1
|
Helfer KS, Maldonado L, Matthews LJ, Simpson AN, Dubno JR. Extended High-Frequency Thresholds: Associations With Demographic and Risk Factors, Cognitive Ability, and Hearing Outcomes in Middle-Aged and Older Adults. Ear Hear 2024; 45:1427-1443. [PMID: 38987892 PMCID: PMC11493509 DOI: 10.1097/aud.0000000000001531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
OBJECTIVES This study had two objectives: to examine associations between extended high-frequency (EHF) thresholds, demographic factors (age, sex, race/ethnicity), risk factors (cardiovascular, smoking, noise exposure, occupation), and cognitive abilities; and to determine variance explained by EHF thresholds for speech perception in noise, self-rated workload/effort, and self-reported hearing difficulties. DESIGN This study was a retrospective analysis of a data set from the MUSC Longitudinal Cohort Study of Age-related Hearing Loss. Data from 347 middle-aged adults (45 to 64 years) and 694 older adults (≥ 65 years) were analyzed for this study. Speech perception was quantified using low-context Speech Perception In Noise (SPIN) sentences. Self-rated workload/effort was measured using the effort prompt from the National Aeronautics and Space Administration-Task Load Index. Self-reported hearing difficulty was assessed using the Hearing Handicap Inventory for the Elderly/Adults. The Wisconsin Card Sorting Task and the Stroop Neuropsychological Screening Test were used to assess selected cognitive abilities. Pure-tone averages representing conventional and EHF thresholds between 9 and 12 kHz (PTA (9 - 12 kHz) ) were utilized in simple linear regression analyses to examine relationships between thresholds and demographic and risk factors or in linear regression models to assess the contributions of PTA (9 - 12 kHz) to the variance among the three outcomes of interest. Further analyses were performed on a subset of individuals with thresholds ≤ 25 dB HL at all conventional frequencies to control for the influence of hearing loss on the association between PTA (9 - 12 kHz) and outcome measures. RESULTS PTA (9 - 12 kHz) was higher in males than females, and was higher in White participants than in racial Minority participants. Linear regression models showed the associations between cardiovascular risk factors and PTA (9 - 12 kHz) were not statistically significant. Older adults who reported a history of noise exposure had higher PTA (9 - 12 kHz) than those without a history, while associations between noise history and PTA (9 - 12 kHz) did not reach statistical significance for middle-aged participants. Linear models adjusting for age, sex, race and noise history showed that higher PTA (9 - 12 kHz) was associated with greater self-perceived hearing difficulty and poorer speech recognition scores in noise for both middle-aged and older participants. Workload/effort was significantly related to PTA (9 - 12 kHz) for middle-aged, but not older, participants, while cognitive task performance was correlated with PTA (9 - 12 kHz) only for older participants. In general, PTA (9 - 12 kHz) did not account for additional variance in outcome measures as compared to conventional pure-tone thresholds, with the exception of self-reported hearing difficulties in older participants. Linear models adjusting for age and accounting for subject-level correlations in the subset analyses revealed no association between PTA (9 - 12 kHz) and outcomes of interest. CONCLUSIONS EHF thresholds show age-, sex-, and race-related patterns of elevation that are similar to what is observed for conventional thresholds. The current results support the need for more research to determine the utility of adding EHF thresholds to routine audiometric assessment with middle-aged and older adults.
Collapse
|
2
|
Patro C, Monfiletto A, Singer A, Srinivasan NK, Mishra SK. Midlife Speech Perception Deficits: Impact of Extended High-Frequency Hearing, Peripheral Neural Function, and Cognitive Abilities. Ear Hear 2024; 45:1149-1164. [PMID: 38556645 DOI: 10.1097/aud.0000000000001504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
OBJECTIVES The objectives of the present study were to investigate the effects of age-related changes in extended high-frequency (EHF) hearing, peripheral neural function, working memory, and executive function on speech perception deficits in middle-aged individuals with clinically normal hearing. DESIGN We administered a comprehensive assessment battery to 37 participants spanning the age range of 20 to 56 years. This battery encompassed various evaluations, including standard and EHF pure-tone audiometry, ranging from 0.25 to 16 kHz. In addition, we conducted auditory brainstem response assessments with varying stimulation rates and levels, a spatial release from masking (SRM) task, and cognitive evaluations that involved the Trail Making test (TMT) for assessing executive function and the Abbreviated Reading Span test (ARST) for measuring working memory. RESULTS The results indicated a decline in hearing sensitivities at EHFs and an increase in completion times for the TMT with age. In addition, as age increased, there was a corresponding decrease in the amount of SRM. The declines in SRM were associated with age-related declines in hearing sensitivity at EHFs and TMT performance. While we observed an age-related decline in wave I responses, this decline was primarily driven by age-related reductions in EHF thresholds. In addition, the results obtained using the ARST did not show an age-related decline. Neither the auditory brainstem response results nor ARST scores were correlated with the amount of SRM. CONCLUSIONS These findings suggest that speech perception deficits in middle age are primarily linked to declines in EHF hearing and executive function, rather than cochlear synaptopathy or working memory.
