1
|
Thakor PM, Patel JD, Patel RJ, Chaki SH, Khimani AJ, Vaidya YH, Chauhan AP, Dholakia AB, Patel VC, Patel AJ, Bhavsar NH, Patel HV. Exploring New Schiff Bases: Synthesis, Characterization, and Multifaceted Analysis for Biomedical Applications. ACS OMEGA 2024; 9:35431-35448. [PMID: 39184520 PMCID: PMC11339819 DOI: 10.1021/acsomega.4c02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 08/27/2024]
Abstract
The current work aims to generate novel Schiff bases by reacting substituted aldehydes with amine derivatives catalyzed by a natural acid. The developed compounds underwent diverse physicochemical analyses including liquid chromatography-mass spectrometry, Fourier transform infrared spectroscopy, scanning electron microscopy, 1H- and 13C-nuclear magnetic resonance, and X-ray diffraction. Furthermore, differential thermogravimetric, thermogravimetric, and differential thermal analysis techniques were employed in a nitrogen-free environment to determine kinetic parameters. These data were then used in model-free isoconversional methods (e.g., Friedman, Kissinger-Akahira-Sunose, and Flynn-Wall-Ozawa). The Schiff bases were evaluated for their in vitro and in silico α-amylase inhibitory activity. Schiff base-2 displayed the highest inhibition compared with the reference drug acarbose. In comprehensive MTT assay cytotoxicity investigations, both Schiff bases showed strong anticancer capabilities against the human lung cancer cell line (A549). Moreover, this study demonstrated effectiveness of synthetic compounds in screening Caenorhabditis elegans for anti-Alzheimer's and stress resistance properties. The simplicity of its biology allowed precise evaluation of the effect of compounds on neuronal function and stress response. This research enhances drug discovery efforts for Alzheimer's and stress-related disorders, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Priteshkumar M Thakor
- Department of Chemistry, Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat 388001, India
| | - Jatin D Patel
- Department of Chemistry, Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat 388001, India
| | - Rajesh J Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat 388001, India
| | - Sunil H Chaki
- Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat 388001, India
| | - Ankurkumar J Khimani
- Department of Physics, Shri Alpesh N. Patel Cnce and Research, Anand, Gujarat 388001, India
| | - Yati H Vaidya
- Department of Microbiology, Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat 388001, India
| | - Anita P Chauhan
- Department of Biotechnology, Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat 388001, India
| | - Amit B Dholakia
- School of Science, Birsa Munda Tribal University, Rajpipla, Gujarat 393145, India
| | - Vishant C Patel
- Department of Chemistry, Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat 388001, India
| | - Ankitkumar J Patel
- Department of Chemistry, Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat 388001, India
| | - Nirav H Bhavsar
- Department of Microbiology, Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat 388001, India
| | - Hiteshkumar V Patel
- Department of Biochemistry, Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat 388001, India
| |
Collapse
|
2
|
Aggarwal R, Jain N, Dubey GP. Design, synthesis and characterization of tetra substituted 2,3-dihydrothiazole derivatives as DNA and BSA targeting agents: advantages of the visible-light-induced multicomponent approach. RSC Adv 2024; 14:23152-23176. [PMID: 39040709 PMCID: PMC11262567 DOI: 10.1039/d4ra02331e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/22/2024] [Indexed: 07/24/2024] Open
Abstract
This report describes the visible-light-induced one-pot multicomponent regioselective synthesis of a series of 5-aroyl-3-((arylidene)amino)-2-((arylidene)hydrazono)-4-methyl-2,3-dihydrothiazoles as DNA and BSA targeting agents. The multicomponent condensation of thiocarbohydrazide and aldehydes with α-bromo-1,3-diketones, generated in situ by the bromination of unsymmetrical 1,3-diketones with NBS using white LED light as an environmental friendly source in the presence of EtOAc solvent furnished the titled 2,3-dihydrothiazole derivatives in excellent yields. The exact regioisomeric structure was identified unambiguously by employing multinuclear 2D-NMR spectroscopy [1H-13C] HMBC; [1H-13C] HMQC and [1H-15N] HMBC. Furthermore, the binding characteristics of the synthesized 2,3-dihydrothiazole derivatives were assessed with double-stranded