1
|
Mitkovska V, Dimitrov H, Popgeorgiev G, Chassovnikarova T. Nuclear abnormalities and DNA damage indicate different genotoxic stress responses of marsh frogs (Pelophylax ridibundus, Pallas 1771) to industrial and agricultural water pollution in South Bulgaria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35462-5. [PMID: 39535698 DOI: 10.1007/s11356-024-35462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Amphibians are continuously exposed to pollutants and anthropogenic stressors in their natural habitats, representing a significant challenge to their survival. This study aimed to quantify the extent of DNA damage caused by chronic industrial and agrochemical surface water pollution in wild populations of the marsh frog (Pelophylax ridibundus). The observed genotoxic effects on the marsh frog DNA, manifesting as abnormalities in erythrocyte nuclei, micronuclei, and DNA strand breaks, demonstrate a clear cause-and-effect relationship with surface water parameters, heavy metals, metalloids, and pesticides. The most prevalent nuclear abnormalities observed were notched and blebbed nuclei and nuclear buds, indicative of chromosomal instability. The significant correlation between cadmium, lead, and copper contamination and the increased frequency of DNA breakage in the marsh frogs from the industrial site indicates that heavy metal contamination has a higher genotoxic potential than pesticide contamination. These findings underscore the vulnerability of amphibians inhabiting heavy metal-contaminated wetlands to genotoxic stress due to their lower tolerance to environmental genotoxins. Therefore, using in situ assays to detect erythrocyte nuclear abnormalities and DNA damage in P. ridibundus could serve as a reliable indicator of environmental quality and provide early detection of anthropogenic pollution.
Collapse
Affiliation(s)
- Vesela Mitkovska
- Department of Zoology, Faculty of Biology, University of Plovdiv "Paisii Hilendarski", 24 Tzar Asen Street, 4000, Plovdiv, Bulgaria
| | - Hristo Dimitrov
- Department of Zoology, Faculty of Biology, University of Plovdiv "Paisii Hilendarski", 24 Tzar Asen Street, 4000, Plovdiv, Bulgaria
| | - Georgi Popgeorgiev
- National Museum of Natural History, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000, Sofia, Bulgaria
| | - Tsenka Chassovnikarova
- Department of Zoology, Faculty of Biology, University of Plovdiv "Paisii Hilendarski", 24 Tzar Asen Street, 4000, Plovdiv, Bulgaria.
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000, Sofia, Bulgaria.
| |
Collapse
|
2
|
Paduraru E, Jijie R, Simionov IA, Gavrilescu CM, Ilie T, Iacob D, Lupitu A, Moisa C, Muresan C, Copolovici L, Copolovici DM, Mihalache G, Lipsa FD, Solcan G, Danelet GA, Nicoara M, Ciobica A, Solcan C. Honey Enriched with Additives Alleviates Behavioral, Oxidative Stress, and Brain Alterations Induced by Heavy Metals and Imidacloprid in Zebrafish. Int J Mol Sci 2024; 25:11730. [PMID: 39519279 PMCID: PMC11546825 DOI: 10.3390/ijms252111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Environmental concerns have consistently been a focal point for the scientific community. Pollution is a critical ecological issue that poses significant threats to human health and agricultural production. Contamination with heavy metals and pesticides is a considerable concern, a threat to the environment, and warrants special attention. In this study, we investigated the significant issues arising from sub-chronic exposure to imidacloprid (IMI), mercury (Hg), and cadmium (Cd), either alone or in combination, using zebrafish (Danio rerio) as an animal model. Additionally, we assessed the potential protective effects of polyfloral honey enriched with natural ingredients, also called honey formulation (HF), against the combined sub-chronic toxic effects of the three contaminants. The effects of IMI (0.5 mg·L-1), Hg (15 μg·L-1), and Cd (5 μg·L-1), both individually and in combination with HF (500 mg·L-1), on zebrafish were evaluated by quantifying acetylcholinesterase (AChE) activity, lipid peroxidation (MDA), various antioxidant enzyme activities like superoxide dismutase and glutathione peroxidase (SOD and GPx), 2D locomotor activity, social behavior, histological and immunohistochemical factors, and changes in body element concentrations. Our findings revealed that all concentrations of pollutants may disrupt social behavior, diminish swimming performances (measured by total distance traveled, inactivity, and swimming speed), and elevate oxidative stress (OS) biomarkers of SOD, GPx, and MDA in zebrafish over the 21-day administration period. Fish exposed to IMI and Hg + Cd + IMI displayed severe lesions and increased GFAP (Glial fibrillary acidic protein) and S100B (S100 calcium-binding protein B) protein expression in the optic tectum and cerebellum, conclusively indicating astrocyte activation and neurotoxic effects. Furthermore, PCNA (Proliferating cell nuclear antigen) staining revealed reduced cell proliferation in the IMI-exposed group, contrasting with intensified proliferation in the Hg + Cd group. The nervous system exhibited significant damage across all studied concentrations, confirming the observed behavioral changes. Moreover, HF supplementation significantly mitigated the toxicity induced by contaminants and reduced OS. Therefore, the exposure to chemical mixtures offers a more complete picture of adverse impacts on aquatic ecosystems and the supplementation with bioactive compounds can help to reduce the toxicity induced by exposure to environmental pollutants.
Collapse
Affiliation(s)
- Emanuela Paduraru
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, No. 20 A Carol I Avenue, 700505 Iasi, Romania; (E.P.); (D.I.); (M.N.)
| | - Roxana Jijie
- Research Center on Advanced Materials and Technologies (RAMTECH), Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, No. 11 Carol I Avenue, 700506 Iasi, Romania;
| | - Ira-Adeline Simionov
- Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, Dunarea de Jos University of Galati, No. 47 Domnească Street, 800008 Galati, Romania;
- REXDAN Research Infrastructure, Dunarea de Jos University of Galati, No. 98 George Coșbuc Street, 800385 Galati, Romania
| | - Cristina-Maria Gavrilescu
- Department of Biomedical Sciences, Grigore T. Popa University of Medicine and Pharmacy, No. 16 University Street, 700115 Iasi, Romania;
| | - Tudor Ilie
- Synergy Plant Products, No. 12 Milano Street, Prejmer, 507165 Brasov, Romania;
| | - Diana Iacob
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, No. 20 A Carol I Avenue, 700505 Iasi, Romania; (E.P.); (D.I.); (M.N.)
| | - Andreea Lupitu
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, No. 2 Elena Dragoi Street, 310330 Arad, Romania; (A.L.); (C.M.); (C.M.); (L.C.); (D.M.C.)
| | - Cristian Moisa
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, No. 2 Elena Dragoi Street, 310330 Arad, Romania; (A.L.); (C.M.); (C.M.); (L.C.); (D.M.C.)
| | - Claudia Muresan
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, No. 2 Elena Dragoi Street, 310330 Arad, Romania; (A.L.); (C.M.); (C.M.); (L.C.); (D.M.C.)
| | - Lucian Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, No. 2 Elena Dragoi Street, 310330 Arad, Romania; (A.L.); (C.M.); (C.M.); (L.C.); (D.M.C.)
| | - Dana M. Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, No. 2 Elena Dragoi Street, 310330 Arad, Romania; (A.L.); (C.M.); (C.M.); (L.C.); (D.M.C.)
| | - Gabriela Mihalache
- Integrated Center of Environmental Science Studies in the North-Eastern Development Region (CERNESIM), Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, No. 11 Carol I Avenue, 700506 Iasi, Romania;
| | - Florin Daniel Lipsa
- Department of Food Technologies, Ion Ionescu de la Brad University of Life Sciences, No. 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Gheorghe Solcan
- Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Life Sciences, No. 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (G.S.); (G.-A.D.); (C.S.)
| | - Gabriela-Alexandra Danelet
- Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Life Sciences, No. 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (G.S.); (G.-A.D.); (C.S.)
| | - Mircea Nicoara
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, No. 20 A Carol I Avenue, 700505 Iasi, Romania; (E.P.); (D.I.); (M.N.)
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No. 20A Carol I Avenue, 700505 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No. 20A Carol I Avenue, 700505 Iasi, Romania
- Center of Biomedical Research, Romanian Academy, No. 8 Carol I Avenue, 700506 Iasi, Romania
- Academy of Romanian Scientists, No. 54 Independence Street, Sector 5, 050094 Bucharest, Romania
- “Ioan Haulica” Institute, Apollonia University, No. 11 Pacurari Street, 700511 Iasi, Romania
| | - Carmen Solcan
- Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Life Sciences, No. 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (G.S.); (G.-A.D.); (C.S.)
| |
Collapse
|
3
|
Peluso J, Martínez Chehda A, Olivelli MS, Ivanic FM, Butler M, Aparicio V, De Geronimo E, Gonzalez F, Valenzuela L, Candal RJ, Aronzon CM. Impacts of cattle management and agricultural practices on water quality through different approaches: physicochemical and ecotoxicological parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45177-45191. [PMID: 38961017 DOI: 10.1007/s11356-024-34059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
The intensification of livestock farming can pose risks to the environment due to the increased use of veterinary products and the generation of waste in confined areas. The quality of water bodies near livestock establishments (Areco River (A) and Doblado stream (D), San Antonio de Areco, Buenos Aires, Argentina) was studied by physicochemical parameters, metals, pesticides, emerging contaminants, and lethal and sublethal toxicity (neurotoxicity and oxidative stress) in larvae of the native amphibian Rhinella arenarum. Six sites were selected: upstream (S1A and S1D), at the level (S2A and S2D), and downstream (S3A and S3D) from the establishments. A low concentration of dissolved oxygen was observed in Doblado stream (< 2.34 mg/L). Cu, Mn, V, and Zn exceeded the limits for the protection of aquatic life at various sites. Between 24 and 34 pesticides were detected in all sites, with 2,4-D, atrazine, and metolachlor being the most recurrent. In water and sediment, the concentrations of ivermectin (S2A, 1.32 μg/L and 58.18 μg/kg; S2D, 0.8 μg/L and 85.22 μg/kg) and oxytetracycline (S2A, < 1 mg/L and < 1 mg/kg; S2D, 11.8 mg/L and 39 mg/kg) were higher at sites near the establishments. All sites caused between 30 and 38.3% of lethality and produced neurotoxicity and alterations in the reduced glutathione content. Moreover, larvae exposed to samples from all sites incorporated ivermectin. These results demonstrate the degradation of the studied sites in relation to the agricultural activities of the area, highlighting the need to take measures to protect and preserve aquatic ecosystems.