Collapse
Affiliation(s)
- Chhayakanta Patro
- Department of Speech Language Pathology & Audiology, Towson University, Towson, Maryland, USA
| | - Angela Monfiletto
- Department of Speech Language Pathology & Audiology, Towson University, Towson, Maryland, USA
| | - Aviya Singer
- Department of Speech Language Pathology & Audiology, Towson University, Towson, Maryland, USA
| | - Nirmal Kumar Srinivasan
- Department of Speech Language Pathology & Audiology, Towson University, Towson, Maryland, USA
| | - Srikanta Kumar Mishra
- Department of Speech, Language and Hearing Sciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
Fujihira H, Yamagishi S, Furukawa S, Kashino M. Auditory brainstem response to paired clicks as a candidate marker of cochlear synaptopathy in humans. Clin Neurophysiol 2024; 165:44-54. [PMID: 38959535 DOI: 10.1016/j.clinph.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE This study aimed to evaluate whether auditory brainstem response (ABR) using a paired-click stimulation paradigm could serve as a tool for detecting cochlear synaptopathy (CS). METHODS The ABRs to single-clicks and paired-clicks with various inter-click intervals (ICIs) and scores for word intelligibility in degraded listening conditions were obtained from 57 adults with normal hearing. The wave I peak amplitude and root mean square values for the post-wave I response within a range delayed from the wave I peak (referred to as the RMSpost-w1) were calculated for the single- and second-click responses. RESULTS The wave I peak amplitudes did not correlate with age except for the second-click responses at an ICI of 7 ms, and the word intelligibility scores. However, we found that the RMSpost-w1 values for the second-click responses significantly decreased with increasing age. Moreover, the RMSpost-w1 values for the second-click responses at an ICI of 5 ms correlated significantly with the scores for word intelligibility in degraded listening conditions. CONCLUSIONS The magnitude of the post-wave I response for the second-click response could serve as a tool for detecting CS in humans. SIGNIFICANCE Our findings shed new light on the analytical methods of ABR for quantifying CS.
Collapse
Affiliation(s)
- Haruna Fujihira
- NTT Communication Science Laboratories, Atsugi, Kanagawa, Japan; Department of Informatics, Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan.
| | | | - Shigeto Furukawa
- NTT Communication Science Laboratories, Atsugi, Kanagawa, Japan; Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan; Speech-Language-Hearing Center, Shizuoka General Hospital, Shizuoka, Japan
| | - Makio Kashino
- NTT Communication Science Laboratories, Atsugi, Kanagawa, Japan
| |
Collapse
|
4
|
Hauser SN, Hustedt-Mai AR, Wichlinski A, Bharadwaj HM. The relationship between distortion product otoacoustic emissions and audiometric thresholds in the extended high-frequency range. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.601801. [PMID: 39026860 PMCID: PMC11257433 DOI: 10.1101/2024.07.05.601801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Distortion product otoacoustic emissions (DPOAEs) and behavioral audiometry are routinely used for hearing screening and assessment. These measures provide related information about hearing status as both are sensitive to cochlear pathologies. However, DPOAE testing is quicker and does not require a behavioral response. Despite these practical advantages, DPOAE testing is often limited to screening only low and mid- frequencies. Variation in ear canal acoustics across ears and probe placements has resulted in less reliable measurements of DPOAEs near 4 kHz and above where standing waves commonly occur. Stimulus calibration in forward pressure level and responses in emitted pressure level can reduce measurement variability. Using these calibrations, this study assessed the correlation between audiometry and DPOAEs in the extended high frequencies where stimulus calibrations and responses are most susceptible to the effect of standing waves. Behavioral thresholds and DPOAE amplitudes were negatively correlated, and DPOAE amplitudes in emitted pressure level accounted for twice as much variance as amplitudes in sound pressure level. Both measures were correlated with age. These data show that with appropriate calibration methods, extended high-frequency DPOAEs are sensitive to differences in audiometric thresholds and highlight the need to consider calibration techniques in clinical and research applications of DPOAEs.