calf-thymus DNA duplex (ct-DNA) and bovine serum albumin (BSA). Initial screening of all the synthesized 2,3-dihydrothiazole derivatives using various in silico techniques including molecular reactivity analysis, Lipinski rule and molecular docking, concluded 5-(4'-chlorobenzoyl)-3-((4''-methoxybenzylidene)amino)-2-(4'''-methoxybenzylidene)hydrazono)-4-methyl-2,3-dihydrothiazole derivative 6a as the most suitable compound for studying binding interaction with DNA and BSA. Additionally, to illustrate the ex vivo binding mode of 6a with DNA and BSA, several spectroscopic techniques viz. UV-visible, circular dichroism (CD), steady-state fluorescence and competitive displacement assays were carried out.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University Kurukshetra 136119 Haryana India
- CSIR-National Institute of Science Communication and Policy Research New Delhi 110012 India +91-9896740740
| | - Naman Jain
- Department of Chemistry, Kurukshetra University Kurukshetra 136119 Haryana India
| | - Gyan Prakash Dubey
- Department of Chemistry, Kurukshetra University Kurukshetra 136119 Haryana India
| |
Collapse
|
3
|
Geetha Priya C, Venkatraman BR, Arockiaraj I, Sowrirajan S, Elangovan N, Islam MS, Mahalingam SM. Antimicrobial activity prediction, inter- and intramolecular charge transfer investigation, reactivity analysis and molecular docking studies of adenine derivatives. J Biomol Struct Dyn 2023:1-14. [PMID: 37978905 DOI: 10.1080/07391102.2023.2281636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
The utilization of the density functional theory (DFT) methodology has developed as a highly efficient method for investigating molecular structure and vibrational spectra, and it is increasingly being employed in various applications relating to biological systems. This study focuses on conducting investigations, both experimental and computed, to analyze the molecular structure, electronic properties and features of (E)-4-(((9H-purin-6-yl)imino)methyl)-2-methoxyphenol (ANVA). The expression ANVA should be rewritten as follows: the compound is a derivative of adenine (primary amine), specifically a vanillin (aldehyde). The present study reports the synthesis, characterization, DFT, docking and antimicrobial activity of ANVA. The optimization of the molecular structure was conducted, and the determination of its structural features was performed using DFT with the B3LYP/cc-pVDZ method. The vibrational assignments were determined in detail by analyzing the potential energy distribution. A strong correlation was observed between the spectra that were observed and the spectra that were calculated. The calculation of intramolecular charge transfer was performed using natural bond orbital analysis. In addition, several computational methods were employed, including highest occupied molecular orbital-least unoccupied molecular orbital analysis, molecular electrostatic potential calculations, non-linear optical, reduced density gradient, localization orbital locator and electron localization function analysis. This paper examines the present use of adenine derivatives in combatting bacterial and fungal infections, as well as the inclusion of spectral and quantum chemical calculations in the discussion.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- C Geetha Priya
- Department of Chemistry, Thanthai Periyar Government Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - B R Venkatraman
- Department of Chemistry, Thanthai Periyar Government Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - I Arockiaraj
- Department of Chemistry, St. Joseph's College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - S Sowrirajan
- Research Centre for Computational and Theoretical Chemistry, Tiruchirappalli, Tamil Nadu, India
| | - N Elangovan
- Research Centre for Computational and Theoretical Chemistry, Tiruchirappalli, Tamil Nadu, India
| | | | | |
Collapse
|
4
|
