1
|
Cao W, Kuang L, Gan R, Huang T, Yan X. A novel compound heterozygous variant of MYO7A in Usher syndrome type 1. Exp Eye Res 2024; 247:110047. [PMID: 39151776 DOI: 10.1016/j.exer.2024.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Usher syndrome (USH) is a recessive genetic disorder manifested by congenital sensorineural hearing loss and progressive retinitis pigmentosa, which leads to audiovisual impairment. We report a patient with Usher syndrome type 1 with new compound heterozygous MYO7A variants. A total of four members from the USH family were included. Medical history and retinal examinations were taken and genomic DNA from peripheral blood was extracted in the proband and other members. 381 retinal disease-associated genes were screened using targeted sequence capture array technology and Sanger sequencing was used to confirm the screening results. Scanning laser ophthalmoscope showed bone spicule pigmentary deposits in the mid-peripheral retina and whitish and thin retinal blood vessels especially in the arterioles. Optical coherence tomography showed that the centrality of the macular ellipsoid band disappeared in both eyes, and only remained near the fovea. Visual field examination showed a progressive loss of the visual field in a concentric pattern in both eyes. The electroretinography showed a significant decrease in the amplitudes of a- and b-waves in the scotopic and photopic condition. DNA sequencing identified the compound heterozygous variants including c.1003+1G > A: p. (?) and c.5957_5958del: p.G1987Lfs*50 of MYO7A, with the latter being novel. In this study, we found a novel compound heterozygous variant in MYO7A, which enriched the mutation spectrum and expanded our understanding of the heterogeneity of phenotype and genotype of Usher syndrome type 1.
Collapse
Affiliation(s)
- Wenchao Cao
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Longhao Kuang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Run Gan
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Tao Huang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Xiaohe Yan
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China.
| |
Collapse
|
2
|
Li S, Jiang Y, Zhang L, Yan W, Wei D, Zhang M, Zhu B, Chen T, Wang X, Zhang Z, Su Y. A New Mouse Model for Usher Syndrome Crossing Kunming Mice with CBA/J Mice. Gene 2024; 922:148562. [PMID: 38754567 DOI: 10.1016/j.gene.2024.148562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/06/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Previously, we discovered a strain of Kunming mice, referred to as the KMush/ush strain, that exhibited notably abnormal electroretinogram (ERG) readings and elevated thresholds for auditory brainstem responses (ABRs), which resembled the characteristics of Usher Syndrome (USH). We successfully identified the pathogenic genes, Pde6b and Adgrv1, after KMush/ush crossbred with CBA/CaJ mice, referred to as CBA-1ush/ush, CBA-2ush/ush or CBA-2ush/ush. In this investigation, we crossbred KMush/ush and CBA/J mice to establish novel recombinant inbred lines and analysed their phenotypic and genotypic characteristics. METHODS ERG readings, ABR testing, fundus morphology, histological examination of the retina and inner ear, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, western blotting, DNA sequence analysis and behavioural experiments were performed to assess the phenotypes and genotypes of the progeny lines. RESULTS No obvious waveforms in the ERG were detected in F1 hybrid mice while normal ABR results were recorded. The F2 hybrids, which were called J1ush/ush or J2ush/ush, exhibited segregated hearing-loss phenotypes. J1ush/ush mice had a retinitis pigmentosa (RP) phenotype with elevated ABR thresholds, whereas J2ush/ush mice exhibited only the RP phenotype. Interestingly, J1ush/ush mice showed significantly higher ABR thresholds than wild-type mice at 28 days post born (P28), and RT-qPCR and DNA-sequencing analysis showed that Adgrv1 gene expression was significantly altered in J1ush/ush mice, but histological analysis showed no significant structural changes in the organ of Corti or spiral ganglia. Further elevation of ABR-related hearing thresholds by P56 manifested only as a reduced density of spiral ganglion cells, which differed significantly from the previous pattern of cochlear alterations in CBA-2ush/ush mice. CONCLUSIONS We successfully introduced the hearing-loss phenotype of inbred mice with USH into CBA/J mice, which provides a good animal model for future studies on the important physiological roles of the Adgrv1 gene in inner-ear structure and for therapeutic studies targeting Adgrv1-mutated USH.
Collapse
Affiliation(s)
- Shaoheng Li
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China; Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Yihong Jiang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China
| | - Lei Zhang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi Province, China
| | - Weiming Yan
- The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350000, China
| | - Dongyu Wei
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China
| | - Min Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China
| | - Bin Zhu
- Outpatient Department, General Hospital of Xizang Military Region, Lhasa 850007, China
| | - Tao Chen
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China; Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Xiaocheng Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China; Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an 710032, China.
| | - Zuoming Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China.
| | - Yuting Su
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China; Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
Mkaouar R, Riahi Z, Marrakchi J, Mezzi N, Romdhane L, Boujemaa M, Dallali H, Sayeb M, Lahbib S, Jaouadi H, Boudabbous H, Zekri L, Chargui M, Messaoud O, Elyounsi M, Kraoua I, Zaouak A, Turki I, Mokni M, Boucher S, Petit C, Giraudet F, Mbarek C, Besbes G, Halayem S, Zainine R, Turki H, Tounsi A, Bonnet C, Mrad R, Abdelhak S, Trabelsi M, Charfeddine C. Current phenotypic and genetic spectrum of syndromic deafness in Tunisia: paving the way for precision auditory health. Front Genet 2024; 15:1384094. [PMID: 38711914 PMCID: PMC11072975 DOI: 10.3389/fgene.2024.1384094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 05/08/2024] Open
Abstract
Hearing impairment (HI) is a prevalent neurosensory condition globally, impacting 5% of the population, with over 50% of congenital cases attributed to genetic etiologies. In Tunisia, HI underdiagnosis prevails, primarily due to limited access to comprehensive clinical tools, particularly for syndromic deafness (SD), characterized by clinical and genetic heterogeneity. This study aimed to uncover the SD spectrum through a 14-year investigation of a Tunisian cohort encompassing over 700 patients from four referral centers (2007-2021). Employing Sanger sequencing, Targeted Panel Gene Sequencing, and Whole Exome Sequencing, genetic analysis in 30 SD patients identified diagnoses such as Usher syndrome, Waardenburg syndrome, cranio-facial-hand-deafness syndrome, and H syndrome. This latter is a rare genodermatosis characterized by HI, hyperpigmentation, hypertrichosis, and systemic manifestations. A meta-analysis integrating our findings with existing data revealed that nearly 50% of Tunisian SD cases corresponded to rare inherited metabolic disorders. Distinguishing between non-syndromic and syndromic HI poses a challenge, where the age of onset and progression of features significantly impact accurate diagnoses. Despite advancements in local genetic characterization capabilities, certain ultra-rare forms of SD remain underdiagnosed. This research contributes critical insights to inform molecular diagnosis approaches for SD in Tunisia and the broader North-African region, thereby facilitating informed decision-making in clinical practice.
Collapse
Affiliation(s)
- Rahma Mkaouar
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Zied Riahi
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Jihene Marrakchi
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Otorhinolaryngology, District Hospital of Menzel Bourguiba, Bizerte, Tunisia
| | - Nessrine Mezzi
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Biology, Faculty of Sciences of Bizerte, Université Tunis Carthage, Tunis, Tunisia
| | - Lilia Romdhane
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Biology, Faculty of Sciences of Bizerte, Université Tunis Carthage, Tunis, Tunisia
| | - Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hamza Dallali
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Genetic Typing Service, Institut Pasteur of Tunis, Tunis, Tunisia
| | - Marwa Sayeb
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Saida Lahbib
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hager Jaouadi
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Marseille Medical Genetics (MMG) U1251, Aix Marseille Université, INSERM, Marseille, France
| | - Hela Boudabbous
- Department of Pediatrics, La Rabta Hospital, Tunis, Tunisia
- Laboratory of Hereditary Diseases of the Metabolism Investigation and Patients Management, Faculty of Medicine in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Epidemiology and Public Health, Directorate General of Military Health, Faculty of Medicine in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Lotfi Zekri
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- ICHARA Association (International Research Institute on Sign Language), Tunis, Tunisia
| | - Mariem Chargui
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Olfa Messaoud
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Meriem Elyounsi
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital in Tunis, Tunis, Tunisia
- LR99ES10 Laboratory of Human Genetics, Faculty of Medicine in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ichraf Kraoua
- Child and Adolescent Neurology Department of Neurology, National Institute of Neurology, Tunis, Tunisia
- LR18SP04 Department of Child Neurology, National Institute Mongi Ben Hmida of Neurology in Tunis. University of Tunis El Manar, Tunis, Tunisia
| | - Anissa Zaouak
- Department of Dermatology, Habib Thameur Hospital, Research Unit Genodermatoses and Cancers LR12SP03, Tunis, Tunisia
| | - Ilhem Turki
- Child and Adolescent Neurology Department of Neurology, National Institute of Neurology, Tunis, Tunisia
- LR18SP04 Department of Child Neurology, National Institute Mongi Ben Hmida of Neurology in Tunis. University of Tunis El Manar, Tunis, Tunisia
| | - Mourad Mokni
- Service de dermatologie, Hôpital La Rabta, Unité de recherche UR 12SP07, Hôpital La Rabta, Tunis, Tunisia
| | - Sophie Boucher
- Service d’ORL et chirurgie cervico-faciale, CHU d’Angers, Angers, France
- Equipe Mitolab, Institut Mitovasc, CNRS UMR6015, UMR Inserm 1083, Université d’Angers, Angers, France
| | - Christine Petit
- Institut Pasteur, Université Paris Cité, Inserm UA06, Institut de l’Audition, Paris, France
- Collège de France, Paris, France
| | - Fabrice Giraudet
- Unité Mixte de Recherche (UMR) 1107, INSERM, Clermont-Ferrand, France
- Centre Auditif SoluSons, Clermont-Ferrand, France
| | - Chiraz Mbarek
- ENT Department, Habib Thameur Hospital, Tunis, Tunisia
| | - Ghazi Besbes
- Department of Otorhinolaryngology and Maxillofacial Surgery - La Rabta Hospital in Tunis, Tunis, Tunisia
| | - Soumeyya Halayem
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Service de pédopsychiatrie, Hôpital Razi, Faculté de Médecine de Tunis, Université Tunis el Manar, Tunis, Tunisia
| | - Rim Zainine
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Otorhinolaryngology and Maxillofacial Surgery - La Rabta Hospital in Tunis, Tunis, Tunisia
| | - Hamida Turki
- Dermatology Department Hedi Chaker University Hospital, Sfax University Sfax Tunisia, Tunis, Tunisia
| | | | - Crystel Bonnet
- Institut Pasteur, Université Paris Cité, Inserm UA06, Institut de l’Audition, Paris, France
| | - Ridha Mrad
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital in Tunis, Tunis, Tunisia
- LR99ES10 Laboratory of Human Genetics, Faculty of Medicine in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mediha Trabelsi
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital in Tunis, Tunis, Tunisia
- LR99ES10 Laboratory of Human Genetics, Faculty of Medicine in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Cherine Charfeddine
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
4
|
Antropoli A, Arrigo A, Caprara C, Bianco L, Mercuri S, Berni A, Passerini I, Gambarotta S, Sodi A, Bandello F, Murro V, Parodi MB. Optical coherence tomography (OCT) and OCT-angiography in syndromic versus non-syndromic USH2A-associated retinopathy. Eur J Ophthalmol 2024:11206721241247421. [PMID: 38602021 DOI: 10.1177/11206721241247421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
PURPOSE To compare non-syndromic and syndromic forms of USH2A-related retinitis pigmentosa (RP) by means of structural optical coherence tomography (OCT) and OCT-angiography (OCTA). METHODS Observational, cross-sectional, multicenter study. All patients underwent best corrected visual acuity (BCVA) measurement, OCT (Spectralis HRA + OCT, Heidelberg Engineering) and OCTA (OCT DRI Topcon Triton, Topcon Corporation). We compared subfoveal choroidal thickness (SCT), choroidal vascularity index (CVI), presence of cystroid macular edema (CME), macular vessel density (VD) at the superficial and deep capillary plexa, as well as VD of the radial peripapillary capillary (RPC) network, between syndromic and non-syndromic patients with USH2A-associated retinopathy. RESULTS Thirty-four eyes from 18 patients (7 females) were included. Thirteen patients (72.2%) were affected by Usher syndrome type 2, whereas the remaining 5 subjects (27.8%) had non-syndromic retinitis pigmentosa (nsRP). Syndromic patients were younger than nsRP (p = 0.01) and had a worse visual acuity than those with the exclusively retinal phenotype. Patients with Usher syndrome type 2 had a higher prevalence of CME and a thicker choroid compared to nsRP, although these results were not statistically significant (p = 0.775 and p = 0.122, respectively). Similarly, none of the other quantitative OCT and OCTA parameters was statistically different between the two groups. CONCLUSIONS Despite their younger age, patients with Usher syndrome type 2 displayed similar choroidal and microvascular changes compared to those with nsRP.
