1
|
Zhang S, Shen L, Xu P, Yang J, Song P, Li L, Li Y, Zhang Y, Wu S. Advancements of carbon dots: From the perspective of medicinal chemistry. Eur J Med Chem 2024; 280:116931. [PMID: 39369486 DOI: 10.1016/j.ejmech.2024.116931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Carbon dots (CDs) exhibit great potential in medicinal chemistry due to its excellent optical properties, biocompatibility and scalability, which have attracted significant interest. Based on their specific synthesis and modification, this review provided an overview of the evolution of the synthesis of CDs and reviewed the discovery and development of their optical properties. This review examines recent advances of CDs in medicinal chemistry, with a particular focus on the use of CDs as drugs and carriers for photodynamic and photothermal therapies in the field of neurological disorders, cancer, bacterial, viral, and further in combination with imaging for diagnostic and therapeutic integration. Finally, this review addresses the challenges and limitations of CDs in medicinal chemistry. This review provides a comprehensive overview of the development process of CDs and their applications in various aspects of medicinal chemistry, thereby offers insights to the development of CDs in the field of medicinal chemistry.
Collapse
Affiliation(s)
- Shengtao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, PR China; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Li Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 311402, Hangzhou, PR China
| | - Pengyue Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, PR China
| | - Jiali Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, PR China
| | - Pengliang Song
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, PR China
| | - Lifang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, PR China
| | - Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yongmin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, PR China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR, 8232, 4 Place Jussieu, 75005, Paris, France
| | - Shaoping Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, PR China.
| |
Collapse
|
2
|
Mankoti M, Meena SS, Mohanty A. Exploring the potential of eco-friendly carbon dots in monitoring and remediation of environmental pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43492-43523. [PMID: 38713351 DOI: 10.1007/s11356-024-33448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
Photoluminescent carbon dots (CDs) have garnered significant interest owing to their distinctive optical and electronic properties. In contrast to semiconductor quantum dots, which incorporated toxic elements in their composition, CDs have emerged as a promising alternative, rendering them suitable for both environmental and biological applications. CDs exhibit astonishing features, including photoluminescence, charge transfer, quantum confinement effect, and biocompatibility. Recently, CDs derived from green sources have drawn a lot of attention due to their strong photostability, reduced toxicity, better biocompatibility, enhanced fluorescence, and simplicity. These attributes have shown great promise in the areas of LED technology, bioimaging, photocatalysis, drug delivery, biosensing, and antibacterial activity. In contrast, this review offers a comprehensive overview of various green sources utilized to produce CDs and methodologies, along with their merits and demerits, with a notable emphasis on physiochemical properties. Additionally, the paper provides insight into the bibliometric analysis and recent advancements of CDs in sensing, photocatalysis, and antibacterial activity. In this field, extensive research is underway, and a total of 7,438 articles have been identified. Among these, 4242 articles are dedicated to sensing applications, while 1518 and 1678 focus on adsorption and degradation. Carbon dots demonstrate exceptional sensing capabilities within the nanomolar range with a selectivity of up to 95% for pollutants. They exhibit excellent degradation efficiency exceeding 90% within 10-130 min and possess an adsorption capacity from 100 to 800 mg/g. These fascinating qualities render them suitable for diverse applications.
Collapse
Affiliation(s)
- Megha Mankoti
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Sumer Singh Meena
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Anee Mohanty
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India.
| |
Collapse
|
3
|
Seesuea C, Sangtawesin T, Thangsunan P, Wechakorn K. Facile Green Gamma Irradiation of Water Hyacinth Derived-Fluorescent Carbon Dots Functionalized Thiol Moiety for Metal Ion Detection. J Fluoresc 2024; 34:1761-1773. [PMID: 37615896 DOI: 10.1007/s10895-023-03408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Fluorescent sensor-based carbon dots (CDs) have significantly developed for sensing metal ions because of their great physical and optical properties, including tunable fluorescence emission, high fluorescence quantum yield, high sensitivity, non-toxicity, and biocompatibility. In this research, a green synthetic approach via simple gamma irradiation for the carbon dot synthesis from water hyacinth was developed since water hyacinth has been classified as an invasive aquatic plant containing cellulose, hemicellulose, and lignin. The thiol moiety (SH) was further functionalized on the surface functional groups of CDs as the "turn-off" fluorescent sensor for metal ion detection. Fluorescence emission displayed a red shift from 451 to 548 nm when excited between 240 and 500 nm. The quantum yield of CDs-SH was elucidated to be 13%, with strong blue fluorescence emission under ultraviolet irridiation (365 nm), high photostability and no photobleaching. The limit of detection was determined at micromolar levels for Hg2+, Cu2+, and Fe3+. CDs-SH could be a real-time monitoring sensor for Hg2+ and Cu2+ as fluorescence quenching was observed within 2 min. Furthermore, paper test-strip based CDs-SH could be applied to detect these metal ions.