Collapse
Affiliation(s)
- Julieta Peluso
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de Mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Agostina Martínez Chehda
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de Mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Melisa S Olivelli
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de Mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Federico M Ivanic
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de Mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Matías Butler
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de Mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Virginia Aparicio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria, Balcarce, Buenos Aires, Argentina
| | - Eduardo De Geronimo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria, Balcarce, Buenos Aires, Argentina
| | - Florencia Gonzalez
- Laboratorio de Fluorescencia de Rayos X, Gerencia Química, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Lautaro Valenzuela
- Laboratorio de Fluorescencia de Rayos X, Gerencia Química, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Roberto J Candal
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de Mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina M Aronzon
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de Mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Peluso J, Gamarra F, Aronzon CM. Synergistic interactions between the emerging contaminant ivermectin and the ubiquitous pesticide glyphosate at an environmentally relevant ratio on Rhinella arenarum larvae. CHEMOSPHERE 2024; 358:142058. [PMID: 38642777 DOI: 10.1016/j.chemosphere.2024.142058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Glyphosate (GLY) is a widely used broad-spectrum herbicide, and ivermectin (IVM) is a commonly used antiparasitic in livestock farming. Both substances can be found in water bodies from agricultural areas and can have negative impacts on ecosystems. The aim of this study was to evaluate the lethal and sublethal toxicity individually and in combination of a glyphosate-based herbicide (GBH) and an ivermectin commercial formulation (ICF). Groups of 10 larvae were exposed for 504 h, in triplicate to a concentration gradient of the commercial formulation of glyphosate and ivermectin, individually, and to a series of dilutions of a non-equitoxic mixture of both compounds based on environmental concentrations. Additionally, biomarkers of oxidative stress (catalase, glutathione S-transferase, and reduced glutathione) and neurotoxicity (acetylcholinesterase and butyrylcholinesterase) were evaluated at sublethal and environmental concentrations of ivermectin (0.00125 mg/L) and glyphosate (0.7 mg/L) individually and in mixture. The ICF (LC50-504h: 0.047 mg ai IVM/L) was more toxic to larvae than the GBH (LC50-504h: 24.73 mg ae GLY/L). In terms of lethality, exposure to the mixture was synergistic at all exposure times. Both compounds separately caused alterations in the biomarkers of oxidative stress and neurotoxicity. Regarding sublethal effects in organisms exposed to the mixture, potentiation was observed in acetylcholinesterase. The simultaneous exposure to both substances in water bodies can have synergistic and negative effects on aquatic organisms.
Collapse
Affiliation(s)
- Julieta Peluso
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín UNSAM, Campus Miguelete, 25 de mayo y Francia, 1650, San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Fanny Gamarra
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín UNSAM, Campus Miguelete, 25 de mayo y Francia, 1650, San Martín, Provincia de Buenos Aires, Argentina
| | - Carolina M Aronzon
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín UNSAM, Campus Miguelete, 25 de mayo y Francia, 1650, San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
5
|
Cuzziol Boccioni AP, Peltzer PM, Attademo AM, Leiva L, Colussi CL, Repetti MR, Russell-White K, Di Conza N, Lajmanovich RC. High toxicity of agro-industrial wastewater on aquatic fauna of a South American stream: Mortality of aquatic turtles and amphibian tadpoles as bioindicators of environmental health. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11010. [PMID: 38433361 DOI: 10.1002/wer.11010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
The aim of this study was to characterize an aquatic system of Santa Fe province (Argentina) receiving wastewater from agro-industrial activities (mainly dairy) by in situ assessment (fauna mortality, physicochemical, microbiological, and pesticide residues measurement), and ecotoxicity bioassays on amphibian tadpoles. Water and sediment samples were obtained from the Los Troncos Stream (LTS), previous to the confluence with the "San Carlos" drainage channel (SCC), and from the SCC. Biological parameters (mortality and sublethal biomarkers) were used to evaluate ecotoxicity during 10-day exposure of Rhinella arenarum tadpoles to LTS and SCC samples. Nine pesticides were detected in both LTS and SCC. Chemical and biochemical oxygen demand, ammonia, and coliform count recorded in SCC greatly exceeded limits for aquatic life protection. At SCC and LTS after the confluence with SCC, numerous dying and dead aquatic turtles (Phrynops hilarii) were recorded. In the ecotoxicity assessment, no mortality of tadpoles was observed in LTS treatment, whereas total mortality (100%) was observed in SCC treatments in dilution higher than 50% of water and sediment. For SCC, median lethal concentration and the 95% confidence limits was 18.30% (14.71-22.77) at 24 h; lowest-observed and no-observed effect concentrations were 12.5% and 6.25%, respectively. Oxidative stress and neurotoxicity were observed in tadpoles exposed to 25% SCC dilution treatment. In addition, there was a large genotoxic effect (micronuclei test) in all sublethal SCC dilution treatments (6.25%, 12.5%, and 25%). These results alert about the high environmental quality deterioration and high ecotoxicity for aquatic fauna of aquatic ecosystems affected by agro-industrial wastewater. PRACTITIONER POINTS: Great mortality of turtles was observed in a basin with a high load of agro-industrial wastewater. San Carlos Channel (SCC), where effluents are spilled, is environmentally deteriorated. The water-sediment matrix of SCC caused 100% lethality in tadpoles. SCC dilutions caused neurotoxicity, oxidative stress, and genotoxicity on tadpoles.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Paola M Peltzer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Andrés M Attademo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Leonardo Leiva
- Museo Provincial de Ciencias Naturales Florentino Ameghino, Santa Fe, Argentina
| | - Carlina L Colussi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Karen Russell-White
- Cátedras de Microbiología General y Principios de Biotecnología, Departamento de Ingeniería en Alimentos y Biotecnología, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Noelia Di Conza
- Cátedras de Microbiología General y Principios de Biotecnología, Departamento de Ingeniería en Alimentos y Biotecnología, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
6
|
Babini MS, Bionda CDL, Martino AL, Peltzer PM. Impacts of horticultural environments on Rhinella arenarum (Anura, Bufonidae) populations: exploring genocytotoxic damage and demographic life history traits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21235-21248. [PMID: 38388975 DOI: 10.1007/s11356-024-32471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Horticulture poses a significant ecological risk, as agrochemicals are applied more frequently and in larger quantities per unit of production compared to extensive crop fields. The native amphibian Rhinella arenarum serves as a reliable bioindicator of environmental health. This study aimed to assess genocytotoxic damage and demographic life history traits of R. arenarum inhabiting horticultural environments. Sampling was conducted in suburban sites in central Argentina: H1 and H2 (sites associated with horticultural activity) and a reference site, RS. Environmental parameters were recorded, and the frequency of micronuclei (Mn), nuclear abnormalities (ENA), and indicators of cytotoxic damage were determined in tadpoles and adults. Demographic variables (age at maturity, longevity, potential reproductive lifespan, size at maturity, modal lifespan) were calculated. The highest nitrate and phosphate values, along with low dissolved oxygen values, were recorded at sites H1 and H2. Organisms inhabiting horticultural environments exhibited higher frequencies of Mn and ENA, surpassing those recorded in previous studies on tadpoles from sites with extensive crop production. Size at maturity and age at maturity of females, as well as size at maturity, longevity, mean age, and mean adult SVL of males, were lower in horticultural sites. The results support the hypothesis that anuran populations inhabiting horticultural environments demonstrate a diminished health status attributed to subpar environmental quality. Monitoring endpoints at different biological levels provides information on the ecotoxicological risk for amphibians and human populations inhabiting nearby areas.
Collapse
Affiliation(s)
- María Selene Babini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales (FCEFQyN), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Argentina.
| | - Clarisa de Lourdes Bionda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales (FCEFQyN), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Argentina
| | - Adolfo Ludovico Martino
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales (FCEFQyN), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Argentina
| | - Paola Mariela Peltzer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| |
Collapse
|
7
|
Arslan E, Güngördü A. Subacute toxicity and endocrine-disrupting effects of Fe 2O 3, ZnO, and CeO 2 nanoparticles on amphibian metamorphosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4174-4195. [PMID: 38097842 DOI: 10.1007/s11356-023-31441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
This study evaluated the potential toxic and endocrine-disrupting effects of sublethal concentrations of Fe2O3, CeO2 and ZnO nanoparticles (NPs) on amphibian metamorphosis. Tadpoles were exposed to several NPs concentrations, reaching a maximum of 1000 µg/L, for up to 21 days according to the amphibian metamorphosis assay (AMA). Some standard morphological parameters, such as developmental stage (DS), hind limb length (HLL), snout-to-vent length (SVL), wet body weight (WBW), and as well as post-exposure lethality were recorded in exposed organisms on days 7 and 21 of the bioassay. Furthermore, triiodothyronine (T3), thyroxine (T4) and malondialdehyde (MDA) levels and the activities of glutathione S-transferases (GST), glutathione reductase (GR), catalase (CAT), carboxylesterase (CaE), and acetylcholinesterase (AChE) were determined in exposed tadpoles as biomarkers. The results indicate that short-term exposure to Fe2O3 NPs leads to toxic effects, both exposure periods cause toxic effects and growth inhibition for ZnO NPs, while short-term exposure to CeO2 NPs results in toxic effects and long-term exposure causes endocrine-disrupting effects. The responses observed after exposure to the tested NPs during amphibian metamorphosis suggest that they may have ecotoxicological effects and their effects should be monitored through field studies.