Mansi, Khanna P, Gupta D, Yadav S, Khanna L. Hydrotrope assisted green synthesis of dicoumarols and in silico and in vitro antibacterial, antioxidant and xanthine oxidase inhibition studies. J Biomol Struct Dyn 2023; 41:9651-9665. [PMID: 36373290 DOI: 10.1080/07391102.2022.2145368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Aqueous hydrotrope has been employed for the first time to synthesize heteroaryl dicoumarols by condensation of 4-hydroxycoumarin and different heterocyclic aldehydes. This method is highly efficient and green, and the same aqueous hydrotropic solution can be used up to five times without any considerable loss of yield in the product. The synthesized compounds showed good antibacterial potential against Gram-positive (Staphylococcus aureus/NTCC 0997 and B. oceanisediminis) and Gram-negative (Escherichia coli/D0157:H7 and E. coli rosetta) bacterial strains using the Resazurin microtiter plate visual method. The MIC value of 312 µg/ml for compounds 3b, 3k and 3l for S. aureus while 39 µg/ml for compounds 3a, 3b and 3k for E. coli and 625 µg/ml for 3a and 3b for B. oceanisediminis was observed. The compounds were screened via computational methods like molecular docking studies and molecular dynamic simulations with PDB Id's 2W9S and 2EX6. Antioxidant activity was assessed using DPPH and H2O2 assays. Five compounds with the best binding score in molecular docking with XO (PDB ID: 1FIQ) have been tested in an in-vitro study using an enzyme inhibition assay. Novel compound 3b gave the IC50 value of 0.28 µg/ml, comparable to the standard drug Allopurinol.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mansi
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Pankaj Khanna
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
| | - Deepshikha Gupta
- Amity Institute of Applied Sciences, Amity University, Noida, India
| | - Shilpa Yadav
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Leena Khanna
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| |
Collapse
|
5
|
Thakor P, Patel RJ, Giri RK, Chaki SH, Khimani AJ, Vaidya YH, Thakor P, Thakkar AB, Patel JD. Synthesis, Spectral Characterization, Thermal Investigation, Computational Studies, Molecular Docking, and In Vitro Biological Activities of a New Schiff Base Derived from 2-Chloro Benzaldehyde and 3,3'-Dimethyl-[1,1'-biphenyl]-4,4'-diamine. ACS OMEGA 2023; 8:33069-33082. [PMID: 37720740 PMCID: PMC10500648 DOI: 10.1021/acsomega.3c05254] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023]
Abstract
The current research involves the synthesis of a new Schiff base through the reaction between 2-chlorobenzaldehyde and 3,3'-dimethyl-[1,1'-biphenyl]-4,4'-diamine by using a natural acid catalyst and a synthesized compound physicochemically characterized by X-ray diffraction, Fourier transform infrared spectroscopy, 1H- and 13C-nuclear magnetic resonance, and liquid chromatography-mass spectrometry. Thermal studies were conducted using thermogravimetric, differential thermal analysis, and differential thermogravimetric curves. These curves were obtained in an inert nitrogen environment from ambient temperature to 1263 K using heating rates of 10, 15, and 20 K·min-1. Using thermocurve data, model-free isoconversional techniques such as Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa, and Friedman are used to determine kinetic parameters. These parameters include activation energy, phonon frequency factor, activation enthalpy, activation entropy, and Gibb's free energy change. All of the results have been thoroughly investigated. The molecule's anti-inflammatory and antidiabetic properties were also examined. To learn more about the potential of the Schiff base and how successfully it can suppress the amylase enzyme, a molecular docking experiment was also conducted. For in silico research, the Swiss Absorption, Distribution, Metabolism, Excretion, and Toxicity algorithms were used to calculate the theoretical pharmacokinetic properties, oral bioavailability, toxic effects, and biological activities of the synthesized molecule. Moreover, the cytotoxicity tests against a human lung cancer cell line (A549) using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay demonstrated that the synthesized Schiff base exhibited significant anticancer properties.
Collapse
Affiliation(s)
- Priteshkumar
M. Thakor
- Department
of Chemistry, Shri Alpesh N. Patel Post
Graduate Institute of Science and Research, Anand 388001, Gujarat, India
| | - Rajesh J. Patel
- Department
of Chemistry, Shri Alpesh N. Patel Post
Graduate Institute of Science and Research, Anand 388001, Gujarat, India
| | - Ranjan Kr. Giri
- P.
G. Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India
| | - Sunil H. Chaki
- P.
G. Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India
| | - Ankurkumar J. Khimani
- Department
of Physics, Shri Alpesh N. Patel Post Graduate
Institute of Science and Research, Anand 388001, Gujarat, India
| | - Yati H. Vaidya
- Department
of Microbiology, Shri Alpesh N. Patel Post
Graduate Institute of Science and Research, Anand 388001, Gujarat, India
| | - Parth Thakor
- B.
D. Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT campus, Changa 388421, Gujarat, India
| | - Anjali B. Thakkar
- P. G. Department
of Biosciences and P. G. Department of Applied and Interdisciplinary
Sciences, Sardar Patel University, Anand 388120, Gujarat, India
| | - Jatin D. Patel
- Department
of Chemistry, Shri Alpesh N. Patel Post
Graduate Institute of Science and Research, Anand 388001, Gujarat, India
| |
Collapse
|
6
|
Venugopal S, Kaur B, Verma A, Wadhwa P, Magan M, Hudda S, Kakoty V. Recent advances of benzimidazole as anticancer agents. Chem Biol Drug Des 2023; 102:357-376. [PMID: 37009821 DOI: 10.1111/cbdd.14236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/20/2023] [Accepted: 03/14/2023] [Indexed: 04/04/2023]
Abstract
Cancer is the second leading cause of death globally, with 9.6 million deaths yearly. As a life-threatening disease, it necessitates the emergence of new therapies. Resistance to current chemotherapies drives scientists to develop new medications that will eventually be accessible. Because heterocycles are so common in biological substances, compounds play a big part in the variety of medications that have been developed. The "Master Key" is the benzimidazole nucleus, which consists of a six-membered benzene ring fused with a five-membered imidazole/imidazoline ring, which is an azapyrrole. One of the five-membered aromatic nitrogen heterocycles identified in American therapies that have been approved by the Food and Drug Administration (FDA). Our results show that benzimidazole's broad therapeutic spectrum is due to its structural isosteres with purine, which improves hydrogen bonding, electrostatic interactions with topoisomerase complexes, intercalation with DNA, and other functions. It also enhances protein and nucleic acid inhibition, tubulin microtubule degeneration, apoptosis, DNA fragmentation, and other functions. Additionally, readers for designing the more recent benzimidazole analogues as prospective cancer treatments.
Collapse
Affiliation(s)
- Sneha Venugopal
- Department of Pharmaceutical Sciences, School of Pharmacy, Lovely Professional University, Punjab, India
| | - Balwinder Kaur
- Department of Pharmaceutical Sciences, School of Pharmacy, Lovely Professional University, Punjab, India
| | - Anil Verma
- Department of Pharmaceutical Sciences, School of Pharmacy, Lovely Professional University, Punjab, India
| | - Pankaj Wadhwa
- Department of Pharmaceutical Sciences, School of Pharmacy, Lovely Professional University, Punjab, India
| | - Muskan Magan
- Department of Pharmaceutical Sciences, School of Pharmacy, Lovely Professional University, Punjab, India
| | - Sharwan Hudda
- Department of Pharmaceutical Sciences, School of Pharmacy, Lovely Professional University, Punjab, India
| | - Violina Kakoty
- Department of Pharmaceutical Sciences, School of Pharmacy, Lovely Professional University, Punjab, India
| |
Collapse
|
7
|
Design, docking, characterization and DFT screening of some novel derivatives of benzimidazole linked piperidine for antibacterial and antioxidant properties. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
8
|
Rep V, Štulić R, Koštrun S, Kuridža B, Crnolatac I, Radić Stojković M, Paljetak HČ, Perić M, Matijašić M, Raić-Malić S. Novel tetrahydropyrimidinyl-substituted benzimidazoles and benzothiazoles: synthesis, antibacterial activity, DNA interactions and ADME profiling. RSC Med Chem 2022; 13:1504-1525. [PMID: 36561067 PMCID: PMC9749923 DOI: 10.1039/d2md00143h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/12/2022] [Indexed: 12/25/2022] Open
Abstract
A series of tetrahydropyrimidinyl-substituted benzimidazoles attached to various aliphatic or aromatic residues via phenoxymethylene were synthesised to investigate their antibacterial activities against selected Gram-positive and Gram-negative bacteria. The influence of the type of substituent at the C-3 and C-4 positions of the phenoxymethylene linker on the antibacterial activity was observed, showing that the aromatic moiety improved the antibacterial potency. Of all the evaluated compounds, benzoyl-substituted benzimidazole derivative 15a was the most active compound, particularly against the Gram-negative pathogens E. coli (MIC = 1 μg mL-1) and M. catarrhalis (MIC = 2 μg mL-1). Compound 15a also exhibited the most promising antibacterial activity against sensitive and resistant strains of S. pyogenes (MIC = 2 μg mL-1). Significant stabilization effects and positive induced CD bands strongly support the binding of the most biologically active benzimidazoles inside the minor grooves of AT-rich DNA, in line with docking studies. The predicted physico-chemical and ADME properties lie within drug-like space except for low membrane permeability, which needs further optimization. Our findings encourage further development of novel structurally related 5(6)-tetrahydropyrimidinyl substituted benzimidazoles in order to optimize their antibacterial effect against common respiratory pathogens.
