1
|
Bálint A, Wimmer W, Caversaccio M, Rummel C, Weder S. Brain activation patterns in normal hearing adults: An fNIRS Study using an adapted clinical speech comprehension task. Hear Res 2025; 455:109155. [PMID: 39637600 DOI: 10.1016/j.heares.2024.109155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/01/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVES Understanding brain processing of auditory and visual speech is essential for advancing speech perception research and improving clinical interventions for individuals with hearing impairment. Functional near-infrared spectroscopy (fNIRS) is deemed to be highly suitable for measuring brain activity during language tasks. However, accurate data interpretation also requires validated stimuli and behavioral measures. DESIGN Twenty-six adults with normal hearing listened to sentences from the Oldenburg Sentence Test (OLSA), and brain activation in the temporal, occipital, and prefrontal areas was measured by fNIRS. The sentences were presented in one of the four different modalities: speech-in-quiet, speech-in-noise, audiovisual speech or visual speech (i.e., lipreading). To support the interpretation of our fNIRS data, and to obtain a more comprehensive understanding of the study population, we performed hearing tests (pure tone and speech audiometry) and collected behavioral data using validated questionnaires, in-task comprehension questions, and listening effort ratings. RESULTS In the auditory conditions (i.e., speech-in-quiet and speech-in-noise), we observed cortical activity in the temporal regions bilaterally. During the visual speech condition, we measured significant activation in the occipital area. Following the audiovisual condition, cortical activation was observed in both regions. Furthermore, we established a baseline for how individuals with normal hearing process visual cues during lipreading, and we found higher activity in the prefrontal cortex in noise conditions compared to quiet conditions, linked to higher listening effort. CONCLUSIONS We demonstrated the applicability of a clinically inspired audiovisual speech-comprehension task in participants with normal hearing. The measured brain activation patterns were supported and complemented by objective and behavioral parameters.
Collapse
Affiliation(s)
- András Bálint
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern 3008 Bern, Switzerland; Department of ENT - Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern 3010 Bern, Switzerland
| | - Wilhelm Wimmer
- Department of ENT - Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern 3010 Bern, Switzerland; Department of Otorhinolaryngology, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Marco Caversaccio
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern 3008 Bern, Switzerland; Department of ENT - Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern 3010 Bern, Switzerland
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern 3010 Bern, Switzerland
| | - Stefan Weder
- Department of ENT - Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern 3010 Bern, Switzerland.
| |
Collapse
|
2
|
Farrar R, Ashjaei S, Arjmandi MK. Speech-evoked cortical activities and speech recognition in adult cochlear implant listeners: a review of functional near-infrared spectroscopy studies. Exp Brain Res 2024; 242:2509-2530. [PMID: 39305309 PMCID: PMC11527908 DOI: 10.1007/s00221-024-06921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/04/2024] [Indexed: 11/01/2024]
Abstract
Cochlear implants (CIs) are the most successful neural prostheses, enabling individuals with severe to profound hearing loss to access sounds and understand speech. While CI has demonstrated success, speech perception outcomes vary largely among CI listeners, with significantly reduced performance in noise. This review paper summarizes prior findings on speech-evoked cortical activities in adult CI listeners using functional near-infrared spectroscopy (fNIRS) to understand (a) speech-evoked cortical processing in CI listeners compared to normal-hearing (NH) individuals, (b) the relationship between these activities and behavioral speech recognition scores, (c) the extent to which current fNIRS-measured speech-evoked cortical activities in CI listeners account for their differences in speech perception, and (d) challenges in using fNIRS for CI research. Compared to NH listeners, CI listeners had diminished speech-evoked activation in the middle temporal gyrus (MTG) and in the superior temporal gyrus (STG), except one study reporting an opposite pattern for STG. NH listeners exhibited higher inferior frontal gyrus (IFG) activity when listening to CI-simulated speech compared to natural speech. Among CI listeners, higher speech recognition scores correlated with lower speech-evoked activation in the STG, higher activation in the left IFG and left fusiform gyrus, with mixed findings in the MTG. fNIRS shows promise for enhancing our understanding of cortical processing of speech in CI listeners, though findings are mixed. Challenges include test-retest reliability, managing noise, replicating natural conditions, optimizing montage design, and standardizing methods to establish a strong predictive relationship between fNIRS-based cortical activities and speech perception in CI listeners.
Collapse
Affiliation(s)
- Reed Farrar
- Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Samin Ashjaei
- Department of Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, SC, 29208, USA
| | - Meisam K Arjmandi
- Department of Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, SC, 29208, USA.