Collapse
Affiliation(s)
- Eren Arslan
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44280, Malatya, Turkey
| | - Abbas Güngördü
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44280, Malatya, Turkey.
| |
Collapse
|
8
|
Mendonça JDS, de Almeida JCN, Vieira LG, Hirano LQL, Santos ALQ, Andrade DV, Malafaia G, de Oliveira Júnior RJ, Beletti ME. Mutagenicity, hepatotoxicity, and neurotoxicity of glyphosate and fipronil commercial formulations in Amazon turtles neonates (Podocnemis expansa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165529. [PMID: 37453711 DOI: 10.1016/j.scitotenv.2023.165529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Pesticides are considered one of the main causes of the population decline of reptiles worldwide, with freshwater turtles being particularly susceptible to aquatic contamination. In this context, we investigated the potential mutagenic, hepatotoxic, and neurotoxic effects in neonates of Podocnemis expansa exposed to substrate contaminated with different concentrations of glyphosate and/or fipronil during embryonic development. Eggs collected from the natural environment were artificially incubated in sand moistened with pure water, water added with glyphosate Atar 48® at concentrations of 65 and 6500 μg/L (groups G1 and G2, respectively), water added with fipronil Regent® 800WG at 4 and 400 μg/L (groups F1 and F2, respectively) and, water added with the combination of 65 μg/L glyphosate and 4 μg/L fipronil or with 6500 μg/L glyphosate and 400 μg/L fipronil (groups GF1 and GF2, respectively). For mutagenicity analysis, we evaluated the frequency of micronuclei (MN) and other erythrocyte nuclear abnormalities (ENAs), while for evaluation of hepatotoxicity and neurotoxicity, livers and encephalon were analyzed for histopathological alterations. Exposure to pesticides, alone or in combination, increased the frequency of erythrocyte nuclear abnormalities, particularly blebbed nuclei, moved nuclei, and notched nuclei. Individuals exposed to fipronil exhibited congestion and inflammatory infiltrate in their liver tissue, while, in the encephalon, congestion, and necrosis were present. Our study confirms that the incubation of eggs in substrate polluted with glyphosate and fipronil causes histopathological damage and mutagenic alteration in P. expansa, highlighting the importance of using different biomarkers to evaluate the ecotoxicological effects of these pesticides, especially in oviparous animals.
Collapse
Affiliation(s)
- Juliana Dos Santos Mendonça
- Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Toxicologia Aplicada ao Meio Ambiente, Instituto Federal Goiano, Urutaí, GO, Brazil.
| | - Julio Cesar Neves de Almeida
- Programa de Pós-graduação em Ciências Veterinárias, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Lucélia Gonçalves Vieira
- Laboratório Multidisciplinar em Morfologia e Ontogenia, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Líria Queiroz Luz Hirano
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília (UNB), Brasília, DF, Brazil
| | - André Luiz Quagliatto Santos
- Organização Não Governamental - Preservação dos Animais Silvestres do Brasil - ONG PAS do Brasil, Uberlândia, MG, Brazil
| | - Denis Vieira Andrade
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Guilherme Malafaia
- Laboratório de Toxicologia Aplicada ao Meio Ambiente, Instituto Federal Goiano, Urutaí, GO, Brazil; Programa de Pós-Graduação em Conservação dos Recursos Naturais do Cerrado, Instituto Federal Goiano, Urutaí, GO, Brazil; Programa de Pós-Graduação em Ecologia, Conservação e Biodiversidade, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil; Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil.
| | - Robson José de Oliveira Júnior
- Laboratório de Citogenética, Instituto de Biotecnologia, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Marcelo Emílio Beletti
- Laboratório de Biologia da Reprodução, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil
| |
Collapse
|
9
|
Lopes ATDC, de Benvindo-Souza M, Sotero DF, Pedroso TMA, Guerra V, Vieira TB, Andreani TL, Benetti EJ, Simões K, Bastos RP, de Melo E Silva D. The Use of Multiple Biomarkers to Assess the Health of Anuran Amphibians in the Brazilian Cerrado Savanna: An Ecotoxicological Approach. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2422-2439. [PMID: 37477494 DOI: 10.1002/etc.5723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/26/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Changes in the natural landscape and the indiscriminate use of pesticides can have a major impact on aquatic environments and have contributed to the worldwide decline of amphibian populations. In the present study, we sampled tadpoles of three anuran amphibians (Boana albopunctata, Physalaemus cuvieri, and Dendropsophus minutus) from ponds in six different agricultural landscapes of the Brazilian Cerrado savanna and evaluated whether and to what extent genotoxic and mutagenic damage was related to land use (the amount of forest and agricultural remnants, and related physicochemical factors) and the presence of pesticides in the water of the study ponds. We also evaluated the hepatotoxicity in P. cuvieri, which was the most abundant species at five of the six sampling points. Clomazone and atrazine were the most common pesticides found in the ponds. The B. albopunctata and P. cuvieri tadpoles presented similar patterns of DNA damage among the sampling points. The least DNA damage was found in the D. minutus tadpoles, although this species was present in only one of the study ponds. More binucleated and anucleated cells were observed in B. albopunctata, but there was no significant variation among species in terms of the number of micronuclei or other erythrocytic nuclear abnormalities. Land use and physicochemical factors did not explain the variation in the DNA damage observed in the three anurans. The hepatotoxicity analyses of P. cuvieri revealed the presence of a series of alterations, including the enlargement of the sinusoids, vacuolization of the hepatocytes, the infiltration of inflammatory cells, hepatic steatosis, and dilation of the blood vessels. The interaction between physicochemical factors and the biomarkers analyzed in the present study is complex. In particular, it will be important to better elucidate which factors are contributing, either directly or indirectly, to the decline of anuran amphibian populations, especially in threatened biomes, such as the Brazilian Cerrado. In this case, we would encourage further in situ studies that assess the ecotoxicology of the landscape, together with the systematic monitoring of aquatic environments, to guarantee the long-term integrity of amphibian populations, and those of other organisms that play an essential functional role in the ecosystem. Environ Toxicol Chem 2023;42:2422-2439. © 2023 SETAC.
Collapse
Affiliation(s)
- Alice Tâmara de Carvalho Lopes
- Laboratory of Mutagenesis, Institute of Biological Sciences, ICB I, Universidade Federal de Goiás, Samambaia Campus, Goiânia, Goiás, Brazil
| | - Marcelino de Benvindo-Souza
- Laboratory of Mutagenesis, Institute of Biological Sciences, ICB I, Universidade Federal de Goiás, Samambaia Campus, Goiânia, Goiás, Brazil
- Post-graduation Program in Natural Resources of Cerrado, Universidade Estadual de Goiás, Fazenda Barreiro do Meio, Anápolis, Goiás, Brazil
| | - Daiany Folador Sotero
- Laboratory of Mutagenesis, Institute of Biological Sciences, ICB I, Universidade Federal de Goiás, Samambaia Campus, Goiânia, Goiás, Brazil
| | - Thays Millena Alves Pedroso
- Laboratory of Mutagenesis, Institute of Biological Sciences, ICB I, Universidade Federal de Goiás, Samambaia Campus, Goiânia, Goiás, Brazil
| | - Vinicius Guerra
- National Institute of Science & Ecological Technology, Evolution and Conservation of Biodiversity, Universidade Federal de Goiás, Samambaia Campus, Goiânia, Goiás, Brazil
| | - Thiago Bernardi Vieira
- Laboratory of Ecology, Biological Sciences Faculty, Universidade Federal do Pará, Campus Altamira, Rua Coronel José Porfírio, Altamira, Pará, Brazil
| | - Tainã Lucas Andreani
- Graduate Program in Biodiversity and Conservation, at Instituto Federal Goiano, Rio Verde Campus, Rodovia Sul Goiana, Rio Verde, Goiás, Brazil
| | - Edson José Benetti
- Laboratory of Human and Animal Morphology, Institute of Biological Sciences, ICB III, Universidade Federal de Goiás, Samambaia Campus, Goiânia, Goiás, Brazil
| | - Karina Simões
- Laboratory of Human and Animal Morphology, Institute of Biological Sciences, ICB III, Universidade Federal de Goiás, Samambaia Campus, Goiânia, Goiás, Brazil
| | - Rogério Pereira Bastos
- Laboratory of Herpetology and Animal Behavior, Institute of Biological Sciences, ICB V, Universidade Federal de Goiás, Samambaia Campus, Goiânia, Goiás, Brazil
| | - Daniela de Melo E Silva
- Laboratory of Mutagenesis, Institute of Biological Sciences, ICB I, Universidade Federal de Goiás, Samambaia Campus, Goiânia, Goiás, Brazil
| |
Collapse
|
10
|
Peluso J, Chehda AM, Olivelli MS, Ivanic FM, Pérez Coll CS, Gonzalez F, Valenzuela L, Rojas D, Cristos D, Butler M, Candal RJ, Aronzon CM. Metals, pesticides, and emerging contaminants on water bodies from agricultural areas and the effects on a native amphibian. ENVIRONMENTAL RESEARCH 2023; 226:115692. [PMID: 36931378 DOI: 10.1016/j.envres.2023.115692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
In the Paraná River lower basin, an important agro-productive area of Argentina, crop fields and cattle breeding activities are common and may affect water quality. So, the aim of this study was to analyze the impacts of cattle breeding and agricultural activities on a stream from Buenos Aires, through physicochemical parameters (metals, pesticides, and emerging contaminants) and ecotoxicological parameters with Rhinella arenarum larvae, a native amphibian species. Three sites were selected on an ordinary plain stream that goes through agricultural fields and a cattle breeding establishment (upstream -S1-, near -S2- and downstream -S3- the establishment). Physicochemical parameters were measured in situ (in water) and in laboratory (in water and sediment samples: metals, pesticides, ivermectin and oxytetracycline). A semi-static chronic toxicity bioassay (504 h) was performed with water samples, and neurotoxicity, oxidative stress and genotoxicity biomarkers were measured after acute exposure (96 h). According to the index, a degradation in the water quality was observed in all sites. Ivermectin (8.03 mg/kg) and oxytetracycline (1.9 mg/kg) were detected in sediment samples from S2. Pesticides were detected in all sites, mainly in water samples: S1 presented the highest variability (7 residues) and in S3 AMPA, glyphosate and acetochlor concentrations were higher (10.3, 22.4 and 23.8 μg/L). Also, all sites significantly produced lethality at chronic exposure. Lethality at 504h was 40% for S1, 56.66% for S2 and 93.33% for S3. At acute exposure, the oxidative stress biomarkers were altered on R. arenarum larvae exposed to all sites and the neurotoxicity biomarkers were altered on larvae exposed to S1 and S3. Water quality was severely degraded by the surrounding agricultural and cattle breeding activities, which may represent a threat to the ecosystems.