Collapse
Affiliation(s)
- Samantha N. Hauser
- Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN 47901, USA
| | | | - Anna Wichlinski
- Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN 47901, USA
| | - Hari M. Bharadwaj
- Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
5
|
Poe AA, Karawani H, Anderson S. Aging effects on the neural representation and perception of consonant transition cues. Hear Res 2024; 448:109034. [PMID: 38781768 PMCID: PMC11156531 DOI: 10.1016/j.heares.2024.109034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Older listeners have difficulty processing temporal cues that are important for word discrimination, and deficient processing may limit their ability to benefit from these cues. Here, we investigated aging effects on perception and neural representation of the consonant transition and the factors that contribute to successful perception. To further understand the neural mechanisms underlying the changes in processing from brainstem to cortex, we also examined the factors that contribute to exaggerated amplitudes in cortex. We enrolled 30 younger normal-hearing and 30 older normal-hearing participants who met the criteria of clinically normal hearing. Perceptual identification functions were obtained for the words BEAT and WHEAT on a 7-step continuum of consonant-transition duration. Auditory brainstem responses (ABRs) were recorded to click stimuli and frequency-following responses (FFRs) and cortical auditory-evoked potentials were recorded to the endpoints of the BEAT-WHEAT continuum. Perceptual performance for identification of BEAT vs. WHEAT did not differ between younger and older listeners. However, both subcortical and cortical measures of neural representation showed age group differences, such that FFR phase locking was lower but cortical amplitudes (P1 and N1) were higher in older compared to younger listeners. ABR Wave I amplitude and FFR phase locking, but not audiometric thresholds, predicted early cortical amplitudes. Phase locking to the transition region and early cortical peak amplitudes (P1) predicted performance on the perceptual identification function. Overall, results suggest that the neural representation of transition durations and cortical overcompensation may contribute to the ability to perceive transition duration contrasts. Cortical overcompensation appears to be a maladaptive response to decreased neural firing/synchrony.
Collapse
Affiliation(s)
- Abigail Anne Poe
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Hanin Karawani
- Department of Communication Sciences and Disorders, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
6
|
Temboury-Gutierrez M, Märcher-Rørsted J, Bille M, Yde J, Encina-Llamas G, Hjortkjær J, Dau T. Electrocochleographic frequency-following responses as a potential marker of age-related cochlear neural degeneration. Hear Res 2024; 446:109005. [PMID: 38598943 DOI: 10.1016/j.heares.2024.109005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Auditory nerve (AN) fibers that innervate inner hair cells in the cochlea degenerate with advancing age. It has been proposed that age-related reductions in brainstem frequency-following responses (FFR) to the carrier of low-frequency, high-intensity pure tones may partially reflect this neural loss in the cochlea (Märcher-Rørsted et al., 2022). If the loss of AN fibers is the primary factor contributing to age-related changes in the brainstem FFR, then the FFR could serve as an indicator of cochlear neural degeneration. In this study, we employed electrocochleography (ECochG) to investigate the effects of age on frequency-following neurophonic potentials, i.e., neural responses phase-locked to the carrier frequency of the tone stimulus. We compared these findings to the brainstem-generated FFRs obtained simultaneously using the same stimulation. We conducted recordings in young and older individuals with normal hearing. Responses to pure tones (250 ms, 516 and 1086 Hz, 85 dB SPL) and clicks were recorded using both ECochG at the tympanic membrane and traditional scalp electroencephalographic (EEG) recordings of the FFR. Distortion product otoacoustic emissions (DPOAE) were also collected. In the ECochG recordings, sustained AN neurophonic (ANN) responses to tonal stimulation, as well as the click-evoked compound action potential (CAP) of the AN, were significantly reduced in the older listeners compared to young controls, despite normal audiometric thresholds. In the EEG recordings, brainstem FFRs to the same tone stimulation were also diminished in the older participants. Unlike the reduced AN CAP response, the transient-evoked wave-V remained unaffected. These findings could indicate that a decreased number of AN fibers contributes to the response in the older participants. The results suggest that the scalp-recorded FFR, as opposed to the clinical standard wave-V of the auditory brainstem response, may serve as a more reliable indicator of age-related cochlear neural degeneration.
