlear signal processing that accounts for the spatially distributed effects of nonlinear wave propagation. Shifting the perspective from local filters to non-local, spatially distributed processes not only elucidates the character of cochlear signal processing, but also has important consequences for interpreting psychophysical experiments.
Collapse
Affiliation(s)
- Alessandro Altoè
- Caruso Department of Otolaryngology Head & Neck Surgery, University of Southern California, CA, Los Angeles, USA.
| | - Karolina K Charaziak
- Caruso Department of Otolaryngology Head & Neck Surgery, University of Southern California, CA, Los Angeles, USA
| | - James B Dewey
- Caruso Department of Otolaryngology Head & Neck Surgery, University of Southern California, CA, Los Angeles, USA
| | - Arturo Moleti
- Department of Physics, University of Roma Tor Vergata, Rome, Italy
| | - Renata Sisto
- DIMEILA, INAIL, Monte Porzio Catone, Rome, Italy
| | - John S Oghalai
- Caruso Department of Otolaryngology Head & Neck Surgery, University of Southern California, CA, Los Angeles, USA
| | - Christopher A Shera
- Caruso Department of Otolaryngology Head & Neck Surgery, University of Southern California, CA, Los Angeles, USA.,Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
33
|
Charaziak KK, Shera CA. Reflection-Source Emissions Evoked with Clicks and Frequency Sweeps: Comparisons Across Levels. J Assoc Res Otolaryngol 2021; 22:641-658. [PMID: 34606020 DOI: 10.1007/s10162-021-00813-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023] Open
Abstract
According to coherent reflection theory, otoacoustic emissions (OAE) evoked with clicks (clicked-evoked, CE) or tones (stimulus frequency, SF) originate via the same mechanism. We test this hypothesis in gerbils by investigating the similarity of CE- and SFOAEs across a wide range of stimulus levels. The results show that OAE transfer functions measured in response to clicks and sweeps have nearly equivalent time-frequency characteristics, particularly at low stimulus levels. At high stimulus levels, the two OAE types are more dissimilar, reflecting the different dynamic properties of the evoking stimulus. At mid to high stimulus levels, time-frequency analysis reveals contributions from at least two OAE source components of varying latencies. Interference between these components explains the emergence of strong spectral microstructure. Time-frequency filtering based on mean basilar-membrane (BM) group delays (τBM) shows that late-latency OAE components (latency ~ 1.6τBM) dominate at low stimulus intensities and exhibit highly compressive growth with increasing stimulus intensity. In contrast, early-latency OAE components (~ 0.7τBM) are small at low stimulus levels but can come to dominate the overall response at higher intensities. Although the properties of long-latency OAEs are consistent with an origin via coherent reflection near the peak of the traveling wave, the generation place and/or mechanisms responsible for the early-latency OAE components warrant further investigation. Because their delay remains in constant proportion to τBM across sound intensity, long-latency OAEs, whether evoked with tones or clicks, can be used to predict characteristics of cochlear processing, such as the sharpness of frequency tuning, even at high stimulus levels.
Collapse
Affiliation(s)
- Karolina K Charaziak
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, USA.
| | - Christopher A Shera
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, USA.,Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
34
|
He W, Ren T. The origin of mechanical harmonic distortion within the organ of Corti in living gerbil cochleae. Commun Biol 2021; 4:1008. [PMID: 34433876 PMCID: PMC8387486 DOI: 10.1038/s42003-021-02540-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022] Open
Abstract
Although auditory harmonic distortion has been demonstrated psychophysically in humans and electrophysiologically in experimental animals, the cellular origin of the mechanical harmonic distortion remains unclear. To demonstrate the outer hair cell-generated harmonics within the organ of Corti, we measured sub-nanometer vibrations of the reticular lamina from the apical ends of the outer hair cells in living gerbil cochleae using a custom-built heterodyne low-coherence interferometer. The harmonics in the reticular lamina vibration are significantly larger and have broader spectra and shorter latencies than those in the basilar membrane vibration. The latency of the second harmonic is significantly greater than that of the fundamental at low stimulus frequencies. These data indicate that the mechanical harmonics are generated by the outer hair cells over a broad cochlear region and propagate from the generation sites to their own best-frequency locations.