- Institute for Mind and Brain, University of South Carolina, Barnwell Street, Columbia, SC, 29208, USA.
| |
Collapse
|
3
|
Ehlis AC, Zarantonello L, Haeussinger FB, Rohe T, Rosenbaum D, Fallgatter AJ, Maier MJ. The DLPFC is centrally involved in resolving Stroop conflicts, suppressing distracting sensory input within the auditory and visual system. Front Psychol 2024; 15:1427455. [PMID: 39492809 PMCID: PMC11528708 DOI: 10.3389/fpsyg.2024.1427455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/17/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction Cognitive control is a prerequisite for successful, goal-oriented behavior. The dorsolateral prefrontal cortex (DLPFC) is assumed to be a key player in applying cognitive control; however, the neural mechanisms by which this process is accomplished are still unclear. Methods To further address this question, an audiovisual Stroop task was used, comprising simultaneously presented pictures and spoken names of actors and politicians. Depending on the task block, participants had to indicate whether they saw the face or heard the name of a politician or an actor (visual vs. auditory blocks). In congruent trials, both stimuli (visual and auditory) belonged to the same response category (actor or politician); in incongruent trials, they belonged to different categories. During this task, activity in sensory target regions was measured via functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG), respectively. Specifically, fNIRS was used to monitor activity levels within the auditory cortex, while the EEG-based event-related potential of the N170 was considered as a marker of FFA (fusiform face area) involvement. Additionally, we assessed the effects of inhibitory theta-burst stimulation-a specific protocol based on repetitive transcranial magnetic stimulation (rTMS)-over the right DLPFC. Non-invasive brain stimulation is one of the few means to draw causal conclusions in human neuroscience. In this case, rTMS was used to temporarily inhibit the right DLPFC as a presumed key player in solving Stroop conflicts in one of two measurement sessions; then, effects were examined on behavioral measures as well as neurophysiological signals reflecting task-related activity in the frontal lobes and sensory cortices. Results The results indicate a central role of the DLPFC in the implementation of cognitive control in terms of a suppression of distracting sensory input in both the auditory cortex and visual system (FFA) in high-conflict situations. Behavioral data confirm a reduced Stroop effect following previous incongruent trials ("Gratton effect") that was only accomplished with an intact DLPFC (i.e., following placebo stimulation). Discussion Because non-invasive brain stimulation is uniquely suited to causally test neuroscientific hypotheses in humans, these data give important insights into some of the mechanisms by which the DLPFC establishes conflict resolution across different sensory modalities.
Collapse
Affiliation(s)
- Ann-Christine Ehlis
- Department of Psychiatry and Psychotherapy, Tuebingen Center for Mental Health, University of Tuebingen, Tuebingen, Germany
- LEAD Graduate School and Research Network, University of Tuebingen, Tuebingen, Germany
- German Center for Mental Health (DZPG), Partner Site Tuebingen, Tuebingen, Germany
| | | | - Florian B. Haeussinger
- Department of Psychiatry and Psychotherapy, Tuebingen Center for Mental Health, University of Tuebingen, Tuebingen, Germany
| | - Tim Rohe
- Department of Psychiatry and Psychotherapy, Tuebingen Center for Mental Health, University of Tuebingen, Tuebingen, Germany
- Institute of Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - David Rosenbaum
- Department of Psychiatry and Psychotherapy, Tuebingen Center for Mental Health, University of Tuebingen, Tuebingen, Germany
| | - Andreas J. Fallgatter
- Department of Psychiatry and Psychotherapy, Tuebingen Center for Mental Health, University of Tuebingen, Tuebingen, Germany
- LEAD Graduate School and Research Network, University of Tuebingen, Tuebingen, Germany
- German Center for Mental Health (DZPG), Partner Site Tuebingen, Tuebingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tuebingen, Tuebingen, Germany
| | - Moritz J. Maier
- Department of Psychiatry and Psychotherapy, Tuebingen Center for Mental Health, University of Tuebingen, Tuebingen, Germany
- Graduate School of Neural and Behavioral Sciences, University of Tuebingen, Tuebingen, Germany
- Fraunhofer IAO, Center for Responsible Research and Innovation CeRRI, Berlin, Germany
| |
Collapse
|
4
|
Yoo SH, Hong J, Hong KS, Lee Y. Multivariate disturbance filtering in auditory fNIRS signals using maximum likelihood gradient estimation method: Feasibility study using sound quality indices. Comput Biol Med 2024; 179:108840. [PMID: 39004047 DOI: 10.1016/j.compbiomed.2024.108840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/31/2024] [Accepted: 04/14/2024] [Indexed: 07/16/2024]
Abstract
Functional near-infrared spectroscopy (fNIRS) technology has been widely used to analyze biomechanics and diagnose brain activity. Despite being a promising tool for assessing the brain cortex status, this system is susceptible to disturbances and noise from electrical instrumentation and basal metabolism. In this study, an alternative filtering method, maximum likelihood generalized extended stochastic gradient (ML-GESG) estimation, is proposed to overcome the limitations of these disturbance factors. The proposed algorithm was designed to reduce multiple disturbances originating from heartbeats, breathing, shivering, and instrumental noises as multivariate parameters. To evaluate the effectiveness of the algorithm in filtering involuntary signals, a comparative analysis was conducted with a conventional filtering method, using hemodynamic responses to auditory stimuli and psycho-acoustic factors as quality indices. Using auditory sound stimuli consisting of 12 voice sources (six males and six females), the fNIRS test was configured with 18 channels and conducted on 10 volunteers. The psycho-acoustic factors of loudness and sharpness were used to evaluate physiological responses to the stimuli. Applying the proposed filtering method, the oxygenated hemoglobin concentration correlated better with the psychoacoustic analysis of each auditory stimulus than that of the conventional filtering method.