Collapse
Affiliation(s)
- Miguel Temboury-Gutierrez
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 352, DK-2800 Kgs. Lyngby, Denmark.
| | - Jonatan Märcher-Rørsted
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 352, DK-2800 Kgs. Lyngby, Denmark
| | - Michael Bille
- Copenhagen Hearing and Balance Center, Ear, Nose and Throat (ENT) and Audiology Clinic, Rigshospitalet, Copenhagen University Hospital, Denmark, Inge Lehmanns Vej 8, DK-2100 København Ø, Denmark
| | - Jesper Yde
- Copenhagen Hearing and Balance Center, Ear, Nose and Throat (ENT) and Audiology Clinic, Rigshospitalet, Copenhagen University Hospital, Denmark, Inge Lehmanns Vej 8, DK-2100 København Ø, Denmark
| | - Gerard Encina-Llamas
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 352, DK-2800 Kgs. Lyngby, Denmark; Copenhagen Hearing and Balance Center, Ear, Nose and Throat (ENT) and Audiology Clinic, Rigshospitalet, Copenhagen University Hospital, Denmark, Inge Lehmanns Vej 8, DK-2100 København Ø, Denmark; Faculty of Medicine. University of Vic - Central University of Catalonia (UVic-UCC), Vic, 08500, Catalonia - Spain
| | - Jens Hjortkjær
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 352, DK-2800 Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, DK-2650 Hvidovre, Denmark
| | - Torsten Dau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 352, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
7
|
Colla MDF, Lunardelo PP, Dias FAM. Cochlear synaptopathy and hidden hearing loss: a scoping review. Codas 2023; 36:e20230032. [PMID: 37991055 DOI: 10.1590/2317-1782/20232023032pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/10/2023] [Indexed: 11/23/2023] Open
Abstract
PURPOSE To identify the pathophysiological definitions adopted by studies investigating "cochlear synaptopathy" (CS) and "hidden hearing loss" (HHL). RESEARCH STRATEGIES The combination of keywords "Auditory Synaptopathy" or "Neuronal Synaptopathy" or "Hidden Hearing Loss" with "etiology" or "causality" or "diagnosis" was used in the databases EMBASE, Pubmed (MEDLINE), CINAHL (EBSCO), and Web of Science. SELECTION CRITERIA Studies that investigated CS or HHL in humans using behavioral and/or electrophysiological procedures were included. DATA ANALYSIS Data analysis and extraction were performed with regard to terminology, definitions, and population. RESULTS 49 articles were included. Of these, 61.2% used the CS terminology, 34.7% used both terms, and 4.1% used HHL. The most-studied conditions were exposure to noise and tinnitus. CONCLUSION CS terminology was used in most studies, referring to the pathophysiological process of deafferentiation between the cochlear nerve fibers and inner hair cells.
Collapse
Affiliation(s)
- Marina de Figueiredo Colla
- Departamento de Fonoaudiologia, Pontifícia Universidade Católica de Minas Gerais - PUC MG - Belo Horizonte (MG), Brasil
| | - Pamela Papile Lunardelo
- Programa de Pós-graduação em Psicobiologia, Universidade de São Paulo de Ribeirão Preto - USP RP - Ribeirão Preto (SP), Brasil
| | - Fernanda Abalen Martins Dias
- Departamento de Fonoaudiologia, Pontifícia Universidade Católica de Minas Gerais - PUC MG - Belo Horizonte (MG), Brasil
| |
Collapse
|
8
|
Bramhall NF, Theodoroff SM, McMillan GP, Kampel SD, Buran BN. Associations Between Physiological Correlates of Cochlear Synaptopathy and Tinnitus in a Veteran Population. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:4635-4652. [PMID: 37889209 DOI: 10.1044/2023_jslhr-23-00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
PURPOSE Animal models and human temporal bones indicate that noise exposure is a risk factor for cochlear synaptopathy, a possible etiology of tinnitus. Veterans are exposed to high levels of noise during military service. Therefore, synaptopathy may explain the high rates of noise-induced tinnitus among Veterans. Although synaptopathy cannot be directly evaluated in living humans, animal models indicate that several physiological measures are sensitive to synapse loss, including the auditory brainstem response (ABR), the middle ear muscle reflex (MEMR), and the envelope following response (EFR). The purpose of this study was to determine whether tinnitus is associated with reductions in physiological correlates of synaptopathy that parallel animal studies. METHOD Participants with normal audiograms were grouped according to Veteran status and tinnitus report (Veterans with tinnitus, Veterans without tinnitus, and non-Veteran controls). The effects of being a Veteran with tinnitus on ABR, MEMR, and EFR measurements were independently modeled using Bayesian regression analysis. RESULTS Modeled point estimates of MEMR and EFR magnitude showed reductions for Veterans with tinnitus compared with non-Veterans, with the most evident reduction observed for the EFR. Two different approaches were used to provide context for the Veteran tinnitus effect on the EFR by comparing to age-related reductions in EFR magnitude and synapse numbers observed in previous studies. These analyses suggested that EFR magnitude/synapse counts were reduced in Veterans with tinnitus by roughly the same amount as over 20 years of aging. CONCLUSION These findings suggest that cochlear synaptopathy may contribute to tinnitus perception in noise-exposed Veterans. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.24347761.