Collapse
Affiliation(s)
- Wenxuan He
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, Portland, OR, USA
| | - Tianying Ren
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
35
|
Model of cochlear microphonic explores the tuning and magnitude of hair cell transduction current. Biophys J 2021; 120:3550-3565. [PMID: 34384762 DOI: 10.1016/j.bpj.2021.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/24/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022] Open
Abstract
The mammalian cochlea relies on the active forcing of sensory outer hair cells (OHCs) to amplify traveling wave responses along the basilar membrane. These forces are the result of electromotility, wherein current through the OHCs leads to conformational changes in the cells that provide stresses on surrounding structures. OHC transducer current can be detected via the voltage in the scala tympani (the cochlear microphonic, CM), and the CM can be used as an indicator of healthy cochlear operation. The CM represents a summation of OHC currents (the inner hair cell contribution is known to be small) and to use CM to probe the properties of OHC transduction requires a model that simulates that summation. We developed a finite element model for that purpose. The pattern of current generators (the model input) was initially based on basilar membrane displacement, with the current size based on in vitro data. The model was able to reproduce the amplitude of experimental CM results reasonably well when the input tuning was enhanced slightly (peak increased by ∼6 dB), which can be regarded as additional hair bundle tuning, and with a current/input value of 200-260 pA/nm, which is ∼4 times greater than the largest in vitro measures.
Collapse
|
36
|
Szeto B, Valentini C, Aksit A, Werth EG, Goeta S, Brown LM, Olson ES, Kysar JW, Lalwani AK. Impact of Systemic versus Intratympanic Dexamethasone Administration on the Perilymph Proteome. J Proteome Res 2021; 20:4001-4009. [PMID: 34291951 DOI: 10.1021/acs.jproteome.1c00322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucocorticoids are the first-line treatment for sensorineural hearing loss, but little is known about the mechanism of their protective effect or the impact of route of administration. The recent development of hollow microneedles enables safe and reliable sampling of perilymph for proteomic analysis. Using these microneedles, we investigate the effect of intratympanic (IT) versus intraperitoneal (IP) dexamethasone administration on guinea pig perilymph proteome. Guinea pigs were treated with IT dexamethasone (n = 6), IP dexamethasone (n = 8), or untreated for control (n = 8) 6 h prior to aspiration. The round window membrane (RWM) was accessed via a postauricular approach, and hollow microneedles were used to perforate the RWM and aspirate 1 μL of perilymph. Perilymph samples were analyzed by liquid chromatography-mass spectrometry-based label-free quantitative proteomics. Mass spectrometry raw data files have been deposited in an international public repository (MassIVE proteomics repository at https://massive.ucsd.edu/) under data set # MSV000086887. In the 22 samples of perilymph analyzed, 632 proteins were detected, including the inner ear protein cochlin, a perilymph marker. Of these, 14 proteins were modulated by IP, and three proteins were modulated by IT dexamethasone. In both IP and IT dexamethasone groups, VGF nerve growth factor inducible was significantly upregulated compared to control. The remaining adjusted proteins modulate neurons, inflammation, or protein synthesis. Proteome analysis facilitated by the use of hollow microneedles shows that route of dexamethasone administration impacts changes seen in perilymph proteome. Compared to IT administration, the IP route was associated with greater changes in protein expression, including proteins involved in neuroprotection, inflammatory pathway, and protein synthesis. Our findings show that microneedles can mediate safe and effective intracochlear sampling and hold promise for inner ear diagnostics.