Collapse
Affiliation(s)
- So-Hyeon Yoo
- School of Mechanical Engineering, Pusan National University, Republic of Korea.
| | - Jiyoung Hong
- Transportation Environmental Research Team, New Transportation Innovative Research Center, Korea Railroad Research Institute, Uiwang-si, Republic of Korea.
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Republic of Korea.
| | - Yonghee Lee
- Transportation Environmental Research Team, New Transportation Innovative Research Center, Korea Railroad Research Institute, Uiwang-si, Republic of Korea.
| |
Collapse
|
5
|
Deroche MLD, Wolfe J, Neumann S, Manning J, Hanna L, Towler W, Wilson C, Bien AG, Miller S, Schafer E, Gemignani J, Alemi R, Muthuraman M, Koirala N, Gracco VL. Cross-modal plasticity in children with cochlear implant: converging evidence from EEG and functional near-infrared spectroscopy. Brain Commun 2024; 6:fcae175. [PMID: 38846536 PMCID: PMC11154148 DOI: 10.1093/braincomms/fcae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/02/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
Over the first years of life, the brain undergoes substantial organization in response to environmental stimulation. In a silent world, it may promote vision by (i) recruiting resources from the auditory cortex and (ii) making the visual cortex more efficient. It is unclear when such changes occur and how adaptive they are, questions that children with cochlear implants can help address. Here, we examined 7-18 years old children: 50 had cochlear implants, with delayed or age-appropriate language abilities, and 25 had typical hearing and language. High-density electroencephalography and functional near-infrared spectroscopy were used to evaluate cortical responses to a low-level visual task. Evidence for a 'weaker visual cortex response' and 'less synchronized or less inhibitory activity of auditory association areas' in the implanted children with language delays suggests that cross-modal reorganization can be maladaptive and does not necessarily strengthen the dominant visual sense.
Collapse
Affiliation(s)
- Mickael L D Deroche
- Department of Psychology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - Jace Wolfe
- Hearts for Hearing Foundation, Oklahoma City, OK 73120, USA
| | - Sara Neumann
- Hearts for Hearing Foundation, Oklahoma City, OK 73120, USA
| | - Jacy Manning
- Hearts for Hearing Foundation, Oklahoma City, OK 73120, USA
| | - Lindsay Hanna
- Hearts for Hearing Foundation, Oklahoma City, OK 73120, USA
| | - Will Towler
- Hearts for Hearing Foundation, Oklahoma City, OK 73120, USA
| | - Caleb Wilson
- Department of Otolaryngology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alexander G Bien
- Department of Otolaryngology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sharon Miller
- Department of Audiology & Speech-Language Pathology, University of North Texas, Denton, TX 76201, USA
| | - Erin Schafer
- Department of Audiology & Speech-Language Pathology, University of North Texas, Denton, TX 76201, USA
| | - Jessica Gemignani
- Department of Developmental and Social Psychology, University of Padova, 35131 Padua, Italy
| | - Razieh Alemi
- Department of Psychology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - Muthuraman Muthuraman
- Section of Neural Engineering with Signal Analytics and Artificial Intelligence, Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | | | | |
Collapse
|
6
|
Ning M, Duwadi S, Yücel MA, von Lühmann A, Boas DA, Sen K. fNIRS dataset during complex scene analysis. Front Hum Neurosci 2024; 18:1329086. [PMID: 38576451 PMCID: PMC10991699 DOI: 10.3389/fnhum.2024.1329086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/06/2024] [Indexed: 04/06/2024] Open
Affiliation(s)
- Matthew Ning
- Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, United States
| | - Sudan Duwadi
- Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, United States
| | - Meryem A. Yücel
- Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, United States
| | - Alexander von Lühmann
- Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, United States
- BIFOLD – Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Intelligent Biomedical Sensing (IBS) Lab, Technical University Berlin, Berlin, Germany
| | - David A. Boas
- Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, United States
| | - Kamal Sen
- Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, United States
| |
Collapse
|
7
|
McLinden J, Rahimi N, Kumar C, Krusienski DJ, Shao M, Spencer KM, Shahriari Y. Investigation of electro-vascular phase-amplitude coupling during an auditory task. Comput Biol Med 2024; 169:107902. [PMID: 38159399 DOI: 10.1016/j.compbiomed.2023.107902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/24/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Multimodal neuroimaging using electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) provides complementary views of cortical processes, including those related to auditory processing. However, current multimodal approaches often overlook potential insights that can be gained from nonlinear interactions between electrical and hemodynamic signals. Here, we explore electro-vascular phase-amplitude coupling (PAC) between low-frequency hemodynamic and high-frequency electrical oscillations during an auditory task. We further apply a temporally embedded canonical correlation analysis (tCCA)-general linear model (GLM)-based correction approach to reduce the possible effect of systemic physiology on fNIRS recordings. Before correction, we observed significant PAC between fNIRS and broadband EEG in the frontal region (p ≪ 0.05), β (p ≪ 0.05) and γ (p = 0.010) in the left temporal/temporoparietal (left auditory; LA) region, and γ (p = 0.032) in the right temporal/temporoparietal (right auditory; RA) region across the entire dataset. Significant differences in PAC across conditions (task versus silence) were observed in LA (p = 0.023) and RA (p = 0.049) γ sub-bands and in lower frequency (5-20 Hz) frontal activity (p = 0.005). After correction, significant fNIRS-γ-band PAC was observed in the frontal (p = 0.021) and LA (p = 0.025) regions, while fNIRS-α (p = 0.003) and fNIRS-β (p = 0.041) PAC were observed in RA. Decreased frontal γ-band (p = 0.008) and increased β-band (p ≪ 0.05) PAC were observed during the task. These outcomes represent the first characterization of electro-vascular PAC between fNIRS and EEG signals during an auditory task, providing insights into electro-vascular coupling in auditory processing.
Collapse
Affiliation(s)
- J McLinden
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, USA
| | - N Rahimi
- Department of Computer and Information Science, University of Massachusetts Dartmouth, MA, USA
| | - C Kumar
- Department of Computer and Information Science, University of Massachusetts Dartmouth, MA, USA
| | - D J Krusienski
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - M Shao
- Department of Computer and Information Science, University of Massachusetts Dartmouth, MA, USA
| | - K M Spencer
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, Boston, MA, USA
| | - Y Shahriari
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
8
|
Ning M, Duwadi S, Yücel MA, Von Lühmann A, Boas DA, Sen K. fNIRS Dataset During Complex Scene Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576715. [PMID: 38328139 PMCID: PMC10849700 DOI: 10.1101/2024.01.23.576715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
When analyzing complex scenes, humans often focus their attention on an object at a particular spatial location. The ability to decode the attended spatial location would facilitate brain computer interfaces for complex scene analysis (CSA). Here, we investigated capability of functional near-infrared spectroscopy (fNIRS) to decode audio-visual spatial attention in the presence of competing stimuli from multiple locations. We targeted dorsal frontoparietal network including frontal eye field (FEF) and intra-parietal sulcus (IPS) as well as superior temporal gyrus/planum temporal (STG/PT). They all were shown in previous functional magnetic resonance imaging (fMRI) studies to be activated by auditory, visual, or audio-visual spatial tasks. To date, fNIRS has not been applied to decode auditory and visual-spatial attention during CSA, and thus, no such dataset exists yet. This report provides an open-access fNIRS dataset that can be used to develop, test, and compare machine learning algorithms for classifying attended locations based on the fNIRS signals on a single trial basis.
