1
|
Gavrila AM, Diacon A, Iordache TV, Rotariu T, Ionita M, Toader G. Hazardous Materials from Threats to Safety: Molecularly Imprinted Polymers as Versatile Safeguarding Platforms. Polymers (Basel) 2024; 16:2699. [PMID: 39408411 PMCID: PMC11478541 DOI: 10.3390/polym16192699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Hazards associated with highly dangerous pollutants/contaminants in water, air, and land resources, as well as food, are serious threats to public health and the environment. Thus, it is imperative to detect or decontaminate, as risk-control strategies, the possible harmful substances sensitively and efficiently. In this context, due to their capacity to be specifically designed for various types of hazardous compounds, the synthesis and use of molecularly imprinted polymers (MIPs) have become widespread. By molecular imprinting, affinity sites with complementary shape, size, and functionality can be created for any template molecule. MIPs' unique functions in response to external factors have attracted researchers to develop a broad range of MIP-based sensors with increased sensitivity, specificity, and selectivity of the recognition element toward target hazardous compounds. Therefore, this paper comprehensively reviews the very recent progress of MIPs and smart polymer applications for sensing or decontamination of hazardous compounds (e.g., drugs, explosives, and biological or chemical agents) in various fields from 2020 to 2024, providing researchers with a rapid tool for investigating the latest research status.
Collapse
Affiliation(s)
- Ana-Mihaela Gavrila
- National Institute for Research, Development in Chemistry and Petrochemistry ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.-M.G.); (T.-V.I.)
| | - Aurel Diacon
- Military Technical Academy “Ferdinand I”, 39–49 George Cosbuc Boulevard, 050141 Bucharest, Romania; (A.D.); (T.R.)
| | - Tanta-Verona Iordache
- National Institute for Research, Development in Chemistry and Petrochemistry ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.-M.G.); (T.-V.I.)
| | - Traian Rotariu
- Military Technical Academy “Ferdinand I”, 39–49 George Cosbuc Boulevard, 050141 Bucharest, Romania; (A.D.); (T.R.)
| | - Mariana Ionita
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA Bucharest (UNSTPB), Gheorghe Polizu 1-7, 011061 Bucharest, Romania;
| | - Gabriela Toader
- Military Technical Academy “Ferdinand I”, 39–49 George Cosbuc Boulevard, 050141 Bucharest, Romania; (A.D.); (T.R.)
| |
Collapse
|
2
|
Rozsypal T. Persistence of A-234 nerve agent on indoor surfaces. CHEMOSPHERE 2024; 357:141968. [PMID: 38615965 DOI: 10.1016/j.chemosphere.2024.141968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Understanding the fundamental physical characteristics of extremely toxic compounds and their behavior across different environments plays a crucial role in assessing their danger. Additionally, this knowledge informs the development of protocols for gathering forensic evidence related to harmful chemicals misuse. In 2018, former Russian spy Sergei Skripal and his daughter were poisoned in Salisbury, England, with a substance later identified as the unconventional nerve agent A-234. Contamination with the compound was found on items inside Skripal's home. The aim of this paper was to determine the persistence of A-234 on selected indoor surfaces. Ceramics, aluminum can, laminated chipboard, polyvinyl chloride (PVC) floor tile, polyethylene terephthalate (PET) bottle, acrylic paint and computer keyboard were used as matrices. The decrease in surface contamination and further fate of the compound was monitored for 12 weeks. Persistence determination involved optimizing the wipe sampling method. Simultaneously, evaporation from the surface and permeation of the contaminant into the matrix were closely monitored. The experimental findings indicate that the nerve agent exhibits remarkable persistence, particularly on impermeable surfaces. Notably, the process of A-234 evaporation plays a minor role in determining its fate, with detectable concentrations observed solely above solid, non-porous surfaces such as ceramics and aluminum can. The surface persistence half-life varied significantly, ranging from 12 min to 478 days, depending on the material. The article has implications for emergency response protocols, decontamination strategies, public health and crime scene investigations.