Collapse
Affiliation(s)
- Betsy Szeto
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
| | - Chris Valentini
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Emily G Werth
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Shahar Goeta
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Lewis M Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Elizabeth S Olson
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States.,Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Jeffrey W Kysar
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States.,Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Anil K Lalwani
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States.,Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
37
|
Bowling T, Wen H, Meenderink SWF, Dong W, Meaud J. Intracochlear distortion products are broadly generated by outer hair cells but their contributions to otoacoustic emissions are spatially restricted. Sci Rep 2021; 11:13651. [PMID: 34211051 PMCID: PMC8249639 DOI: 10.1038/s41598-021-93099-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Detection of low-level sounds by the mammalian cochlea requires electromechanical feedback from outer hair cells (OHCs). This feedback arises due to the electromotile response of OHCs, which is driven by the modulation of their receptor potential caused by the stimulation of mechano-sensitive ion channels. Nonlinearity in these channels distorts impinging sounds, creating distortion-products that are detectable in the ear canal as distortion-product otoacoustic emissions (DPOAEs). Ongoing efforts aim to develop DPOAEs, which reflects the ear's health, into diagnostic tools for sensory hearing loss. These efforts are hampered by limited knowledge on the cochlear extent contributing to DPOAEs. Here, we report on intracochlear distortion products (IDPs) in OHC electrical responses and intracochlear fluid pressures. Experiments and simulations with a physiologically motivated cochlear model show that widely generated electrical IDPs lead to mechanical vibrations in a frequency-dependent manner. The local cochlear impedance restricts the region from which IDPs contribute to DPOAEs at low to moderate intensity, which suggests that DPOAEs may be used clinically to provide location-specific information about cochlear damage.
Collapse
Affiliation(s)
- Thomas Bowling
- grid.213917.f0000 0001 2097 4943GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA USA
| | - Haiqi Wen
- grid.213917.f0000 0001 2097 4943GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA USA
| | - Sebastiaan W. F. Meenderink
- grid.422066.40000 0001 2195 7301VA Loma Linda Healthcare System, Loma Linda, CA 92357 USA ,grid.429814.2Department of Otolaryngology - Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA 92350 USA
| | - Wei Dong
- grid.422066.40000 0001 2195 7301VA Loma Linda Healthcare System, Loma Linda, CA 92357 USA ,grid.429814.2Department of Otolaryngology - Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA 92350 USA
| | - Julien Meaud
- grid.213917.f0000 0001 2097 4943GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Petit Institute for Biosciences and Bioengineering, Georgia Institute of Technology, Atlanta, GA USA
| |
Collapse
|
38
|
Fallah E, Strimbu CE, Olson ES. Nonlinearity of intracochlear motion and local cochlear microphonic: Comparison between guinea pig and gerbil. Hear Res 2021; 405:108234. [PMID: 33930834 DOI: 10.1016/j.heares.2021.108234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/08/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022]
Abstract
Studying the in-vivo mechanical and electrophysiological cochlear responses in several species helps us to have a comprehensive view of the sensitivity and frequency selectivity of the cochlea. Different species might use different mechanisms to achieve the sharp frequency-place map. The outer hair cells (OHC) play an important role in mediating frequency tuning. In the present work, we measured the OHC-generated local cochlear microphonic (LCM) and the motion of different layers in the organ of Corti using optical coherence tomography (OCT) in the first turn of the cochlea in guinea pig. In the best frequency (BF) band, our observations were similar to our previous measurements in gerbil: a nonlinear peak in LCM responses and in the basilar membrane (BM) and OHC-region displacements, and higher motion in the OHC region than the BM. Sub-BF the responses in the two species were different. In both species the sub-BF displacement of the BM was linear and LCM was nonlinear. Sub-BF in the OHC-region, nonlinearity was only observed in a subset of healthy guinea pig cochleae while in gerbil, robust nonlinearity was observed in all healthy cochleae. The differences suggest that gerbils and guinea pigs employ different mechanisms for filtering sub-BF OHC activity from BM responses. However, it cannot be ruled out that the differences are due to technical measurement differences across the species.