Collapse
Affiliation(s)
- Alessio Antropoli
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Lorenzo Bianco
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Mercuri
- Department of Neurosciences, Psychology, Drug Research, and Child Health, Eye Clinic, University of Florence, AOU Careggi, Florence, Italy
| | - Alessandro Berni
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Ilaria Passerini
- Department of Neurosciences, Psychology, Drug Research, and Child Health, Eye Clinic, University of Florence, AOU Careggi, Florence, Italy
| | | | - Andrea Sodi
- Department of Neurosciences, Psychology, Drug Research, and Child Health, Eye Clinic, University of Florence, AOU Careggi, Florence, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Vittoria Murro
- Department of Neurosciences, Psychology, Drug Research, and Child Health, Eye Clinic, University of Florence, AOU Careggi, Florence, Italy
| | - Maurizio Battaglia Parodi
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
5
|
Liu Y, Zeng X, Zhang H. An Emerging Approach of Age-Related Hearing Loss Research: Application of Integrated Multi-Omics Analysis. Adv Biol (Weinh) 2024; 8:e2300613. [PMID: 38279573 DOI: 10.1002/adbi.202300613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Indexed: 01/28/2024]
Abstract
As one of the most common otologic diseases in the elderly, age-related hearing loss (ARHL) usually characterized by hearing loss and cognitive disorders, which have a significant impact on the elderly's physical and mental health and quality of life. However, as a typical disease of aging, it is unclear why aging causes widespread hearing impairment in the elderly. As molecular biological experiments have been conducted for research recently, ARHL is gradually established at various levels with the application and development of integrated multi-omics analysis in the studies of ARHL. Here, the recent progress in the application of multi-omics analysis in the molecular mechanisms of ARHL development and therapeutic regimens, including the combined analysis of different omics, such as transcriptome, proteome, and metabolome, to screen for risk sites, risk genes, and differences in lipid metabolism, etc., is outlined and the integrated histological data further promote the profound understanding of the disease process as well as physiological mechanisms of ARHL. The advantages and disadvantages of multi-omics analysis in disease research are also discussed and the authors speculate on the future prospects and applications of this part-to-whole approach, which may provide more comprehensive guidance for ARHL and aging disease prevention and treatment.
Collapse
Affiliation(s)
- Yue Liu
- Department of Otolaryngology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
- Department of Otolaryngology, Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T., Shenzhen, 518172, China
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, 519041, China
| | - Xianhai Zeng
- Department of Otolaryngology, Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T., Shenzhen, 518172, China
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, 519041, China
| | - Huasong Zhang
- Department of Otolaryngology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
- Department of Otolaryngology, Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T., Shenzhen, 518172, China
| |
Collapse
|
6
|
Mendia C, Peineau T, Zamani M, Felgerolle C, Yahiaoui N, Christophersen N, Papal S, Maudoux A, Maroofian R, Patni P, Nouaille S, Bowl MR, Delmaghani S, Galehdari H, Vona B, Dulon D, Vitry S, El-Amraoui A. Clarin-2 gene supplementation durably preserves hearing in a model of progressive hearing loss. Mol Ther 2024; 32:800-817. [PMID: 38243601 PMCID: PMC10928142 DOI: 10.1016/j.ymthe.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
Hearing loss is a major health concern affecting millions of people worldwide with currently limited treatment options. In clarin-2-deficient Clrn2-/- mice, used here as a model of progressive hearing loss, we report synaptic auditory abnormalities in addition to the previously demonstrated defects of hair bundle structure and mechanoelectrical transduction. We sought an in-depth evaluation of viral-mediated gene delivery as a therapy for these hearing-impaired mice. Supplementation with either the murine Clrn2 or human CLRN2 genes preserved normal hearing in treated Clrn2-/- mice. Conversely, mutated forms of CLRN2, identified in patients with post-lingual moderate to severe hearing loss, failed to prevent hearing loss. The ectopic expression of clarin-2 successfully prevented the loss of stereocilia, maintained normal mechanoelectrical transduction, preserved inner hair cell synaptic function, and ensured near-normal hearing thresholds over time. Maximal hearing preservation was observed when Clrn2 was delivered prior to the loss of transducing stereocilia. Our findings demonstrate that gene therapy is effective for the treatment of post-lingual hearing impairment and age-related deafness associated with CLRN2 patient mutations.
Collapse
Affiliation(s)
- Clara Mendia
- Institut Pasteur, Université Paris Cité, INSERM AO06, Institut de l'Audition, Unit Progressive Sensory Disorders, Pathophysiology and Therapy, 63 rue de Charenton, 75012 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Thibault Peineau
- Institut de l'Audition and Université de Bordeaux, Laboratoire de Neurophysiologie de la Synapse Auditive, Bordeaux Neurocampus, 33076 Bordeaux, France
| | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Chloé Felgerolle
- Institut Pasteur, Université Paris Cité, INSERM AO06, Institut de l'Audition, Unit Progressive Sensory Disorders, Pathophysiology and Therapy, 63 rue de Charenton, 75012 Paris, France
| | - Nawal Yahiaoui
- Institut Pasteur, Université Paris Cité, INSERM AO06, Institut de l'Audition, Unit Progressive Sensory Disorders, Pathophysiology and Therapy, 63 rue de Charenton, 75012 Paris, France
| | - Nele Christophersen
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany; Institute of Human Genetics, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Samantha Papal
- Institut Pasteur, Université Paris Cité, INSERM AO06, Institut de l'Audition, Unit Progressive Sensory Disorders, Pathophysiology and Therapy, 63 rue de Charenton, 75012 Paris, France
| | - Audrey Maudoux
- Institut Pasteur, Université Paris Cité, INSERM AO06, Institut de l'Audition, Unit Progressive Sensory Disorders, Pathophysiology and Therapy, 63 rue de Charenton, 75012 Paris, France
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, WC1E 6BT London, UK
| | - Pranav Patni
- Institut Pasteur, Université Paris Cité, INSERM AO06, Institut de l'Audition, Unit Progressive Sensory Disorders, Pathophysiology and Therapy, 63 rue de Charenton, 75012 Paris, France
| | - Sylvie Nouaille
- Institut Pasteur, Université Paris Cité, INSERM AO06, Institut de l'Audition, Unit Progressive Sensory Disorders, Pathophysiology and Therapy, 63 rue de Charenton, 75012 Paris, France
| | - Michael R Bowl
- UCL Ear Institute, University College London, 332 Gray's Inn Road, WC1X 8EE London, UK
| | - Sedigheh Delmaghani
- Institut Pasteur, Université Paris Cité, INSERM AO06, Institut de l'Audition, Unit Progressive Sensory Disorders, Pathophysiology and Therapy, 63 rue de Charenton, 75012 Paris, France
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Barbara Vona
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany; Institute of Human Genetics, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Didier Dulon
- Institut de l'Audition and Université de Bordeaux, Laboratoire de Neurophysiologie de la Synapse Auditive, Bordeaux Neurocampus, 33076 Bordeaux, France
| | - Sandrine Vitry
- Institut Pasteur, Université Paris Cité, INSERM AO06, Institut de l'Audition, Unit Progressive Sensory Disorders, Pathophysiology and Therapy, 63 rue de Charenton, 75012 Paris, France.
| | - Aziz El-Amraoui
- Institut Pasteur, Université Paris Cité, INSERM AO06, Institut de l'Audition, Unit Progressive Sensory Disorders, Pathophysiology and Therapy, 63 rue de Charenton, 75012 Paris, France.
| |
Collapse
|
7
|
Arias-Peso B, Calero-Ramos ML, López-Ladrón García de la Borbolla C, López-Domínguez M, Morillo-Sánchez MJ, Méndez-Martínez S, Sánchez-Gómez S, Rodríguez-de-la-Rúa E. Multidisciplinary approach to inherited causes of dual sensory impairment. Graefes Arch Clin Exp Ophthalmol 2024; 262:701-715. [PMID: 37341837 DOI: 10.1007/s00417-023-06153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
PURPOSE This article presents a review of the main causes of inherited dual sensory impairment (DSI) with an emphasis on the multidisciplinary approach. METHODS A narrative review of English literature published before January 2023 was conducted using PubMed, Medline, and Scopus databases. The different causes of inherited DSI are discussed from a multidisciplinary perspective. RESULTS There are a wide range of dual sensory impairment (DSI), commonly referred to as blindness and deafness. While Usher syndrome is the most frequent genetic cause, other genetic syndromes such as Alport syndrome or Stickler syndrome can also lead to DSI. Various retinal phenotypes, including pigmentary retinopathy as seen in Usher syndrome, vitreoretinopathy as in Stickler syndrome, and macular dystrophy as in Alport syndrome, along with type of hearing loss (sensorineural or conductive) and additional systemic symptoms can aid in diagnostic suspicion. A thorough ophthalmologic and otorhinolaryngologic examination can help guide diagnosis, which can then be confirmed with genetic studies, crucial for determining prognosis. Effective hearing rehabilitation measures, such as hearing implants, and visual rehabilitation measures, such as low vision optical devices, are crucial for maintaining social interaction and proper development in these patients. CONCLUSIONS While Usher syndrome is the primary cause of inherited dual sensory impairment (DSI), other genetic syndromes can also lead to this condition. A proper diagnostic approach based on retinal phenotypes and types of hearing loss can aid in ruling out alternative causes. Multidisciplinary approaches can assist in reaching a definitive diagnosis, which has significant prognostic implications.
Collapse
Affiliation(s)
- Borja Arias-Peso
- Department of Ophthalmology, Miguel Servet University Hospital, 1-3 Isabel la Católica Street, 50009, Zaragoza, Spain.