Collapse
Affiliation(s)
- Tomáš Rozsypal
- Nuclear, Biological and Chemical Defence Institute, University of Defence, Vita Nejedleho 1, 68203, Vyskov, Czech Republic.
| |
Collapse
|
3
|
Voros C, Dias J, Timperley CM, Nachon F, Brown RCD, Baati R. The risk associated with organophosphorus nerve agents: from their discovery to their unavoidable threat, current medical countermeasures and perspectives. Chem Biol Interact 2024; 395:110973. [PMID: 38574837 DOI: 10.1016/j.cbi.2024.110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
The first organophosphorus nerve agent was discovered accidently during the development of pesticides, shortly after the first use of chemical weapons (chlorine, phosgene) on the battlefield during World War I. Despite the Chemical Weapons Convention banning these substances, they have still been employed in wars, terrorist attacks or political assassinations. Characterised by their high lethality, they target the nervous system by inhibiting the acetylcholinesterase (AChE) enzyme, preventing neurotransmission, which, if not treated rapidly, inevitably leads to serious injury or the death of the person intoxicated. The limited efficacy of current antidotes, known as AChE reactivators, pushes research towards new treatments. Numerous paths have been explored, from modifying the original pyridinium oximes to developing hybrid reactivators seeking a better affinity for the inhibited AChE. Another crucial approach resides in molecules more prone to cross the blood-brain barrier: uncharged compounds, bio-conjugated reactivators or innovative formulations. Our aim is to raise awareness on the threat and toxicity of organophosphorus nerve agents and to present the main synthetic efforts deployed since the first AChE reactivator, to tackle the task of efficiently treating victims of these chemical warfare agents.
Collapse
Affiliation(s)
- Camille Voros
- Ecole de Chimie Polymère et Matériaux ECPM, Université de Strasbourg, ICPEES UMR CNRS 7515, 25 rue Becquerel, F-67087, Strasbourg, France.
| | - José Dias
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, F-91220 Brétigny-sur-Orge, France
| | - Christopher M Timperley
- Chemical, Biological and Radiological (CBR) Division, Dstl, Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK.
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, F-91220 Brétigny-sur-Orge, France
| | - Richard C D Brown
- Department of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Rachid Baati
- Ecole de Chimie Polymère et Matériaux ECPM, Université de Strasbourg, ICPEES UMR CNRS 7515, 25 rue Becquerel, F-67087, Strasbourg, France; OPGS Pharmaceuticals, Paris BioTech Santé, 24 rue du Faubourg Saint-Jacques, F-75014, Paris, France.
| |
Collapse
|
4
|
Cornelissen AS, van den Berg RM, Langenberg JP, van Grol M, Bross R, Pittman J, Cochrane L, Savransky V. Effective skin decontamination with RSDL® (reactive skin decontamination lotion kit) following dermal exposure to a Novichok class nerve agent. Chem Biol Interact 2024; 395:111001. [PMID: 38641146 DOI: 10.1016/j.cbi.2024.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/30/2024] [Accepted: 04/07/2024] [Indexed: 04/21/2024]
Abstract
In recent years, various poisoning incidents have been reported, involving the alleged use of the so-called Novichok agents, resulting in their addition to the Schedule I list of the Organisation for the Prohibition of Chemical Warfare (OPCW). As the physicochemical properties of these agents are different from the 'classical' nerve agents, such as VX, research is needed to evaluate whether and to what extent existing countermeasures are effective. Here, we evaluated the therapeutic potential of RSDL® (Reactive Skin Decontamination Lotion Kit) for the neutralization of percutaneous toxicity caused by Novichok agents, both in vitro and in vivo. Experiments showed the three selected Novichok agents (A230, A232, A234) could be degraded by RSDL lotion, but at a different rate. The half-life of A234, in the presence of an excess of RSDL lotion, was 36 min, as compared to A230 (<5 min) and A232 (18 min). Following dermal exposure of guinea pigs to A234, application of the RSDL kit was highly effective in preventing intoxication, even when applied up until 30 min following exposure. Delayed use of the RSDL kit until the appearance of clinical signs of intoxication (3-4 h) was not able to prevent intoxication progression and deaths. This study determines RSDL decontamination as an effective treatment strategy for dermal exposure to the Novichok agent A234 and underscores the importance of early, forward use of skin decontamination, as rapidly as possible.