Collapse
Affiliation(s)
- Elika Fallah
- Department of Biomedical Engineering, Columbia University, New York City, NY, United States
| | - C Elliott Strimbu
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York City, NY, United States
| | - Elizabeth S Olson
- Department of Biomedical Engineering, Columbia University, New York City, NY, United States; Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York City, NY, United States.
| |
Collapse
|
39
|
Szeto B, Aksit A, Valentini C, Yu M, Werth EG, Goeta S, Tang C, Brown LM, Olson ES, Kysar JW, Lalwani AK. Novel 3D-printed hollow microneedles facilitate safe, reliable, and informative sampling of perilymph from guinea pigs. Hear Res 2021; 400:108141. [PMID: 33307286 PMCID: PMC8656365 DOI: 10.1016/j.heares.2020.108141] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/22/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Inner ear diagnostics is limited by the inability to atraumatically obtain samples of inner ear fluid. The round window membrane (RWM) is an attractive portal for accessing perilymph samples as it has been shown to heal within one week after the introduction of microperforations. A 1 µL volume of perilymph is adequate for proteome analysis, yet the total volume of perilymph within the scala tympani of the guinea pig is limited to less than 5 µL. This study investigates the safety and reliability of a novel hollow microneedle device to aspirate perilymph samples adequate for proteomic analysis. METHODS The guinea pig RWM was accessed via a postauricular surgical approach. 3D-printed hollow microneedles with an outer diameter of 100 µm and an inner diameter of 35 µm were used to perforate the RWM and aspirate 1 µL of perilymph. Two perilymph samples were analyzed by liquid chromatography-mass spectrometry-based quantitative proteomics as part of a preliminary study. Hearing was assessed before and after aspiration using compound action potential (CAP) and distortion product otoacoustic emissions (DPOAE). RWMs were harvested 72 h after aspiration and evaluated for healing using confocal microscopy. RESULTS There was no permanent damage to hearing at 72 h after perforation as assessed by CAP (n = 7) and DPOAE (n = 8), and all perforations healed completely within 72 h (n = 8). In the two samples of perilymph analyzed, 620 proteins were detected, including the inner ear protein cochlin, widely recognized as a perilymph marker. CONCLUSION Hollow microneedles can facilitate aspiration of perilymph across the RWM at a quality and volume adequate for proteomic analysis without causing permanent anatomic or physiologic dysfunction. Microneedles can mediate safe and effective intracochlear sampling and show great promise for inner ear diagnostics.
Collapse
Affiliation(s)
- Betsy Szeto
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, NY, United States
| | - Chris Valentini
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States
| | - Michelle Yu
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States
| | - Emily G Werth
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Shahar Goeta
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Chuanning Tang
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Lewis M Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Elizabeth S Olson
- Department of Biomedical Engineering, Columbia University, New York, NY, United States; Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States
| | - Jeffrey W Kysar
- Department of Mechanical Engineering, Columbia University, New York, NY, United States; Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States
| | - Anil K Lalwani
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States; Department of Mechanical Engineering, Columbia University, New York, NY, United States.
| |
Collapse
|
40
|
Olson ES, Strimbu CE. Cochlear mechanics: new insights from vibrometry and Optical Coherence Tomography. CURRENT OPINION IN PHYSIOLOGY 2020; 18:56-62. [PMID: 33103018 DOI: 10.1016/j.cophys.2020.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The cochlea is a complex biological machine that transduces sound-induced mechanical vibrations to neural signals. Hair cells within the sensory tissue of the cochlea transduce vibrations into electrical signals, and exert electromechanical feedback that enhances the passive frequency separation provided by the cochlea's traveling wave mechanics; this enhancement is termed cochlear amplification. The vibration of the sensory tissue has been studied with many techniques, and the current state of the art is optical coherence tomography (OCT). The OCT technique allows for motion of intra-organ structures to be measured in vivo at many layers within the sensory tissue, at several angles and in previously under-explored species. OCT-based observations are already impacting our understanding of hair cell excitation and cochlear amplification.