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain.
| | | | | | | | | | - Silvia Méndez-Martínez
- Department of Ophthalmology, Miguel Servet University Hospital, 1-3 Isabel la Católica Street, 50009, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Serafin Sánchez-Gómez
- Department of Otorhinolaryngology, Virgen Macarena University Hospital, Seville, Spain
| | - Enrique Rodríguez-de-la-Rúa
- Department of Ophthalmology, Virgen Macarena University Hospital, Seville, Spain
- Department of Surgery, Ophthalmology Area, University of Seville, Seville, Spain
| |
Collapse
|
8
|
Amorim AM, Ramada AB, Lopes AC, Duarte Silva E, Lemos J, Ribeiro JC. Vestibulo-ocular reflex dynamics with head-impulses discriminates Usher patients type 1 and 2. Sci Rep 2024; 14:3701. [PMID: 38355682 PMCID: PMC10867007 DOI: 10.1038/s41598-024-54270-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/10/2024] [Indexed: 02/16/2024] Open
Abstract
Usher Syndrome classification takes into account the absence of vestibular function but its correlation with genotype is not well characterized. We intend to investigate whether video Head Impulse Test (vHIT) is useful in screening and to differentiate Usher Syndrome types. 29 Usher patients (USH) with a genetically confirmed diagnosis and 30 healthy controls were studied with vHIT and dizziness handicap inventory questionnaire (DHI). Statistical significant differences between USH1, USH2 and controls were found in the vestibulo-ocular-reflex (VOR) gain of all SCCs, with USH1 patients consistently presenting smaller gains. VOR gain of the right lateral SCC could discriminate controls from USH1, and USH2 from USH1 with an overall diagnostic accuracy of 90%. USH1 DHI correlated with VOR (ρ = - 0,971, p = 0.001). Occurrence rate of covert and overt lateral semicircular canals refixation saccades (RS) was significantly different between groups, being higher in USH1 patients (p < 0.001). USH1 peak velocity of covert and overt saccades was higher for lateral semicircular canals (p < 0.05 and p = 0.001) compared with USH2 and controls. Covert saccades occurrence rate for horizontal SCCs could discriminate USH1 from USH2 patients and controls with a diagnostic accuracy of 85%. vHIT is a fast and non-invasive instrument which allowed us to screen and distinguish Usher patients from controls with a high precision. Importantly, its use allowed further discrimination between USH1 from USH2 groups. Moreover, VOR gain seems to correlate with vertigo-related quality of life in more severe phenotypes.
Collapse
Affiliation(s)
- Ana Margarida Amorim
- Department of Otorhinolaryngology, Coimbra University Hospital Centre, Praceta Mota Pinto, 3000-135, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | - Ana Beatriz Ramada
- Department of Otorhinolaryngology, Coimbra University Hospital Centre, Praceta Mota Pinto, 3000-135, Coimbra, Portugal
| | - Ana Cristina Lopes
- Department of Otorhinolaryngology, Coimbra University Hospital Centre, Praceta Mota Pinto, 3000-135, Coimbra, Portugal
| | | | - João Lemos
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Department of Neurology, Coimbra University Hospital Centre, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João Carlos Ribeiro
- Department of Otorhinolaryngology, Coimbra University Hospital Centre, Praceta Mota Pinto, 3000-135, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Murgiano L, Niggel JK, Benedicenti L, Cortellari M, Bionda A, Crepaldi P, Liotta L, Aguirre GK, Beltran WA, Aguirre GD. Frameshift Variant in AMPD2 in Cirneco dell'Etna Dogs with Retinopathy and Tremors. Genes (Basel) 2024; 15:238. [PMID: 38397227 PMCID: PMC10887799 DOI: 10.3390/genes15020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
While the manifestations of many inherited retinal disorders are limited to loss of vision, others are part of a syndrome that affects multiple tissues, particularly the nervous system. Most syndromic retinal disorders are thought to be recessively inherited. Two dogs out of a litter of Cirneco dell' Etna dogs, both males, showed signs of retinal degeneration, along with tremors and signs described as either atypical seizures or paroxysmal dyskinesias, while the other two male littermates were normal. We named this oculo-neurological syndrome CONS (Cirneco oculo-neurological syndrome), and undertook homozygosity mapping and whole-genome sequencing to determine its potential genetic etiology. Notably, we detected a 1-bp deletion in chromosome 6 that was predicted to cause a frameshift and premature stop codon within the canine AMPD2 gene, which encodes adenosine monophosphate deaminase, an enzyme that converts adenosine 5'-monophosphate (AMP) to inosine 5'-monophosphate (IMP). Genotyping of the available Cirneco population suggested perfect segregation between cases and controls for the variant. Moreover, this variant was absent in canine genomic databases comprised of thousands of unaffected dogs. The AMPD2 genetic variant we identified in dogs presents with retinal manifestations, adding to the spectrum of neurological manifestations associated with AMPD2 variants in humans.
Collapse
Affiliation(s)
- Leonardo Murgiano
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.N.); (W.A.B.); (G.D.A.)
- Sylvia M. Van Sloun Laboratory for Canine Genomic Analysis, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica K. Niggel
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.N.); (W.A.B.); (G.D.A.)
- Sylvia M. Van Sloun Laboratory for Canine Genomic Analysis, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leontine Benedicenti
- Matthew J. Ryan Veterinary Hospital, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Matteo Cortellari
- Department of Agricultural and Environmental Sciences—Production, Territory, Agroenergy, University of Milan, 20133 Milan, Italy; (M.C.); (A.B.); (P.C.)
| | - Arianna Bionda
- Department of Agricultural and Environmental Sciences—Production, Territory, Agroenergy, University of Milan, 20133 Milan, Italy; (M.C.); (A.B.); (P.C.)
| | - Paola Crepaldi
- Department of Agricultural and Environmental Sciences—Production, Territory, Agroenergy, University of Milan, 20133 Milan, Italy; (M.C.); (A.B.); (P.C.)
| | - Luigi Liotta
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Geoffrey K. Aguirre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - William A. Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.N.); (W.A.B.); (G.D.A.)
| | - Gustavo D. Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.N.); (W.A.B.); (G.D.A.)
- Sylvia M. Van Sloun Laboratory for Canine Genomic Analysis, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Han S, Wang Q, Cheng M, Hu Y, Liu P, Hou W, Liang L. The effects of ush2a gene knockout on vesicle transport in photoreceptors. Gene 2024; 892:147885. [PMID: 37813209 DOI: 10.1016/j.gene.2023.147885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
USH2A (Usher syndrome type 2A) gene mutations are the predominant cause of Usher syndrome type 2, characterized by sensorineural hearing loss and retinitis pigmentosa (RP), and also significant contributors to non-syndromic RP. To date, there is a lack of definitive therapeutic interventions to mitigate the associated disorders caused by USH2A mutations, and the precise pathogenic mechanisms underlying their onset remain unclear. In the present study, we utilized the ush2a knockout zebrafish model to investigate the pathological mechanisms of RP. In late-stage ush2a-/- zebrafish, the outer segments of rods displayed shortened length and decreased number. Anomalous vesicle accumulation was observed at the junction between the inner and outer segments, accompanied by reduced expression and structural damage of actin filaments in the photoreceptor cells. Furthermore, we discovered that Rab8 expression was downregulated and exhibited aberrant localization in ush2a-/- zebrafish. Additionally, we identified an interaction between USH2A and Rab8. Therefore, the knockout of ush2a may potentially affect vesicle transport through the regulation of Rab8, providing a novel target for maintaining the survival of photoreceptor cells. These findings also contribute to our understanding of the potential molecular pathogenesis underlying RP caused by USH2A gene mutations.
Collapse
Affiliation(s)
- Shanshan Han
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, Hubei, China
| | - Qiong Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, Hubei, China
| | - Meiqi Cheng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, Hubei, China
| | - Yue Hu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, Hubei, China
| | - Pei Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, Hubei, China
| | - Wanle Hou
- Department of Clinical Laboratory, the First Hospital of Laohekou City, Laohekou 441800, Hubei, China.
| | - Liang Liang
- Department of Ophthalmology, the First Clinical Hospital of China Three Gorges University, Yichang 443003, Hubei, China.
| |
Collapse
|
11
|
Cuzzuol BR, Apolonio JS, da Silva Júnior RT, de Carvalho LS, Santos LKDS, Malheiro LH, Silva Luz M, Calmon MS, Crivellaro HDL, Lemos FFB, Freire de Melo F. Usher syndrome: Genetic diagnosis and current therapeutic approaches. World J Otorhinolaryngol 2024; 11:1-17. [DOI: 10.5319/wjo.v11.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024] Open
Abstract
Usher Syndrome (USH) is the most common deaf-blind syndrome, affecting approximately 1 in 6000 people in the deaf population. This genetic condition is characterized by a combination of hearing loss (HL), retinitis pigmentosa, and, in some cases, vestibular areflexia. Among the subtypes of USH, USH type 1 is considered the most severe form, presenting profound bilateral congenital deafness, vestibular areflexia, and early onset RP. USH type 2 is the most common form, exhibiting congenital moderate to severe HL for low frequencies and severe to profound HL for high frequencies. Conversely, type 3 is the rarest, initially manifesting mild symptoms during childhood that become more prominent in the first decades of life. The dual impact of USH on both visual and auditory senses significantly impairs patients’ quality of life, restricting their daily activities and interactions with society. To date, 9 genes have been confirmed so far for USH: MYO7A, USH1C, CDH23, PCDH15, USH1G, USH2A, ADGRV1, WHRN and CLRN1. These genes are inherited in an autosomal recessive manner and encode proteins expressed in the inner ear and retina, leading to functional loss. Although non-genetic methods can assist in patient triage and disease extension evaluation, genetic and molecular tests play a pivotal role in providing genetic counseling, enabling appropriate gene therapy, and facilitating timely cochlear implantation (CI). The CRISPR/Cas9 system and viral-based gene replacement therapy have recently emerged as highly promising techniques for treating USH. Regarding drug therapy, PTC-124 and Nb54 have been identified as promising drug interventions for genetic HL in USH. Simultaneously, CI has proven to be critical in the restoration of hearing. This review aims to summarize the genetic and molecular diagnosis of USH and highlight the importance of early diagnosis in guiding appropriate treatment strategies and improving patient prognosis.
Collapse
Affiliation(s)
- Beatriz Rocha Cuzzuol
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Jonathan Santos Apolonio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Lorena Sousa de Carvalho
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Kauany de Sá Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luciano Hasimoto Malheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Henrique de Lima Crivellaro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
12
|
Fritze JS, Stiehler FF, Wolfrum U. Pathogenic Variants in USH1G/SANS Alter Protein Interaction with Pre-RNA Processing Factors PRPF6 and PRPF31 of the Spliceosome. Int J Mol Sci 2023; 24:17608. [PMID: 38139438 PMCID: PMC10744108 DOI: 10.3390/ijms242417608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Pre-mRNA splicing is an essential process orchestrated by the spliceosome, a dynamic complex assembled stepwise on pre-mRNA. We have previously identified that USH1G protein SANS regulates pre-mRNA splicing by mediating the intranuclear transfer of the spliceosomal U4/U6.U5 tri-snRNP complex. During this process, SANS interacts with the U4/U6 and U5 snRNP-specific proteins PRPF31 and PRPF6 and regulates splicing, which is disturbed by variants of USH1G/SANS causative for human Usher syndrome (USH), the most common form of hereditary deaf-blindness. Here, we aim to gain further insights into the molecular interaction of the splicing molecules PRPF31 and PRPF6 to the CENTn domain of SANS using fluorescence resonance energy transfer assays in cells and in silico deep learning-based protein structure predictions. This demonstrates that SANS directly binds via two distinct conserved regions of its CENTn to the two PRPFs. In addition, we provide evidence that these interactions occur sequentially and a conformational change of an intrinsically disordered region to a short α-helix of SANS CENTn2 is triggered by the binding of PRPF6. Furthermore, we find that pathogenic variants of USH1G/SANS perturb the binding of SANS to both PRPFs, implying a significance for the USH1G pathophysiology.