Collapse
Affiliation(s)
- Alex S Cornelissen
- TNO Defence, Safety and Security, CBRN Protection, Rijswijk, the Netherlands
| | | | - Jan P Langenberg
- TNO Defence, Safety and Security, CBRN Protection, Rijswijk, the Netherlands
| | - Marco van Grol
- TNO Defence, Safety and Security, CBRN Protection, Rijswijk, the Netherlands
| | - Rowdy Bross
- TNO Defence, Safety and Security, CBRN Protection, Rijswijk, the Netherlands
| | - John Pittman
- Emergent BioSolutions Inc., Gaithersburg, MD, USA
| | | | | |
Collapse
|
5
|
Blom TL, Wingelaar TT. Current Perspectives on the Management of Patients Poisoned With Novichok: A Scoping Review. Mil Med 2024; 189:e1381-e1389. [PMID: 38035754 DOI: 10.1093/milmed/usad464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023] Open
Abstract
INTRODUCTION Nerve agents have emerged as a global threat since their discovery in the 1930s, posing severe risks due to their inhibition of acetylcholinesterase and the subsequent accumulation of acetylcholine in nerve synapses. Despite the enforcement of the Chemical Weapon Convention to control chemical weapons, including nerve agents, recent events, such as the Novichok attacks on Sergei Skripal and Alexei Navalny, have highlighted the persistent threat. Novichok, a distinct class of nerve agents, raises specific concerns regarding its management due to limited understanding. This article aims to comprehensively analyze existing literature. MATERIALS AND METHODS A scoping review was employed to comprehensively assess the current state of knowledge on managing patients poisoned with Novichok. Following the PRISMA-ScR guidelines, relevant literature was identified in peer-reviewed journals covering symptoms, diagnosis, treatment, decontamination, and long-term effects. Searches were conducted on February 1, 2023, across four electronic databases (PubMed, EMBASE, MEDLINE, and Web of Science) using "Novichok" as a keyword. No restrictions were applied, and additional studies were sought from the references of identified papers. Eligible papers included discussions on Novichok or its specific properties impacting management, regardless of study type, language, or publication date, while those unrelated to the study's conceptual framework were excluded. RESULTS A total of 170 records were identified from the initial database search, with 86 studies screened after removing duplicates. Among these, 28 publications met the eligibility criteria and were included in the analysis. An additional relevant study was identified from the citation lists of included studies, bringing the total to 29. The review encompasses studies published from 2018 onwards, indicating the growing interest in this topic. While most studies are reviews on Novichok or nerve agents in general, several theoretical and experimental investigations were also found. CONCLUSION This review highlights the significant uncertainties and knowledge gaps surrounding the management of patients poisoned with Novichok. While some aspects align with other nerve agents, limited research likely due to safety and ethical challenges leads to assumptions and uncertainties in patient care. The review identifies areas with ongoing research, such as decontamination and biomarker recognition, while other aspects remain understudied. The possible inefficacy of current treatment options and the need for further research on oximes, bioscavengers, and long-term effects emphasize the necessity for increased research to optimize patient outcomes. More studies are essential to clarify the actual threat and toxicity of Novichok. Moreover, raising awareness among medical staff is crucial for early diagnosis, prompt treatment, and safety. This review offers valuable insights into managing Novichok-poisoned patients and calls for increased research and awareness in this critical area.