Collapse
Affiliation(s)
- Elizabeth S Olson
- Department of Otolaryngolgy Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, 630 W 168th St, New York, NY 10032.,Department Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue,New York, NY 10027
| | - C Elliott Strimbu
- Department of Otolaryngolgy Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, 630 W 168th St, New York, NY 10032
| |
Collapse
|
41
|
Strimbu CE, Wang Y, Olson ES. Manipulation of the Endocochlear Potential Reveals Two Distinct Types of Cochlear Nonlinearity. Biophys J 2020; 119:2087-2101. [PMID: 33091378 DOI: 10.1016/j.bpj.2020.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/02/2020] [Accepted: 10/07/2020] [Indexed: 11/26/2022] Open
Abstract
The mammalian hearing organ, the cochlea, contains an active amplifier to boost the vibrational response to low level sounds. Hallmarks of this active process are sharp location-dependent frequency tuning and compressive nonlinearity over a wide stimulus range. The amplifier relies on outer hair cell (OHC)-generated forces driven in part by the endocochlear potential, the ∼+80 mV potential maintained in scala media, generated by the stria vascularis. We transiently eliminated the endocochlear potential in vivo by an intravenous injection of furosemide and measured the vibrations of different layers in the cochlea's organ of Corti using optical coherence tomography. Distortion product otoacoustic emissions were also monitored. After furosemide injection, the vibrations of the basilar membrane lost the best frequency (BF) peak and showed broad tuning similar to a passive cochlea. The intra-organ of Corti vibrations measured in the region of the OHCs lost the BF peak and showed low-pass responses but retained nonlinearity. This strongly suggests that OHC electromotility was operating and being driven by nonlinear OHC current. Thus, although electromotility is presumably necessary to produce a healthy BF peak, the mere presence of electromotility is not sufficient. The BF peak recovered nearly fully within 2 h, along with the recovery of odd-order distortion product otoacoustic emissions. The recovery pattern suggests that physical shifts in operating condition are a critical step in the recovery process.
Collapse
Affiliation(s)
- C Elliott Strimbu
- Columbia University Medical Center, Department of Otolaryngology, New York, New York
| | - Yi Wang
- Columbia University, Department of Biomedical Engineering, New York, New York
| | - Elizabeth S Olson
- Columbia University Medical Center, Department of Otolaryngology, New York, New York; Columbia University, Department of Biomedical Engineering, New York, New York.
| |
Collapse
|
42
|
Nankali A, Wang Y, Strimbu CE, Olson ES, Grosh K. A role for tectorial membrane mechanics in activating the cochlear amplifier. Sci Rep 2020; 10:17620. [PMID: 33077807 PMCID: PMC7573614 DOI: 10.1038/s41598-020-73873-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/21/2020] [Indexed: 12/02/2022] Open
Abstract
The mechanical and electrical responses of the mammalian cochlea to acoustic stimuli are nonlinear and highly tuned in frequency. This is due to the electromechanical properties of cochlear outer hair cells (OHCs). At each location along the cochlear spiral, the OHCs mediate an active process in which the sensory tissue motion is enhanced at frequencies close to the most sensitive frequency (called the characteristic frequency, CF). Previous experimental results showed an approximate 0.3 cycle phase shift in the OHC-generated extracellular voltage relative the basilar membrane displacement, which was initiated at a frequency approximately one-half octave lower than the CF. Findings in the present paper reinforce that result. This shift is significant because it brings the phase of the OHC-derived electromotile force near to that of the basilar membrane velocity at frequencies above the shift, thereby enabling the transfer of electrical to mechanical power at the basilar membrane. In order to seek a candidate physical mechanism for this phenomenon, we used a comprehensive electromechanical mathematical model of the cochlear response to sound. The model predicts the phase shift in the extracellular voltage referenced to the basilar membrane at a frequency approximately one-half octave below CF, in accordance with the experimental data. In the model, this feature arises from a minimum in the radial impedance of the tectorial membrane and its limbal attachment. These experimental and theoretical results are consistent with the hypothesis that a tectorial membrane resonance introduces the correct phasing between mechanical and electrical responses for power generation, effectively turning on the cochlear amplifier.