Collapse
Affiliation(s)
| | | | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (J.S.F.)
| |
Collapse
|
13
|
Schott JW, Huang P, Morgan M, Nelson-Brantley J, Koehler A, Renslo B, Büning H, Warnecke A, Schambach A, Staecker H. Third-generation lentiviral gene therapy rescues function in a mouse model of Usher 1B. Mol Ther 2023; 31:3502-3519. [PMID: 37915173 PMCID: PMC10727968 DOI: 10.1016/j.ymthe.2023.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/30/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
Usher syndrome 1B (USH1B) is a devastating genetic disorder with congenital deafness, loss of balance, and blindness caused by mutations in the myosin-VIIa (MYO7A) gene, for which there is currently no cure. We developed a gene therapy approach addressing the vestibulo-cochlear deficits of USH1B using a third-generation, high-capacity lentiviral vector system capable of delivering the large 6,645-bp MYO7A cDNA. Lentivirally delivered MYO7A and co-encoded dTomato were successfully expressed in the cochlear cell line HEI-OC1. In normal-hearing mice, both cochlea and the vestibular organ were efficiently transduced, and ectopic MYO7A overexpression did not show any adverse effects. In Shaker-1 mice, an USH1B disease model based on Myo7a mutation, cochlear and vestibular hair cells, the main inner ear cell types affected in USH1B, were successfully transduced. In homozygous mutant mice, delivery of MYO7A at postnatal day 16 resulted in a trend for partial recovery of auditory function and in strongly reduced balance deficits. Heterozygous mutant mice were found to develop severe hearing loss at 6 months of age without balance deficits, and lentiviral MYO7A gene therapy completely rescued hearing to wild-type hearing thresholds. In summary, this study demonstrates improved hearing and balance function through lentiviral gene therapy in the inner ear.
Collapse
Affiliation(s)
- Juliane W Schott
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Peixin Huang
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Jennifer Nelson-Brantley
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Ally Koehler
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Bryan Renslo
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| |
Collapse
|
14
|
Ivanchenko MV, Hathaway DM, Mulhall EM, Booth KT, Wang M, Peters CW, Klein AJ, Chen X, Li Y, György B, Corey DP. PCDH15 Dual-AAV Gene Therapy for Deafness and Blindness in Usher Syndrome Type 1F. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566447. [PMID: 38014037 PMCID: PMC10680673 DOI: 10.1101/2023.11.09.566447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Usher syndrome type 1F (USH1F), resulting from mutations in the protocadherin-15 (PCDH15) gene, is characterized by congenital lack of hearing and balance, and progressive blindness in the form of retinitis pigmentosa. In this study, we explore a novel approach for USH1F gene therapy, exceeding the single AAV packaging limit by employing a dual adeno-associated virus (AAV) strategy to deliver the full-length PCDH15 coding sequence. We demonstrate the efficacy of this strategy in mouse USH1F models, effectively restoring hearing and balance in these mice. Importantly, our approach also proves successful in expressing PCDH15 in clinically relevant retinal models, including human retinal organoids and non-human primate retina, showing efficient targeting of photoreceptors and proper protein expression in the calyceal processes. This research represents a major step toward advancing gene therapy for USH1F and the multiple challenges of hearing, balance, and vision impairment.
Collapse
|
15
|
Chakrabarty K, Nayak D, Debnath J, Das D, Shetty R, Ghosh A. Retinal organoids in disease modeling and drug discovery: Opportunities and challenges. Surv Ophthalmol 2023:S0039-6257(23)00127-3. [PMID: 37778668 DOI: 10.1016/j.survophthal.2023.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Diseases leading to retinal cell loss can cause severe visual impairment and blindness. The lack of effective therapies to address retinal cell loss and the absence of intrinsic regeneration in the human retina leads to an irreversible pathological condition. Progress in recent years in the generation of human three-dimensional retinal organoids from pluripotent stem cells makes it possible to recreate the cytoarchitecture and associated cell-cell interactions of the human retina in remarkable detail. These human three-dimensional retinal organoid systems made of distinct retinal cell types and possessing contextual physiological responses allow the study of human retina development and retinal disease pathology in a way animal model and two-dimensional cell cultures were unable to achieve. We describe the derivation of retinal organoids from human pluripotent stem cells and their application for modeling retinal disease pathologies, while outlining the opportunities and challenges for its application in academia and industry.
Collapse
Affiliation(s)
- Koushik Chakrabarty
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India.
| | - Divyani Nayak
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Jayasree Debnath
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Debashish Das
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| |
Collapse
|
16
|
Lau SC, Grati M, Isgrig K, Sinan M, Calabro KR, Zhu J, Ishibashi Y, Ozgur Z, Wafa T, Belyantseva IA, Fitzgerald T, Friedman TB, Boye SL, Boye SE, Chien WW. Dual-AAV vector-mediated expression of MYO7A improves vestibular function in a mouse model of Usher syndrome 1B. Mol Ther Methods Clin Dev 2023; 30:534-545. [PMID: 37693946 PMCID: PMC10491803 DOI: 10.1016/j.omtm.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023]
Abstract
Usher syndrome is the most common cause of deafness-blindness in the world. Usher syndrome type 1B (USH1B) is associated with mutations in MYO7A. Patients with USH1B experience deafness, blindness, and vestibular dysfunction. In this study, we applied adeno-associated virus (AAV)-mediated gene therapy to the shaker-1 (Myo7a4626SB/4626SB) mouse, a model of USH1B. The shaker-1 mouse has a nonsense mutation in Myo7a, is profoundly deaf throughout life, and has significant vestibular dysfunction. Because of the ∼6.7-kb size of the MYO7A cDNA, a dual-AAV approach was used for gene delivery, which involves splitting human MYO7A cDNA into 5' and 3' halves and cloning them into two separate AAV8(Y733F) vectors. When MYO7A cDNA was delivered to shaker-1 inner ears using the dual-AAV approach, cochlear hair cell survival was improved. However, stereocilium organization and auditory function were not improved. In contrast, in the vestibular system, dual-AAV-mediated MYO7A delivery significantly rescued hair cell stereocilium morphology and improved vestibular function, as reflected in a reduction of circling behavior and improved vestibular sensory-evoked potential (VsEP) thresholds. Our data indicate that dual-AAV-mediated MYO7A expression improves vestibular function in shaker-1 mice and supports further development of this approach for the treatment of disabling dizziness from vestibular dysfunction in USH1B patients.
Collapse
Affiliation(s)
- Samantha C. Lau
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mhamed Grati
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Isgrig
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Moaz Sinan
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kaitlyn R. Calabro
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Jianliang Zhu
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yasuko Ishibashi
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zeynep Ozgur
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Talah Wafa
- Mouse Auditory Testing Core Facility, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tracy Fitzgerald
- Mouse Auditory Testing Core Facility, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sanford L. Boye
- Powell Gene Therapy Center, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Shannon E. Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Wade W. Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Otolaryngology – Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Ivanchenko MV, Hathaway DM, Klein AJ, Pan B, Strelkova O, De-la-Torre P, Wu X, Peters CW, Mulhall EM, Booth KT, Goldstein C, Brower J, Sotomayor M, Indzhykulian AA, Corey DP. Mini-PCDH15 gene therapy rescues hearing in a mouse model of Usher syndrome type 1F. Nat Commun 2023; 14:2400. [PMID: 37100771 PMCID: PMC10133396 DOI: 10.1038/s41467-023-38038-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Usher syndrome type 1 F (USH1F), caused by mutations in the protocadherin-15 gene (PCDH15), is characterized by congenital deafness, lack of balance, and progressive blindness. In hair cells, the receptor cells of the inner ear, PCDH15 is a component of tip links, fine filaments which pull open mechanosensory transduction channels. A simple gene addition therapy for USH1F is challenging because the PCDH15 coding sequence is too large for adeno-associated virus (AAV) vectors. We use rational, structure-based design to engineer mini-PCDH15s in which 3-5 of the 11 extracellular cadherin repeats are deleted, but which still bind a partner protein. Some mini-PCDH15s can fit in an AAV. An AAV encoding one of these, injected into the inner ears of mouse models of USH1F, produces a mini-PCDH15 which properly forms tip links, prevents the degeneration of hair cell bundles, and rescues hearing. Mini-PCDH15s may be a useful therapy for the deafness of USH1F.
Collapse
Affiliation(s)
| | - Daniel M Hathaway
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Alex J Klein
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Bifeng Pan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Olga Strelkova
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Pedro De-la-Torre
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Xudong Wu
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Cole W Peters
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Eric M Mulhall
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Kevin T Booth
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Corey Goldstein
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Joseph Brower
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Artur A Indzhykulian
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Morales EA, Gaeta I, Tyska MJ. Building the brush border, one microvillus at a time. Curr Opin Cell Biol 2023; 80:102153. [PMID: 36827850 PMCID: PMC10033394 DOI: 10.1016/j.ceb.2023.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 02/24/2023]
Abstract
Microvilli are actin bundle-supported surface protrusions assembled by diverse cell types to mediate biochemical and physical interactions with the external environment. Found on the surface of some of the earliest animal cells, primordial microvilli likely contributed to bacterial entrapment and feeding. Although millions of years of evolution have repurposed these protrusions to fulfill diverse roles such as detection of mechanical or visual stimuli in inner ear hair cells or retinal pigmented epithelial cells, respectively, solute uptake remains a key essential function linked to these structures. In this mini review, we offer a brief overview of the composition and structure of epithelial microvilli, highlight recent discoveries on the growth of these protrusions early in differentiation, and point to fundamental questions surrounding microvilli biogenesis that remain open for future studies.
