1
|
Pitt B, Diez J. Possible Role of Gut Microbiota Alterations in Myocardial Fibrosis and Burden of Heart Failure in Hypertensive Heart Disease. Hypertension 2024; 81:1467-1476. [PMID: 38716665 DOI: 10.1161/hypertensionaha.124.23089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Epidemiological studies have revealed that hypertensive heart disease is a major risk factor for heart failure, and its heart failure burden is growing rapidly. The need to act in the face of this threat requires first an understanding of the multifactorial origin of hypertensive heart disease and second an exploration of new mechanistic pathways involved in myocardial alterations critically involved in cardiac dysfunction and failure (eg, myocardial interstitial fibrosis). Increasing evidence shows that alterations of gut microbiota composition and function (ie, dysbiosis) leading to changes in microbiota-derived metabolites and impairment of the gut barrier and immune functions may be involved in blood pressure elevation and hypertensive organ damage. In this review, we highlight recent advances in the potential contribution of gut microbiota alterations to myocardial interstitial fibrosis in hypertensive heart disease through blood pressure-dependent and blood pressure-independent mechanisms. Achievements in this field should open a new path for more comprehensive treatment of myocardial interstitial fibrosis in hypertensive heart disease and, thus, for the prevention of heart failure.
Collapse
Affiliation(s)
- Bertram Pitt
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor (B.P.)
| | - Javier Diez
- Department of Cardiovascular Diseases, Center for Applied Medical Research and School of Medicine, University of Navarra, Pamplona, Spain (J.D.)
| |
Collapse
|
2
|
Anfossi R, Vivar R, Ayala P, González-Herrera F, Espinoza-Pérez C, Osorio JM, Román-Torres M, Bolívar S, Díaz-Araya G. Interferon-β decreases LPS-induced neutrophil recruitment to cardiac fibroblasts. Front Cell Dev Biol 2023; 11:1122408. [PMID: 37799272 PMCID: PMC10547890 DOI: 10.3389/fcell.2023.1122408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/01/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction: Cardiac fibroblasts (CF) are crucial cells in damaged heart tissues, expressing TLR4, IFN-receptor and responding to lipopolysaccharide (LPS) and interferon-β (IFN-β) respectively. While CF interact with immune cells; however, their relationship with neutrophils remains understudied. Additionally, theimpact of LPS and IFN-β on CF-neutrophil interaction is poorly understood. Methods: Isolated CF from adult rats were treated with LPS, with or without IFN-β. This study examined IL-8 secretion, ICAM-1 and VCAM-1 expression, and neutrophil recruitment, as well as their effects on MMPs activity. Results: LPS triggered increased IL-8 expression and secretion, along with elevated ICAM-1 and VCAM-1 expression, all of which were blocked by TAK-242. Pre-treatment with IFN-β countered these LPS effects. LPS treated CF showed higher neutrophil recruitment (migration and adhesion) compared to unstimulated CF, an effect prevented by IFN-β. Ruxolitinib blocked these IFN-β anti-inflammatory effects, implicating JAK signaling. Analysis of culture medium zymograms from CF alone, and CF-neutrophils interaction, revealed that MMP2 was mainly originated from CF, while MMP9 could come from neutrophils. LPS and IFN-β boosted MMP2 secretion by CF. MMP9 activity in CF was low, and LPS or IFN-β had no significant impact. Pre-treating CF with LPS, IFN-β, or both before co-culture with neutrophils increased MMP2. Neutrophil co-culture increased MMP9 activity, with IFN-β pre-treatment reducing MMP9 compared to unstimulated CF. Conclusion: In CF, LPS induces the secretion of IL-8 favoring neutrophils recruitment and these effects were blocked by IFN-. The results highlight that CF-neutrophil interaction appears to influence the extracellular matrix through MMPs activity modulation.