Collapse
Affiliation(s)
- Tess L Blom
- Diving and Submarine Medical Center, Royal Netherlands Navy, Den Helder, CA 1780, the Netherlands
| | - Thijs T Wingelaar
- Diving and Submarine Medical Center, Royal Netherlands Navy, Den Helder, CA 1780, the Netherlands
| |
Collapse
|
6
|
Clay WK, Buck AK, He Y, Hernández Sánchez DN, Ward NA, Lear JM, Nguyen KQ, Clark BH, Sapia RJ, Lalisse RF, Sriraman A, Cadieux CL, McElroy CA, Callam CS, Hadad CM. Treatment of Organophosphorus Poisoning with 6-Alkoxypyridin-3-ol Quinone Methide Precursors: Resurrection of Methylphosphonate-Aged Acetylcholinesterase. Chem Res Toxicol 2024; 37:643-657. [PMID: 38556765 DOI: 10.1021/acs.chemrestox.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Organophosphorus (OP) nerve agents inhibit acetylcholinesterase (AChE), creating a cholinergic crisis in which death can occur. The phosphylated serine residue spontaneously dealkylates to the OP-aged form, which current therapeutics cannot reverse. Soman's aging half-life is 4.2 min, so immediate recovery (resurrection) of OP-aged AChE is needed. In 2018, we showed pyridin-3-ol-based quinone methide precursors (QMPs) can resurrect OP-aged electric eel AChE in vitro, achieving 2% resurrection after 24 h of incubation (pH 7, 4 mM). We prepared 50 unique 6-alkoxypyridin-3-ol QMPs with 10 alkoxy groups and five amine leaving groups to improve AChE resurrection. These compounds are predicted in silico to cross the blood-brain barrier and treat AChE in the central nervous system. This library resurrected 7.9% activity of OP-aged recombinant human AChE after 24 h at 250 μM, a 4-fold increase from our 2018 report. The best QMP (1b), with a 6-methoxypyridin-3-ol core and a diethylamine leaving group, recovered 20.8% (1 mM), 34% (4 mM), and 42.5% (predicted maximum) of methylphosphonate-aged AChE activity over 24 h. Seven QMPs recovered activity from AChE aged with Soman and a VX degradation product (EA-2192). We hypothesize that QMPs form the quinone methide (QM) to realkylate the phosphylated serine residue as the first step of resurrection. We calculated thermodynamic energetics for QM formation, but there was no trend with the experimental biochemical data. Molecular docking studies revealed that QMP binding to OP-aged AChE is not the determining factor for the observed biochemical trends; thus, QM formation may be enzyme-mediated.
Collapse
Affiliation(s)
- William K Clay
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Anne K Buck
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yiran He
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dalyanne N Hernández Sánchez
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nathan A Ward
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy M Lear
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kenny Q Nguyen
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Benjamin H Clark
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ryan J Sapia
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Remy F Lalisse
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Aishwarya Sriraman
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
- U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - C Linn Cadieux
- U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Craig A McElroy
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Christopher S Callam
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Hrabinova M, Pejchal J, Hepnarova V, Muckova L, Junova L, Opravil J, Zdarova Karasova J, Rozsypal T, Dlabkova A, Rehulkova H, Kucera T, Vecera Z, Caisberger F, Schmidt M, Soukup O, Jun D. A-series agent A-234: initial in vitro and in vivo characterization. Arch Toxicol 2024; 98:1135-1149. [PMID: 38446233 PMCID: PMC10944400 DOI: 10.1007/s00204-024-03689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 03/07/2024]
Abstract
A-series agent A-234 belongs to a new generation of nerve agents. The poisoning of a former Russian spy Sergei Skripal and his daughter in Salisbury, England, in March 2018 led to the inclusion of A-234 and other A-series agents into the Chemical Weapons Convention. Even though five years have already passed, there is still very little information on its chemical properties, biological activities, and treatment options with established antidotes. In this article, we first assessed A-234 stability in neutral pH for subsequent experiments. Then, we determined its inhibitory potential towards human recombinant acetylcholinesterase (HssAChE; EC 3.1.1.7) and butyrylcholinesterase (HssBChE; EC 3.1.1.8), the ability of HI-6, obidoxime, pralidoxime, methoxime, and trimedoxime to reactivate inhibited cholinesterases (ChEs), its toxicity in rats and therapeutic effects of different antidotal approaches. Finally, we utilized molecular dynamics to explain our findings. The results of spontaneous A-234 hydrolysis showed a slow process with a reaction rate displaying a triphasic course during the first 72 h (the residual concentration 86.2%). A-234 was found to be a potent inhibitor of both human ChEs (HssAChE IC50 = 0.101 ± 0.003 µM and HssBChE IC50 = 0.036 ± 0.002 µM), whereas the five marketed oximes have negligible reactivation ability toward A-234-inhibited HssAChE and HssBChE. The acute toxicity of A-234 is comparable to that of VX and in the context of therapy, atropine and diazepam effectively mitigate A-234 lethality. Even though oxime administration may induce minor improvements, selected oximes (HI-6 and methoxime) do not reactivate ChEs in vivo. Molecular dynamics implies that all marketed oximes are weak nucleophiles, which may explain the failure to reactivate the A-234 phosphorus-serine oxygen bond characterized by low partial charge, in particular, HI-6 and trimedoxime oxime oxygen may not be able to effectively approach the A-234 phosphorus, while pralidoxime displayed low interaction energy. This study is the first to provide essential experimental preclinical data on the A-234 compound.