Collapse
Affiliation(s)
- E Angelo Morales
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Isabella Gaeta
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
19
|
Lin Q, Yang D, Shen Z, Zhou X. New splice site mutations in MYO7A causing Usher syndrome type 1: a study on a Chinese consanguineous family. Int Ophthalmol 2022; 43:2091-2099. [DOI: 10.1007/s10792-022-02611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
|
20
|
Ma X, Guo J, Fu Y, Shen C, Jiang P, Zhang Y, Zhang L, Yu Y, Fan J, Chai R. G protein-coupled receptors in cochlea: Potential therapeutic targets for hearing loss. Front Mol Neurosci 2022; 15:1028125. [PMID: 36311029 PMCID: PMC9596917 DOI: 10.3389/fnmol.2022.1028125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
The prevalence of hearing loss-related diseases caused by different factors is increasing worldwide year by year. Currently, however, the patient’s hearing loss has not been effectively improved. Therefore, there is an urgent need to adopt new treatment measures and treatment techniques to help improve the therapeutic effect of hearing loss. G protein-coupled receptors (GPCRs), as crucial cell surface receptors, can widely participate in different physiological and pathological processes, particularly play an essential role in many disease occurrences and be served as promising therapeutic targets. However, no specific drugs on the market have been found to target the GPCRs of the cochlea. Interestingly, many recent studies have demonstrated that GPCRs can participate in various pathogenic process related to hearing loss in the cochlea including heredity, noise, ototoxic drugs, cochlear structure, and so on. In this review, we comprehensively summarize the functions of 53 GPCRs known in the cochlea and their relationships with hearing loss, and highlight the recent advances of new techniques used in cochlear study including cryo-EM, AI, GPCR drug screening, gene therapy vectors, and CRISPR editing technology, as well as discuss in depth the future direction of novel GPCR-based drug development and gene therapy for cochlear hearing loss. Collectively, this review is to facilitate basic and (pre-) clinical research in this area, and provide beneficial help for emerging GPCR-based cochlear therapies.
Collapse
Affiliation(s)
- Xiangyu Ma
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Jiamin Guo
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Yaoyang Fu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cangsong Shen
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Jiang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Yuan Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Lei Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yafeng Yu
- First Affiliated Hospital of Soochow University, Soochow, China
- *Correspondence: Yafeng Yu,
| | - Jiangang Fan
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Jiangang Fan,
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Renjie Chai,
| |
Collapse
|
21
|
Jeng JY, Carlton AJ, Goodyear RJ, Chinowsky C, Ceriani F, Johnson SL, Sung TC, Dayn Y, Richardson GP, Bowl MR, Brown SD, Manor U, Marcotti W. AAV-mediated rescue of Eps8 expression in vivo restores hair-cell function in a mouse model of recessive deafness. Mol Ther Methods Clin Dev 2022; 26:355-370. [PMID: 36034774 PMCID: PMC9382420 DOI: 10.1016/j.omtm.2022.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
The transduction of acoustic information by hair cells depends upon mechanosensitive stereociliary bundles that project from their apical surface. Mutations or absence of the stereociliary protein EPS8 cause deafness in humans and mice, respectively. Eps8 knockout mice (Eps8 -/- ) have hair cells with immature stereocilia and fail to become sensory receptors. Here, we show that exogenous delivery of Eps8 using Anc80L65 in P1-P2 Eps8 -/- mice in vivo rescued the hair bundle structure of apical-coil hair cells. Rescued hair bundles correctly localize EPS8, WHIRLIN, MYO15, and BAIAP2L2, and generate normal mechanoelectrical transducer currents. Inner hair cells with normal-looking stereocilia re-expressed adult-like basolateral ion channels (BK and KCNQ4) and have normal exocytosis. The number of hair cells undergoing full recovery was not sufficient to rescue hearing in Eps8 -/- mice. Adeno-associated virus (AAV)-transduction of P3 apical-coil and P1-P2 basal-coil hair cells does not rescue hair cells, nor does Anc80L65-Eps8 delivery in adult Eps8 -/- mice. We propose that AAV-induced gene-base therapy is an efficient strategy to recover the complex hair-cell defects in Eps8 -/- mice. However, this therapeutic approach may need to be performed in utero since, at postnatal ages, Eps8 -/- hair cells appear to have matured or accumulated damage beyond the point of repair.
Collapse
Affiliation(s)
- Jing-Yi Jeng
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Adam J. Carlton
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Richard J. Goodyear
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Colbie Chinowsky
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Federico Ceriani
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Stuart L. Johnson
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Tsung-Chang Sung
- Transgenic Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yelena Dayn
- Transgenic Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Guy P. Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Michael R. Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD UK
| | - Steve D.M. Brown
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD UK
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Walter Marcotti
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
22
|
Isgrig K, Ishibashi Y, Lee HJ, Zhu J, Grati M, Bennett J, Griffith AJ, Roux I, Chien WW. AAV8BP2 and AAV8 transduce the mammalian cochlear lateral wall and endolymphatic sac with high efficiency. Mol Ther Methods Clin Dev 2022; 26:371-383. [PMID: 36034771 PMCID: PMC9386391 DOI: 10.1016/j.omtm.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022]
Abstract
Inner ear gene therapy using adeno-associated viruses (AAVs) has been successfully applied to several mouse models of hereditary hearing loss to improve their auditory function. While most inner ear gene therapy studies have focused on the mechanosensory hair cells and supporting cells in the organ of Corti, the cochlear lateral wall and the endolymphatic sac have not garnered much attention. The cochlear lateral wall and the endolymphatic sac play critical roles in inner ear ionic and fluid homeostasis. Mutations in genes expressed in the cochlear lateral wall and the endolymphatic sac are present in a large percentage of patients with hereditary hearing loss. In this study, we examine the transduction patterns and efficiencies of conventional (AAV2 and AAV8) and synthetic (AAV2.7m8, AAV8BP2, and Anc80L65) AAVs in the mouse inner ear. We found that AAV8BP2 and AAV8 are capable of transducing the marginal cells and intermediate cells in the stria vascularis. These two AAVs can also transduce the epithelial cells of the endolymphatic sac. Our data suggest that AAV8BP2 and AAV8 are highly useful viral vectors for gene therapy studies targeting the cochlear lateral wall and the endolymphatic sac.
Collapse
Affiliation(s)
- Kevin Isgrig
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Yasuko Ishibashi
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Hyun Jae Lee
- Otolaryngology Branch, NIDCD, National Institutes of Health, Bethesda, MD, USA
| | - Jianliang Zhu
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Mhamed Grati
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrew J. Griffith
- Otolaryngology Branch, NIDCD, National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology, University of Tennessee College of Medicine, Memphis, TN, USA
| | - Isabelle Roux
- Otolaryngology Branch, NIDCD, National Institutes of Health, Bethesda, MD, USA
| | - Wade W. Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
24
|
Yan W, Chen G, Li J. Structure of the Harmonin PDZ2 and coiled-coil domains in a complex with CDHR2 tail and its implications. FASEB J 2022; 36:e22425. [PMID: 35747925 DOI: 10.1096/fj.202200403rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/11/2022]
Abstract
Harmonin is a protein containing multiple PDZ domains and is required for the development and maintenance of hair cell stereocilia and brush border microvilli. Mutations in the USH1C gene can cause Usher syndrome type 1C, a severe inheritable disease characterized by the loss of hearing and vision. Here, by solving the high-resolution crystal structure of Harmonin PDZ2 and coiled-coil domains in a complex with the tail of cadherin-related family member 2, we demonstrated that mutations located in the Harmonin PDZ2 domain and found in patients could affect its stability, and thus, the target binding capability. The structure also implies that the coiled-coil domain could form antiparallel dimers under high concentrations, possibly when Harmonin underwent liquid-liquid phase separation in the upper tip-link density in hair cell stereocilia or microvilli of enterocytes of the intestinal epithelium. The crystal structure, together with the biochemical analysis, provided mechanistic implications for Harmonin mutations causing Usher syndrome, non-syndromic deafness, or enteropathy.
Collapse
Affiliation(s)
- Wenxia Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Guanhao Chen
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jianchao Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Otorhinolaryngology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
25
|
Rauterkus G, Maxwell AK, Kahane JB, Lentz JJ, Arriaga MA. Conversations in Cochlear Implantation: The Inner Ear Therapy of Today. Biomolecules 2022; 12:649. [PMID: 35625577 PMCID: PMC9138212 DOI: 10.3390/biom12050649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
As biomolecular approaches for hearing restoration in profound sensorineural hearing loss evolve, they will be applied in conjunction with or instead of cochlear implants. An understanding of the current state-of-the-art of this technology, including its advantages, disadvantages, and its potential for delivering and interacting with biomolecular hearing restoration approaches, is helpful for designing modern hearing-restoration strategies. Cochlear implants (CI) have evolved over the last four decades to restore hearing more effectively, in more people, with diverse indications. This evolution has been driven by advances in technology, surgery, and healthcare delivery. Here, we offer a practical treatise on the state of cochlear implantation directed towards developing the next generation of inner ear therapeutics. We aim to capture and distill conversations ongoing in CI research, development, and clinical management. In this review, we discuss successes and physiological constraints of hearing with an implant, common surgical approaches and electrode arrays, new indications and outcome measures for implantation, and barriers to CI utilization. Additionally, we compare cochlear implantation with biomolecular and pharmacological approaches, consider strategies to combine these approaches, and identify unmet medical needs with cochlear implants. The strengths and weaknesses of modern implantation highlighted here can mark opportunities for continued progress or improvement in the design and delivery of the next generation of inner ear therapeutics.
Collapse
Affiliation(s)
- Grant Rauterkus
- Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Anne K. Maxwell
- Department of Otorhinolaryngology and Biocommunications, Division of Neurotology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (A.K.M.); (J.B.K.)
| | - Jacob B. Kahane
- Department of Otorhinolaryngology and Biocommunications, Division of Neurotology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (A.K.M.); (J.B.K.)
| | - Jennifer J. Lentz
- Department of Otorhinolaryngology and Biocommunications, Division of Neurotology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (A.K.M.); (J.B.K.)
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Moises A. Arriaga
- Department of Otorhinolaryngology and Biocommunications, Division of Neurotology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (A.K.M.); (J.B.K.)
- Hearing and Balance Center, Our Lady of the Lake Regional Medical Center, Baton Rouge, LA 70808, USA
- Hearing Balance Center, Culicchia Neurological Clinic, New Orleans, LA 70112, USA
| |
Collapse
|
26
|
Maudoux A, Vitry S, El-Amraoui A. Vestibular Deficits in Deafness: Clinical Presentation, Animal Modeling, and Treatment Solutions. Front Neurol 2022; 13:816534. [PMID: 35444606 PMCID: PMC9013928 DOI: 10.3389/fneur.2022.816534] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The inner ear is responsible for both hearing and balance. These functions are dependent on the correct functioning of mechanosensitive hair cells, which convert sound- and motion-induced stimuli into electrical signals conveyed to the brain. During evolution of the inner ear, the major changes occurred in the hearing organ, whereas the structure of the vestibular organs remained constant in all vertebrates over the same period. Vestibular deficits are highly prevalent in humans, due to multiple intersecting causes: genetics, environmental factors, ototoxic drugs, infections and aging. Studies of deafness genes associated with balance deficits and their corresponding animal models have shed light on the development and function of these two sensory systems. Bilateral vestibular deficits often impair individual postural control, gaze stabilization, locomotion and spatial orientation. The resulting dizziness, vertigo, and/or falls (frequent in elderly populations) greatly affect patient quality of life. In the absence of treatment, prosthetic devices, such as vestibular implants, providing information about the direction, amplitude and velocity of body movements, are being developed and have given promising results in animal models and humans. Novel methods and techniques have led to major progress in gene therapies targeting the inner ear (gene supplementation and gene editing), 3D inner ear organoids and reprograming protocols for generating hair cell-like cells. These rapid advances in multiscale approaches covering basic research, clinical diagnostics and therapies are fostering interdisciplinary research to develop personalized treatments for vestibular disorders.