Collapse
Affiliation(s)
- Renatto Anfossi
- Unidad de Farmacia, Hospital Regional del Libertador Bernardo O’Higgins, Rancagua, Chile
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Raúl Vivar
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Instituto de Farmacología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pedro Ayala
- Facultad de Medicina, Pontifica Universidad Católica de Chile, Santiago de Chile, Chile
| | | | - Claudio Espinoza-Pérez
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - José Miguel Osorio
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mauricio Román-Torres
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Samir Bolívar
- Facultad de Química y Farmacia, Universidad del Atlántico, Barranquilla, Colombia
| | - Guillermo Díaz-Araya
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Skiöldebrand E, Adepu S, Lützelschwab C, Nyström S, Lindahl A, Abrahamsson-Aurell K, Hansson E. A randomized, triple-blinded controlled clinical study with a novel disease-modifying drug combination in equine lameness-associated osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2023; 5:100381. [PMID: 37416846 PMCID: PMC10320210 DOI: 10.1016/j.ocarto.2023.100381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
Objective This study aimed to test a novel treatment combination (TC) (equivalent to sildenafil, mepivacaine, and glucose) with disease-modifying properties compared to Celestone® bifas® (CB) in a randomized triple-blinded phase III clinical study in horses with mild osteoarthritis (OA). Joint biomarkers (reflecting the articular cartilage and subchondral bone remodelling) and clinical lameness were used as readouts to evaluate the treatment efficacy. Methods Twenty horses with OA-associated lameness in the carpal joint were included in the study and received either TC (n = 10) or CB (n = 10) drug intra-articularly-twice in the middle carpal joint with an interval of 2 weeks (visit 1 & 2). Clinical lameness was assessed both objectively (Lameness locator) and subjectively (visually). Synovial fluid and serum were sampled for quantification of the extracellular matrix (ECM) neo-epitope joint biomarkers represented by biglycan (BGN262) and cartilage oligomeric matrix protein (COMP156). Another two weeks later clinical lameness was recorded, and serum was collected for biomarkers analysis. The overall health status was compared pre and post-intervention by interviewing the trainer. Results Post-intervention, SF BGN262 levels significantly declined in TC (P = 0.002) and COMP156 levels significantly increased in CB (P = 0.002). The flexion test scores improved in the TC compared to CB (P =0.033) and also had an improved trotting gait quality (P =0.044). No adverse events were reported. Conclusion This is the first clinical study presenting companion diagnostics assisting in identifying OA phenotype and evaluating the efficacy and safety of a novel disease-modifying osteoarthritic drug.
Collapse
Affiliation(s)
- E. Skiöldebrand
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - S. Adepu
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - C. Lützelschwab
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - S. Nyström
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - A. Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - K. Abrahamsson-Aurell
- Hallands Djursjukhus Kungsbacka Hästklinik, Älvsåkers Byväg 20, 434 95 Kungsbacka, Sweden
| | - E. Hansson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Knez R, Niksic M, Omerovic E. Orexin/hypocretin system dysfunction in patients with Takotsubo syndrome: A novel pathophysiological explanation. Front Cardiovasc Med 2022; 9:1016369. [PMID: 36407467 PMCID: PMC9670121 DOI: 10.3389/fcvm.2022.1016369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/05/2022] [Indexed: 09/19/2023] Open
Abstract
Takotsubo syndrome (TTS) is an acute heart failure syndrome. Emotional or physical stressors are believed to precipitate TTS, while the pathophysiological mechanism is not yet completely understood. During the coronavirus disease (COVID-19) pandemic, an increased incidence of TTS has been reported in some countries; however, the precise pathophysiological mechanism for developing TTS with acute COVID-19 infection is unknown. Nevertheless, observing the symptoms of COVID-19 might lead to new perspectives in understanding TTS pathophysiology, as some of the symptoms of the COVID-19 infection could be assessed in the context of an orexin/hypocretin-system dysfunction. Orexin/hypocretin is a cardiorespiratory neuromodulator that acts on two orexin receptors widely distributed in the brain and peripheral tissues. In COVID-19 patients, autoantibodies against one of these orexin receptors have been reported. Orexin-system dysfunction affects a variety of systems in an organism. Here, we review the influence of orexin-system dysfunction on the cardiovascular system to propose its connection with TTS. We propose that orexin-system dysfunction is a potential novel explanation for the pathophysiology of TTS due to direct or indirect dynamics of orexin signaling, which could influence cardiac contractility. This is in line with the conceptualization of TTS as a cardiovascular syndrome rather than merely a cardiac abnormality or cardiomyopathy. To the best of our knowledge, this is the first publication to present a plausible connection between TTS and orexin-system dysfunction. We hope that this novel hypothesis will inspire comprehensive studies regarding orexin's role in TTS pathophysiology. Furthermore, confirmation of this plausible pathophysiological mechanism could contribute to the development of orexin-based therapeutics in the treatment and prevention of TTS.