Collapse
Affiliation(s)
- Naomi F Bramhall
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Sarah M Theodoroff
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Garnett P McMillan
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
| | - Sean D Kampel
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
| | - Brad N Buran
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| |
Collapse
|
9
|
Shehabi AM, Prendergast G, Guest H, Plack CJ. Binaural temporal coding and the middle ear muscle reflex in audiometrically normal young adults. Hear Res 2023; 427:108663. [PMID: 36502543 DOI: 10.1016/j.heares.2022.108663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022]
Abstract
Noise exposure may damage the synapses that connect inner hair cells with auditory nerve fibers, before outer hair cells are lost. In humans, this cochlear synaptopathy (CS) is thought to decrease the fidelity of peripheral auditory temporal coding. In the current study, the primary hypothesis was that higher middle ear muscle reflex (MEMR) thresholds, as a proxy measure of CS, would be associated with smaller values of the binaural intelligibility level difference (BILD). The BILD, which is a measure of binaural temporal coding, is defined here as the difference in thresholds between the diotic and the antiphasic versions of the digits in noise (DIN) test. This DIN BILD may control for factors unrelated to binaural temporal coding such as linguistic, central auditory, and cognitive factors. Fifty-six audiometrically normal adults (34 females) aged 18 - 30 were tested. The test battery included standard pure tone audiometry, tympanometry, MEMR using a 2 kHz elicitor and 226 Hz and 1 kHz probes, the Noise Exposure Structured Interview, forward digit span test, extended high frequency (EHF) audiometry, and diotic and antiphasic DIN tests. The study protocol was pre-registered prior to data collection. MEMR thresholds did not predict the DIN BILD. Secondary analyses showed no association between MEMR thresholds and the individual diotic and antiphasic DIN thresholds. Greater lifetime noise exposure was non-significantly associated with higher MEMR thresholds, larger DIN BILD values, and lower (better) antiphasic DIN thresholds, but not with diotic DIN thresholds, nor with EHF thresholds. EHF thresholds were associated with neither MEMR thresholds nor any of the DIN outcomes, including the DIN BILD. Results provide no evidence that young, audiometrically normal people incur CS with impacts on binaural temporal processing.
Collapse
Affiliation(s)
- Adnan M Shehabi
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Department of Audiology and Speech Therapy, Birzeit University, Palestine.
| | | | - Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, UK
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Department of Psychology, Lancaster University, UK
| |
Collapse
|
10
|
Drakopoulos F, Vasilkov V, Osses Vecchi A, Wartenberg T, Verhulst S. Model-based hearing-enhancement strategies for cochlear synaptopathy pathologies. Hear Res 2022; 424:108569. [DOI: 10.1016/j.heares.2022.108569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
|
11
|
Shehabi AM, Prendergast G, Plack CJ. The Relative and Combined Effects of Noise Exposure and Aging on Auditory Peripheral Neural Deafferentation: A Narrative Review. Front Aging Neurosci 2022; 14:877588. [PMID: 35813954 PMCID: PMC9260498 DOI: 10.3389/fnagi.2022.877588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Animal studies have shown that noise exposure and aging cause a reduction in the number of synapses between low and medium spontaneous rate auditory nerve fibers and inner hair cells before outer hair cell deterioration. This noise-induced and age-related cochlear synaptopathy (CS) is hypothesized to compromise speech recognition at moderate-to-high suprathreshold levels in humans. This paper evaluates the evidence on the relative and combined effects of noise exposure and aging on CS, in both animals and humans, using histopathological and proxy measures. In animal studies, noise exposure seems to result in a higher proportion of CS (up to 70% synapse loss) compared to aging (up to 48% synapse loss). Following noise exposure, older animals, depending on their species, seem to either exhibit significant or little further synapse loss compared to their younger counterparts. In humans, temporal bone studies suggest a possible age- and noise-related auditory nerve fiber loss. Based on the animal data obtained from different species, we predict that noise exposure may accelerate age-related CS to at least some extent in humans. In animals, noise-induced and age-related CS in separation have been consistently associated with a decreased amplitude of wave 1 of the auditory brainstem response, reduced middle ear muscle reflex strength, and degraded temporal processing as demonstrated by lower amplitudes of the envelope following response. In humans, the individual effects of noise exposure and aging do not seem to translate clearly into deficits in electrophysiological, middle ear muscle reflex, and behavioral measures of CS. Moreover, the evidence on the combined effects of noise exposure and aging on peripheral neural deafferentation in humans using electrophysiological and behavioral measures is even more sparse and inconclusive. Further research is necessary to establish the individual and combined effects of CS in humans using temporal bone, objective, and behavioral measures.