Collapse
Affiliation(s)
- Valentina Rep
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of ZagrebMarulićev trg 1910000 ZagrebCroatia
| | - Rebeka Štulić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of ZagrebMarulićev trg 1910000 ZagrebCroatia
| | - Sanja Koštrun
- Selvita d.o.oPrilaz baruna Filipovića 2910000 ZagrebCroatia
| | - Bojan Kuridža
- Ruđer Bošković Institute, Division of Organic Chemistry and BiochemistryBijenička cesta 5410000 ZagrebCroatia
| | - Ivo Crnolatac
- Ruđer Bošković Institute, Division of Organic Chemistry and BiochemistryBijenička cesta 5410000 ZagrebCroatia
| | - Marijana Radić Stojković
- Ruđer Bošković Institute, Division of Organic Chemistry and BiochemistryBijenička cesta 5410000 ZagrebCroatia
| | - Hana Čipčić Paljetak
- Department for Intercellular Communication, Center for Translational and Clinical Research, University of Zagreb School of MedicineŠalata 210000 ZagrebCroatia
| | - Mihaela Perić
- Department for Intercellular Communication, Center for Translational and Clinical Research, University of Zagreb School of MedicineŠalata 210000 ZagrebCroatia
| | - Mario Matijašić
- Department for Intercellular Communication, Center for Translational and Clinical Research, University of Zagreb School of MedicineŠalata 210000 ZagrebCroatia
| | - Silvana Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of ZagrebMarulićev trg 1910000 ZagrebCroatia
| |
Collapse
|
9
|
Nalini R, . Basavarajaiah SM, Nagesh GY, Mohammad J, Ramakrishna Reddy K. Synthesis, Characterization, DFT Analysis, Biological Evaluation, and Molecular Docking of Schiff Base Derived from Isatin–Isoniazid and Its Metal (II) Complexes. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2138927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- R. Nalini
- Department of Studies in Chemistry, Bangalore University, Bengaluru, Karnataka, India
- PG Department and Research Studies in Chemistry, Government Science College, Bengaluru, Karnataka, India
| | | | - G. Y. Nagesh
- Department of Chemistry, Guru Nanak First Grade College, Bidar, Karnataka, India
| | - J. Mohammad
- PG Department and Research Studies in Chemistry, Government Science College, Bengaluru, Karnataka, India
| | - K. Ramakrishna Reddy
- Department of Studies in Chemistry, Bangalore University, Bengaluru, Karnataka, India
- PG Department and Research Studies in Chemistry, Government Science College, Bengaluru, Karnataka, India
| |
Collapse
|
10
|
Slassi S, Aarjane M, Amine A. Synthesis, spectroscopic characterization (FT-IR, NMR, UV-Vis), DFT study, antibacterial and antioxidant in vitro investigations of 4,6-bis((E)-1-((3-(1H-imidazol-1-yl)propyl)imino)ethyl)benzene-1,3-diol. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Monirul Islam M, Kumar Pal T, Paul S, Najem Uddin M, Chanmiya Sheikh M, Ashraful Alam M, Hossen J. Computational, Hirshfeld surface, and molecular docking analysis of 2-(((4-methoxyphenyl)imino)methyl)-4-nitrophenol: In-vitro anticancer, antimicrobial, anti-inflammatory, and antioxidant studies. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
12
|
Brishty SR, Hossain MJ, Khandaker MU, Faruque MRI, Osman H, Rahman SMA. A Comprehensive Account on Recent Progress in Pharmacological Activities of Benzimidazole Derivatives. Front Pharmacol 2021; 12:762807. [PMID: 34803707 PMCID: PMC8597275 DOI: 10.3389/fphar.2021.762807] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
Nowadays, nitrogenous heterocyclic molecules have attracted a great deal of interest among medicinal chemists. Among these potential heterocyclic drugs, benzimidazole scaffolds are considerably prevalent. Due to their isostructural pharmacophore of naturally occurring active biomolecules, benzimidazole derivatives have significant importance as chemotherapeutic agents in diverse clinical conditions. Researchers have synthesized plenty of benzimidazole derivatives in the last decades, amidst a large share of these compounds exerted excellent bioactivity against many ailments with outstanding bioavailability, safety, and stability profiles. In this comprehensive review, we have summarized the bioactivity of the benzimidazole derivatives reported in recent literature (2012-2021) with their available structure-activity relationship. Compounds bearing benzimidazole nucleus possess broad-spectrum pharmacological properties ranging from common antibacterial effects to the world's most virulent diseases. Several promising therapeutic candidates are undergoing human trials, and some of these are going to be approved for clinical use. However, notable challenges, such as drug resistance, costly and tedious synthetic methods, little structural information of receptors, lack of advanced software, and so on, are still viable to be overcome for further research.