Collapse
Affiliation(s)
- Matthew Ning
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sudan Duwadi
- Neurophotonics Center, Department of Biomedical Engineering, Boston University
| | - Meryem A. Yücel
- Neurophotonics Center, Department of Biomedical Engineering, Boston University
| | - Alexander Von Lühmann
- Neurophotonics Center, Department of Biomedical Engineering, Boston University
- BIFOLD – Berlin Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
- Intelligent Biomedical Sensing (IBS) Lab, Technische Universität Berlin, 10587 Berlin, Germany
| | - David A. Boas
- Neurophotonics Center, Department of Biomedical Engineering, Boston University
| | - Kamal Sen
- Neurophotonics Center, Department of Biomedical Engineering, Boston University
| |
Collapse
|
9
|
Alemi R, Wolfe J, Neumann S, Manning J, Towler W, Koirala N, Gracco VL, Deroche M. Audiovisual integration in children with cochlear implants revealed through EEG and fNIRS. Brain Res Bull 2023; 205:110817. [PMID: 37989460 DOI: 10.1016/j.brainresbull.2023.110817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Sensory deprivation can offset the balance of audio versus visual information in multimodal processing. Such a phenomenon could persist for children born deaf, even after they receive cochlear implants (CIs), and could potentially explain why one modality is given priority over the other. Here, we recorded cortical responses to a single speaker uttering two syllables, presented in audio-only (A), visual-only (V), and audio-visual (AV) modes. Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) were successively recorded in seventy-five school-aged children. Twenty-five were children with normal hearing (NH) and fifty wore CIs, among whom 26 had relatively high language abilities (HL) comparable to those of NH children, while 24 others had low language abilities (LL). In EEG data, visual-evoked potentials were captured in occipital regions, in response to V and AV stimuli, and they were accentuated in the HL group compared to the LL group (the NH group being intermediate). Close to the vertex, auditory-evoked potentials were captured in response to A and AV stimuli and reflected a differential treatment of the two syllables but only in the NH group. None of the EEG metrics revealed any interaction between group and modality. In fNIRS data, each modality induced a corresponding activity in visual or auditory regions, but no group difference was observed in A, V, or AV stimulation. The present study did not reveal any sign of abnormal AV integration in children with CI. An efficient multimodal integrative network (at least for rudimentary speech materials) is clearly not a sufficient condition to exhibit good language and literacy.
Collapse
Affiliation(s)
- Razieh Alemi
- Department of Psychology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec H4B 1R6, Canada.
| | - Jace Wolfe
- Oberkotter Foundation, Oklahoma City, OK, USA
| | - Sara Neumann
- Hearts for Hearing Foundation, 11500 Portland Av., Oklahoma City, OK 73120, USA
| | - Jacy Manning
- Hearts for Hearing Foundation, 11500 Portland Av., Oklahoma City, OK 73120, USA
| | - Will Towler
- Hearts for Hearing Foundation, 11500 Portland Av., Oklahoma City, OK 73120, USA
| | - Nabin Koirala
- Haskins Laboratories, 300 George St., New Haven, CT 06511, USA
| | | | - Mickael Deroche
- Department of Psychology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
10
|
Muñoz V, Muñoz-Caracuel M, Angulo-Ruiz BY, Gómez CM. Neurovascular coupling during auditory stimulation: event-related potentials and fNIRS hemodynamic. Brain Struct Funct 2023; 228:1943-1961. [PMID: 37658858 PMCID: PMC10517045 DOI: 10.1007/s00429-023-02698-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023]
Abstract
Intensity-dependent amplitude changes (IDAP) have been extensively studied using event-related potentials (ERPs) and have been linked to several psychiatric disorders. This study aims to explore the application of functional near-infrared spectroscopy (fNIRS) in IDAP paradigms, which related to ERPs could indicate the existence of neurovascular coupling. Thirty-three and thirty-one subjects participated in two experiments, respectively. The first experiment consisted of the presentation of three-tone intensities (77.9 dB, 84.5 dB, and 89.5 dB) lasting 500 ms, each type randomly presented 54 times, while the second experiment consisted of the presentation of five-tone intensities (70.9 dB, 77.9 dB, 84.5 dB, 89.5 dB, and 94.5 dB) in trains of 8 tones lasting 70 ms each tone, the trains were presented 20 times. EEG was used to measure ERP components: N1, P2, and N1-P2 peak-to-peak amplitude. fNIRS allowed the analysis of the hemodynamic activity in the auditory, visual, and prefrontal cortices. The results showed an increase in N1, P2, and N1-P2 peak-to-peak amplitude with auditory intensity. Similarly, oxyhemoglobin and deoxyhemoglobin concentrations showed amplitude increases and decreases, respectively, with auditory intensity in the auditory and prefrontal cortices. Spearman correlation analysis showed a relationship between the left auditory cortex with N1 amplitude, and the right dorsolateral cortex with P2 amplitude, specifically for deoxyhemoglobin concentrations. These findings suggest that there is a brain response to auditory intensity changes that can be obtained by EEG and fNIRS, supporting the neurovascular coupling process. Overall, this study enhances our understanding of fNIRS application in auditory paradigms and highlights its potential as a complementary technique to ERPs.