Collapse
Affiliation(s)
- Audrey Maudoux
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
- Center for Balance Evaluation in Children (EFEE), Otolaryngology Department, Assistance Publique des Hôpitaux de Paris, Robert-Debré University Hospital, Paris, France
| | - Sandrine Vitry
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| |
Collapse
|
27
|
The genetic and phenotypic landscapes of Usher syndrome: from disease mechanisms to a new classification. Hum Genet 2022; 141:709-735. [PMID: 35353227 PMCID: PMC9034986 DOI: 10.1007/s00439-022-02448-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Usher syndrome (USH) is the most common cause of deaf–blindness in humans, with a prevalence of about 1/10,000 (~ 400,000 people worldwide). Cochlear implants are currently used to reduce the burden of hearing loss in severe-to-profoundly deaf patients, but many promising treatments including gene, cell, and drug therapies to restore the native function of the inner ear and retinal sensory cells are under investigation. The traditional clinical classification of Usher syndrome defines three major subtypes—USH1, 2 and 3—according to hearing loss severity and onset, the presence or absence of vestibular dysfunction, and age at onset of retinitis pigmentosa. Pathogenic variants of nine USH genes have been initially reported: MYO7A, USH1C, PCDH15, CDH23, and USH1G for USH1, USH2A, ADGRV1, and WHRN for USH2, and CLRN1 for USH3. Based on the co-occurrence of hearing and vision deficits, the list of USH genes has been extended to few other genes, but with limited supporting information. A consensus on combined criteria for Usher syndrome is crucial for the development of accurate diagnosis and to improve patient management. In recent years, a wealth of information has been obtained concerning the properties of the Usher proteins, related molecular networks, potential genotype–phenotype correlations, and the pathogenic mechanisms underlying the impairment or loss of hearing, balance and vision. The advent of precision medicine calls for a clear and more precise diagnosis of Usher syndrome, exploiting all the existing data to develop a combined clinical/genetic/network/functional classification for Usher syndrome.
Collapse
|
28
|
Planar polarity in primate cone photoreceptors: a potential role in Stiles Crawford effect phototropism. Commun Biol 2022; 5:89. [PMID: 35075261 PMCID: PMC8786850 DOI: 10.1038/s42003-021-02998-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
Human cone phototropism is a key mechanism underlying the Stiles-Crawford effect, a psychophysiological phenomenon according to which photoreceptor outer/inner segments are aligned along with the direction of incoming light. However, such photomechanical movements of photoreceptors remain elusive in mammals. We first show here that primate cone photoreceptors have a planar polarity organized radially around the optical center of the eye. This planar polarity, based on the structure of the cilium and calyceal processes, is highly reminiscent of the planar polarity of the hair cells and their kinocilium and stereocilia. Secondly, we observe under super-high resolution expansion microscopy the cytoskeleton and Usher proteins architecture in the photoreceptors, which appears to establish a mechanical continuity between the outer and inner segments. Taken together, these results suggest a comprehensive cellular mechanism consistent with an active phototropism of cones toward the optical center of the eye, and thus with the Stiles-Crawford effect. Verschueren et al. expand our understanding of the Stiles-Crawford effect in mammals by using super-high resolution expansion microscopy of the adult macaque eye. They show that cone photoreceptors have a planar polarity organized radially around the optical center of the eye and that Usher proteins establish a mechanical continuity between the outer and inner segments, which sheds light on the Stiles-Crawford effect in this species.
Collapse
|
29
|
Markova TG, Alekseeva NN, Belov OA, Chugunova TI, Tsygankova ER. [Hearing loss due to mutations in the genes responsible for Usher syndrome]. Vestn Otorinolaringol 2022; 87:52-59. [PMID: 35274893 DOI: 10.17116/otorino20228701152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Usher syndrome is characterized by congenital bilateral sensorineural hearing loss and progressive retinitis pigmentosa, and has an autosomal recessive type of inheritance. The purpose of this work is to summarize the modern data of a clinical picture of Usher syndrome and analyse hearing impairment properties. The frequency of the syndrome among children suffering from hearing loss and deafness is from 3 to 10%. The prevalence of the syndrome in the world is estimated as 4.4 per 100.000 population. The complexity of the diagnosis of the syndrome lies in the significant clinical and genetic heterogeneity. Hearing and vision problems begin at different ages. Primary diagnosis begins with the clinical diagnosis of bilateral hearing loss and visual impairment manifests later. In this case the initial diagnosis of nonsyndromal hearing loss will not be definitive. Molecular genetic studies contribute to the early clinical diagnosis of the syndrome. Understanding the cause of the disease allows to conduct correct medical and genetic counseling and get closer to solving treatment problems.
Collapse
Affiliation(s)
- T G Markova
- National Research Centre for Audiology and Hearing Rehabilitation, Moscow, Russia
- Russian Medical Academy for Continuous Professional Education Audiology Department, Moscow, Russia
| | - N N Alekseeva
- National Research Centre for Audiology and Hearing Rehabilitation, Moscow, Russia
- Russian Medical Academy for Continuous Professional Education Audiology Department, Moscow, Russia
| | - O A Belov
- National Research Centre for Audiology and Hearing Rehabilitation, Moscow, Russia
| | - T I Chugunova
- National Research Centre for Audiology and Hearing Rehabilitation, Moscow, Russia
| | - E R Tsygankova
- National Research Centre for Audiology and Hearing Rehabilitation, Moscow, Russia
- Russian Medical Academy for Continuous Professional Education Audiology Department, Moscow, Russia
| |
Collapse
|
30
|
Braga LAM, Conte Filho CG, Mota FB. Future of genetic therapies for rare genetic diseases: what to expect for the next 15 years? THERAPEUTIC ADVANCES IN RARE DISEASE 2022; 3:26330040221100840. [PMID: 37180410 PMCID: PMC10032453 DOI: 10.1177/26330040221100840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/22/2022] [Indexed: 05/16/2023]
Abstract
Introduction Rare genetic diseases affect millions of people worldwide. Most of them are caused by defective genes that impair quality of life and can lead to premature death. As genetic therapies aim to fix or replace defective genes, they are considered the most promising treatment for rare genetic diseases. Yet, as these therapies are still under development, it is still unclear whether they will be successful in treating these diseases. This study aims to address this gap by assessing researchers' opinions on the future of genetic therapies for the treatment of rare genetic diseases. Methods We conducted a global cross-sectional web-based survey of researchers who recently authored peer-reviewed articles related to rare genetic diseases. Results We assessed the opinions of 1430 researchers with high and good knowledge about genetic therapies for the treatment of rare genetic diseases. Overall, the respondents believed that genetic therapies would be the standard of care for rare genetic diseases before 2036, leading to cures after this period. CRISPR-Cas9 was considered the most likely approach to fixing or replacing defective genes in the next 15 years. The respondents with good knowledge believed that genetic therapies would only have long-lasting effects after 2036, while those with high knowledge were divided on this issue. The respondents with good knowledge on the subject believed that non-viral vectors are more likely to be successful in fixing or replacing defective genes in the next 15 years, while most of the respondents with high knowledge believed viral vectors would be more successful. Conclusion Overall, the researchers who participated in this study expect that in the future genetic therapies will greatly benefit the treatment of patients with rare genetic diseases.
Collapse
Affiliation(s)
| | | | - Fabio Batista Mota
- Laboratory of Cellular Communication, Oswaldo
Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4.365, Pavilhão 108,
Manguinhos, Rio de Janeiro RJ 21040-360, Brazil
| |
Collapse
|
31
|
Abstract
Usher syndrome (USH) encompasses a group of clinically and genetically heterogenous disorders defined by the triad of sensorineural hearing loss (SNHL), vestibular dysfunction, and vision loss. USH is the most common cause of deaf blindness. USH is divided clinically into three subtypes-USH1, USH2, and USH3-based on symptom severity, progression, and age of onset. The underlying genetics of these USH forms are, however, significantly more complex, with over a dozen genes linked to the three primary clinical subtypes and other atypical USH phenotypes. Several of these genes are associated with other deaf-blindness syndromes that share significant clinical overlap with USH, pointing to the limits of a clinically based classification system. The genotype-phenotype relationships among USH forms also may vary significantly based on the location and type of mutation in the gene of interest. Understanding these genotype-phenotype relationships and associated natural disease histories is necessary for the successful development and application of gene-based therapies and precision medicine approaches to USH. Currently, the state of knowledge varies widely depending on the gene of interest. Recent studies utilizing next-generation sequencing technology have expanded the list of known pathogenic mutations in USH genes, identified new genes associated with USH-like phenotypes, and proposed algorithms to predict the phenotypic effects of specific categories of allelic variants. Further work is required to validate USH gene causality, and better define USH genotype-phenotype relationships and disease natural histories-particularly for rare mutations-to lay the groundwork for the future of USH treatment.
Collapse
|
32
|
Adeyemo A, Faridi R, Chattaraj P, Yousaf R, Tona R, Okorie S, Bharadwaj T, Nouel-Saied LM, Acharya A, Schrauwen I, Morell RJ, Leal SM, Friedman TB, Griffith AJ, Roux I. Genomic analysis of childhood hearing loss in the Yoruba population of Nigeria. Eur J Hum Genet 2021; 30:42-52. [PMID: 34837038 PMCID: PMC8738750 DOI: 10.1038/s41431-021-00984-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/02/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Although variant alleles of hundreds of genes are associated with sensorineural deafness in children, the genes and alleles involved remain largely unknown in the Sub-Saharan regions of Africa. We ascertained 56 small families mainly of Yoruba ethno-lingual ancestry in or near Ibadan, Nigeria, that had at least one individual with nonsyndromic, severe-to-profound, prelingual-onset, bilateral hearing loss not attributed to nongenetic factors. We performed a combination of exome and Sanger sequencing analyses to evaluate both nuclear and mitochondrial genomes. No biallelic pathogenic variants were identified in GJB2, a common cause of deafness in many populations. Potential causative variants were identified in genes associated with nonsyndromic hearing loss (CIB2, COL11A1, ILDR1, MYO15A, TMPRSS3, and WFS1), nonsyndromic hearing loss or Usher syndrome (CDH23, MYO7A, PCDH15, and USH2A), and other syndromic forms of hearing loss (CHD7, OPA1, and SPTLC1). Several rare mitochondrial variants, including m.1555A>G, were detected in the gene MT-RNR1 but not in control Yoruba samples. Overall, 20 (33%) of 60 independent cases of hearing loss in this cohort of families were associated with likely causal variants in genes reported to underlie deafness in other populations. None of these likely causal variants were present in more than one family, most were detected as compound heterozygotes, and 77% had not been previously associated with hearing loss. These results indicate an unusually high level of genetic heterogeneity of hearing loss in Ibadan, Nigeria and point to challenges for molecular genetic screening, counseling, and early intervention in this population.