Collapse
Affiliation(s)
- Amir Nankali
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yi Wang
- Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Elizabeth S Olson
- Otolaryngology, Head and Neck Surgery, Columbia University, New York, NY, USA.,Biomedical Engineering, Columbia University, New York, NY, USA
| | - Karl Grosh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
43
|
Guinan JJ. The interplay of organ-of-Corti vibrational modes, not tectorial- membrane resonance, sets outer-hair-cell stereocilia phase to produce cochlear amplification. Hear Res 2020; 395:108040. [PMID: 32784038 PMCID: PMC7502208 DOI: 10.1016/j.heares.2020.108040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 01/27/2023]
Abstract
The mechanical motions that deflect outer-hair-cell (OHC) stereocilia and the resulting effects of OHC motility are reviewed, concentrating on high-frequency cochlear regions. It has been proposed that a tectorial-membrane (TM) resonance makes the phase of OHC stereocilia motion be appropriate to produce cochlear amplification, i.e. so that the OHC force that pushes the basilar membrane (BM) is in the same direction as BM velocity. Evidence for and against the TM-resonance hypothesis are considered, including new cochlear-motion measurements using optical coherence tomography, and it is concluded that there is no such TM resonance. The evidence points to there being an advance in the phase of reticular lamina (RL) radial motion at a frequency approximately ½ octave below the BM characteristic frequency, and that this is the main source of the phase difference between the TM and RL radial motions that produces cochlear amplification. It appears that the change in phase of RL radial motion comes about because of a transition between different organ-of-Corti (OoC) vibrational modes that changes RL motion relative to BM and TM motion. The origins and consequences of the large phase change of RL radial motion relative to BM motion are considered; differences in the reported patterns of these changes may be due to different viewing angles. Detailed motion data and new models are needed to better specify the vibrational patterns of the OoC modes and the role of the various OoC structures in producing the modes and the mode transition.
Collapse
Affiliation(s)
- John J Guinan
- Eaton-Peabody Lab, Mass. Eye and Ear, 243 Charles St, Boston, MA, 02114, USA; Harvard Medical School, Dept. of Otolaryngology, Boston, MA, USA.
| |
Collapse
|
44
|
Jabeen T, Holt JC, Becker JR, Nam JH. Interactions between Passive and Active Vibrations in the Organ of Corti In Vitro. Biophys J 2020; 119:314-325. [PMID: 32579963 DOI: 10.1016/j.bpj.2020.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/23/2020] [Accepted: 06/11/2020] [Indexed: 01/19/2023] Open
Abstract
High sensitivity and selectivity of hearing require an active cochlea. The cochlear sensory epithelium, the organ of Corti, vibrates because of external and internal excitations. The external stimulation is acoustic pressures mediated by the scala fluids, whereas the internal excitation is generated by a type of sensory receptor cells (the outer hair cells) in response to the acoustic vibrations. The outer hair cells are cellular actuators that are responsible for cochlear amplification. The organ of Corti is highly structured for transmitting vibrations originating from acoustic pressure and active outer hair cell force to the inner hair cells that synapse on afferent nerves. Understanding how the organ of Corti vibrates because of acoustic pressure and outer hair cell force is critical for explaining cochlear function. In this study, cochleae were freshly isolated from young gerbils. The organ of Corti in the excised cochlea was subjected to mechanical and electrical stimulation that are analogous to acoustic and cellular stimulation in the natural cochlea. Organ of Corti vibrations, including those of individual outer hair cells, were measured using optical coherence tomography. Respective vibration patterns due to mechanical and electrical stimulation were characterized. Interactions between the two vibration patterns were investigated by applying the two forms of stimulation simultaneously. Our results show that the interactions could be either constructive or destructive, which implies that the outer hair cells can either amplify or reduce vibrations in the organ of Corti. We discuss a potential consequence of the two interaction modes for cochlear frequency tuning.