Collapse
Affiliation(s)
- Chuleekron Seesuea
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110, Thailand
| | - Tanagorn Sangtawesin
- Thailand Institute of Nuclear Technology (Public Organization), Nakorn Nayok, 26120, Thailand
| | - Pattanapong Thangsunan
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kanokorn Wechakorn
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110, Thailand.
- Advanced Photochemical and Electrochemical Materials Research Unit, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110, Thailand.
| |
Collapse
|
4
|
Jiang M, Wang Y, Li J, Gao X. Review of carbon dot-hydrogel composite material as a future water-environmental regulator. Int J Biol Macromol 2024; 269:131850. [PMID: 38670201 DOI: 10.1016/j.ijbiomac.2024.131850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/23/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
As water pollution and scarcity pose severe threats to the sustainable progress of human society, it is important to develop a method or materials that can accurately and efficiently detect pollutants and purify aquatic environments or exploit marine resources. The compositing of photoluminescent and hydrophilic carbon dots (CDs) with hydrogels bearing three-dimensional networks to form CD-hydrogel composites to protect aquatic environments is a "win-win" strategy. Herein, the feasibility of the aforementioned method has been demonstrated. This paper reviews the recent progress of CD-hydrogel materials used in aquatic environments. First, the synthesis methods for these composites are discussed, and then, the composites are categorized according to different methods of combining the raw materials. Thereafter, the progress in research on CD-hydrogel materials in the field of water quality detection and purification is reviewed in terms of the application of the mechanisms. Finally, the current challenges and prospects of CD-hydrogel materials are described. These results are expected to provide insights into the development of CD-hydrogel composites for researchers in this field.
Collapse
Affiliation(s)
- Minghao Jiang
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Yong Wang
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jichuan Li
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Xing Gao
- College of Sports and Human Sciences, Post-doctoral Mobile Research Station, Graduate School, Harbin Sport University, Harbin 150008, PR China.
| |
Collapse
|
5
|
Dhanda V, Kumar R, Yadav N, Sangwan S, Duhan A. Ultimate fate, transformation, and toxicological consequences of herbicide pretilachlor to biotic components and associated environment: An overview. J Appl Toxicol 2024; 44:41-65. [PMID: 37350328 DOI: 10.1002/jat.4507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Herbicides are applied for effective weed management in order to increase the crop yield. In recent decades, the overuse of these chemicals has posed adverse effects on different biotic components of the environment. Pretilachlor has been widely used during last few decades for weed management in paddy crop. Its excessive use may prove fatal for environment, various organisms, and nontarget plants. Thus, it is pertinent to know the extent to which herbicide residues remain in environment. The potential mobility and the release rate of herbicide in the soil are important factors governing ecotoxicological impact and degradation rate. Therefore, several techniques are being investigated for its effective removal from the contaminated sites. Furthermore, efforts have also been made to study the degradation of pretilachlor by various physicochemical processes, resulting into the formation of different types of metabolites. This review summarizes the available information on environmental fate, various degradation processes, microbial biotransformation, metabolites formed, ecotoxicological effects, techniques for detection in environmental samples, effect of safener, and various control release formulations for sustained release of pretilachlor in applied fields. The information so obtained will be very advantageous in deciding the future policies for safe and judicious use of the herbicide by maintaining health and environmental sustainability.
Collapse
Affiliation(s)
- Vidhi Dhanda
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Ravi Kumar
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Neelam Yadav
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Sarita Sangwan
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Anil Duhan
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| |
Collapse
|
6
|
Rani, Ali F, Muhammad M, AlOthman ZA. Development of Fluorescent Co (II)-Integrated Carbon Dots and Their Application as a Off-On Mesotrione Detection Sensor. ACS OMEGA 2023; 8:49115-49128. [PMID: 38173863 PMCID: PMC10764113 DOI: 10.1021/acsomega.3c07171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
A very simple mesotrione-sensing medium with enhanced sensitivity detection limits has been proposed. A renovated hydrothermal method was adopted for synthesizing fluorescent carbon dots from ethylenediamine and glucose using a Teflon-lined simple autoclave in a GC oven. The resultant carbon dots were characterized via TEM, FTIR, UV-vis, particle size distribution, and EDX and evaluated in a fluorimeter as the sensing medium for mesotrione detection. The binding approach of the Co (II)-integrated glucose-bound carbon dots toward mesotrione is selective, making them an effective sensor for the real sample applications, where majority of the coexisting substances showed insignificant interference effect. Formation of the metastable state due to the molecular interaction between carbon dots and Co (II) resulted in fluorescence quenching at 456 nm. Enhancement in the fluorescence intensity occurred when mesotrione was added in the concentration range of 0.2-5.0 μg mL-1, with a limit of detection, limit of quantification, standard deviation, and relative standard deviation of 0.054, 0.164, 0.00082 μg mL-1, and 0.682%, respectively. Mesotrione determination was demonstrated in soil, water, and tomato samples with recoveries in the range of 95.38-104.7%. The selectivity of the sensor was found to be good enough when checked for the complex tomato sample spiked with different pesticides of the triketone family having structural similarities to mesotrione.