Collapse
Affiliation(s)
- Adnan M. Shehabi
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Audiology and Speech Therapy, Birzeit University, Birzeit, Palestine
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
| | - Christopher J. Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
12
|
Le Prell CG. Prevention of Noise-Induced Hearing Loss Using Investigational Medicines for the Inner Ear: Previous Trial Outcomes Should Inform Future Trial Design. Antioxid Redox Signal 2022; 36:1171-1202. [PMID: 34346254 PMCID: PMC9221155 DOI: 10.1089/ars.2021.0166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 11/13/2022]
Abstract
Significance: Noise-induced hearing loss (NIHL) is an important public health issue resulting in decreased quality of life for affected individuals, and significant costs to employers and governmental agencies. Recent Advances: Advances in the mechanistic understanding of NIHL have prompted a growing number of proposed, in-progress, and completed clinical trials for possible protections against NIHL via antioxidants and other drug agents. Thirty-one clinical trials evaluating prevention of either temporary or permanent NIHL were identified and are reviewed. Critical Issues: This review revealed little consistency in the noise-exposed populations in which drugs are evaluated or the primary outcomes used to measure NIHL prevention. Changes in pure-tone thresholds were the most common primary outcomes; specific threshold metrics included both average hearing loss and incidence of significant hearing loss. Changes in otoacoustic emission (OAE) amplitude were relatively common secondary outcomes. Extended high-frequency (EHF) hearing and speech-in-noise perception are commonly adversely affected by noise exposure but are not consistently included in clinical trials assessing prevention of NIHL. Future Directions: Multiple criteria are available for monitoring NIHL, but the specific criterion to be used to define clinically significant otoprotection remains a topic of discussion. Audiogram-based primary outcome measures can be combined with secondary outcomes, including OAE amplitude, EHF hearing, speech-in-noise testing, tinnitus surveys, and patient-reported outcomes. Standardization of test protocols for the above primary and secondary outcomes, and associated reporting criterion for each, would facilitate clinical trial design and comparison of results across investigational drug agents. Antioxid. Redox Signal. 36, 1171-1202.
Collapse
Affiliation(s)
- Colleen G. Le Prell
- Department of Speech, Language, and Hearing Science, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
13
|
Lough M, Plack CJ. Extended high-frequency audiometry in research and clinical practice. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:1944. [PMID: 35364938 DOI: 10.1121/10.0009766] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Audiometric testing in research and in clinical settings rarely considers frequencies above 8 kHz. However, the sensitivity of young healthy ears extends to 20 kHz, and there is increasing evidence that testing in the extended high-frequency (EHF) region, above 8 kHz, might provide valuable additional information. Basal (EHF) cochlear regions are especially sensitive to the effects of aging, disease, ototoxic drugs, and possibly noise exposure. Hence, EHF loss may be an early warning of damage, useful for diagnosis and for monitoring hearing health. In certain environments, speech perception may rely on EHF information, and there is evidence for an association between EHF loss and speech perception difficulties, although this may not be causal: EHF loss may instead be a marker for sub-clinical damage at lower frequencies. If there is a causal relation, then amplification in the EHF range may be beneficial if the technical difficulties can be overcome. EHF audiometry in the clinic presents with no particular difficulty, the biggest obstacle being lack of specialist equipment. Currently, EHF audiometry has limited but increasing clinical application. With the development of international guidelines and standards, it is likely that EHF testing will become widespread in future.