Collapse
Affiliation(s)
- Vanesa Muñoz
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, Seville, Spain
| | - Manuel Muñoz-Caracuel
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, Seville, Spain
- Hospital Universitario Virgen del Rocio, Seville, Spain
| | - Brenda Y. Angulo-Ruiz
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, Seville, Spain
| | - Carlos M. Gómez
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, Seville, Spain
| |
Collapse
|
11
|
Shatzer HE, Russo FA. Brightening the Study of Listening Effort with Functional Near-Infrared Spectroscopy: A Scoping Review. Semin Hear 2023; 44:188-210. [PMID: 37122884 PMCID: PMC10147513 DOI: 10.1055/s-0043-1766105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
Listening effort is a long-standing area of interest in auditory cognitive neuroscience. Prior research has used multiple techniques to shed light on the neurophysiological mechanisms underlying listening during challenging conditions. Functional near-infrared spectroscopy (fNIRS) is growing in popularity as a tool for cognitive neuroscience research, and its recent advances offer many potential advantages over other neuroimaging modalities for research related to listening effort. This review introduces the basic science of fNIRS and its uses for auditory cognitive neuroscience. We also discuss its application in recently published studies on listening effort and consider future opportunities for studying effortful listening with fNIRS. After reading this article, the learner will know how fNIRS works and summarize its uses for listening effort research. The learner will also be able to apply this knowledge toward generation of future research in this area.
Collapse
Affiliation(s)
- Hannah E. Shatzer
- Department of Psychology, Toronto Metropolitan University, Toronto, Canada
| | - Frank A. Russo
- Department of Psychology, Toronto Metropolitan University, Toronto, Canada
| |
Collapse
|
12
|
Steinmetzger K, Meinhardt B, Praetorius M, Andermann M, Rupp A. A direct comparison of voice pitch processing in acoustic and electric hearing. Neuroimage Clin 2022; 36:103188. [PMID: 36113196 PMCID: PMC9483634 DOI: 10.1016/j.nicl.2022.103188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
In single-sided deafness patients fitted with a cochlear implant (CI) in the affected ear and preserved normal hearing in the other ear, acoustic and electric hearing can be directly compared without the need for an external control group. Although poor pitch perception is a crucial limitation when listening through CIs, it remains unclear how exactly the cortical processing of pitch information differs between acoustic and electric hearing. Hence, we separately presented both ears of 20 of these patients with vowel sequences in which the pitch contours were either repetitive or variable, while simultaneously recording functional near-infrared spectroscopy (fNIRS) and EEG data. Overall, the results showed smaller and delayed auditory cortex activity in electric hearing, particularly for the P2 event-related potential component, which appears to reflect the processing of voice pitch information. Both the fNIRS data and EEG source reconstructions furthermore showed that vowel sequences with variable pitch contours evoked additional activity in posterior right auditory cortex in electric but not acoustic hearing. This surprising discrepancy demonstrates, firstly, that the acoustic detail transmitted by CIs is sufficient to distinguish between speech sounds that only vary regarding their pitch information. Secondly, the absence of a condition difference when stimulating the normal-hearing ears suggests a saturation of cortical activity levels following unilateral deafness. Taken together, these results provide strong evidence in favour of using CIs in this patient group.
Collapse
Affiliation(s)
- Kurt Steinmetzger
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany,Corresponding author.
| | - Bastian Meinhardt
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Mark Praetorius
- Section of Otology and Neurootology, ENT Clinic, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Martin Andermann
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - André Rupp
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Muñoz V, Diaz‐Sanchez JA, Muñoz‐Caracuel M, Gómez CM. Head hemodynamics and systemic responses during auditory stimulation. Physiol Rep 2022; 10:e15372. [PMID: 35785451 PMCID: PMC9251853 DOI: 10.14814/phy2.15372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023] Open
Abstract
The present study aims to analyze the systemic response to auditory stimulation by means of hemodynamic (cephalic and peripheral) and autonomic responses in a broad range of auditory intensities (70.9, 77.9, 84.5, 89.5, 94.5 dBA). This approach could help to understand the possible influence of the autonomic nervous system on the cephalic blood flow. Twenty-five subjects were exposed to auditory stimulation while electrodermal activity (EDA), photoplethysmography (PPG), electrocardiogram, and functional near-infrared spectroscopy signals were recorded. Seven trials with 20 individual tones, each for the five intensities, were presented. The results showed a differentiated response to the higher intensity (94.5 dBA) with a decrease in some peripheral signals such as the heart rate (HR), the pulse signal, the pulse transit time (PTT), an increase of the LFnu power in PPG, and at the head level a decrease in oxygenated and total hemoglobin concentration. After the regression of the visual channel activity from the auditory channels, a decrease in deoxyhemoglobin in the auditory cortex was obtained, indicating a likely active response at the highest intensity. Nevertheless, other measures, such as EDA (Phasic and Tonic), and heart rate variability (Frequency and time domain) showed no significant differences between intensities. Altogether, these results suggest a systemic and complex response to high-intensity auditory stimuli. The results obtained in the decrease of the PTT and the increase in LFnu power of PPG suggest a possible vasoconstriction reflex by a sympathetic control of vascular tone, which could be related to the decrease in blood oxygenation at the head level.