Collapse
Affiliation(s)
- Adebolajo Adeyemo
- Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Parna Chattaraj
- Otolaryngology Branch, NIDCD, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rizwan Yousaf
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Risa Tona
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samuel Okorie
- Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Thashi Bharadwaj
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 630 W 168th St, New York, NY, 10032, USA
| | - Liz M Nouel-Saied
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 630 W 168th St, New York, NY, 10032, USA
| | - Anushree Acharya
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 630 W 168th St, New York, NY, 10032, USA
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 630 W 168th St, New York, NY, 10032, USA
| | - Robert J Morell
- Genomics and Computational Biology Core, NIDCD, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Suzanne M Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 630 W 168th St, New York, NY, 10032, USA.,Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, 630 W 168th St, New York, NY, 10032, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew J Griffith
- Otolaryngology Branch, NIDCD, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Otolaryngology, College of Medicine, University of Tennessee Health Science Center, 910 Madison Avenue, Memphis, TN, 38163, USA
| | - Isabelle Roux
- Otolaryngology Branch, NIDCD, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
33
|
Botto C, Dalkara D, El-Amraoui A. Progress in Gene Editing Tools and Their Potential for Correcting Mutations Underlying Hearing and Vision Loss. Front Genome Ed 2021; 3:737632. [PMID: 34778871 PMCID: PMC8581640 DOI: 10.3389/fgeed.2021.737632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Blindness and deafness are the most frequent sensory disorders in humans. Whatever their cause - genetic, environmental, or due to toxic agents, or aging - the deterioration of these senses is often linked to irreversible damage to the light-sensing photoreceptor cells (blindness) and/or the mechanosensitive hair cells (deafness). Efforts are increasingly focused on preventing disease progression by correcting or replacing the blindness and deafness-causal pathogenic alleles. In recent years, gene replacement therapies for rare monogenic disorders of the retina have given positive results, leading to the marketing of the first gene therapy product for a form of childhood hereditary blindness. Promising results, with a partial restoration of auditory function, have also been reported in preclinical models of human deafness. Silencing approaches, including antisense oligonucleotides, adeno-associated virus (AAV)-mediated microRNA delivery, and genome-editing approaches have also been applied to various genetic forms of blindness and deafness The discovery of new DNA- and RNA-based CRISPR/Cas nucleases, and the new generations of base, prime, and RNA editors offers new possibilities for directly repairing point mutations and therapeutically restoring gene function. Thanks to easy access and immune-privilege status of self-contained compartments, the eye and the ear continue to be at the forefront of developing therapies for genetic diseases. Here, we review the ongoing applications and achievements of this new class of emerging therapeutics in the sensory organs of vision and hearing, highlighting the challenges ahead and the solutions to be overcome for their successful therapeutic application in vivo.
Collapse
Affiliation(s)
- Catherine Botto
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| |
Collapse
|
34
|
Nardella C, Visconti L, Malagrinò F, Pagano L, Bufano M, Nalli M, Coluccia A, La Regina G, Silvestri R, Gianni S, Toto A. Targeting PDZ domains as potential treatment for viral infections, neurodegeneration and cancer. Biol Direct 2021; 16:15. [PMID: 34641953 PMCID: PMC8506081 DOI: 10.1186/s13062-021-00303-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
The interaction between proteins is a fundamental event for cellular life that is generally mediated by specialized protein domains or modules. PDZ domains are the largest class of protein-protein interaction modules, involved in several cellular pathways such as signal transduction, cell-cell junctions, cell polarity and adhesion, and protein trafficking. Because of that, dysregulation of PDZ domain function often causes the onset of pathologies, thus making this family of domains an interesting pharmaceutical target. In this review article we provide an overview of the structural and functional features of PDZ domains and their involvement in the cellular and molecular pathways at the basis of different human pathologies. We also discuss some of the strategies that have been developed with the final goal to hijack or inhibit the interaction of PDZ domains with their ligands. Because of the generally low binding selectivity of PDZ domain and the scarce efficiency of small molecules in inhibiting PDZ binding, this task resulted particularly difficult to pursue and still demands increasing experimental efforts in order to become completely feasible and successful in vivo.
Collapse
Affiliation(s)
- Caterina Nardella
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Lorenzo Visconti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Livia Pagano
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Marianna Bufano
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marianna Nalli
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonio Coluccia
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| | - Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| |
Collapse
|
35
|
Dinculescu A, Link BA, Saperstein DA. Retinal Gene Therapy for Usher Syndrome: Current Developments, Challenges, and Perspectives. Int Ophthalmol Clin 2021; 61:109-124. [PMID: 34584048 PMCID: PMC8478317 DOI: 10.1097/iio.0000000000000378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Zhu J, Choi JW, Ishibashi Y, Isgrig K, Grati M, Bennett J, Chien W. Refining surgical techniques for efficient posterior semicircular canal gene delivery in the adult mammalian inner ear with minimal hearing loss. Sci Rep 2021; 11:18856. [PMID: 34552193 PMCID: PMC8458342 DOI: 10.1038/s41598-021-98412-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022] Open
Abstract
Hearing loss is a common disability affecting the world's population today. While several studies have shown that inner ear gene therapy can be successfully applied to mouse models of hereditary hearing loss to improve hearing, most of these studies rely on inner ear gene delivery in the neonatal age, when mouse inner ear has not fully developed. However, the human inner ear is fully developed at birth. Therefore, in order for inner ear gene therapy to be successfully applied in patients with hearing loss, one must demonstrate that gene delivery can be safely and reliably performed in the mature mammalian inner ear. In this study, we examine the steps involved in posterior semicircular canal gene delivery in the adult mouse inner ear. We find that the duration of perilymphatic leakage and injection rate have a significant effect on the post-surgical hearing outcome. Our results show that although AAV2.7m8 has a lower hair cell transduction rate in adult mice compared to neonatal mice at equivalent viral load, AAV2.7m8 is capable of transducing the adult mouse inner and outer hair cells with high efficiency in a dose-dependent manner.
Collapse
Affiliation(s)
- Jianliang Zhu
- Inner Ear Gene Therapy Program, National Institute On Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Jin Woong Choi
- Inner Ear Gene Therapy Program, National Institute On Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University, College of Medicine, Daejeon, South Korea
| | - Yasuko Ishibashi
- Inner Ear Gene Therapy Program, National Institute On Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Kevin Isgrig
- Inner Ear Gene Therapy Program, National Institute On Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Mhamed Grati
- Inner Ear Gene Therapy Program, National Institute On Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wade Chien
- Inner Ear Gene Therapy Program, National Institute On Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA.
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
37
|
Genetic etiology of hereditary hearing loss in the Gulf Cooperation Council countries. Hum Genet 2021; 141:595-605. [PMID: 34338889 DOI: 10.1007/s00439-021-02323-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
The past 30 years have seen an exponential growth concerning the identification of genes and variants responsible for hereditary hearing loss (HL) worldwide. This has led to a huge gain in our understanding of molecular mechanisms of hearing and deafness, which improved diagnosis for populations with hereditary HL. Many communities around the world, especially in the Middle East and North Africa, have a high prevalence of consanguineous marriages. Congenital monogenic conditions, such as recessive HL, are more common in these populations due to high consanguinity rates. Many studies have shown that high rates of consanguinity, endogamy, and first cousin marriages were observed in the six countries of the Gulf Cooperation Council (GCC). The intent of this study is to investigate the etiology of HL in the GCC region. A deep literature review of genes and variants responsible for HL in this region revealed 89 recessive DNA pathogenic variants reported in 138 cases/familial cases. A total of 21 genes responsible for non-syndromic hearing loss (NSHL) and 17 genes associated with syndromic hearing loss (SHL) were reported in cases from the GCC region. Out of 156 reported affected cases, 112 showed HL only, and 44 showed HL associated with other clinical manifestations. This data suggests that in the GCC region 72% of HL forms are non-syndromic and 28% are syndromic. For individuals with NSHL, 66% of variants were detected in four genes (GJB2, OTOF, TMC1 and CDH23), with a predominance of variants located in the GJB2 gene (37.5%). However, among SHL, Usher syndrome was the more frequent as it has been observed in 41% of the reported syndromic GCC cases. Finally, our analysis showed that HL genetics testing and research in the GCC region took advantage of the next generation sequencing (NGS)-based techniques, as approximately 58% of reported variants were identified using this technology.
Collapse
|
38
|
Mauriac SA, Géléoc GSG. A hop, skip, and a jump to evade USH2A deaf-blindness mutations. Mol Ther 2021; 29:2391-2393. [PMID: 34297918 DOI: 10.1016/j.ymthe.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Stéphanie A Mauriac
- Department of Otolaryngology, Head Neck and Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gwenaëlle S G Géléoc
- Department of Otolaryngology, Head Neck and Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Abstract
Inherited retinal diseases (IRDs) are an important cause of blindness worldwide. Over 270 genes have been associated with IRD. Genetic testing can determine the cause of the clinical disease in the majority of patients. However, at least 25-50% of patients with clinical diagnosis of IRD remain unsolved even after whole genome sequencing. Animal models of IRD can be useful for expanding the set of established IRD genes, to gain biological understanding of the function of these genes in the retina, and to test advanced therapeutics prior to human clinical trials. In this chapter some small and large animal models of IRD are discussed including some of the advantages and limitations of each for various forms of retinopathy.
Collapse
|
40
|
Fuster-García C, García-Bohórquez B, Rodríguez-Muñoz A, Aller E, Jaijo T, Millán JM, García-García G. Usher Syndrome: Genetics of a Human Ciliopathy. Int J Mol Sci 2021; 22:6723. [PMID: 34201633 PMCID: PMC8268283 DOI: 10.3390/ijms22136723] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive syndromic ciliopathy characterized by sensorineural hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. There are three clinical types depending on the severity and age of onset of the symptoms; in addition, ten genes are reported to be causative of USH, and six more related to the disease. These genes encode proteins of a diverse nature, which interact and form a dynamic protein network called the "Usher interactome". In the organ of Corti, the USH proteins are essential for the correct development and maintenance of the structure and cohesion of the stereocilia. In the retina, the USH protein network is principally located in the periciliary region of the photoreceptors, and plays an important role in the maintenance of the periciliary structure and the trafficking of molecules between the inner and the outer segments of photoreceptors. Even though some genes are clearly involved in the syndrome, others are controversial. Moreover, expression of some USH genes has been detected in other tissues, which could explain their involvement in additional mild comorbidities. In this paper, we review the genetics of Usher syndrome and the spectrum of mutations in USH genes. The aim is to identify possible mutation associations with the disease and provide an updated genotype-phenotype correlation.
Collapse
Affiliation(s)
- Carla Fuster-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Belén García-Bohórquez
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
| | - Ana Rodríguez-Muñoz
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
| | - Elena Aller
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Teresa Jaijo
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - José M. Millán
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Gema García-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| |
Collapse
|
41
|
Unraveling the genetic complexities of combined retinal dystrophy and hearing impairment. Hum Genet 2021; 141:785-803. [PMID: 34148116 PMCID: PMC9035000 DOI: 10.1007/s00439-021-02303-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Usher syndrome, the most prevalent cause of combined hereditary vision and hearing impairment, is clinically and genetically heterogeneous. Moreover, several conditions with phenotypes overlapping Usher syndrome have been described. This makes the molecular diagnosis of hereditary deaf–blindness challenging. Here, we performed exome sequencing and analysis on 7 Mexican and 52 Iranian probands with combined retinal degeneration and hearing impairment (without intellectual disability). Clinical assessment involved ophthalmological examination and hearing loss questionnaire. Usher syndrome, most frequently due to biallelic variants in MYO7A (USH1B in 16 probands), USH2A (17 probands), and ADGRV1 (USH2C in 7 probands), was diagnosed in 44 of 59 (75%) unrelated probands. Almost half of the identified variants were novel. Nine of 59 (15%) probands displayed other genetic entities with dual sensory impairment, including Alström syndrome (3 patients), cone-rod dystrophy and hearing loss 1 (2 probands), and Heimler syndrome (1 patient). Unexpected findings included one proband each with Scheie syndrome, coenzyme Q10 deficiency, and pseudoxanthoma elasticum. In four probands, including three Usher cases, dual sensory impairment was either modified/aggravated or caused by variants in distinct genes associated with retinal degeneration and/or hearing loss. The overall diagnostic yield of whole exome analysis in our deaf–blind cohort was 92%. Two (3%) probands were partially solved and only 3 (5%) remained without any molecular diagnosis. In many cases, the molecular diagnosis is important to guide genetic counseling, to support prognostic outcomes and decisions with currently available and evolving treatment modalities.