Collapse
Affiliation(s)
- Melanie Lough
- Manchester Centre for Audiology and Deafness, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
14
|
Buran BN, McMillan GP, Keshishzadeh S, Verhulst S, Bramhall NF. Predicting synapse counts in living humans by combining computational models with auditory physiology. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:561. [PMID: 35105019 PMCID: PMC8800592 DOI: 10.1121/10.0009238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 05/28/2023]
Abstract
Aging, noise exposure, and ototoxic medications lead to cochlear synapse loss in animal models. As cochlear function is highly conserved across mammalian species, synaptopathy likely occurs in humans as well. Synaptopathy is predicted to result in perceptual deficits including tinnitus, hyperacusis, and difficulty understanding speech-in-noise. The lack of a method for diagnosing synaptopathy in living humans hinders studies designed to determine if noise-induced synaptopathy occurs in humans, identify the perceptual consequences of synaptopathy, or test potential drug treatments. Several physiological measures are sensitive to synaptopathy in animal models including auditory brainstem response (ABR) wave I amplitude. However, it is unclear how to translate these measures to synaptopathy diagnosis in humans. This work demonstrates how a human computational model of the auditory periphery, which can predict ABR waveforms and distortion product otoacoustic emissions (DPOAEs), can be used to predict synaptic loss in individual human participants based on their measured DPOAE levels and ABR wave I amplitudes. Lower predicted synapse numbers were associated with advancing age, higher noise exposure history, increased likelihood of tinnitus, and poorer speech-in-noise perception. These findings demonstrate the utility of this modeling approach in predicting synapse counts from physiological data in individual human subjects.
Collapse
Affiliation(s)
- Brad N Buran
- Oregon Hearing Research Center (OHRC), Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Garnett P McMillan
- Veterans Affairs (VA) Rehabilitation Research & Development Service (RR&D) National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, Oregon, USA
| | - Sarineh Keshishzadeh
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Belgium
| | - Sarah Verhulst
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Belgium
| | - Naomi F Bramhall
- Veterans Affairs (VA) Rehabilitation Research & Development Service (RR&D) National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
15
|
Carcagno S, Plack CJ. Relations between speech-reception, psychophysical temporal processing, and subcortical electrophysiological measures of auditory function in humans. Hear Res 2022; 417:108456. [PMID: 35149333 PMCID: PMC8935383 DOI: 10.1016/j.heares.2022.108456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 11/04/2022]
|
16
|
Bramhall NF. Use of the auditory brainstem response for assessment of cochlear synaptopathy in humans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:4440. [PMID: 34972291 PMCID: PMC10880747 DOI: 10.1121/10.0007484] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/07/2021] [Indexed: 06/14/2023]
Abstract
Although clinical use of the auditory brainstem response (ABR) to detect retrocochlear disorders has been largely replaced by imaging in recent years, the discovery of cochlear synaptopathy has thrown this foundational measure of auditory function back into the spotlight. Whereas modern imaging now allows for the noninvasive detection of vestibular schwannomas, imaging technology is not currently capable of detecting cochlear synaptopathy, the loss of the synaptic connections between the inner hair cells and afferent auditory nerve fibers. However, animal models indicate that the amplitude of the first wave of the ABR, a far-field evoked potential generated by the synchronous firing of auditory nerve fibers, is highly correlated with synaptic integrity. This has led to many studies investigating the use of the ABR as a metric of synaptopathy in humans. However, these studies have yielded mixed results, leading to a lack of consensus about the utility of the ABR as an indicator of synaptopathy. This review summarizes the animal and human studies that have investigated the ABR as a measure of cochlear synaptic function, discusses factors that may have contributed to the mixed findings and the lessons learned, and provides recommendations for future use of this metric in the research and clinical settings.
Collapse
Affiliation(s)
- Naomi F Bramhall
- Veterans Affairs (VA) Rehabilitation Research & Development Service (RR&D) National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System Portland, Oregon 97239, USA
| |
Collapse
|
17
|
Bures Z, Pysanenko K, Syka J. The influence of developmental noise exposure on the temporal processing of acoustical signals in the auditory cortex of rats. Hear Res 2021; 409:108306. [PMID: 34311267 DOI: 10.1016/j.heares.2021.108306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022]
Abstract
Previous experiments have acknowledged that inappropriate or missing auditory inputs during the critical period of development cause permanent changes of the structure and function of the auditory system (Bures et al., 2017). We explore in this study how developmental noise exposure influences the coding of temporally structured stimuli in the neurons of the primary auditory cortex (AC) in Long Evans rats. The animals were exposed on postnatal day 14 (P14) for 12 minutes to a loud (125 dB SPL) broad-band noise. The responses to an amplitude-modulated (AM) noise, frequency-modulated (FM) tones, and click trains, were recorded from the right AC of rats of two age groups: young-adult (ca. 6 months old) and adult (ca. 2 years old), both in the exposed animals and in control unexposed rats. The neonatal exposure resulted in a higher synchronization ability (phase-locking) of the AC neurons for all three stimuli; furthermore, the similarity of neuronal response patterns to repetitive stimulation was higher in the exposed rats. On the other hand, the exposed animals showed a steeper decline of modulation-transfer functions towards higher modulation frequencies/repetition rates. Differences between the two age groups were also apparent; in general, aging had qualitatively the same effect as the developmental exposure. The current results demonstrate that brief noise exposure during the maturation of the auditory system influences both the temporal and the rate coding of periodically modulated sounds in the AC of rats; the changes are permanent and observable up to late adulthood.