Collapse
Affiliation(s)
- Vanesa Muñoz
- Human Psychobiology Laboratory, Experimental Psychology DepartmentUniversity of SevillaSevillaSpain
| | - José A. Diaz‐Sanchez
- Human Psychobiology Laboratory, Experimental Psychology DepartmentUniversity of SevillaSevillaSpain
| | - Manuel Muñoz‐Caracuel
- Human Psychobiology Laboratory, Experimental Psychology DepartmentUniversity of SevillaSevillaSpain
| | - Carlos M. Gómez
- Human Psychobiology Laboratory, Experimental Psychology DepartmentUniversity of SevillaSevillaSpain
| |
Collapse
|
14
|
Yin JT, Hu YY, Li QY, Luo JL. Human creativity escapes in the struggle against threat:Evidence from neural mechanisms. Biol Psychol 2022; 172:108359. [DOI: 10.1016/j.biopsycho.2022.108359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022]
|
15
|
Yeung MK, Chu VW. Viewing neurovascular coupling through the lens of combined EEG-fNIRS: A systematic review of current methods. Psychophysiology 2022; 59:e14054. [PMID: 35357703 DOI: 10.1111/psyp.14054] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/01/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022]
Abstract
Neurovascular coupling is a key physiological mechanism that occurs in the healthy human brain, and understanding this process has implications for understanding the aging and neuropsychiatric populations. Combined electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) has emerged as a promising, noninvasive tool for probing neurovascular interactions in humans. However, the utility of this approach critically depends on the methodological quality used for multimodal integration. Despite a growing number of combined EEG-fNIRS applications reported in recent years, the methodological rigor of past studies remains unclear, limiting the accurate interpretation of reported findings and hindering the translational application of this multimodal approach. To fill this knowledge gap, we critically evaluated various methodological aspects of previous combined EEG-fNIRS studies performed in healthy individuals. A literature search was conducted using PubMed and PsycINFO on June 28, 2021. Studies involving concurrent EEG and fNIRS measurements in awake and healthy individuals were selected. After screening and eligibility assessment, 96 studies were included in the methodological evaluation. Specifically, we critically reviewed various aspects of participant sampling, experimental design, signal acquisition, data preprocessing, outcome selection, data analysis, and results presentation reported in these studies. Altogether, we identified several notable strengths and limitations of the existing EEG-fNIRS literature. In light of these limitations and the features of combined EEG-fNIRS, recommendations are made to improve and standardize research practices to facilitate the use of combined EEG-fNIRS when studying healthy neurovascular coupling processes and alterations in neurovascular coupling among various populations.
Collapse
Affiliation(s)
- Michael K Yeung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Vivian W Chu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
16
|
Calmels MN, Gallois Y, Marx M, Deguine O, Taoui S, Arnaud E, Strelnikov K, Barone P. Functional Reorganization of the Central Auditory System in Children with Single-Sided Deafness: A Protocol Using fNIRS. Brain Sci 2022; 12:brainsci12040423. [PMID: 35447955 PMCID: PMC9029510 DOI: 10.3390/brainsci12040423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
In children, single-sided deafness (SSD) affects the development of linguistic and social skills and can impede educational progress. These difficulties may relate to cortical changes that occur following SSD, such as reduced inter-hemispheric functional asymmetry and maladaptive brain plasticity. To investigate these neuronal changes and their evolution in children, a non-invasive technique is required that is little affected by motion artifacts. Here, we present a research protocol that uses functional near-infrared spectroscopy (fNIRS) to evaluate the reorganization of cortical auditory asymmetry in children with SSD; it also examines how the cortical changes relate to auditory and language skills. The protocol is designed for children whose SSD has not been treated, because hearing restoration can alter both brain reorganization and behavioral performance. We propose a single-center, cross-sectional study that includes 30 children with SSD (congenital or acquired moderate-to-profound deafness) and 30 children with normal hearing (NH), all aged 5–16 years. The children undergo fNIRS during monaural and binaural stimulation, and the pattern of cortical activity is analyzed using measures of the peak amplitude and area under the curve for both oxy- and deoxyhemoglobin. These cortical measures can be compared between the two groups of children, and analyses can be run to determine whether they relate to binaural hearing (speech-in-noise and sound localization), speech perception and production, and quality of life (QoL). The results could be of relevance for developing individualized rehabilitation programs for SSD, which could reduce patients’ difficulties and prevent long-term neurofunctional and clinical consequences.
Collapse
Affiliation(s)
- Marie-Noëlle Calmels
- Service d′Oto-Rhino-Laryngologie, d′Oto-Neurologie et d′ORL Pédiatrique, Centre Hospitalier Universitaire de Toulouse, CEDEX 9, 31059 Toulouse, France; (Y.G.); (M.M.); (O.D.); (S.T.); (K.S.)