Collapse
Affiliation(s)
- Rajna Knez
- Gillberg Neuropsychiatry Centre, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Research and Development, Department of Women's and Child Health, Skaraborg Hospital, Skövde, Sweden
- Institution for Health, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Milan Niksic
- Department of Cardiology, Skaraborg Hospital, Skövde, Sweden
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine/Cardiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Gut Microbiome and Organ Fibrosis. Nutrients 2022; 14:nu14020352. [PMID: 35057530 PMCID: PMC8781069 DOI: 10.3390/nu14020352] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is a pathological process associated with most chronic inflammatory diseases. It is defined by an excessive deposition of extracellular matrix proteins and can affect nearly every tissue and organ system in the body. Fibroproliferative diseases, such as intestinal fibrosis, liver cirrhosis, progressive kidney disease and cardiovascular disease, often lead to severe organ damage and are a leading cause of morbidity and mortality worldwide, for which there are currently no effective therapies available. In the past decade, a growing body of evidence has highlighted the gut microbiome as a major player in the regulation of the innate and adaptive immune system, with severe implications in the pathogenesis of multiple immune-mediated disorders. Gut microbiota dysbiosis has been associated with the development and progression of fibrotic processes in various organs and is predicted to be a potential therapeutic target for fibrosis management. In this review we summarize the state of the art concerning the crosstalk between intestinal microbiota and organ fibrosis, address the relevance of diet in different fibrotic diseases and discuss gut microbiome-targeted therapeutic approaches that are current being explored.
Collapse
|
6
|
Human cardiac fibroblasts produce pro-inflammatory cytokines upon TLRs and RLRs stimulation. Mol Cell Biochem 2021; 476:3241-3252. [PMID: 33881711 PMCID: PMC8059428 DOI: 10.1007/s11010-021-04157-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022]
Abstract
Heart inflammation is one of the major causes of heart damage that leads to dilated cardiomyopathy and often progresses to end-stage heart failure. In the present study, we aimed to assess whether human cardiac cells could release immune mediators upon stimulation of Toll-like receptors (TLRs) and Retinoic acid-inducible gene (RIG)-I-like receptors (RLRs). Commercially available human cardiac fibroblasts and an immortalized human cardiomyocyte cell line were stimulated in vitro with TLR2, TLR3, and TLR4 agonists. In addition, cytosolic RLRs were activated in cardiac cells after transfection of polyinosinic-polycytidylic acid (PolyIC). Upon stimulation of TLR3, TLR4, MDA5, and RIG-I, but not upon stimulation of TLR2, human cardiac fibroblasts produced high amounts of the pro-inflammatory cytokines IL-6 and IL-8. On the contrary, the immortalized human cardiomyocyte cell line was unresponsive to the tested TLRs agonists. Upon RLRs stimulation, cardiac fibroblasts, and to a lesser extent the cardiomyocyte cell line, induced anti-viral IFN-β expression. These data demonstrate that human cardiac fibroblasts and an immortalized human cardiomyocyte cell line differently respond to various TLRs and RLRs ligands. In particular, human cardiac fibroblasts were able to induce pro-inflammatory and anti-viral cytokines on their own. These aspects will contribute to better understand the immunological function of the different cell populations that make up the cardiac tissue.