Collapse
Affiliation(s)
- Zbynek Bures
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic; Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University, Jugoslávských partyzánů 1580/3, 160 00 Prague 6, Czech Republic.
| | - Kateryna Pysanenko
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
18
|
Perugia E, Plack CJ, Stone MA. Low-sound-level auditory processing in noise-exposed adults. Hear Res 2021; 409:108309. [PMID: 34340022 DOI: 10.1016/j.heares.2021.108309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 01/13/2023]
Abstract
Early signs of noise-induced hearing damage are difficult to identify, as they are often confounded by factors such as age, audiometric thresholds, or even music experience. Much previous research has focused on deficits observed at high intensity levels. In contrast, the present study was designed to test the hypothesis that noise exposure causes a degradation in low-sound-level auditory processing in humans, as a consequence of dysfunction of the inner hair cell pathway. Frequency difference limens (FDLs) and amplitude modulation depth discrimination (MDD) were measured for five center frequencies (0.75, 1, 3, 4 and 6 kHz) at 15 and 25 dB sensation level (SL), as a function of noise exposure, age, audiometric hearing loss, and music experience. Forty participants, aged 33-75 years, with normal hearing up to 1 kHz and mild-to-moderate hearing loss above 2 kHz, were tested. Participants had varying degrees of self-reported noise exposure, and varied in music experience. FDL worsened as a function of age. Participants with music experience outperformed the non-experienced in both the FDL and MDD tasks. MDD thresholds were significantly better for high-noise-exposed, than for low-noise-exposed, participants at 25 dB SL, particularly at 6 kHz. No effects of age or hearing loss were observed in the MDD. It is possible that the association between MDD thresholds and noise exposure was not causal, but instead was mediated by other factors that were not measured in the study. The association is consistent, qualitatively, with a hypothesized loss of compression due to outer hair cell dysfunction.
Collapse
Affiliation(s)
- Emanuele Perugia
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, M13 9PL, UK..
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, M13 9PL, UK.; Department of Psychology, Lancaster University, Lancaster, LA1 4YF, UK
| | - Michael A Stone
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, M13 9PL, UK.; Manchester University Hospitals NHS Foundation Trust, Manchester, M13 9WL, UK.
| |
Collapse
|
19
|
Carcagno S, Plack CJ. Effects of age on psychophysical measures of auditory temporal processing and speech reception at low and high levels. Hear Res 2020; 400:108117. [PMID: 33253994 PMCID: PMC7812372 DOI: 10.1016/j.heares.2020.108117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/18/2020] [Accepted: 11/17/2020] [Indexed: 01/21/2023]
Abstract
We found little evidence of greater age-related hearing declines at high sound levels. There are age-related temporal-processing declines independent of hearing loss. No evidence of age-related speech-reception deficits independent of hearing loss.
Age-related cochlear synaptopathy (CS) has been shown to occur in rodents with minimal noise exposure, and has been hypothesized to play a crucial role in age-related hearing declines in humans. It is not known to what extent age-related CS occurs in humans, and how it affects the coding of supra-threshold sounds and speech in noise. Because in rodents CS affects mainly low- and medium-spontaneous rate (L/M-SR) auditory-nerve fibers with rate-level functions covering medium-high levels, it should lead to greater deficits in the processing of sounds at high than at low stimulus levels. In this cross-sectional study the performance of 102 listeners across the age range (34 young, 34 middle-aged, 34 older) was assessed in a set of psychophysical temporal processing and speech reception in noise tests at both low, and high stimulus levels. Mixed-effect multiple regression models were used to estimate the effects of age while partialing out effects of audiometric thresholds, lifetime noise exposure, cognitive abilities (assessed with additional tests), and musical experience. Age was independently associated with performance deficits on several tests. However, only for one out of 13 tests were age effects credibly larger at the high compared to the low stimulus level. Overall these results do not provide much evidence that age-related CS, to the extent to which it may occur in humans according to the rodent model of greater L/M-SR synaptic loss, has substantial effects on psychophysical measures of auditory temporal processing or on speech reception in noise.
Collapse
Affiliation(s)
- Samuele Carcagno
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF, United Kingdom.
| | - Christopher J Plack
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF, United Kingdom; Manchester Centre for Audiology and Deafness, University of Manchester, Academic Health Science Centre, M13 9PL, United Kingdom
| |
Collapse
|