Collapse
Affiliation(s)
- Julieta Peluso
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Agostina Martínez Chehda
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires, Argentina
| | - Melisa S Olivelli
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Federico M Ivanic
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Cristina S Pérez Coll
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Florencia Gonzalez
- Laboratorio de Fluorescencia de Rayos X, Gerencia Química, Comisión Nacional de Energía Atómica, Argentina
| | - Lautaro Valenzuela
- Laboratorio de Fluorescencia de Rayos X, Gerencia Química, Comisión Nacional de Energía Atómica, Argentina
| | - Dante Rojas
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto Tecnología de los Alimentos, Argentina
| | - Diego Cristos
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto Tecnología de los Alimentos, Argentina
| | - Matías Butler
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Roberto J Candal
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Carolina M Aronzon
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
11
|
Bjedov D, Velki M, Toth L, Marijić VF, Mikuška T, Jurinović L, Ečimović S, Turić N, Lončarić Z, Šariri S, Al Marsoomi Y, Mikuška A. Heavy metal(loid) effect on multi-biomarker responses in apex predator: Novel assays in the monitoring of white stork nestlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121398. [PMID: 36878276 DOI: 10.1016/j.envpol.2023.121398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The goal of the present study was to investigate differences in biomarker responses related to metal(loid)s in white stork (Ciconia ciconia) nestling's blood from continental Croatia. To achieve this, a battery of biomarkers that can be affected by environmental pollutants, including metal(loid)s, was assessed (esterase activity, fluorescence-based oxidative stress biomarkers, metallothionein levels, glutathione-dependent enzyme activity). The research was conducted during the white stork breeding season in diverse areas (a landfill, industrial and agricultural sites, and an unpolluted area). White storks' nestlings near the landfill exhibited reduced carboxylesterase (CES) activity, elevated glutathione (GSH) concentration, as well as high Pb content in the blood. Increased As and Hg concentrations in blood were attributable to environmental contamination in agricultural area and an assumed unpolluted area, respectively. Furthermore, agricultural practices appeared to affect CES activity, as well as elevate Se levels. In addition to the successful implementation of biomarkers, present research showed that agricultural areas and a landfill are areas with increased metal(loid) levels possibly causing adverse effects on the white storks. This first-time heavy metal and metalloid analyses in the white stork nestlings from Croatia point to the necessary monitoring and future assessments of pollution impact to prevent irreversible adverse effects.
Collapse
Affiliation(s)
- Dora Bjedov
- Croatian Institute for Biodiversity, BIOTA Ltd., Maksimirska cesta 129/5, 10000, Zagreb, Croatia
| | - Mirna Velki
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - Leontina Toth
- Teaching Institute of Public Health Osijek-baranja County, Franje Krežme 1, 31000, Osijek, Croatia
| | - Vlatka Filipović Marijić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Tibor Mikuška
- Croatian Society for Birds and Nature Protection, Ivana Gundulića 19/A, 31000, Osijek, Croatia
| | - Luka Jurinović
- Poultry Centre, Croatian Veterinary Institute, Heinzelova 55, 10000, Zagreb, Croatia
| | - Sandra Ečimović
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - Nataša Turić
- Teaching Institute of Public Health Osijek-baranja County, Franje Krežme 1, 31000, Osijek, Croatia
| | - Zdenko Lončarić
- Department of Agroecology and Environment Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000, Osijek, Croatia
| | - Sara Šariri
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Yasir Al Marsoomi
- HOGENT University of Applied Sciences and Arts, Geraard de Duivelstraat 5, 9000, Gent, Belgium
| | - Alma Mikuška
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia.
| |
Collapse
|
12
|
Peluso J, Aronzon CM, Martínez Chehda A, Cuzziol Boccioni AP, Peltzer PM, De Geronimo E, Aparicio V, Gonzalez F, Valenzuela L, Lajmanovich RC. Environmental quality and ecotoxicity of sediments from the lower Salado River basin (Santa Fe, Argentina) on amphibian larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106342. [PMID: 36327688 DOI: 10.1016/j.aquatox.2022.106342] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The lower Salado River basin receive agricultural, industrial and domestic waste water. So, the aim was to evaluate the quality of three sampling sites that belong to the Salado River basin (S1: Cululú stream; S2: Salado River, at Esperanza City, S3: Salado River at Santo Tomé City) based on physicochemical parameters, metals and pesticides analyses and ecotoxicity on Rhinella arenarum larvae. R. arenarum larvae (Gosner Stage -GS- 25) were chronically exposed (504h) to complex matrixes of surface water and sediment samples of each site for the determination of the survival rate. Biomarkers of oxidative stress, neurotoxicity and genotoxicity were analyzed in R. arenarum larvae (GS. 25) after exposure (96h) to the complex matrix of water and sediment. The water quality index showed a marginal quality for all sites, influenced mainly by low dissolved oxygen, high total suspended solid, phosphate, nitrite, conductivity, Pb, Cr and Cu levels. Metal concentrations were higher in sediment than in water samples (˜34-35000 times). In total, thirty different pesticides were detected in all water and sediment samples, S1 presented the greatest variety (26). Glyphosate and AMPA were detected in sediments from all sites, being higher in S3. N,N-Diethyl-meta-toluamide (DEET) and atrazine were detected in all water samples. Greatest mortality was observed in larvae exposed to samples from S1 from 288h (43.3%), reaching a maximum value of 50% at 408h. Oxidative stress and genotoxicity were observed in larvae exposed to S1 and S3 matrix samples. Neurotoxicity was observed in larvae exposed to all matrix samples. The integrated biomarker response index showed that larvae exposed to S1 and S3 were the most affected. According to the physicochemical data and the ecotoxicity assessment, this important river basin is significantly degraded and may represent a risk to aquatic biota, especially for R. arenarum larvae.
Collapse
Affiliation(s)
- Julieta Peluso
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, 25 de mayo y Francia, 1650 San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Carolina M Aronzon
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, 25 de mayo y Francia, 1650 San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Agostina Martínez Chehda
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, 25 de mayo y Francia, 1650 San Martín, Provincia de Buenos Aires, Argentina
| | - Ana Paula Cuzziol Boccioni
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Paola M Peltzer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Eduardo De Geronimo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria, Balcarce, Buenos Aires, Argentina
| | - Virginia Aparicio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria, Balcarce, Buenos Aires, Argentina
| | - Florencia Gonzalez
- Laboratorio de Fluorescencia de Rayos X, Gerencia Química, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Lautaro Valenzuela
- Laboratorio de Fluorescencia de Rayos X, Gerencia Química, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Rafael C Lajmanovich
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
13
|
Cuzziol Boccioni AP, Lener G, Peluso J, Peltzer PM, Attademo AM, Aronzon C, Simoniello MF, Demonte LD, Repetti MR, Lajmanovich RC. Comparative assessment of individual and mixture chronic toxicity of glyphosate and glufosinate ammonium on amphibian tadpoles: A multibiomarker approach. CHEMOSPHERE 2022; 309:136554. [PMID: 36174726 DOI: 10.1016/j.chemosphere.2022.136554] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The aim of the present study was to assess the ecotoxicity of glyphosate and glufosinate ammonium mixtures on amphibian tadpoles and the potential impact of mixture in aquatic ecosystems health. The bonding properties of the mixture based on computational chemistry and an experimental bioassay on morphology, DNA damage and biochemical biomarkers on tadpoles of the common toad Rhinella arenarum were studied. The results of the density functional theory analysis showed trends of the pesticides clustering to form exothermic mixtures, suggesting the likelihood of hot-spots of pesticides in real aquatic systems. In addition, biological effects of individual pesticides and the mixture were studied on tadpoles over 45 days-chronic bioassay. The bioassay consisted of four treatments: a negative control (CO), 2.5 mg L-1 of a glyphosate-based herbicide (GBH), 2.5 mg L-1 of a glufosinate ammonium-based herbicide (GABH) and their 50:50 (% v/v) mixture (GBH-GABH). Morphological abnormality rates were significantly higher in all herbicide treatments with respect to CO at 48 h of exposure. Abdominal edema was the most frequent type of abnormality recorded at 48 h, 10 and 45 days of exposure. DNA damage was recorded in all herbicides treatments. Thyroxin increased only in GABH treatment. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) significantly increased in GBH treatment, indicating a GBH-neurotoxic effect. Glutathione S-transferase decreased in GABH and GBH-GABH treatments, while catalase decreased in individual GBH and GABH treatments. Overall, teratogenicity, DNA damage, hormonal disruption (T4), and oxidative stress were greater in GABH-treated tadpoles than GBH-treated tadpoles. This study also highlights the robust chemical interaction between the active ingredients of both herbicides, which is reflected on antagonisms in most of analyzed biomarkers, as well as potentiation and additivity in others. Based on our results, the GABH had a higher toxicity than GBH for amphibian tadpoles.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| | - German Lener
- Instituto de Investigaciones en Físico-Química de Córdoba-CONICET. Departamento de Química Teórica y Computacional. Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Julieta Peluso
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (IIIA-UNSAM)-CONICET, Campus Miguelete, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina Aronzon
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (IIIA-UNSAM)-CONICET, Campus Miguelete, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - María F Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Luisina D Demonte
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
14
|
Turhan DO, Güngördü A. Developmental, toxicological effects and recovery patterns in Xenopus laevis after exposure to penconazole-based fungicide during the metamorphosis process. CHEMOSPHERE 2022; 303:135302. [PMID: 35697111 DOI: 10.1016/j.chemosphere.2022.135302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Fungicides are a group of chemicals causing pollution of freshwater ecosystems due to their widespread use in agriculture. However, their endocrine disrupting effects are less studied than herbicides and insecticides. The aim of this study was to evaluate the developmental and toxicological effects and recovery patterns of penconazole-based fungicide (PBF) during Xenopus laevis metamorphosis. For this purpose, firstly, the 96 h median lethal (LC50) and effective (EC50) concentrations and minimum concentration to inhibit growth (MCIG) values of PBF were estimated for X. laevis as 4.97, 3.55 and 2.31 mg/L respectively, using Frog Embryo Teratogenesis Assay-Xenopus (FETAX) on Nieuwkoop-Faber (NF) stage 8 embryos. FETAX results showed PBF formulation was slightly teratogenic with a 1.4 teratogenic index; most recorded malformations were gut, abdominal edema, and tail curvature. The Subacute Amphibian Metamorphosis Assay (AMA) was modified based on acute FETAX results, and used to evaluate toxic effects and recovery patterns of relatively low PBF concentrations on metamorphosis using morphological and biochemical markers. NF Stage 51 tadpoles were exposed to two separate groups of each concentration for seven days in the AMA. Secondly, tadpoles of one group of each concentration continued to be exposed to PBF for the next 7 and 14 days while the other group was kept in a pesticide-free environment (depuration/recovery). Various morphological and biochemical markers were measured homogenate samples of tadpoles from exposure and recovery groups. Continuous exposure to relatively low PBF concentrations caused oxidative stress, toxic, and endocrine disrupting effects in the AMA, leading us to conclude that it has negative effects on frog health and development during the recovery period when PBF exposure is terminated. The glutathione S-transferase, glutathione reductase, catalase, carboxylesterase, and acetylcholinesterase activities were higher than the control group transferred to pesticide-free media for 14 days after the 7 days exposure and indicate persistent PBF impact.