Collapse
Affiliation(s)
- Martina Hrabinova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
| | - Jaroslav Pejchal
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
| | - Vendula Hepnarova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Králové, Czech Republic.
| | - Lubica Muckova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Lucie Junova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Jakub Opravil
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
| | - Jana Zdarova Karasova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Tomas Rozsypal
- University of Defence, Nuclear, Biological, and Chemical Defence Institute, Vita Nejedleho 1, 68203, Vyskov, Czech Republic
| | - Alzbeta Dlabkova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
| | - Helena Rehulkova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
| | - Tomas Kucera
- University of Defence, Military Faculty of Medicine, Department of Military Medical Service Organization and Management, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
| | - Zbyněk Vecera
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
| | - Filip Caisberger
- University Hospital Hradec Kralove, Department of Neurology, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Monika Schmidt
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Králové, Czech Republic
- University Hradec Kralove, Department of Chemistry, Faculty of Science, Rokitanskeho 62, 50003, Hradec Králové, Czech Republic
| | - Ondrej Soukup
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Daniel Jun
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Králové, Czech Republic.
| |
Collapse
|
8
|
Noga M, Michalska A, Jurowski K. The prediction of hydrolysis and biodegradation of organophosphorus-based chemical warfare agents (G-series and V-series) using toxicology in silico methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116018. [PMID: 38325275 DOI: 10.1016/j.ecoenv.2024.116018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Nerve agents (G- and V-series) are a group of extremely toxic organophosphorus chemical warfare agents that we have had the opportunity to encounter many times on a massive scale (Matsumoto City, Tokyo subway and Gulf War). The threat of using nerve agents in terrorist attacks or military operations is still present, even with establishing the Chemical Weapons Convention as the legal framework. Understanding their environmental sustainability and health risks is critical to social security. Due to the risk of contact with dangerous nerve agents and animal welfare considerations, in silico methods were used to assess hydrolysis and biodegradation safely. The environmental fate of the examined nerve agents was elucidated using QSAR models. The results indicate that the investigated compounds released into the environment hydrolyse at a different rate, from extremely fast (<1 day) to very slow (over a year); V-agents undergo slower hydrolysis compared to G-agents. V-agents turned out to be relatively challenging to biodegrade, the ultimate biodegradation time frame of which was predicted as weeks to months, while for G-agents, the overwhelming majority was classified as weeks. In silico methods for predicting various parameters are critical to preparing for the forthcoming application of nerve agents.
Collapse
Affiliation(s)
- Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Agata Michalska
- Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland; Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland.
| |
Collapse
|
9
|
Jeong K, Kim H, Min S, Yoon YW, Cho Y, Park CH, Ryu TI, Hwang SR, Namgoong SK. DFT-Spectroscopy Integrated Identification Method on Unknown Terrorist Chemical Mixtures by Incorporating Experimental and Theoretical GC-MS, NMR, IR, and DFT-NMR/IR Data. Anal Chem 2024; 96:694-700. [PMID: 38153912 DOI: 10.1021/acs.analchem.3c03647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
In the event of a chemical attack, the rapid identification of unknown chemical agents is critical for an effective emergency response and treatment of victims. However, identifying unknown compounds is difficult, particularly when relying on traditional methods such as gas and liquid chromatography-mass spectrometry (GC-MS, LC-MS). In this study, we developed a density functional theory and spectroscopy integrated identification method (D-SIIM) for the possible detection of unknown or unidentified terrorist materials, specifically chemical warfare agents (CWAs). The D-SIIM uses a combination of GC-MS, nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy, and quantum chemical calculation-based NMR/IR predictions to identify potential CWA candidates based on their chemical signatures. Using D-SIIM, we successfully verified the presence of blister and nerve agent simulants in samples by excluding other compounds (ethyl propyl sulfide and methylphosphonic acid), which were predicted to be candidates with high probability by GC-MS. The findings of this study demonstrate that the D-SIIM can detect substances that are likely present in CWA mixtures and can be used to identify unknown terrorist chemicals.