- Correspondence:
| | - Yohan Gallois
- Service d′Oto-Rhino-Laryngologie, d′Oto-Neurologie et d′ORL Pédiatrique, Centre Hospitalier Universitaire de Toulouse, CEDEX 9, 31059 Toulouse, France; (Y.G.); (M.M.); (O.D.); (S.T.); (K.S.)
| | - Mathieu Marx
- Service d′Oto-Rhino-Laryngologie, d′Oto-Neurologie et d′ORL Pédiatrique, Centre Hospitalier Universitaire de Toulouse, CEDEX 9, 31059 Toulouse, France; (Y.G.); (M.M.); (O.D.); (S.T.); (K.S.)
- Centre de Recherche cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, 31052 Toulouse, France; (E.A.); (P.B.)
- UMR 5549, Faculté de Médecine de Purpan, Centre National de la Recherche Scientifique, 31055 Toulouse, France
| | - Olivier Deguine
- Service d′Oto-Rhino-Laryngologie, d′Oto-Neurologie et d′ORL Pédiatrique, Centre Hospitalier Universitaire de Toulouse, CEDEX 9, 31059 Toulouse, France; (Y.G.); (M.M.); (O.D.); (S.T.); (K.S.)
- Centre de Recherche cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, 31052 Toulouse, France; (E.A.); (P.B.)
- UMR 5549, Faculté de Médecine de Purpan, Centre National de la Recherche Scientifique, 31055 Toulouse, France
| | - Soumia Taoui
- Service d′Oto-Rhino-Laryngologie, d′Oto-Neurologie et d′ORL Pédiatrique, Centre Hospitalier Universitaire de Toulouse, CEDEX 9, 31059 Toulouse, France; (Y.G.); (M.M.); (O.D.); (S.T.); (K.S.)
| | - Emma Arnaud
- Centre de Recherche cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, 31052 Toulouse, France; (E.A.); (P.B.)
- UMR 5549, Faculté de Médecine de Purpan, Centre National de la Recherche Scientifique, 31055 Toulouse, France
| | - Kuzma Strelnikov
- Service d′Oto-Rhino-Laryngologie, d′Oto-Neurologie et d′ORL Pédiatrique, Centre Hospitalier Universitaire de Toulouse, CEDEX 9, 31059 Toulouse, France; (Y.G.); (M.M.); (O.D.); (S.T.); (K.S.)
| | - Pascal Barone
- Centre de Recherche cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, 31052 Toulouse, France; (E.A.); (P.B.)
- UMR 5549, Faculté de Médecine de Purpan, Centre National de la Recherche Scientifique, 31055 Toulouse, France
| |
Collapse
|
17
|
Cortical activity evoked by voice pitch changes: a combined fNIRS and EEG study. Hear Res 2022; 420:108483. [DOI: 10.1016/j.heares.2022.108483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 11/22/2022]
|
18
|
Uppenkamp S. Functional neuroimaging in hearing research and audiology. Z Med Phys 2021; 31:289-304. [PMID: 33947621 DOI: 10.1016/j.zemedi.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/11/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022]
Abstract
The various methods of medical imaging are essential for many diagnostic issues in clinical routine, e.g., for the diagnostics and localisation of tumorous diseases, or for the clarification of other lesions in the central nervous system. In addition to these classical roles both positron emission tomography (PET) and magnetic resonance imaging (MRI) allow for the investigation of functional processes in the human brain, when used in a specific way. The last 25 years have seen great progress, especially with respect to functional MRI, in terms of the available experimental paradigms as well as the data analysis strategies, so that a directed investigation of neurophysiological correlates of psychoacoustic performance is possible. This covers fundamental measures of sound perception like loudness and pitch, specific audiological symptoms like tinnitus, which often accompanies hearing disorders, but it also includes experiments on speech perception or on virtual acoustic environments. One important aspect common to many auditory neuroimaging studies is the central question at what stage in the human auditory pathway the sensory coding of the incoming sound is transformed into a universal and context-dependent perceptual representation, which is the basis for what we hear. This overview summarises findings from the literature as well as a few studies from our lab, to discuss the possibilities and the limits of the adoption of functional neuroimaging methods in audiology. Up to this stage, most auditory neuroimaging studies have investigated basic processes in normal hearing listeners. However, the hitherto existing results suggest that the methods of auditory functional neuroimaging - possibly complemented by electrophysiological methods like EEG and MEG - have a great potential to contribute to a deeper understanding of the processes and the impact of hearing disorders.
Collapse
Affiliation(s)
- Stefan Uppenkamp
- Medizinische Physik, Fakultät VI Medizin und Gesundheitswissenschaften Carl von Ossietzky Universität, 26111 Oldenburg, Germany.
| |
Collapse
|