Collapse
Affiliation(s)
- Duygu Ozhan Turhan
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44210, Malatya, Turkey
| | - Abbas Güngördü
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44210, Malatya, Turkey.
| |
Collapse
|
15
|
Pontes JRS, Lopes I, Ribeiro R, Araújo CVM. Humane acute testing with tadpoles for risk assessment of chemicals: Avoidance instead of lethality. CHEMOSPHERE 2022; 303:135197. [PMID: 35691390 DOI: 10.1016/j.chemosphere.2022.135197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In spite of the sensitivity of amphibians to contamination, data from fish have been commonly used to predict the effects of chemicals on aquatic life stages. However, recent studies have highlighted that toxicity data derived from fish species may not protect all the aquatic life stages of amphibians. For pesticide toxicity assessment (PTA), EFSA has highlighted that more information on lethal toxicity for the aquatic life stages of amphibians is still needed to reduce uncertainties. The current review aims to propose a test with amphibians based on spatial avoidance, as a more humane alternative method to the lethality tests for chemicals. A review of lethal toxicity tests carried out with amphibians in the period between 2018 and 2021 is presented, then we discuss the suitability of using fish toxicity data as a surrogate to predict the effects on more sensitive amphibian groups. The possible differences in sensitivity to chemicals may justify the need to develop further tests with amphibian embryos and larvae in order to reduce uncertainties. A new test is proposed focused on the avoidance behaviour of organisms fleeing from contamination to replace lethal tests. As avoidance indicates the threshold at which organisms will flee from contamination, a reduction in the population density, or its disappearance, at the local scale due to emigration is expected, with ecological consequences analogous to mortality. Avoidance tests provide an ethical advantage over lethal tests as they respect the concepts of the 3 Rs (mainly Refinement), reducing the suffering of the organisms.
Collapse
Affiliation(s)
- João Rodolfo S Pontes
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Isabel Lopes
- Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal; Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rui Ribeiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
16
|
Bassó A, Devin S, Peltzer PM, Attademo AM, Lajmanovich RC. The integrated biomarker response in three anuran species larvae at sublethal concentrations of cypermethrin, chlorpyrifos, glyphosate, and glufosinate-ammonium. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:687-696. [PMID: 35852372 DOI: 10.1080/03601234.2022.2099197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The aim of the present study was to evaluate the response in larvae of the anuran species Rhinella arenarum, Rhinella dorbignyi and Odontophrynus americanus exposed to glyphosate (GLY, 2.5 mg L-1), cypermethrin (CYP, 0.013 mg L-1), chlorpyrifos (CP, 0.1 mg L-1) and glufosinate-ammonium (GLU, 15 mg L-1) using two behavioral endpoints: mean speed (MS) and total distance moved (TD); and two enzymatic biomarkers: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). In order to assess a global response and to determine the most sensitive species, an integrated biomarker response (IBR) index was calculated. Behavioral biomarkers were tested at 1 and 60 min, and the enzymes at 60 min after exposure. The results showed that: (1) there were statistical differences between species in a series of responses in swimming behavior, and cholinesterase activities within the first-hour of exposure to CYP, GLY, and CP at environmentally relevant concentrations (ERC); (2) IBR determined that Rhinella species were the most sensitive of the species tested and (3) IBR provided a comprehensive assessment of the health status of species exposed to ERC of a wide variety of agrochemicals globally and frequently used.
Collapse
Affiliation(s)
- Agustín Bassó
- School of Biochemistry and Biological Sciences, National University of Littoral (FBCB UNL), Santa Fe, Argentina
| | - Simon Devin
- CNRS, LIEC, Université de Lorraine, Metz, France
| | - Paola M Peltzer
- School of Biochemistry and Biological Sciences, National University of Littoral (FBCB UNL), Santa Fe, Argentina
- National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Andrés M Attademo
- School of Biochemistry and Biological Sciences, National University of Littoral (FBCB UNL), Santa Fe, Argentina
- National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Rafael C Lajmanovich
- School of Biochemistry and Biological Sciences, National University of Littoral (FBCB UNL), Santa Fe, Argentina
- National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| |
Collapse
|
17
|
Conte FM, Cestonaro LV, Piton YV, Guimarães N, Garcia SC, Dias da Silva D, Arbo MD. Toxicity of pesticides widely applied on soybean cultivation: Synergistic effects of fipronil, glyphosate and imidacloprid in HepG2 cells. Toxicol In Vitro 2022; 84:105446. [PMID: 35850439 DOI: 10.1016/j.tiv.2022.105446] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/14/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Abstract
The transgenic soy monoculture demands supplementation with pesticides. The aim of this study was to evaluate the individual and mixture effects of fipronil, glyphosate and imidacloprid in human HepG2 cells. Cytotoxicity was evaluated after 48-h incubations through MTT reduction and neutral red uptake assays. Free radicals production, mitochondrial membrane potential, DNA damage, and release of liver enzymes were also evaluated. Data obtained for individual agents were used to compute the additivity expectations for two mixtures of definite composition (one equipotent mixture, based in the EC50 values achieved in the MTT assay; the other one based in the acceptable daily intake of each pesticide), using the models of concentration addition and independent action. The EC50 values for fipronil, glyphosate and imidacloprid were 37.59, 41.13, and 663.66 mg/L, respectively. The mixtures of pesticides elicited significant synergistic effects (p < 0.05), which were greater than the expected by both addictive predictions. Decreased in mitochondrial membrane potential and increased in the transaminases enzymatic activities were observed. As they occur simultaneously, interactions between pesticides, even at non-effective single levels, can reverberate in significant deleterious effects, justifying the need for a more realistic approach in safety evaluations to better predict the effects to human health.
Collapse
Affiliation(s)
- Fernanda Mocellin Conte
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Larissa V Cestonaro
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Yasmin V Piton
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Nicolas Guimarães
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Solange C Garcia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Diana Dias da Silva
- UCIBIO, REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; TOXRUN-Toxicology Research Unit, Instituto Universitário de Ciências da Saúde, IUCS-CESPU, Gandra, PRD, Portugal; School of Health Sciences, Polytechnic of Leiria (ESSLei-IPL), 2411-901 Leiria, Portugal.
| | - Marcelo Dutra Arbo
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
18
|
González Núñez AA, Ferro JP, Campos LB, Eissa BL, Mastrángelo MM, Ferrari L, Ossana NA. Evaluation of the Acute Effects of Arsenic on Adults of the Neotropical Native Fish Cnesterodon decemmaculatus Using a Set of Biomarkers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1246-1259. [PMID: 35088913 DOI: 10.1002/etc.5299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/17/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Neotropical fish Cnesterodon decemmaculatus were exposed to different sublethal concentrations (0.5, 1.0 and 5.0 mg As/L) of sodium arsenite (As III) to determine the median lethal concentration (LC50; 96 h) and to evaluate the response of a set of biomarkers (genotoxic, behavioral, biochemical, and metabolic). At the end of the exposure (96 h), fish were video-recorded for behavior assessment. We used the micronucleus and nuclear abnormality tests and the comet assay in peripheral blood as genotoxicity biomarkers. In regard to biochemical and metabolic biomarkers, we dissected the brain for acetylcholinesterase (AChE) activity; the liver for glutathione-S-transferase (GST) and catalase (CAT) activity and glutathione content (GSH); the gills for GSH content; and muscle for AChE, energy metabolism of lipids, carbohydrates, and proteins, and the electron transport system activity of the mitochondrial chain. We calculated an index using metabolic biomarkers, to determine the cellular energy allocation. The LC50 value was 7.32 mg As/L. The As affected some swimming parameters in females. No significant differences in micronucleus were found compared with the control, whereas nuclear aberrations increased significantly at 1.0 and 5.0 mg As/L. The genomic damage index and the percentage of cells with DNA damage (measured by the comet assay) showed a significant increase in the As-treated groups, and this technique was the most sensitive for detecting genotoxic damage. The As affected the antioxidant system (mainly GSH, CAT, and GST) and reduced the lipid content. A preliminary baseline was generated for the response of C. decemmaculatus exposed to sublethal concentrations of As, when it alters swimming behavior and the antioxidant system, has genotoxic effects, and reduces lipid content. Environ Toxicol Chem 2022;41:1246-1259. © 2022 SETAC.