Collapse
Affiliation(s)
- Keunhong Jeong
- Department of Physics and Chemistry, Korea Military Academy, Seoul 01805, South Korea
| | - Honghyun Kim
- Department of Civil Engineering and Environmental Sciences, Korea Military Academy, Seoul 01805, South Korea
| | - Sein Min
- Department of Chemistry, Seoul Women's University, Seoul 01797, South Korea
| | - Young Wook Yoon
- Department of Chemistry, Seoul Women's University, Seoul 01797, South Korea
| | - Yoonjae Cho
- Accident Coordination and Training Division, National Institute of Chemical Safety, 90 Gajeongbuk-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Choon Hwa Park
- Accident Coordination and Training Division, National Institute of Chemical Safety, 90 Gajeongbuk-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Tae In Ryu
- Accident Coordination and Training Division, National Institute of Chemical Safety, 90 Gajeongbuk-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Seung-Ryul Hwang
- Accident Coordination and Training Division, National Institute of Chemical Safety, 90 Gajeongbuk-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Sung Keon Namgoong
- Department of Chemistry, Seoul Women's University, Seoul 01797, South Korea
| |
Collapse
|
10
|
Madaj R, Gostyński B, Chworos A, Cypryk M. Novichok Nerve Agents as Inhibitors of Acetylcholinesterase-In Silico Study of Their Non-Covalent Binding Affinity. Molecules 2024; 29:338. [PMID: 38257251 PMCID: PMC10819560 DOI: 10.3390/molecules29020338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
In silico studies were performed to assess the binding affinity of selected organophosphorus compounds toward the acetylcholinesterase enzyme (AChE). Quantum mechanical calculations, molecular docking, and molecular dynamics (MD) with molecular mechanics Generalized-Born surface area (MM/GBSA) were applied to assess quantitatively differences between the binding energies of acetylcholine (ACh; the natural agonist of AChE) and neurotoxic, synthetic correlatives (so-called "Novichoks", and selected compounds from the G- and V-series). Several additional quantitative descriptors like root-mean-square fluctuation (RMSF) and the solvent accessible surface area (SASA) were briefly discussed to give-to the best of our knowledge-the first quantitative in silico description of AChE-Novichok non-covalent binding process and thus facilitate the search for an efficient and effective treatment for Novichok intoxication and in a broader sense-intoxication with other warfare nerve agents as well.
Collapse
Affiliation(s)
- Rafal Madaj
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (R.M.); (A.C.)
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Bartłomiej Gostyński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (R.M.); (A.C.)
| | - Arkadiusz Chworos
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (R.M.); (A.C.)
| | - Marek Cypryk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (R.M.); (A.C.)
| |
Collapse
|
11
|
Iyengar ARS, Khandave PY, Bzdrenga J, Nachon F, Brazzolotto X, Pande AH. Warfare Nerve Agents and Paraoxonase-1 as a Potential Prophylactic Therapy against Intoxication. Protein Pept Lett 2024; 31:345-355. [PMID: 38706353 DOI: 10.2174/0109298665284293240409045359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 05/07/2024]
Abstract
Nerve agents are a class of lethal neurotoxic chemicals used in chemical warfare. In this review, we have discussed a brief history of chemical warfare, followed by an exploration of the historical context surrounding nerve agents. The article explores the classification of these agents, their contemporary uses, their toxicity mechanisms, and the disadvantages of the current treatment options for nerve agent poisoning. It then discusses the possible application of enzymes as prophylactics against nerve agent poisoning, outlining the benefits and drawbacks of paraoxonase- 1. Finally, the current studies on paraoxonase-1 are reviewed, highlighting that several challenges need to be addressed in the use of paraoxonase-1 in the actual field and that its potential as a prophylactic antidote against nerve agent poisoning needs to be evaluated. The literature used in this manuscript was searched using various electronic databases, such as PubMed, Google Scholar, Web of Science, Elsevier, Springer, ACS, Google Patent, and books using the keywords chemical warfare agent, butyrylcholinesterase, enzyme, nerve agent, prophylactic, and paraoxonase-1, with the time scale for the analysis of articles between 1960 to 2023. The study has suggested that concerted efforts by researchers and agencies must be made to develop effective countermeasures against NA poisoning and that paraoxonase-1 has suitable properties for the development of efficient prophylaxis against NA poisoning.