Collapse
Affiliation(s)
- Rani
- Department
of Chemistry, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
| | - Faiz Ali
- Department
of Chemistry, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
| | - Mian Muhammad
- Department
of Chemistry, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
| | - Zeid A. AlOthman
- Chemistry
Department, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Sahana S, Gautam A, Singh R, Chandel S. A recent update on development, synthesis methods, properties and application of natural products derived carbon dots. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:51. [PMID: 37953431 PMCID: PMC10641086 DOI: 10.1007/s13659-023-00415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
Natural resources are practically infinitely abundant in nature, which stimulates scientists to create new materials with inventive uses and minimal environmental impact. Due to the various benefits of natural carbon dots (NCDs) from them has received a lot of attention recently. Natural products-derived carbon dots have recently emerged as a highly promising class of nanomaterials, showcasing exceptional properties and eco-friendly nature, which make them appealing for diverse applications in various fields such as biomedical, environmental sensing and monitoring, energy storage and conversion, optoelectronics and photonics, agriculture, quantum computing, nanomedicine and cancer therapy. Characterization techniques such as Photoinduced electron transfer, Aggregation-Induced-Emission (AIE), Absorbance, Fluorescence in UV-Vis and NIR Regions play crucial roles in understanding the structural and optical properties of Carbon dots (CDs). The exceptional photoluminescence properties exhibited by CDs derived from natural products have paved the way for applications in tissue engineering, cancer treatment, bioimaging, sensing, drug delivery, photocatalysis, and promising remarkable advancements in these fields. In this review, we summarized the various synthesis methods, physical and optical properties, applications, challenges, future prospects of natural products-derived carbon dots etc. In this expanding sector, the difficulties and prospects for NCD-based materials research will also be explored.
Collapse
Affiliation(s)
- Soumitra Sahana
- Department of Pharmacognosy, ISF College of Pharmacy, Ghal-Kalan, Moga, Punjab, 142001, India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
- International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Ghal-Kalan, Moga, Punjab, 142001, India.
| | - Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Ghal-Kalan, Moga, Punjab, 142001, India.
| |
Collapse
|
8
|
Ali F, Muhammad M, Ara B, Shah AA. Synthesis of fructose bound Fe(iii) integrated carbon dots as a robust turn-off detection sensor for chlortoluron. RSC Adv 2023; 13:17028-17037. [PMID: 37293471 PMCID: PMC10245089 DOI: 10.1039/d3ra01430d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
A simple, sensitive, and robust fluorescent sensor for chlortoluron detection has been developed. Fluorescent carbon dots were synthesized using ethylene diamine and fructose via a hydrothermal protocol. The molecular interaction between fructose carbon dots and Fe(iii) resulted in a fluorescent metastable state exhibiting remarkable fluorescence quenching at λem of 454 nm and interestingly, further quenching occurred upon the addition of chlortoluron. The quenching in the fluorescence intensity of CDF-Fe(iii) towards chlortoluron occurred in the concentration range of 0.2-5.0 μg mL-1 where the limit of detection was found to be 0.0467 μg mL-1, the limit of quantification was 0.14 μg mL-1, and the relative standard deviation was 0.568%. The selective and specific recognitive nature of the Fe(iii) integrated fructose bound carbon dots towards the chlortoluron make it a suitable sensor for real sample applications. The proposed strategy was applied for the determination of chlortoluron in soil, water, and wheat samples with recoveries in the range of 95% to 104.3%.
Collapse
Affiliation(s)
- Faiz Ali
- Department of Chemistry, University of Malakand Khyber Pakhtunkhwa Pakistan
| | - Mian Muhammad
- Department of Chemistry, University of Malakand Khyber Pakhtunkhwa Pakistan
| | - Behisht Ara
- Institute of Chemical Sciences, University of Peshawar Pakistan
| | - Aftab Ali Shah
- Department of Chemistry, University of Malakand Khyber Pakhtunkhwa Pakistan
- Department of Biotechnology, University of Malakand Khyber Pakhtunkhwa Pakistan
| |
Collapse
|
9
|
Carbon nanosheets coated on zirconium oxide nanoplate nanocomposite for Zn2+ ion adsorption and reuse of spent adsorbent for fingerprint detection. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
|
10
|
Hebbar A, Selvaraj R, Vinayagam R, Varadavenkatesan T, Kumar PS, Duc PA, Rangasamy G. A critical review on the environmental applications of carbon dots. CHEMOSPHERE 2023; 313:137308. [PMID: 36410502 DOI: 10.1016/j.chemosphere.2022.137308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The discovery of zero-dimensional carbonaceous nanostructures called carbon dots (CDs) and their unique properties associated with fluorescence, quantum confinement and size effects have intrigued researchers. There has been a substantial increase in the amount of research conducted on the lines of synthesis, characterization, modification, and enhancement of properties by doping or design of composite materials, and a diversification of their applications in sensing, catalysis, optoelectronics, photovoltaics, and imaging, among many others. CDs fulfill the need for inexpensive, simple, and continuous environmental monitoring, detection, and remediation of various contaminants such as metals, dyes, pesticides, antibiotics, and other chemicals. The principles of green chemistry have also prompted researchers to rethink novel modes of nanoparticle synthesis by incorporating naturally available carbon precursors or developing micro reactor-based techniques. Photocatalysis using CDs has introduced the possibility of utilizing light to accelerate redox chemical transformations. This comprehensive review aims to provide the reader with a broader perspective of carbon dots by encapsulating the concepts of synthesis, characterization, applications in contaminant detection and photocatalysis, demerits and research gaps, and potential areas of improvement.