Collapse
Affiliation(s)
- Shejuti Rahman Brishty
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Md. Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway, Malaysia
| | | | - Hamid Osman
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - S. M. Abdur Rahman
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
13
|
Aragón-Muriel A, Liscano Y, Upegui Y, Robledo SM, Ramírez-Apan MT, Morales-Morales D, Oñate-Garzón J, Polo-Cerón D. In Vitro Evaluation of the Potential Pharmacological Activity and Molecular Targets of New Benzimidazole-Based Schiff Base Metal Complexes. Antibiotics (Basel) 2021; 10:728. [PMID: 34208759 PMCID: PMC8235109 DOI: 10.3390/antibiotics10060728] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Metal-based drugs, including lanthanide complexes, have been extremely effective in clinical treatments against various diseases and have raised major interest in recent decades. Hence, in this work, a series of lanthanum (III) and cerium (III) complexes, including Schiff base ligands derived from (1H-benzimidazol-2-yl)aniline, salicylaldehyde, and 2,4-dihydroxybenzaldehyde were synthesized and characterized using different spectroscopic methods. Besides their cytotoxic activities, they were examined in human U-937 cells, primate kidney non-cancerous COS-7, and six other, different human tumor cell lines: U251, PC-3, K562, HCT-15, MCF-7, and SK-LU-1. In addition, the synthesized compounds were screened for in vitro antiparasitic activity against Leishmania braziliensis, Plasmodium falciparum, and Trypanosoma cruzi. Additionally, antibacterial activities were examined against two Gram-positive strains (S. aureus ATCC® 25923, L. monocytogenes ATCC® 19115) and two Gram-negative strains (E. coli ATCC® 25922, P. aeruginosa ATCC® 27583) using the microdilution method. The lanthanide complexes generally exhibited increased biological activity compared with the free Schiff base ligands. Interactions between the tested compounds and model membranes were examined using differential scanning calorimetry (DSC), and interactions with calf thymus DNA (CT-DNA) were investigated by ultraviolet (UV) absorption. Molecular docking studies were performed using leishmanin (1LML), cruzain (4PI3), P. falciparum alpha-tubulin (GenBank sequence CAA34101 [453 aa]), and S.aureus penicillin-binding protein 2a (PBP2A; 5M18) as the protein receptors. The results lead to the conclusion that the synthesized compounds exhibited a notable effect on model membranes imitating mammalian and bacterial membranes and rolled along DNA strands through groove interactions. Interactions between the compounds and studied receptors depended primarily on ligand structures in the molecular docking study.
Collapse
Affiliation(s)
- Alberto Aragón-Muriel
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali 760001, Colombia;
| | - Yamil Liscano
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760031, Colombia; (Y.L.); (J.O.-G.)
| | - Yulieth Upegui
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (Y.U.); (S.M.R.)
| | - Sara M. Robledo
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (Y.U.); (S.M.R.)
| | - María Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Circuito Exterior, Coyoacán, México 04510, Mexico; (M.T.R.-A.); (D.M.-M.)