Collapse
Affiliation(s)
- Ayelén A González Núñez
- Programa de Ecofisiología Aplicada, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
- Instituto de Ecología y Desarrollo Sustentable (Universidad Nacional de Luján, Consejo Nacional de Investigaciones Científicas y Técnicas), Luján, Buenos Aires, Argentina
| | - Juan P Ferro
- Programa de Ecofisiología Aplicada, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
- Instituto de Ecología y Desarrollo Sustentable (Universidad Nacional de Luján, Consejo Nacional de Investigaciones Científicas y Técnicas), Luján, Buenos Aires, Argentina
| | - Liria B Campos
- Programa de Ecofisiología Aplicada, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
- Instituto de Ecología y Desarrollo Sustentable (Universidad Nacional de Luján, Consejo Nacional de Investigaciones Científicas y Técnicas), Luján, Buenos Aires, Argentina
| | - Bettina L Eissa
- Programa de Ecofisiología Aplicada, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
- Instituto de Ecología y Desarrollo Sustentable (Universidad Nacional de Luján, Consejo Nacional de Investigaciones Científicas y Técnicas), Luján, Buenos Aires, Argentina
| | - Martina M Mastrángelo
- Programa de Ecofisiología Aplicada, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
- Instituto de Ecología y Desarrollo Sustentable (Universidad Nacional de Luján, Consejo Nacional de Investigaciones Científicas y Técnicas), Luján, Buenos Aires, Argentina
| | - Lucrecia Ferrari
- Programa de Ecofisiología Aplicada, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
| | - Natalia A Ossana
- Programa de Ecofisiología Aplicada, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
- Instituto de Ecología y Desarrollo Sustentable (Universidad Nacional de Luján, Consejo Nacional de Investigaciones Científicas y Técnicas), Luján, Buenos Aires, Argentina
| |
Collapse
|
19
|
Peluso J, Furió Lanuza A, Pérez Coll CS, Aronzon CM. Synergistic effects of glyphosate- and 2,4-D-based pesticides mixtures on Rhinella arenarum larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14443-14452. [PMID: 34617223 DOI: 10.1007/s11356-021-16784-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate and 2,4-D are two herbicides commonly used together. Since there is little information about the interactions between these pesticides, the aim of this study was to evaluate the single and joint lethal toxicity of the glyphosate-based herbicide (GBH) ATANOR® (43.8% of glyphosate, isopropylamine salt) and the 2,4-D-based herbicide (2,4-DBH) Así Max 50® (602000 mg/L of 2,4-D) on Rhinella arenarum larvae. Equitoxic and non-equitoxic mixtures were prepared according to the recommendation for their combination and analyzed with a fixed ratio design at different exposure times and levels of lethality (LC10, LC50, and LC90). GBH (504h-LC50=38.67 mg ae/L) was significantly more toxic than 2,4-DBH (504h-LC50=250.31 mg ae/L) and their toxicity was time-dependent. At 48h, the equitoxic mixture toxicity was additive and from the 96h was antagonistic at LC10 and LC50 effect level. The non-equitoxic mixture toxicity was additive at LC10 effect level from the 48h to the 168h, and synergistic from the 240h. At LC50 and LC90 effect level, the mixture interaction resulted synergistic for all exposure times. This is the first study to report the synergistic interactions between GBH and 2,4-DBH on amphibians, alerting about its negative impact on aquatic ecosystems.
Collapse
Affiliation(s)
- Julieta Peluso
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM-CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Agustina Furió Lanuza
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM-CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Buenos Aires, Argentina
| | - Cristina S Pérez Coll
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM-CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Carolina M Aronzon
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM-CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
20
|
Kirilovsky ER, Anguiano OL, Bongiovanni GA, Ferrari A. Effects of acute arsenic exposure in two different populations of Hyalella curvispina amphipods from North Patagonia Argentina. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:71-88. [PMID: 34496719 DOI: 10.1080/15287394.2021.1975589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Arsenic (As) is a toxic metalloid present in high levels in diverse regions of Argentina. The aim of this study was to determine acute As-mediated toxicity in two different populations of autochthonous Hyalella curvispina amphipods from a reference site (LB) and an agricultural one (FO) within North Patagonia Argentina. Previously, both populations exhibited significant differences in pesticide susceptibility. Lab assays were performed to determine acute lethal concentrations, as well as some biochemical parameters. Lethal concentration (LC50) values obtained after 48 and 96 hr As exposure were not significantly different between these populations, although FO amphipods appeared slightly less susceptible. LC50-48 hr values were 3.33 and 3.92 mg/L As, while LC50-96 hr values were 1.76 and 2.14 mg/L As for LB and FO amphipods. The no observed effect concentration (NOEC) values were 0.5 mg/L As. Cholinesterase (ChE) activity was significantly diminished by As acute exposure (0.5-1.5 mg/L As), indicative of a significant neurotoxic action for this metalloid in both amphipod populations. Activities of catalase (CAT) and glutathione S-transferase (GST) and levels of reduced glutathione (GSH) were differentially altered following As exposure. CAT activity was increased after 96 hr As exposure. GST activity and GSH levels were significantly elevated followed by either a decrease or a return to control values after 96 hr treatment. However, additional studies are necessary to understand the mechanisms underlying the As-mediated oxidative effects in H. curvispina. Our findings suggest that measurement of ChE activity in H. curvispina amphipods might serve as a useful biomarker of As exposure and effect.
Collapse
Affiliation(s)
- Eva R Kirilovsky
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN, (CONICET- UNCo), Neuquén, Argentina
- Facultad De Ciencias Médicas, Universidad Nacional Del Comahue (UNCo), Río Negro, Argentina
| | - Olga L Anguiano
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN, (CONICET- UNCo), Neuquén, Argentina
- Facultad De Ingeniería, Universidad Nacional Del Comahue (UNCo), Neuquén, Argentina
| | - Guillermina A Bongiovanni
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN, (CONICET- UNCo), Neuquén, Argentina
- Facultad De Ciencias Agrarias, Universidad Nacional Del Comahue (UNCo), Neuquén, Argentina
| | - Ana Ferrari
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN, (CONICET- UNCo), Neuquén, Argentina
- Facultad De Ciencias Médicas, Universidad Nacional Del Comahue (UNCo), Río Negro, Argentina
| |
Collapse
|
21
|
Lajmanovich RC, Attademo AM, Lener G, Cuzziol Boccioni AP, Peltzer PM, Martinuzzi CS, Demonte LD, Repetti MR. Glyphosate and glufosinate ammonium, herbicides commonly used on genetically modified crops, and their interaction with microplastics: Ecotoxicity in anuran tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150177. [PMID: 34520929 DOI: 10.1016/j.scitotenv.2021.150177] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The effects of glyphosate (GLY)-based and glufosinate ammonium (GA)-based herbicides (GBH and GABH, respectively) and polyethylene microplastic particles (PEMPs) on Scinax squalirostris tadpoles were assessed. Tadpoles were exposed to nominal concentrations of both herbicides (from 1.56 to 100 mg L-1) and PEMPs (60 mg L-1), either alone or in combination, and toxicity evaluated at 48 h. Acetylcholinesterase (AChE), carboxylesterase (CbE), and glutathione-S-transferase (GST) activities were analyzed at the three lowest concentrations (1.56, 3.12 and 6.25 mg L-1, survival rates >85%) of both herbicides alone and with PEMPs. Additionally, the thermochemistry of the interactions between the herbicides and polyethylene (PE) was analyzed by Density Functional Theory (DFT). The median-lethal concentration (LC50) was 43.53 mg L-1 for GBH, 38.56 mg L-1 for GBH + PEMPs, 7.69 for GABH, and 6.25 mg L-1 for GABH+PEMPs. The PEMP treatment increased GST but decreased CbE activity, whereas GBH and GABH treatments increased GST but decreased AChE activity. In general, the mixture of herbicides with PEMPs increased the effect observed in the individual treatments: the highest concentration of GBH + PEMPs increased GST activity, whereas GABH+PEMP treatments decreased both AChE and CbE activities. DFT analysis revealed spontaneous interactions between the herbicides and PE, leading to the formation of bonds at the herbicide-PE interface, significantly stronger for GA than for GLY. The experimental and theoretical findings of our study indicate that these interactions may lead to an increase in toxicity when pollutants are together, meaning potential environmental risk of these combinations, especially in the case of GA.