Collapse
Affiliation(s)
- Akshatha Hebbar
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ponnusamy Senthil Kumar
- Green Technology and Sustainable Development in Construction Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Pham Anh Duc
- Faculty of Safety Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
11
|
Rasheed T. Carbon dots as robust class of sustainable and environment friendlier nano/optical sensors for pesticide recognition from wastewater. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
12
|
Liu C, Liao J, Zheng Y, Chen Y, Liu H, Shi X. Random forest algorithm-enhanced dual-emission molecularly imprinted fluorescence sensing method for rapid detection of pretilachlor in fish and water samples. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129591. [PMID: 35853336 DOI: 10.1016/j.jhazmat.2022.129591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/25/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
A sensitive and efficient fluorescence sensor based on dual-emission molecularly imprinted polymers (Dual-em-MIPs) was successfully developed using the random forest (RF) machine-learning algorithm for the rapid detection of pretilachlor. SiO2 coatings on red-emitting CdSe/ZnS quantum dots (r-SiO2@QDs) as intermediate light-emitting components are non-selective for pretilachlor, whereas molecularly imprinted layers coated with blue-emitting nitrogen-doped graphene quantum dots (N-GQDS) are selective. Fluorescence images of the Dual-em-MIPs were acquired. The red (R), green (G), and blue (B) color values of the image were analyzed using an RF algorithm, and the classifier was trained using 103 fluorescent images for automatic analyses. Under optimized conditions, an excellent linear relationship between the sensor and pretilachlor was obtained in the range of 0.001-5.0 mg/L (R2, 0.9958). Additionally, the satisfactory recoveries of Dual-em-MIPs ranged between 92.2 % and 107.6 % for the real samples, with a relative standard deviation (RSD) under 6.5 %. The satisfactory recoveries of the RF model based on the fluorescence sensor were 84.2-108.2 % with the RSD under 6.4 %. Overall, the proposed fluorescence sensor based on Dual-em-MIPs and machine learning methods was successfully used to determine pretilachlor in the environment and in aquatic products.
Collapse
Affiliation(s)
- Chenxi Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jingxin Liao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yong Zheng
- School of Mathematics, South China University of Technology, Guangzhou, China
| | - Ying Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China; Department of Food Science and Technology, National University of Singapore, Science Drive 2, 117542, Singapore
| | - Hongsheng Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
13
|
Tan Q, Li X, Sun P, Zhao J, Yang Q, Wang L, Deng Y, Shen G. Fluorescent carbon dots from water hyacinth as detection sensors for ferric ions: the preparation and optimisation using response surface methodology. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3573-3582. [PMID: 36043469 DOI: 10.1039/d2ay01182d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The search for alternatives to chemicals from natural products as precursors for the preparation of highly doped carbon dots (CDs) remains challenging. Novel CDs (W-CDs) were synthesised using a one-step pyrolysis method with wastewater hyacinth as the sole carbon and nitrogen source at a mild temperature without using any surface-activating reagents or salt. The obtained W-CDs emitted strong blue fluorescence under 365 nm UV light excitation, with a quantum yield of 15.12%. The Box-Behnken design of the response surface methodology was applied to optimize the W-CD preparation conditions, including the reaction temperature, reaction time and weight of water hyacinths. The temperature was found to be the most important factor affecting the fluorescence intensity of the W-CDs. Additionally, the fluorescence sensor based on W-CDs demonstrated excellent selectivity towards ferric (Fe) ions, with a limit of detection of 2.35 μM. The fluorescent sensor was successfully applied for detecting Fe3+ in real water samples with a recovery of 97.80-103.10%. Hence, the pyrolysis of water hyacinth is proven to be a rapid, effective and green approach for CDs and provides a novel method for recycling water hyacinth.