Collapse
Affiliation(s)
- Talat Jabeen
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Joseph C Holt
- Department of Otolaryngology, University of Rochester, Rochester, New York; Department of Neuroscience, University of Rochester, Rochester, New York; Department of Pharmacology and Physiology, University of Rochester, Rochester, New York
| | - Jonathan R Becker
- Department of Mechanical Engineering, University of Rochester, Rochester, New York
| | - Jong-Hoon Nam
- Department of Biomedical Engineering, University of Rochester, Rochester, New York; Department of Mechanical Engineering, University of Rochester, Rochester, New York; Department of Neuroscience, University of Rochester, Rochester, New York.
| |
Collapse
|
45
|
Vencovský V, Vetešník A, Gummer AW. Nonlinear reflection as a cause of the short-latency component in stimulus-frequency otoacoustic emissions simulated by the methods of compression and suppression. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:3992. [PMID: 32611132 DOI: 10.1121/10.0001394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Stimulus-frequency otoacoustic emissions (SFOAEs) are generated by coherent reflection of forward traveling waves by perturbations along the basilar membrane. The strongest wavelets are backscattered near the place where the traveling wave reaches its maximal amplitude (tonotopic place). Therefore, the SFOAE group delay might be expected to be twice the group delay estimated in the cochlear filters. However, experimental data have yielded steady-state SFOAE components with near-zero latency. A cochlear model is used to show that short-latency SFOAE components can be generated due to nonlinear reflection of the compressor or suppressor tones used in SFOAE measurements. The simulations indicate that suppressors produce more pronounced short-latency components than compressors. The existence of nonlinear reflection components due to suppressors can also explain why SFOAEs can still be detected when suppressors are presented more than half an octave above the probe-tone frequency. Simulations of the SFOAE suppression tuning curves showed that phase changes in the SFOAE residual as the suppressor frequency increases are mostly determined by phase changes of the nonlinear reflection component.
Collapse
Affiliation(s)
- Václav Vencovský
- Department of Radioelectronics, Czech Technical University in Prague, Technická 2, 166 27 Prague, Czech Republic
| | - Aleš Vetešník
- Department of Nuclear Chemistry, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic
| | - Anthony W Gummer
- Department of Otolaryngology, Section of Physiological Acoustics and Communication, Eberhard-Karls-University Tübingen, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany
| |
Collapse
|
46
|
Two-tone distortion in reticular lamina vibration of the living cochlea. Commun Biol 2020; 3:35. [PMID: 31965040 PMCID: PMC6972885 DOI: 10.1038/s42003-020-0762-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/06/2020] [Indexed: 11/09/2022] Open
Abstract
It has been demonstrated that isolated auditory sensory cells, outer hair cells, can generate distortion products at low frequencies. It remains unknown, however, whether or not motile outer hair cells are able to generate two-tone distortion at high frequencies in living cochleae under the mechanical loads caused by surounding tissues and fluids. By measuring sub-nanometer vibration directly from the apical ends of outer hair cells using a custom-built heterodyne low-coherence interferometer, here we show outer hair cell-generated two-tone distortion in reticular lamina motion in the living cochlea. Reticular-lamina distortion is significantly greater and occurs at a broader frequency range than that of the basilar membrane. Contrary to expectations, our results indicate that motile outer hair cells are capable of generating two-tone distortion in vivo not only at the locations tuned to primary tones but also at a broad region basal to these locations. Ren et al. used an in house heterodyne low-coherence interferometer to measure sub-nanometer vibrations, a proxy for distortion products, in living cochleae of gerbils. They were able to locate the generation source of the outer hair cell in the reticular lamina versus the basilar membrane in vivo.