Collapse
Affiliation(s)
- A R Satvik Iyengar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Prakash Y Khandave
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Janek Bzdrenga
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Place du Général Valérie André, 91220, Brétigny-sur-Orge, France
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Place du Général Valérie André, 91220, Brétigny-sur-Orge, France
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Place du Général Valérie André, 91220, Brétigny-sur-Orge, France
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| |
Collapse
|
12
|
Opravil J, Pejchal J, Finger V, Korabecny J, Rozsypal T, Hrabinova M, Muckova L, Hepnarova V, Konecny J, Soukup O, Jun D. A-agents, misleadingly known as "Novichoks": a narrative review. Arch Toxicol 2023; 97:2587-2607. [PMID: 37612377 PMCID: PMC10475003 DOI: 10.1007/s00204-023-03571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023]
Abstract
"Novichok" refers to a new group of nerve agents called the A-series agents. Their existence came to light in 2018 after incidents in the UK and again in 2020 in Russia. They are unique organophosphorus-based compounds developed during the Cold War in a program called Foliant in the USSR. This review is based on original chemical entities from Mirzayanov's memoirs published in 2008. Due to classified research, a considerable debate arose about their structures, and hence, various structural moieties were speculated. For this reason, the scientific literature is highly incomplete and, in some cases, contradictory. This review critically assesses the information published to date on this class of compounds. The scope of this work is to summarize all the available and relevant information, including the physicochemical properties, chemical synthesis, mechanism of action, toxicity, pharmacokinetics, and medical countermeasures used to date. The environmental stability of A-series agents, the lack of environmentally safe decontamination, their high toxicity, and the scarcity of information on post-contamination treatment pose a challenge for managing possible incidents.
Collapse
Affiliation(s)
- Jakub Opravil
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Vladimir Finger
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Tomas Rozsypal
- Nuclear, Biological and Chemical Defence Institute, University of Defence, Vita Nejedleho 1, 682 03 Vyskov, Czech Republic
| | - Martina Hrabinova
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lubica Muckova
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jan Konecny
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Daniel Jun
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
13
|
Yamaguchi A, Miyaguchi H. Advances in Derivatization Techniques Enabled by DABCO for Novichok Agent Analysis in Biofluids Using LC-MS. Anal Chem 2023; 95:13674-13682. [PMID: 37642268 DOI: 10.1021/acs.analchem.3c02775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The characterization of Novichoks (NVs), a new group of nerve agents that have been implicated in two recent poisonings, has not been extensively conducted. Here, we present a novel method for analyzing NV hydrolysates using liquid chromatography-tandem mass spectrometry (LC-MS/MS) enabled by pentafluorobenzyl (PFB) derivatization followed by reaction with 1,4-diazabicyclo[2.2.2]octane (DABCO). This approach enabled efficient, simultaneous screening of six NV hydrolysates, with 1-2 orders improvement in the limit of detection in relation to that achieved through previous methods. A straightforward pretreatment using DABCO and filtration was employed for biological samples, mitigating instrument damage and allowing LC-MS/MS after a reaction with highly hydrophobic PFB bromide (PFBBr). In addition, the use of pralidoxime (PAM) significantly enhanced the detection of NV hydrolysates from NV-surrogate-spiked serum. While PAM is not a proven NV antidote, its effectiveness as an analytical reagent to aid in the detection of NV hydrolysates was demonstrated for the first time. Understanding the proposed mechanism of DABCO-mediated derivatization reagent removal in this research could broaden the range of compounds amenable to derivatization LC, thereby enhancing the capabilities of conventional derivatization techniques.