Collapse
Affiliation(s)
- Qiren Tan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoying Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Peng Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- YunNan (Dali) Research Institute of Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Jie Zhao
- Shanghai Pudong Agriculture Technology Extension Centre, Shanghai 201201, China
| | - Qinyan Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lumei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- YunNan (Dali) Research Institute of Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Yun Deng
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- YunNan (Dali) Research Institute of Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Guoqing Shen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- YunNan (Dali) Research Institute of Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| |
Collapse
|
14
|
Omar NAS, Fen YW, Irmawati R, Hashim HS, Ramdzan NSM, Fauzi NIM. A Review on Carbon Dots: Synthesis, Characterization and Its Application in Optical Sensor for Environmental Monitoring. NANOMATERIALS 2022; 12:nano12142365. [PMID: 35889589 PMCID: PMC9321155 DOI: 10.3390/nano12142365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/17/2023]
Abstract
The development of carbon dots (CDs), either using green or chemical precursors, has inevitably led to their wide range application, from bioimaging to optoelectronic devices. The reported precursors and properties of these CDs have opened new opportunities for the future development of high-quality CDs and applications. Green precursors were classified into fruits, vegetables, flowers, leaves, seeds, stem, crop residues, fungi/bacteria species, and waste products, while the chemical precursors were classified into acid reagents and non-acid reagents. This paper quickly reviews ten years of the synthesis of CDs using green and chemical precursors. The application of CDs as sensing materials in optical sensor techniques for environmental monitoring, including the detection of heavy metal ions, phenol, pesticides, and nitroaromatic explosives, was also discussed in this review. This profound review will offer knowledge for the upcoming community of researchers interested in synthesizing high-quality CDs for various applications.
Collapse
Affiliation(s)
- Nur Alia Sheh Omar
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Yap Wing Fen
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Correspondence:
| | - Ramli Irmawati
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
| | - Hazwani Suhaila Hashim
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
| | - Nur Syahira Md Ramdzan
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
| | - Nurul Illya Muhamad Fauzi
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
15
|
Biomass-derived carbon dots as a sensitive and selective dual detection platform for fluoroquinolones and tetracyclines. Anal Bioanal Chem 2022; 414:4935-4951. [PMID: 35579676 DOI: 10.1007/s00216-022-04119-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 01/24/2023]
Abstract
A novel carbon dot (CD) was synthesized through the facile and simple hydrothermal method from Curcuma amada, as the precursor for the first time. These CDs with an average diameter of 4.6 nm display blue fluorescence, with excitation/emission maxima at 360/445 nm and a quantum yield of 14.1%. It exhibited high stability under different conditions and was characterized using various techniques. These CDs can be employed as a dual-sensing platform to detect tetracyclines and fluoroquinolones, two antibiotic classes. Even though antibiotics are regarded as an inevitable commodity, overuse and improper management of discarded antibiotics pose a severe threat to the environment. Herein, we developed a dual-sensing, biocompatible sensor with high selectivity and sensitivity to detect antibiotics. CD was employed as a fluorescence probe and detected tetracycline and fluoroquinolone antibiotic through inner filter effect-based fluorescence quenching and hydrogen bonding-based enhancement process, respectively. The linear range was 0-16 μM and the detection limit was 33 nM for tetracycline and 2 nM for fluoroquinolone antibiotic. As an electrochemical probe, CD selectively detected tetracycline with a lower detection limit of 0.5 nM over a linear range of 0-16 μM. Using both methods, a real sample analysis of the developed sensor exhibited accurate reliability and precision.
Collapse
|
16
|
Zhang X, Liao X, Hou Y, Jia B, Fu L, Jia M, Zhou L, Lu J, Kong W. Recent advances in synthesis and modification of carbon dots for optical sensing of pesticides. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126881. [PMID: 34449329 DOI: 10.1016/j.jhazmat.2021.126881] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Serious threat from pesticide residues to the ecosystem and human health has become a global concern. Developing reliable methods for monitoring pesticides is a world-wide research hotspot. Carbon dots (CDs) with excellent photostability, low toxicity, and good biocompatibility have been regarded as the potential substitutes in fabricating various optical sensors for pesticide detection. Based on the relevant high-quality publications, this paper first summarizes the current state-of-the-art of the synthetic and modification approaches of CDs. Then, a comprehensive overview is given on the recent advances of CDs-based optical sensors for pesticides over the past five years, with a particular focus on photoluminescent, electrochemiluminescent and colorimetric sensors regarding the sensing mechanisms and design principles by integrating with various recognition elements including antibodies, aptamers, enzymes, molecularly imprinted polymers, and some nanoparticles. Novel functions and extended applications of CDs as signal indicators, catalyst, co-reactants, and electrode surface modifiers, in constructing optical sensors are specially highlighted. Beyond an assessment of the performances of the real-world application of these proposed optical sensors, the existing inadequacies and current challenges, as well as future perspectives for pesticide monitoring are discussed in detail. It is hoped to provide powerful insights for the development of novel CDs-based sensing strategies with their wide application in different fields for pesticide supervision.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yujiao Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Xinjiang Agricultural Vocational Technical College, Changji 831100, China
| | - Boyu Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Lizhu Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mingxuan Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jinghua Lu
- Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
17
|
Yusuf VF, Atulbhai SV, Bhattu S, Malek NI, Kailasa SK. Recent developments on carbon dots-based green analytical methods: New opportunities in fluorescence assay of pesticides, drugs and biomolecules. NEW J CHEM 2022. [DOI: 10.1039/d2nj01401g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent carbon dots (CDs) grabs huge attention in analytical and bioanalytical applications due to their high selectivity towards target analyte, specificity, photostability, and quantum yield. Cost-effective and biocompatible properties of...