Collapse
|
7
|
Structural alterations and inflammation in the heart after multiple trauma followed by reamed versus non-reamed femoral nailing. PLoS One 2020; 15:e0235220. [PMID: 32584885 PMCID: PMC7316303 DOI: 10.1371/journal.pone.0235220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Approximately 30,000 patients with blunt cardiac trauma are recorded each year in the United States. Blunt cardiac injuries after trauma are associated with a longer hospital stay and a poor overall outcome. Organ damage after trauma is linked to increased systemic release of pro-inflammatory cytokines and damage-associated molecular patterns. However, the interplay between polytrauma and local cardiac injury is unclear. Additionally, the impact of surgical intervention on this process is currently unknown. This study aimed to determine local cardiac immunological and structural alterations after multiple trauma. Furthermore, the impact of the chosen fracture stabilization strategy (reamed versus non-reamed femoral nailing) on cardiac alterations was studied. EXPERIMENTAL APPROACH 15 male pigs were either exposed to multiple trauma (blunt chest trauma, laparotomy, liver laceration, femur fracture and haemorrhagic shock) or sham conditions. Blood samples as well as cardiac tissue were analysed 4 h and 6 h after trauma. Additionally, murine HL-1 cells were exposed to a defined polytrauma-cocktail, mimicking the pro-inflammatory conditions after multiple trauma in vitro. RESULTS After multiple trauma, cardiac structural changes were observed in the left ventricle. More specifically, alterations in the alpha-actinin and desmin protein expression were found. Cardiac structural alterations were accompanied by enhanced local nitrosative stress, increased local inflammation and elevated systemic levels of the high-mobility group box 1 protein. Furthermore, cardiac alterations were observed predominantly in pigs that were treated by non-reamed intramedullary reaming. The polytrauma-cocktail impaired the viability of HL-1 cells in vitro, which was accompanied by a release of troponin I and HFABP. DISCUSSION Multiple trauma induced cardiac structural alterations in vivo, which might contribute to the development of early myocardial damage (EMD). This study also revealed that reamed femoral nailing (reamed) is associated with more prominent immunological cardiac alterations compared to nailing without reaming (non-reamed). This suggests that the choice of the initial fracture treatment strategy might be crucial for the overall outcome as well as for any post-traumatic cardiac consequences.
Collapse
|
8
|
Hansson E, Skiöldebrand E. Low-grade inflammation causes gap junction-coupled cell dysfunction throughout the body, which can lead to the spread of systemic inflammation. Scand J Pain 2019; 19:639-649. [PMID: 31251727 DOI: 10.1515/sjpain-2019-0061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/21/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS Gap junction-coupled cells form networks in different organs in the body. These networks can be affected by inflammatory stimuli and become dysregulated. Cell signaling is also changed through connexin-linked gap junctions. This alteration affects the surrounding cells and extracellular matrix in organs. These changes can cause the spread of inflammatory substances, thus affecting other network-linked cells in other organs in the body, which can give rise to systemic inflammation, which in turn can lead to pain that can turn into chronic. METHODS This is a review based on literature search and our own research data of inflammatory stimuli that can affect different organs and particularly gap-junction-coupled cells throughout the body. CONCLUSIONS A remaining question is which cell type or tissue is first affected by inflammatory stimuli. Can endotoxin exposure through the air, water and body start the process and are mast cells the first target cells that have the capacity to alter the physiological status of gap junction-coupled cells, thereby causing breakdown of different barrier systems? IMPLICATIONS Is it possible to address the right cellular and biochemical parameters and restore inflammatory systems to a normal physiological level by therapeutic strategies?