Collapse
Affiliation(s)
- Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Germán Lener
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Investigaciones en Físico-Química de Córdoba-CONICET, Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Candela S Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Luisina D Demonte
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina; Programa de Investigación y Análisis de Residuos y Contaminantes Químicos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
22
|
Peluso J, Pérez Coll CS, Cristos D, Rojas DE, Aronzon CM. Comprehensive assessment of water quality through different approaches: Physicochemical and ecotoxicological parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149510. [PMID: 34391159 DOI: 10.1016/j.scitotenv.2021.149510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Traditionally, water quality was assessed by physicochemical parameters. However, a more comprehensive analysis is needed to study the effects of polluted water bodies on key species over time. So, the aim of this study was to monitor through physicochemical and ecotoxicological indicators the surface water quality of four study sites with different land uses from the lower Paraná river basin (Argentina) during spring and summer of two years: Morejón stream (S1), De la Cruz stream upstream (S2), downstream (S3) and Arrecifes river (S4). Physicochemical parameters were measured in situ and in laboratory, and a Water Quality Index (WQI) was calculated. Chronic toxicity bioassays were performed with surface water samples using Rhinella arenarum embryos and larvae. Also, oxidative stress (catalase, superoxide dismutase, glutathione S-transferase, reduced glutathione and lipid peroxidation), neurotoxicity (butyrylcholinesterase) and genotoxicity (micronuclei frequency) biomarkers were measured at acute exposure, and an Integrated Biomarkers Response (IBR) index was calculated. The water quality varied between excellent and bad in S1, good and bad in S2 and S3, and bad and marginal in S4. S1 presented the greatest variability of pesticides and S4 the highest number of metals exceeding the limits for the local protection of aquatic life. Mainly, S4 caused lethality in R. arenarum larvae, reaching a maximum mortality of 83.3% at 504 h of exposure. The lethal toxicity of S1 and S2 varied between periods. Water samples from all sites altered the oxidative stress, neurotoxicity and genotoxicity biomarkers, and the IBR was negatively correlated with the WQI. The IBR reflected the effects of the degraded water quality on the exposed organisms. So, the importance of evaluating both physicochemical and ecotoxicological parameters to analyze integrally the water quality of polluted areas is highlighted. A degradation of the studied water bodies and its negative impact to the native amphibian R. arenarum were observed.
Collapse
Affiliation(s)
- Julieta Peluso
- Instituto de Investigación e Ingeniería Ambiental, IIIA, CONICET-UNSAM, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Cristina S Pérez Coll
- Instituto de Investigación e Ingeniería Ambiental, IIIA, CONICET-UNSAM, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Diego Cristos
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto Tecnología de los Alimentos, Argentina
| | - Dante E Rojas
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto Tecnología de los Alimentos, Argentina
| | - Carolina M Aronzon
- Instituto de Investigación e Ingeniería Ambiental, IIIA, CONICET-UNSAM, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
23
|
Boran F, Güngördü A. Biochemical and developmental effects of thyroid and anti-thyroid drugs on different early life stages of Xenopus laevis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103738. [PMID: 34492396 DOI: 10.1016/j.etap.2021.103738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The effects of two drugs containing the synthetic thyroid hormone levothyroxine (LEV) and an anti-thyroid drug containing propylthiouracil (PTU) on the three early life stages of Xenopus laevis were evaluated with the Frog Embryo Teratogenesis Assay-Xenopus, Tadpole Toxicity Test, and Amphibian Metamorphosis Assay using biochemical and morphological markers. Tested drugs caused more effective growth retardation in stage 8 embryos than stage 46 tadpoles. Significant inhibition of biomarker enzymes has been identified in stage 46 tadpoles for both drugs. AMA test results showed that LEV-I caused progression in the developmental stage and an increase in thyroxine level in 7 days exposure and growth retardation in 21 days exposure in stage 51 tadpoles. On the other hand, increases in lactate dehydrogenase activity for both drugs in the AMA test may be due to impacted energy metabolism during sub-chronic exposure. These results also show that the sensitivity and responses of Xenopus laevis at different early developmental stages may be different when exposed to drugs.
Collapse
Affiliation(s)
- Filiz Boran
- Department of Biology, Faculty of Arts and Science, Inonu University, 44280, Malatya, Turkey
| | - Abbas Güngördü
- Department of Biology, Faculty of Arts and Science, Inonu University, 44280, Malatya, Turkey.
| |
Collapse
|
24
|
Cuzziol Boccioni AP, Lajmanovich RC, Peltzer PM, Attademo AM, Martinuzzi CS. Toxicity assessment at different experimental scenarios with glyphosate, chlorpyrifos and antibiotics in Rhinella arenarum (Anura: Bufonidae) tadpoles. CHEMOSPHERE 2021; 273:128475. [PMID: 33069438 DOI: 10.1016/j.chemosphere.2020.128475] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
The presence of pesticides as well as that of several antibiotics provided at a great scale to poultry, cattle, and swine in aquatic environments within agroecosystems is a matter of growing concern. The objective of the present study was to characterize the sublethal effects of four environmental toxic compounds at two experimental pollution scenarios on the morphology, development and thyroid (T4), acetylcholinesterase (AChE) and glutathione S-transferase (GST) levels in Rhinella arenarum tadpoles. The first experimental pollution scenario aimed to evaluate the individual and mixed toxicity (50:50% v/v) of a glyphosate-based herbicide (GBH) and the antibiotic ciprofloxacin (CIP) on earlier developmental stages. The second experimental pollution scenario aimed to evaluate the effects of other toxic compounds (the insecticide chlorpyrifos (CP) and the antibiotic amoxicillin (AMX)) added to the ones from the first scenario on previously exposed premetamorphic tadpoles. In all the treatments of the first pollution scenario, the most conspicuous effect observed in early-stage tadpoles was a high prevalence of morphological abnormalities. Exposure to GBH and to its mixture with CIP also led to a significant decrease in T4 levels and lower development. Both pollutant combinations from the second experimental scenario significantly increased T4 levels, inhibited AChE activities, and led to lower development, whereas the quaternary mixture led to a significant decrease in GST levels. The alterations here revealed by our approaches in several morphological and biochemical endpoints allow characterizing the ecotoxicological risk for anurans exposed to complex mixtures of pollutants that frequently occur in aquatic systems.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| | - Candela S Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| |
Collapse
|
25
|
Attademo AM, Lajmanovich RC, Peltzer PM, Boccioni APC, Martinuzzi C, Simonielo F, Repetti MR. Effects of the emulsifiable herbicide Dicamba on amphibian tadpoles: an underestimated toxicity risk? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31962-31974. [PMID: 33619621 DOI: 10.1007/s11356-021-13000-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
The effects of exposure to the herbicide Dicamba (DIC) on tadpoles of two amphibian species, Scinax nasicus and Elachistocleis bicolor, were assessed. Mortality and biochemical sublethal effects were evaluated using acetylcholinesterase (AChE), glutathione S-transferase (GST), glutathione reductase (GR), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) activities and thyroid hormone (T4) levels. The LC50 value at 48h was 0.859 mg L-1 for S. nasicus and 0.221 mg L-1 for E. bicolor tadpoles. After exposure to sublethal DIC concentrations for 48 h, GST activity increased in S. nasicus but significantly decreased in E. bicolor with respect to controls. GR activity decreased only in S. nasicus at all the tested DIC concentrations. AChE activity was significantly inhibited in both S. nasicus and E. bicolor tadpoles at 48 h. DIC also caused significant changes in transamination, as evidenced by an increase in AST and ALT activities in both amphibian species. T4 levels were higher in DIC-treated tadpoles of both species than in controls. The DIC-induced biochemical alterations in glutathione system enzymes and transaminases indicate lesions in liver tissues and cellular function. Moreover, the observed AChE inhibition could lead to the accumulation of acetylcholine, excessively stimulating postsynaptic receptors, and the increase in T4 levels in both species may indicate an overactive thyroid. The commercial DIC formulation showed a high biotoxicity in the two amphibian native species after short-term exposure, controversially differing from the toxicity level indicated in the official fact sheet data. This fact highlights the need for an urgent re-categorization and reevaluation of DIC toxicity in native species.
Collapse
Affiliation(s)
- Andrés Maximiliano Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| | - Rafael Carlos Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Paola Mariela Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Ana Paula Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Candela Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Fernanda Simonielo
- Laboratorio de Toxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - María Rosa Repetti
- PRINARC. Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
26
|
Peluso J, Pérez Coll CS, Aronzon CM. In situ exposure of amphibian larvae (Rhinella fernandezae) to assess water quality by means of oxidative stress biomarkers in water bodies with different anthropic influences. CHEMOSPHERE 2021; 271:129598. [PMID: 33465620 DOI: 10.1016/j.chemosphere.2021.129598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
In situ bioassays provide valuable information about the environment and offer more realistic results than usual laboratory experiments. The aim of this study was to evaluate the quality of water bodies from the lower Paraná River basin, the second most important in South America, through analysis of physiochemical parameters, metals and pesticides and in situ exposure of Rhinella fernandezae larvae to assess oxidative stress biomarkers. The sites were: S1(Morejón stream, reference); S2, S3(De la Cruz stream upstream and downstream, respectively) and S4(Arrecifes River). In all sites, dissolved oxygen was low, atrazine was detected and Cu was higher than the limit for aquatic life protection. According to the water quality index, S2, S3 and S4 presented bad water quality, while S1 good water quality. Larvae were exposed in situ for 96h in order to analyze: lipid peroxidation(TBARS) as oxidative damage, antioxidant enzymatic (catalase-CAT-, superoxide dismutase-SOD- and glutathione s-transferase-GST-) and non-enzymatic defenses (reduced glutathione-GSH-). Larvae exposed in the most impacted sites (S2, S3 and S4) presented oxidative stress since the levels of TBARS were around 2 times higher than in S1. Also, the other oxidative stress biomarkers were altered in larvae exposed at S2, S3 and S4. These results highlight the importance of analyzing oxidative stress biomarkers during in situ exposures since they are useful tools for documenting the extent of exposure at sublethal levels. The complex pollution of the water bodies affected the exposed larvae, which may jeopardize the native populations.