Collapse
|
18
|
Wang J, Xia T, Lan Z, Liu G, Hou S, Hou S. Facile synthesis of an aggregation-induced emission (AIE) active imidazoles for sensitive detection of trifluralin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119880. [PMID: 33965889 DOI: 10.1016/j.saa.2021.119880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
A novel imidazoles fluorescent probe (2) was synthesized from vanillin, o-phenylenediamine, and N,N-diphenylcarbamyl chloride. Its structure was characterized by fluorescence spectra, UV-Vis spectra, 1H NMR, 13C NMR, and high-resolution mass spectrometry (HRMS). Moreover, its aggregation-induced emission (AIE) feature was investigated in THF/MeOH solution. Furthermore, the fluorescence quenching experimental results suggest that compound 2 is the potential fluorescent probe of small organic molecules showing high selectivity and sensitivity for nitroaromatic compounds. In addition, the probe could be applied in the determination of trifluralin with fast response and stability. The fluorescence response of the probe exhibited a good linear correlation with the concentration of trifluralin ranging from 10 to 100 μM, and the limit of detection (LOD) was as low as 5.066 μM. Finally, the probe was successfully utilized to determine the amount of trifluralin in real samples, and the recoveries were 91.1% to 111.2%, indicating the applicability and reliability of the probe.
Collapse
Affiliation(s)
- Junjie Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541006, PR China
| | - Tianzi Xia
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541006, PR China
| | - Zhenni Lan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541006, PR China
| | - Guangyan Liu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541006, PR China
| | - Shili Hou
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541006, PR China.
| | - Shifeng Hou
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541006, PR China; National Engineering and Technology Research Center for Colloidal Materials, Shandong University, Jinan, Shandong 250100, PR China.
| |
Collapse
|
19
|
Mansuriya BD, Altintas Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care-An Updated Review (2018-2021). NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2525. [PMID: 34684966 PMCID: PMC8541690 DOI: 10.3390/nano11102525] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Carbon dots (CDs) are usually smaller than 10 nm in size, and are meticulously formulated and recently introduced nanomaterials, among the other types of carbon-based nanomaterials. They have gained significant attention and an incredible interest in the field of nanotechnology and biomedical science, which is merely due to their considerable and exclusive attributes; including their enhanced electron transferability, photobleaching and photo-blinking effects, high photoluminescent quantum yield, fluorescence property, resistance to photo-decomposition, increased electrocatalytic activity, good aqueous solubility, excellent biocompatibility, long-term chemical stability, cost-effectiveness, negligible toxicity, and acquaintance of large effective surface area-to-volume ratio. CDs can be readily functionalized owing to the abundant functional groups on their surfaces, and they also exhibit remarkable sensing features such as specific, selective, and multiplex detectability. In addition, the physico-chemical characteristics of CDs can be easily tunable based on their intended usage or application. In this comprehensive review article, we mainly discuss the classification of CDs, their ideal properties, their general synthesis approaches, and primary characterization techniques. More importantly, we update the readers about the recent trends of CDs in health care applications (viz., their substantial and prominent role in the area of electrochemical and optical biosensing, bioimaging, drug/gene delivery, as well as in photodynamic/photothermal therapy).
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
20
|
Nollmann C, Wimmenauer C, Fasbender S, Mayer S, Caddedu RP, Jäger P, Heinzel T, Haas R. Uptake of carbon nanodots into human AML cells in comparison to primary hematopoietic cells. RSC Adv 2021; 11:26303-26310. [PMID: 35479430 PMCID: PMC9037386 DOI: 10.1039/d1ra05033h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022] Open
Abstract
Carbon nanodots (CNDs) comprise a class of next generation nanomaterials with a wide variety of potential applications. Here, we report on their uptake into primary hematopoietic cells from three normal donors and malignant cells from five patients with de novo acute myeloid leukemia (AML). A significant CND uptake was observed in all cell types of the normal and leukemic cells. Still, the uptake was significantly smaller for the CD34+ and CD33+ myeloid subsets of the malignant cell population as compared to the normal blood-derived CD34+ and CD33+ cells. For the T and B lymphoid cell populations as defined by CD3 and CD19 within the leukemic and normal samples a similar uptake was observed. The CNDs accumulate preferentially in small clusters in the periphery of the nucleus as already shown in previous studies for CD34+ progenitor/stem cells and human breast cancer cells. This particular subcellular localization could be useful for targeting the lysosomal compartment, which plays a pivotal role in the context of autophagy associated survival of AML cells. Our results demonstrate the usability of CNDs beyond their application for in vitro and in vivo fluorescence labeling or drug delivery into normal and malignant cells. Carbon nanodots (CNDs) comprise a class of next generation nanomaterials with a wide variety of potential applications.![]()