Collapse
|
47
|
Goodman SS, Lee C, Guinan JJ, Lichtenhan JT. The Spatial Origins of Cochlear Amplification Assessed by Stimulus-Frequency Otoacoustic Emissions. Biophys J 2020; 118:1183-1195. [PMID: 31968228 DOI: 10.1016/j.bpj.2019.12.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/04/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022] Open
Abstract
Cochlear amplification of basilar membrane traveling waves is thought to occur between a tone's characteristic frequency (CF) place and within one octave basal of the CF. Evidence for this view comes only from the cochlear base. Stimulus-frequency otoacoustic emissions (SFOAEs) provide a noninvasive alternative to direct measurements of cochlear motion that can be measured across a wide range of CF regions. Coherent reflection theory indicates that SFOAEs arise mostly from the peak region of the traveling wave, but several studies using far-basal suppressor tones claimed that SFOAE components originate many octaves basal of CF. We measured SFOAEs while perfusing guinea pig cochleas from apex to base with salicylate or KCl solutions that reduced outer-hair-cell function and SFOAE amplification. Solution effects on inner hair cells reduced auditory nerve compound action potentials (CAPs) and provided reference times for when solutions reached the SFOAE-frequency CF region. As solution flowed from apex to base, SFOAE reductions generally occurred later than CAP reductions and showed that the effects of cochlear amplification usually peaked ∼1/2 octave basal of the CF region. For tones ≥2 kHz, cochlear amplification typically extended ∼1.5 octaves basal of CF, and the data are consistent with coherent reflection theory. SFOAE amplification did not extend to the basal end of the cochlea, even though reticular lamina motion is amplified in this region, which indicates that reticular lamina motion is not directly coupled to basilar membrane traveling waves. Previous reports of SFOAE-frequency residuals produced by suppressor frequencies far above the SFOAE frequency are most likely due to additional sources created by the suppressor. For some tones <2 kHz, SFOAE amplification extended two octaves apical of CF, which highlights that different vibratory motions produce SFOAEs and CAPs, and that the amplification region depends on the cochlear mode of motion considered. The concept that there is a single "cochlear amplification region" needs to be revised.
Collapse
Affiliation(s)
- Shawn S Goodman
- Communication Sciences and Disorders, University of Iowa, Iowa City, Iowa
| | - Choongheon Lee
- Department of Otolaryngology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - John J Guinan
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Jeffery T Lichtenhan
- Department of Otolaryngology, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
| |
Collapse
|
48
|
Burwood GWS, Fridberger A, Wang RK, Nuttall AL. Revealing the morphology and function of the cochlea and middle ear with optical coherence tomography. Quant Imaging Med Surg 2019; 9:858-881. [PMID: 31281781 PMCID: PMC6571188 DOI: 10.21037/qims.2019.05.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/09/2019] [Indexed: 01/17/2023]
Abstract
Optical coherence tomography (OCT) has revolutionized physiological studies of the hearing organ, the vibration and morphology of which can now be measured without opening the surrounding bone. In this review, we provide an overview of OCT as used in the otological research, describing advances and different techniques in vibrometry, angiography, and structural imaging.
Collapse
Affiliation(s)
- George W. S. Burwood
- Department of Otolaryngology, Oregon Hearing Research Center/HNS, Oregon Health & Science University, Portland, OR, USA
| | - Anders Fridberger
- Department of Otolaryngology, Oregon Hearing Research Center/HNS, Oregon Health & Science University, Portland, OR, USA
- Department of Clinical and Experimental Medicine, Section for Neurobiology, Linköping University, Linköping, Sweden
| | - Ruikang K. Wang
- Department of Bioengineering and Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Alfred L. Nuttall
- Department of Otolaryngology, Oregon Hearing Research Center/HNS, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|