Collapse
Affiliation(s)
- Julieta Peluso
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM, CONICET, 3iA. Campus Miguelete, 25 de Mayo y Francia, C.P. 1650, San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Cristina S Pérez Coll
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM, CONICET, 3iA. Campus Miguelete, 25 de Mayo y Francia, C.P. 1650, San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Carolina M Aronzon
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM, CONICET, 3iA. Campus Miguelete, 25 de Mayo y Francia, C.P. 1650, San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
27
|
Davico CE, Pereira AG, Nezzi L, Jaramillo ML, de Melo MS, Müller YMR, Nazari EM. Reproductive toxicity of Roundup WG® herbicide: impairments in ovarian follicles of model organism Danio rerio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15147-15159. [PMID: 33226558 DOI: 10.1007/s11356-020-11527-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Glyphosate-based herbicides are widely used in global agriculture, and their effects on different non-target animal organisms have been the focus of many toxicological studies. Regarding the potential role of glyphosate-based herbicides as an endocrine disruptor, the present study aims to investigate the effects of the herbicide Roundup WG® (RWG) on female reproduction, specifically on the ovarian maturation of Danio rerio. Adult females were exposed to low concentrations of RWG (0.065, 0.65, and 6.5 mg L-1) for 15 days, and then the ovaries were submitted to structural and morphometric procedures, accompanied by analysis of the vitellin protein content. Our results showed an increase of initial ovarian follicle numbers, decrease of late ovarian follicles, and smaller diameter of ovarian follicles in fish exposed to 0.065 and 6.5 mg L-1. The thickness of vitelline envelope was reduced, and the vitellin protein content was increased in the ovarian follicle in the two highest concentrations. Ultrastructural changes in the ovarian follicular component were evident and expressed by the cell index; vacuolization in follicular cells, increase of perivitelline space, and impaired mitochondria in oocytes were observed. Therefore, RWG adversely affects the ovarian maturation in D. rerio, and these changes can lead to reproductive toxicity, compromising population dynamics.
Collapse
Affiliation(s)
- Carla Eliana Davico
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil
| | - Aline Guimarães Pereira
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil
| | - Luciane Nezzi
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil
| | - Michael Lorenz Jaramillo
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil
| | - Madson Silveira de Melo
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil
| | - Yara Maria Rauh Müller
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil
| | - Evelise Maria Nazari
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil.
| |
Collapse
|
28
|
Li Z, Liu Y, Wang F, Gao Z, Elhefny MA, Habotta OA, Abdel Moneim AE, Kassab RB. Neuroprotective effects of protocatechuic acid on sodium arsenate induced toxicity in mice: Role of oxidative stress, inflammation, and apoptosis. Chem Biol Interact 2021; 337:109392. [PMID: 33497687 DOI: 10.1016/j.cbi.2021.109392] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/01/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
Arsenic is a toxic metalloid abundantly found in nature and used in many industries. Consumption of contaminated water mainly results in human exposure to arsenic. Toxicity (arsenicosis) resulting from arsenic exposure causes cerebral neurodegeneration. Protocatechuic acid (PCA), a phenol derived from edible plants, has antioxidant properties. The present study investigated the neuroprotective potential of PCA against arsenic-induced neurotoxicity in mice. Male Swiss albino mice were divided into four groups: (i) orally administered physiological saline, (ii) orally administered 100 mg/kg PCA, (iii) orally administered 5 mg/kg NaAsO2, and (iv) orally administered 100 mg/kg PCA 120 min prior to oral administration of 5 mg/kg NaAsO2. Each group received its respective treatment for 1 week, after which cortical tissues from each group were analyzed for various parameters of oxidative stress, proinflammatory cytokines, apoptosis-related proteins, and changes in histopathology. NaAsO2-treatment resulted in a significant increase in lipid peroxidation (LPO), inducible nitric oxide synthetase (iNOs), and NO levels, with a decrease in the levels of both enzymatic (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) and non-enzymatic (glutathione) antioxidant markers. Arsenic increased proinflammatory cytokine (tumor necrosis factor-α and interleukin-1β) levels, enhanced caspase-3 and Bax expression, and reduced Bcl-2 expression. Furthermore, arsenic-exposure in mice decreased significantly acetylcholinesterase activity and brain-derived neurotrophic factor level in the cerebral cortex. Histopathological examination revealed changes in nerve cell cyto-architecture and distribution in arsenic-exposed brain tissue sections. PCA treatment before arsenic administration resulted in a positive shift in the oxidative stress and cytokine levels with decreased levels of LPO, iNOS, and NO. PCA pre-treatment considerably attenuated arsenic-associated histopathological changes in murine brain tissue. This study suggested that the presence of PCA may be responsible for the prevention of arsenic-induced neurotoxicity.
Collapse
Affiliation(s)
- Zhaoxia Li
- Department of Pediatric, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, Shandong, 250033, People's Republic of China
| | - Yujuan Liu
- Department of Pediatric, Binzhou People's Hospital, Binzhou, Shandong Province, 256600, China
| | - Fang Wang
- Department of Pediatric, Binzhou People's Hospital, Binzhou, Shandong Province, 256600, China
| | - Zhuanglei Gao
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, Shandong, 250033, People's Republic of China.
| | - Mohamed A Elhefny
- Department of Cancer and Molecular Biology, National Cancer Institute, Cairo University, Cairo, Egypt; Department of Medial Genetics, Faculty of Medicine; Umm Al-Qura University, Alqunfudah, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, 11795, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, 11795, Egypt; Biology Department, Faculty of Science and Arts, Al Baha University, Almakhwah Branch, Saudi Arabia
| |
Collapse
|
29
|
Cuzziol Boccioni AP, Peltzer PM, Martinuzzi CS, Attademo AM, León EJ, Lajmanovich RC. Morphological and histological abnormalities of the neotropical toad, Rhinella arenarum (Anura: Bufonidae) larvae exposed to dexamethasone. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 56:41-53. [PMID: 33112724 DOI: 10.1080/03601234.2020.1832410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dexamethasone (DEX) is a glucocorticoid highly effective as an anti-inflammatory, immunosuppressant and decongestant drug. In the present study, a preliminary acute toxicity test was assayed in order to determinate DEX median-lethal, lowest-observed-effect and the no-observed-effect concentrations (LC50, LOEC and NOEC, respectively) on the common toad embryos (Rhinella arenarum). Also, morphological and histological abnormalities from five body larval regions, liver melanomacrophages (MM) and glutathione S-transferase (GST) activity were evaluated in the toad larvae to characterize the chronic sublethal effects of DEX (1-1,000 µg L-L). Results of the acute test showed that the LC50 of DEX at 96 h of exposure for the toad embryos (GS 18-20) was 10.720 mg L-g, and the LOEC was 1 µg L-g. In the chronic assay, the larval development and body length were significantly affected. DEX exposition also induced teratogenic effects. Most frequent external abnormalities observed in DEX-treated larvae included abdominal edema and swollen body, abnormal gut coiling and visceral congestion. Intestinal dysplasia was recurrent in cross-section of all DEX-treated larvae. Neural, conjunctive and renal epithelial cells were also affected. Significant increase in liver MM number and size, and GST activity levels were also registered in DEX treatments with respect to controls. The evaluation of a variety of biomarkers provided clear evidence of toad larvae sensitivity to DEX, and the ecotoxicological risk of these pharmaceuticals, commonly found in different water bodies worldwide on aquatic animals.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Candela S Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Evelina J León
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
30
|
de Oliveira JSP, Vieira LG, Carvalho WF, de Souza MB, de Lima Rodrigues AS, Simões K, de Melo De Silva D, Dos Santos Mendonça J, Hirano LQL, Santos ALQ, Malafaia G. Mutagenic, genotoxic and morphotoxic potential of different pesticides in the erythrocytes of Podocnemis expansa neonates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:140304. [PMID: 32783869 DOI: 10.1016/j.scitotenv.2020.140304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/24/2020] [Accepted: 06/15/2020] [Indexed: 05/06/2023]
Abstract
Despite the damaging effects of pesticides glyphosate (Gly), atrazine (Atra) and fipronil (Fip) on different organisms, the mutagenic, genotoxic and morphotoxic potential of testudine erythrocytes in freshwater remains unknown. Thus, the aim of the present study is to assess the toxicological potential of these compounds in Podocnemis expansa (Amazonian turtles) neonates from eggs artificially incubated in substrate at different concentrations of herbicides Gly and Atra and insecticide Fip. Micronucleus test and other nuclear abnormalities, as well as comet assay and morphometric measurements taken of models' circulating erythrocytes were used as toxicity biomarkers. Pups exposed to Gly (groups Gly-65 ppb and Gly-6500 ppb) were the ones recording the largest amount of nuclear abnormalities; erythrocytes with multilobulated, notched and displaced nucleus were mostly frequent in groups Atra-2 ppb and Gly -65 ppb. All treatments (Gly-6500 ppb, Atra-2 ppb, Atra-200 ppb, Fip-4 ppb and Fip-400 ppb), except for group Gly-65 ppb, led to decreased erythrocyte area, increased "nuclear area: erythrocyte area" ratio, as well as to decreased erythrocyte and erythrocyte nuclei circularity, which highlights the clear effect on the size and shape of these cells. On the other hand, the comet assay did not evidence any genotoxic effect caused by the assessed pesticides. This is a pioneer study on the mutagenic and morphotoxic potential of pesticides in P. expansa eclodides exposed in ovo to Gly, Atra and Fip; therefore, it is an insight on how these compounds can affect the health of these animals.
Collapse
Affiliation(s)
- José Silonardo Pereira de Oliveira
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí, Campus, Urutaí, GO, Brazil
| | | | - Wanessa Fernandes Carvalho
- Mutagenesis Laboratory, Biological Sciences Institute, ICB I - Federal University of Goiás, Samambaia Campus, Goiânia, GO, Brazil
| | - Marcelino Benvindo de Souza
- Mutagenesis Laboratory, Biological Sciences Institute, ICB I - Federal University of Goiás, Samambaia Campus, Goiânia, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí, Campus, Urutaí, GO, Brazil
| | - Karina Simões
- Morphology Department, Biological Sciences Institute, Federal University of Goiás, Samambaia Campus, Goiânia, GO, Brazil
| | - Daniela de Melo De Silva
- Mutagenesis Laboratory, Biological Sciences Institute, ICB I - Federal University of Goiás, Samambaia Campus, Goiânia, GO, Brazil
| | | | | | | | - Guilherme Malafaia
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí, Campus, Urutaí, GO, Brazil.
| |
Collapse
|
31
|
Heavy metal and pesticide exposure: A mixture of potential toxicity and carcinogenicity. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|