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Circuito Exterior, Coyoacán, México 04510, Mexico; (M.T.R.-A.); (D.M.-M.)
| | - Jose Oñate-Garzón
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760031, Colombia; (Y.L.); (J.O.-G.)
| | - Dorian Polo-Cerón
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali 760001, Colombia;
| |
Collapse
|
14
|
Singhal S, Khanna P, Khanna L. Synthesis, comparative in vitro antibacterial, antioxidant and UV fluorescence studies of bis indole Schiff bases and molecular docking with ct-DNA and SARS-CoV-2 M pro. LUMINESCENCE 2021; 36:1531-1543. [PMID: 34087041 DOI: 10.1002/bio.4098] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/18/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022]
Abstract
In this study, synthesis of 15 novel bis indole-based Schiff bases (SBs) 4a-4o was conducted by condensation of 2-(1-aminobenzyl)benzimidazole with symmetrical bis-isatins linked via five alkyl chains (n = 2-6). These were subjected to ADME (absorption, distribution, metabolism and excretion), physiochemical properties, molecular docking, in vitro antibacterial and antioxidant studies. The in silico studies indicated lower toxicity with metabolic stability for nearly all the derivatives proving reliability as drug candidates. The comparative antibacterial study against Staphylococcus aureus and Escherichia coli, also showed a superior inhibition than reference drug and their mono counterparts. The increase in linker alkyl chain length and variation of substituents in indole, further predicted increased inhibition, with maximum value for compound 4o at 50 μg/ml. The in vitro calf thymus DNA (ct-DNA) binding ability of compounds 4c, 4f, 4i, 4l, 4 m, 4n, and 4o was evaluated via ultraviolet-visible and fluorescence spectroscopy techniques. A hyperchromic effect was observed with no apparent wavelength shift which predicted for the groove binding mode. A moderate binding constant for 4o, in fluorescence results, confirms groove binding. The molecular docking of 4o with ct-DNA (PDBID:1BNA) and SARS-CoV-2 Mpro (3CL protease, PDBID:6LU7) prove its efficacy as potential DNA binder and antiviral agent.
Collapse
Affiliation(s)
- Sugandha Singhal
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Pankaj Khanna
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Leena Khanna
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
15
|
Kumar A, Kumar D, Kumar R, Singh P, Chandra R, Kumari K. DFT and docking studies of designed conjugates of noscapines & repurposing drugs: promising inhibitors of main protease of SARS-CoV-2 and falcipan-2. J Biomol Struct Dyn 2020; 40:2600-2620. [PMID: 33140690 DOI: 10.1080/07391102.2020.1841030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
First case of the present epidemic, coronavirus disease (COVID-19) is reported in the Wuhan, a city of the China and all the countries throughout the world are being affected. COVID-19 is named by World Health Organization and it stands for coronavirus disease-19. As on 27th October, 2020, 73,776,588 people around the world are infected. It is also known as SARS-CoV-2 infection. Till date, there is no promising drug or vaccine available in market to cure from this lethal infection. As the literature reported that noscapine a promising candidate to cure from malaria as well reported to be cough suppressant and anti-cancerous. In our previous work, a derivative of noscapine has shown potential behavior against the main protease of novel coronavirus or SARS-CoV-2. Based on the previous study, hybrid molecules based on noscapine and repurposing (antiviral) drugs were designed to target the main protease of novel coronavirus and falcipan-2 using molecular docking. It is proposed that the designed hydrids or conjugates may have promising antiviral property i.e. against the main protease of novel coronavirus and falcipan-2. The designed molecules were thoroughly studied by DFT and different thermodynamic parameters were determined. Further, infrared and Raman spectra of the designed hybrid molecules were determined and studied.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Chemistry, Indian Institute of Technology, Delhi, India.,Department of Applied Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Durgesh Kumar
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Ravinder Kumar
- Department of Chemistry, Gurukula Kangri Vishwavidyalaya, Haridwar, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Ramesh Chandra
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| |
Collapse
|
16
|