Collapse
Affiliation(s)
- Elisabeth Hansson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 3rd Floor, SE 413 45 Gothenburg, Sweden, Phone: +46-31-786 3363
| | - Eva Skiöldebrand
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
9
|
The Role of Connexin-43 in the Inflammatory Process: A New Potential Therapy to Influence Keratitis. J Ophthalmol 2019; 2019:9312827. [PMID: 30805212 PMCID: PMC6360563 DOI: 10.1155/2019/9312827] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
The studies outlined in this review highlight the relationship between inflammatory signaling molecules and connexin-43 (Cx43). Gap junction (GJ) channels and hemichannels (HCs) participate in the metabolic activity between intra- and extracellular space. Some ions and small molecules are exchanged from cell to cell or cell to extracellular space to affect the process of inflammation via GJ. We analyzed the effects of signaling molecules, such as innate immunity messengers, transcription factors, LPS, cytokine, inflammatory chemokines, and MMPs, on Cx43 expression during the inflammatory process. At the same time, we found that these signaling molecules play a critical role in the pathogenesis of keratitis. Thus, we assessed the function of Cx43 during inflammatory corneal disease. Corneal healing plays an essential role in the late stage of keratitis. We found that Cx43 is involved in wound healing. Studies have shown that the decrease of Cx43 can decrease the time of healing. We also report several Cx43 mimic peptides which can inhibit the activity of Cx43 Hc to mediate the releasing of adenosine triphosphate (ATP), which may in turn influence the inflammatory process.
Collapse
|
10
|
Role of the TRPM4 Channel in Cardiovascular Physiology and Pathophysiology. Cells 2018; 7:cells7060062. [PMID: 29914130 PMCID: PMC6025450 DOI: 10.3390/cells7060062] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/31/2022] Open
Abstract
The transient receptor potential cation channel subfamily M member 4 (TRPM4) channel influences calcium homeostasis during many physiological activities such as insulin secretion, immune response, respiratory reaction, and cerebral vasoconstriction. This calcium-activated, monovalent, selective cation channel also plays a key role in cardiovascular pathophysiology; for example, a mutation in the TRPM4 channel leads to cardiac conduction disease. Recently, it has been suggested that the TRPM4 channel is also involved in the development of cardiac ischemia-reperfusion injury, which causes myocardial infarction. In the present review, we discuss the physiological function of the TRPM4 channel, and assess its role in cardiovascular pathophysiology.
Collapse
|
11
|
Biochemical alterations in inflammatory reactive chondrocytes: evidence for intercellular network communication. Heliyon 2018; 4:e00525. [PMID: 29560438 PMCID: PMC5857518 DOI: 10.1016/j.heliyon.2018.e00525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/04/2018] [Accepted: 01/23/2018] [Indexed: 12/24/2022] Open
Abstract
Chondrocytes are effectively involved in the pathophysiological processes of inflammation in joints. They form cellular processes in the superficial layer of the articular cartilage and form gap junction coupled syncytium to facilitate cell-to-cell communication. However, very little is known about their physiological cellular identity and communication. The aim with the present work is to evaluate the physiological behavior after stimulation with the inflammatory inducers interleukin-1β and lipopolysaccharide. The cytoskeleton integrity and intracellular Ca2+ release were assessed as indicators of inflammatory state. Cytoskeleton integrity was analyzed through cartilage oligomeric matrix protein and actin labeling with an Alexa 488-conjugated phalloidin probe. Ca2+ responses were assessed through the Ca2+ sensitive fluorophore Fura-2/AM. Western blot analyses of several inflammatory markers were performed. The results show reorganization of the actin filaments. Glutamate, 5-hydoxytryptamine, and ATP evoked intracellular Ca2+ release changed from single peaks to oscillations after inflammatory induction in the chondrocytes. The expression of toll-like receptor 4, the glutamate transporters GLAST and GLT-1, and the matrix metalloproteinase-13 increased. This work demonstrates that chondrocytes are a key part in conditions that lead to inflammation in the cartilage. The inflammatory inducers modulate the cytoskeleton, the Ca2+ signaling, and several inflammatory parameters. In conclusion, our data show that the cellular responses to inflammatory insults from healthy and inflammatory chondrocytes resemble those previously observed in astrocyte and cardiac fibroblasts networks.
Collapse
|