Collapse
|
42
|
Abstract
Congenital hearing loss is the most common birth defect, estimated to affect 2-3 in every 1000 births. Currently there is no cure for hearing loss. Treatment options are limited to hearing aids for mild and moderate cases, and cochlear implants for severe and profound hearing loss. Here we provide a literature overview of the environmental and genetic causes of congenital hearing loss, common animal models and methods used for hearing research, as well as recent advances towards developing therapies to treat congenital deafness. © 2021 The Authors.
Collapse
Affiliation(s)
- Justine M Renauld
- Department of Otolaryngology, Head & Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Martin L Basch
- Department of Otolaryngology, Head & Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Department of Genetics and Genome Sciences, Case Western Reserve School of Medicine, Cleveland, Ohio.,Department of Biology, Case Western Reserve University, Cleveland, Ohio.,Department of Otolaryngology, Head & Neck Surgery, University Hospitals, Cleveland, Ohio
| |
Collapse
|
43
|
Warnecke A, Giesemann A. Embryology, Malformations, and Rare Diseases of the Cochlea. Laryngorhinootologie 2021; 100:S1-S43. [PMID: 34352899 PMCID: PMC8354575 DOI: 10.1055/a-1349-3824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite the low overall prevalence of individual rare diseases, cochlear
dysfunction leading to hearing loss represents a symptom in a large
proportion. The aim of this work was to provide a clear overview of rare
cochlear diseases, taking into account the embryonic development of the
cochlea and the systematic presentation of the different disorders. Although
rapid biotechnological and bioinformatic advances may facilitate the
diagnosis of a rare disease, an interdisciplinary exchange is often required
to raise the suspicion of a rare disease. It is important to recognize that
the phenotype of rare inner ear diseases can vary greatly not only in
non-syndromic but also in syndromic hearing disorders. Finally, it becomes
clear that the phenotype of the individual rare diseases cannot be
determined exclusively by classical genetics even in monogenetic
disorders.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Klinik für Hals-, Nasen- und Ohrenheilkunde, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover.,Deutsche Forschungsgemeinschaft Exzellenzcluster"Hearing4all" - EXC 2177/1 - Project ID 390895286
| | - Anja Giesemann
- Institut für Neuroradiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover
| |
Collapse
|
44
|
de Joya EM, Colbert BM, Tang PC, Lam BL, Yang J, Blanton SH, Dykxhoorn DM, Liu X. Usher Syndrome in the Inner Ear: Etiologies and Advances in Gene Therapy. Int J Mol Sci 2021; 22:3910. [PMID: 33920085 PMCID: PMC8068832 DOI: 10.3390/ijms22083910] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Hearing loss is the most common sensory disorder with ~466 million people worldwide affected, representing about 5% of the population. A substantial portion of hearing loss is genetic. Hearing loss can either be non-syndromic, if hearing loss is the only clinical manifestation, or syndromic, if the hearing loss is accompanied by a collage of other clinical manifestations. Usher syndrome is a syndromic form of genetic hearing loss that is accompanied by impaired vision associated with retinitis pigmentosa and, in many cases, vestibular dysfunction. It is the most common cause of deaf-blindness. Currently cochlear implantation or hearing aids are the only treatments for Usher-related hearing loss. However, gene therapy has shown promise in treating Usher-related retinitis pigmentosa. Here we review how the etiologies of Usher-related hearing loss make it a good candidate for gene therapy and discuss how various forms of gene therapy could be applied to Usher-related hearing loss.
Collapse
Affiliation(s)
- Evan M. de Joya
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Brett M. Colbert
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Pei-Ciao Tang
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
| | - Byron L. Lam
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA;
| | - Jun Yang
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA;
| | - Susan H. Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Derek M. Dykxhoorn
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
45
|
Ben-Yosef T, Asia Batsir N, Ali Nasser T, Ehrenberg M. Retinal dystrophy as part of TTC21B-associated ciliopathy. Ophthalmic Genet 2021; 42:329-333. [PMID: 33599192 DOI: 10.1080/13816810.2021.1888131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: TCC21B is a ciliary protein. The most common phenotypic features associated with TCC21B biallelic mutations are nephronophthisis and skeletal abnormalities. To date, retinal dystrophy has been reported in only one patient.Materials and Methods: Clinical evaluation included best-corrected visual acuity, cycloplegic refraction, fundus examination, fundus photography, retinal imaging by optical coherence tomography, full-field electroretinography, multifocal electroretinography, and visual evoked potentials. Genetic analysis included Whole Exome Sequencing and confirmation of the identified mutations in the patient and his parents by PCR amplification and direct sequencing.Results: A ten-year-old Caucasian male presented with nephronophthisis, high myopia and nycatalopia. Best-corrected visual acuity was preserved to 20/20 in each eye with significant myopic correction. Visual fields were constricted. Optical coherence tomography confirmed the lack of outer retinal layers in the perifoveal area on both eyes. Electroretinography confirmed significant retinal dystrophy. Whole Exome Sequencing revealed compound heterozygous mutations in the TTC21B gene.Conclusions: TTC21B is associated with ciliopathy, but retinal dystrophy is a rare finding in these patients. We report retinal dystrophy secondary to TTC21B mutations, and provide for the first time detailed clinical information of the ophthalmic phenotype.
Collapse
Affiliation(s)
- Tamar Ben-Yosef
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nurit Asia Batsir
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Genetics Clinic, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Tahleel Ali Nasser
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Miriam Ehrenberg
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Ophthalmology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| |
Collapse
|
46
|
Tatour Y, Ben-Yosef T. Syndromic Inherited Retinal Diseases: Genetic, Clinical and Diagnostic Aspects. Diagnostics (Basel) 2020; 10:diagnostics10100779. [PMID: 33023209 PMCID: PMC7600643 DOI: 10.3390/diagnostics10100779] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Inherited retinal diseases (IRDs), which are among the most common genetic diseases in humans, define a clinically and genetically heterogeneous group of disorders. Over 80 forms of syndromic IRDs have been described. Approximately 200 genes are associated with these syndromes. The majority of syndromic IRDs are recessively inherited and rare. Many, although not all, syndromic IRDs can be classified into one of two major disease groups: inborn errors of metabolism and ciliopathies. Besides the retina, the systems and organs most commonly involved in syndromic IRDs are the central nervous system, ophthalmic extra-retinal tissues, ear, skeleton, kidney and the cardiovascular system. Due to the high degree of phenotypic variability and phenotypic overlap found in syndromic IRDs, correct diagnosis based on phenotypic features alone may be challenging and sometimes misleading. Therefore, genetic testing has become the benchmark for the diagnosis and management of patients with these conditions, as it complements the clinical findings and facilitates an accurate clinical diagnosis and treatment.
Collapse
|
47
|
Toms M, Pagarkar W, Moosajee M. Usher syndrome: clinical features, molecular genetics and advancing therapeutics. Ther Adv Ophthalmol 2020; 12:2515841420952194. [PMID: 32995707 PMCID: PMC7502997 DOI: 10.1177/2515841420952194] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/27/2020] [Indexed: 01/12/2023] Open
Abstract
Usher syndrome has three subtypes, each being clinically and genetically heterogeneous characterised by sensorineural hearing loss and retinitis pigmentosa (RP), with or without vestibular dysfunction. It is the most common cause of deaf–blindness worldwide with a prevalence of between 4 and 17 in 100 000. To date, 10 causative genes have been identified for Usher syndrome, with MYO7A accounting for >50% of type 1 and USH2A contributing to approximately 80% of type 2 Usher syndrome. Variants in these genes can also cause non-syndromic RP and deafness. Genotype–phenotype correlations have been described for several of the Usher genes. Hearing loss is managed with hearing aids and cochlear implants, which has made a significant improvement in quality of life for patients. While there is currently no available approved treatment for the RP, various therapeutic strategies are in development or in clinical trials for Usher syndrome, including gene replacement, gene editing, antisense oligonucleotides and small molecule drugs.
Collapse
Affiliation(s)
- Maria Toms
- UCL Institute of Ophthalmology, London, UK; The Francis Crick Institute, London, UK
| | - Waheeda Pagarkar
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; University College London Hospitals NHS Foundation Trust, London, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
48
|
Bolz HJ. Usher syndrome: diagnostic approach, differential diagnoses and proposal of an updated function-based genetic classification. MED GENET-BERLIN 2020. [DOI: 10.1515/medgen-2020-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
Usher syndrome (USH) manifests with congenital and apparently isolated hearing loss, followed by retinal degeneration in later life. Therefore, and because of its high prevalence in the congenitally hearing-impaired population, USH is one of the most relevant deafness syndromes. Next-generation sequencing (NGS)-based testing can now provide most analyzed USH patients with a molecular diagnosis, based on mutations in 11 genes. Given the availability of several excellent articles on the clinical and biochemical basis of USH, this short review focuses on critical assessment of new genes announced as USH genes, clinical and genetic differential diagnoses and therapeutic developments. Because obsolete loci, disproved USH genes and the inclusion of genes whose mutations cause similar phenotypes have increasingly blurred genetic classification, a revision based on phenotype restricted to genes related to the Usher protein complex is proposed.
Collapse
Affiliation(s)
- Hanno J. Bolz
- Senckenberg Centre for Human Genetics , Weismüllerstr. 50 , Frankfurt am Main , Germany
| |
Collapse
|
49
|
Inner Ear Gene Therapies Take Off: Current Promises and Future Challenges. J Clin Med 2020; 9:jcm9072309. [PMID: 32708116 PMCID: PMC7408650 DOI: 10.3390/jcm9072309] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022] Open
Abstract
Hearing impairment is the most frequent sensory deficit in humans of all age groups, from children (1/500) to the elderly (more than 50% of the over-75 s). Over 50% of congenital deafness are hereditary in nature. The other major causes of deafness, which also may have genetic predisposition, are aging, acoustic trauma, ototoxic drugs such as aminoglycosides, and noise exposure. Over the last two decades, the study of inherited deafness forms and related animal models has been instrumental in deciphering the molecular, cellular, and physiological mechanisms of disease. However, there is still no curative treatment for sensorineural deafness. Hearing loss is currently palliated by rehabilitation methods: conventional hearing aids, and for more severe forms, cochlear implants. Efforts are continuing to improve these devices to help users to understand speech in noisy environments and to appreciate music. However, neither approach can mediate a full recovery of hearing sensitivity and/or restoration of the native inner ear sensory epithelia. New therapeutic approaches based on gene transfer and gene editing tools are being developed in animal models. In this review, we focus on the successful restoration of auditory and vestibular functions in certain inner ear conditions, paving the way for future clinical applications.
Collapse
|