Aman H, Rashid N, Ashraf Z, Bibi A, Chen HT, Sathishkumar N. Synthesis, density functional theory (DFT) studies and urease inhibition activity of chiral benzimidazoles. Heliyon 2020; 6:e05187. [PMID: 33088954 PMCID: PMC7567930 DOI: 10.1016/j.heliyon.2020.e05187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/02/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Abstract
A variety of benzimidazole by the heterocyclization of orthophenylenediamine were synthesized in 69–86% yields. The synthesized compounds 3a-f and 6a-f were characterized and further investigated as jack bean urease inhibitors. Density functional theory (DFT) studies were performed utilizing the basis set B3LYP/6-31G (d, p) to acquire perception into their structural properties. Frontier molecular orbital (FMO) analysis of all compounds 3a–f and 6a-f was computed at the same level of theory to get a notion about their chemical reactivity and stability. The mapping of the molecular electrostatic potential (MEP) over the entire stabilized molecular geometry indicated the reactive centers. They exhibited urease inhibition activity with IC50 between 22 and 99 μM. Compounds containing withdrawing groups on the benzene ring (3d, 6d) were not showing significant urease inhibition. The value obtained for 3a, 3b, 3f had shown their significant urease inhibition for both theoretical and experimental. Notably, the compound having S-configuration (3a) (22.26 ± 6.2 μM) was good as compared to its R enantiomer 3f (31.42 ± 23.3 μM). Despite this, we elaborated the computational studies of the corresponding compounds, to highlight electronic effect which include HOMO, LUMO, Molecular electrostatic potential (MEP) and molecular docking.
Collapse
Affiliation(s)
- Hasil Aman
- Department of Chemistry, Faculty of Science, Alama Iqbal Open University, Islamabad 44000, Pakistan.,Department of Chemistry, School of Science, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Naghmana Rashid
- Department of Chemistry, Faculty of Science, Alama Iqbal Open University, Islamabad 44000, Pakistan
| | - Zaman Ashraf
- Department of Chemistry, Faculty of Science, Alama Iqbal Open University, Islamabad 44000, Pakistan
| | - Aamna Bibi
- Department of Chemistry, School of Science, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Hsin-Tsung Chen
- Department of Chemistry, School of Science, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Nadaraj Sathishkumar
- Department of Chemistry, School of Science, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
17
|
Singhal S, Pathak M, Agrawala PK, Ojha H. Design and in silico screening of aryl allyl mercaptan analogs as potential histone deacetylases (HDAC) inhibitors. Heliyon 2020; 6:e03517. [PMID: 32426531 PMCID: PMC7225394 DOI: 10.1016/j.heliyon.2020.e03517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/30/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022] Open
Abstract
The Zn+2 HDACIs show promising anticancer activity. Allyl mercaptan (AM), a metastabilzed monomeric form of diallyl disulphide (DADS) shows better HDACI activity. The present work screens a dataset of aryl AM derivatives 1(a-g) for potential HDACI action viain silico models. DFT calculations predicted the geometrical parameters and frontier orbital calculations suggested better chemical reactivity. Negative chemical potential and NBO hyper conjugative interactions predicted their chemical stability. ADME study confirmed favourable drug likeliness. Molecular docked models suggested the formation of coordinate bond between sulphur of allylmercaptan and Zn2+ cofactor of HDAC8. Besides, models also predicted the dominance of hydrophobic interactions. The aryl AM analogs docked perfectly with HDAC3 as well. The glide score and S-Zn distance of compounds 1a, 1f and 1g were found to be better than allylmercaptan. Therefore, the designed aryl AM analogs filtered as better HDACIs. These could be further used for design and synthesis of new improved HDACIs.
Collapse
Affiliation(s)
- Sugandha Singhal
- Synthetic Organic and Natural Products Laboratory, University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi, 110078, India
| | - Mallika Pathak
- Department of Chemistry, Miranda House, University of Delhi, Delhi, 110007, India
| | - Paban K Agrawala
- Department of Radiation Genetics and Epigenetics,Division of Radiation Biodosimetry, Institute of Nuclear Medicine & Allied Sciences, Delhi, 110054, India
| | - Himanshu Ojha
- CBRN Protection and Decontamination Research Group, Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences (INMAS) DRDO, Delhi, 110054, India
| |
Collapse
|