Collapse
Affiliation(s)
- Cathrin Nollmann
- Condensed Matter Physics Laboratory, Heinrich-Heine-University 40204 Düsseldorf Germany
| | - Christian Wimmenauer
- Condensed Matter Physics Laboratory, Heinrich-Heine-University 40204 Düsseldorf Germany
| | - Stefan Fasbender
- Condensed Matter Physics Laboratory, Heinrich-Heine-University 40204 Düsseldorf Germany
| | - Saskia Mayer
- Department of Haematology, Oncology and Clinical Immunology, Heinrich-Heine-University 40204 Düsseldorf Germany
| | - Ron-Patrick Caddedu
- Department of Haematology, Oncology and Clinical Immunology, Heinrich-Heine-University 40204 Düsseldorf Germany
| | - Paul Jäger
- Department of Haematology, Oncology and Clinical Immunology, Heinrich-Heine-University 40204 Düsseldorf Germany
| | - Thomas Heinzel
- Condensed Matter Physics Laboratory, Heinrich-Heine-University 40204 Düsseldorf Germany
| | - Rainer Haas
- Department of Haematology, Oncology and Clinical Immunology, Heinrich-Heine-University 40204 Düsseldorf Germany
| |
Collapse
|
21
|
Green Sources Derived Carbon Dots for Multifaceted Applications. J Fluoresc 2021; 31:915-932. [PMID: 33786684 DOI: 10.1007/s10895-021-02721-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
For the past decade, the Carbon dots (CDs) a tiny sized carbon nanomaterial are typically much attentive due to their outstanding properties. Nature is a fortune of exciting starting materials that provides many inexpensive and renewable resources which have received the topmost attention of researchers because of non-hazardous and eco-friendly nature that can be used to prepare green CDs by top-down and bottom-up synthesis including hydrothermal carbonization, microwave synthesis, and pyrolysis due to its simple synthetic process, speedy reactions and clear-cut end steps. Compared to chemically derived CDs, green CDs are varied by their properties such as less toxicity, high water dispersibility, superior biocompatibility, good photostability, bright fluorescence, and ease of modification. These nanomaterials are a promising material for sensor and biological fields, especially in electrochemical sensing of toxic and trace elements in ecosystems, metal sensing, diagnosis of diseases through bio-sensing, and detection of cancerous cells by in-vitro and in-vivo bio-imaging applications. In this review, the various synthetic routes, fluorescent mechanisms, and applications of CDs from discovery to the present are briefly discussed. Herein, the latest developments on the synthesis of CDs derived from green carbon materials and their promising applications in sensing, catalysis and bio-imaging were summarized. Moreover, some challenging problems, as well as upcoming perspectives of this powerful and tremendous material, are also discussed.
Collapse
|
22
|
Yadav K, Das M, Hassan N, Mishra A, Lahiri J, Dubey AK, Yadav SK, Parmar AS. Synthesis and characterization of novel protein nanodots as drug delivery carriers with an enhanced biological efficacy of melatonin in breast cancer cells. RSC Adv 2021; 11:9076-9085. [PMID: 35423422 PMCID: PMC8695413 DOI: 10.1039/d0ra08959a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/11/2021] [Indexed: 12/19/2022] Open
Abstract
Melatonin is a potent antioxidant, chemotherapeutic and chemo preventive agent against breast cancer. However, its short half-life is one of the major limitations in its application as a therapeutic drug. To overcome this issue, the green-emitting protein nanodot (PND) was synthesized by a one-step hydrothermal method for loading melatonin. The synthesized pH-7 and pH-2 PND showed a quantum yield of 22.1% and 14.0%, respectively. The physicochemical characterization of both PNDs showed similar morphological and functional activities. Furthermore, the biological efficacy of melatonin-loaded PND (MPND) was evaluated in a breast cancer cell line (MDA-MB-231) for live-cell imaging and enhanced nano-drug delivery efficacy. Interestingly, the permeability of neutral pH PND in both cell cytoplasm and nucleus nullifies the limitations of real-time live-cell imaging, and ensures nuclear drug delivery efficacy. Neutral pH PND showed better cell viability and cytotoxicity as a fluorescence bioimaging probe compared to acidic PND. The bioavailability and cell cytotoxicity effect of MPND on MDA-MB-231 breast cancer cells were studied through confocal and migration assay. Results showed that MPND causes enhanced bioavailability, better cellular uptake, and inhibition of the migration of breast cancer cells as compared to the drug alone. Besides, the synthesized MPND showed no sign of fluorescence quenching even at a high concentration of melatonin, making it an ideal nanocarrier for bioimaging and drug delivery.
Collapse
Affiliation(s)
- Kanchan Yadav
- Department of Physics, Indian Institute of Technology (BHU) Varanasi-221005 India
| | - Megha Das
- Department of Zoology, Institute of Science, BHU Varanasi India
| | - Nurul Hassan
- Department of Physics, University of Hyderabad Hyderabad India
| | - Archana Mishra
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre Mumbai India
| | - Jayeeta Lahiri
- Department of Physics, University of Hyderabad Hyderabad India
- Department of Physics, Banaras Hindu University Varanasi India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (BHU) Varanasi India
| | | | - Avanish Singh Parmar
- Department of Physics, Indian Institute of Technology (BHU) Varanasi-221005 India
| |
Collapse
|
23
|
Simões EF, Almeida AS, Duarte AC, Duarte RM. Assessing reactive oxygen and nitrogen species in atmospheric and aquatic environments: Analytical challenges and opportunities. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Su D, Li H, Yan X, Lin Y, Lu G. Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116126] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Caglayan MO, Mindivan F, Şahin S. Sensor and Bioimaging Studies Based on Carbon Quantum Dots: The Green Chemistry Approach. Crit Rev Anal Chem 2020; 52:814-847. [PMID: 33054365 DOI: 10.1080/10408347.2020.1828029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Since carbon quantum dots have high photoluminescent efficiency, it has been a desired material in sensor and bioimaging applications. In recent years, the green chemistry approach has been preferred and the production of quantum dots has been reported in many studies using different precursors from natural, abundant, or waste sources. Hydrothermal, chemical oxidation, microwave supported, ultrasonic, solvothermal, pyrolysis, laser etching, solid-state, plasma, and electrochemical methods have been reported in the literature. In this review article, green chemistry strategies for carbon quantum dot synthesis is summarized and compared with conventional methods using methodologic and statistical data. Furthermore, a detailed discussion on sensor and bioimaging applications of carbon quantum dots produced with green synthesis approaches are presented with a special focus on the last decade.
Collapse
Affiliation(s)
- Mustafa Oguzhan Caglayan
- Faculty of Engineering, Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Ferda Mindivan
- Faculty of Engineering, Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Samet Şahin
- Faculty of Engineering, Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
26
|
Ganesan M, Nagaraaj P. Quantum dots as nanosensors for detection of toxics: a literature review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4254-4275. [PMID: 32940270 DOI: 10.1039/d0ay01293a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Great advances have been made in sensor-based methods for chemical analysis owing to their high sensitivity, selectivity, less testing time, and minimal usage of chemical reagents. Quantum Dots (QDs) having excellent optical properties have been thoroughly explored for variety of scientific applications wherein light plays an important role. In recent years, there have been an increasing number of publications on the applications of QDs as photoluminescent nanosensors for the detection of chemicals and biomolecules. However, there has been hardly any publication describing the use of QDs in the detection of various toxic chemicals at one place. Hence, a literature survey has been made on the applications of QDs as chemosensors for the detection of gaseous, anionic, phenolic, metallic, drug-overdose, and pesticide poison so as to open a new perspective towards the role of sensors in analytical toxicology. In this review, the QD-based analysis of biospecimens for poison detection in clinical and forensic toxicology laboratories is highlighted.
Collapse
Affiliation(s)
- Muthupandian Ganesan
- Toxicology Division, Regional Forensic Science Laboratory, Forensic Sciences Department, Forensic House, Chennai-4, India.
| | | |
Collapse
|
27
|
Shukla D, Das M, Kasade D, Pandey M, Dubey AK, Yadav SK, Parmar AS. Sandalwood-derived carbon quantum dots as bioimaging tools to investigate the toxicological effects of malachite green in model organisms. CHEMOSPHERE 2020; 248:125998. [PMID: 32006833 DOI: 10.1016/j.chemosphere.2020.125998] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 05/03/2023]
Abstract
Malachite green is an N-methylated diaminophenylmethane dye that has generated much concern over its suggestive carcinogenic nature. After its excessive use in aquaculture industry as an effective ectoparasitide, much debate was raised over its toxicological effects leading to scientific studies conducted on animal models. Even after several bans, malachite green is still easily available in many parts of the world and unscrupulously even used to give green vegetables a fresher look. This study aims to address this concern by systematically studying the toxicological effects of malachite green through bioimaging in plant and animal cell and tissue. Sandalwood-derived carbon quantum dots have been used as a bioimaging tool since they are non-cytotoxic and show excellent fluorescence properties. Onion tissues demonstrate the translocation of the dye inside cells having high affinity for the nuclei and cell walls. Toxicological effects on the growth of Vigna radiata (mung beans) have been studied methodically. Bioimaging of the transverse cross-section of the dye-treated plant root shows a significant difference from the control. In animal cells, dose-dependent decrease in cell viability of MG-63 cells was observed with MG. CQD showed good fluorescence in both cytoplasm and nucleus of MG63 cells. In addition, CQDs were employed as a great tool for bioimaging of the histopathologically adverse effects of MG in Golden hamster animal model. This study showed CQDs could be used as an alternative non-site specific fluorescent probe for cell and tissue imaging for better visualization of cell and tissue architectural changes.
Collapse
Affiliation(s)
- Devyani Shukla
- Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Megha Das
- Department of Zoology, Institute of Science, Banaras Hindu University Varanasi Uttar Pradesh 221005, India
| | - Dipanshu Kasade
- Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Maneesha Pandey
- Department of Ceramic Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Sanjeev Kumar Yadav
- Department of Zoology, Institute of Science, Banaras Hindu University Varanasi Uttar Pradesh 221005, India
| | - Avanish Singh Parmar
- Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|