Collapse
Affiliation(s)
- Akinori Yamaguchi
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa 277-0882, Japan
| | - Hajime Miyaguchi
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa 277-0882, Japan
| |
Collapse
|
14
|
Pulkrabkova L, Muckova L, Hrabinova M, Sorf A, Kobrlova T, Jost P, Bezdekova D, Korabecny J, Jun D, Soukup O. Differentiated SH-SY5Y neuroblastoma cells as a model for evaluation of nerve agent-associated neurotoxicity. Arch Toxicol 2023; 97:2209-2217. [PMID: 37221426 DOI: 10.1007/s00204-023-03525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023]
Abstract
Organophosphorus compounds (OPs) involving life-threatening nerve agents (NA) have been known for several decades. Despite a clear mechanism of their lethality caused by the irreversible inhibition of acetylcholinesterase (AChE) and manifested via overstimulation of peripheral nicotinic and muscarinic acetylcholine (ACh) receptors, the mechanism for central neurotoxicity responsible for acute or delayed symptoms of the poisoning has not been thoroughly uncovered. One of the reasons is the lack of a suitable model. In our study, we have chosen the SH-SY5Y model in both the differentiated and undifferentiated state to study the effects of NAs (GB, VX and A234). The activity of expressed AChE in cell lysate assessed by Ellman's method showed 7.3-times higher activity in differentiated SH-SY5Y cells in contrast to undifferentiated cells, and with no involvement of BuChE as proved by ethopropazine (20 µM). The activity of AChE was found to be, in comparison to untreated cells, 16-, 9.3-, and 1.9-times lower upon A234, VX, and GB (100 µM) administration respectively. The cytotoxic effect of given OPs expressed as the IC50 values for differentiated and undifferentiated SH-SY5Y, respectively, was found 12 mM and 5.7 mM (A234), 4.8 mM and 1.1 mM (VX) and 2.6 mM and 3.8 mM (GB). In summary, although our results confirm higher AChE expression in the differentiated SH-SY5Y cell model, the such higher expression does not lead to a more pronounced NA cytotoxic effect. On the contrary, higher expression of AChE may attenuate NA-induced cytotoxicity by scavenging the NA. Such finding highlights a protective role for cholinesterases by scavenging Novichoks (A-agents). Second, we confirmed the mechanism of cytotoxicity of NAs, including A-agents, can be ascribed rather to the non-specific effects of OPs than to AChE-mediated effects.
Collapse
Affiliation(s)
- Lenka Pulkrabkova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, Hradec Kralove, Czech Republic
- University Hospital Hradec Kralove, Biomedical Research Center, Sokolska 581, Hradec Kralove, Czech Republic
| | - Lubica Muckova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, Hradec Kralove, Czech Republic
- University Hospital Hradec Kralove, Biomedical Research Center, Sokolska 581, Hradec Kralove, Czech Republic
| | - Martina Hrabinova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, Hradec Kralove, Czech Republic
- University Hospital Hradec Kralove, Biomedical Research Center, Sokolska 581, Hradec Kralove, Czech Republic
| | - Ales Sorf
- Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, Czech Republic
| | - Tereza Kobrlova
- University Hospital Hradec Kralove, Biomedical Research Center, Sokolska 581, Hradec Kralove, Czech Republic
| | - Petr Jost
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, Hradec Kralove, Czech Republic
| | - Dagmar Bezdekova
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolova 748, Klecany, Czech Republic
- 3rd Faculty of Medicine of Charles University, Ruska 2411/87, Prague, Czech Republic
| | - Jan Korabecny
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, Hradec Kralove, Czech Republic
- University Hospital Hradec Kralove, Biomedical Research Center, Sokolska 581, Hradec Kralove, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, Hradec Kralove, Czech Republic.
| | - Ondrej Soukup
- University Hospital Hradec Kralove, Biomedical Research Center, Sokolska 581, Hradec Kralove, Czech Republic.
| |
Collapse
|
15
|
Jung H, Heo J, Park N, Lim KC, Jung H, Do Cao V, Joung S. Elimination of A-234 from the environment: Effect of different decontaminants. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131150. [PMID: 36893597 DOI: 10.1016/j.jhazmat.2023.131150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
With the fact that there are Novichoks in the list of toxic chemicals by the Chemical Weapons Convention parties, it is necessary to develop methods of effective neutralization of the agents as well as for other organophosphorus toxic substances. However, experimental studies on their persistence in the environment and effective decontamination measures remain scarce. Therefore, here, we investigated the persistence behavior and decontamination methods of A-234 (ethyl N-[1-(diethylamino)ethylidene]phosphoramidofluoridate), a Novichok series, A-type nerve agent to assess its potential risk to the environment. Different analytical methods were implemented, including 31P solid-state magic angle spinning nuclear magnetic resonance (NMR), liquid 31P NMR, gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry, and vapor-emission screening using a microchamber/thermal extractor with GC-MS. Our results showed that A-234 is extremely stable in sand and poses a long-lasting risk to the environment even when released in trace quantities. Moreover, the agent is not easily decomposed by water, dichloroisocyanuric acid sodium salt, sodium persulfate, and chlorine-based water-soluble decontaminants. However, it is efficiently decontaminated by Oxone® monopersulfate, calcium hypochlorite, KOH, NaOH, and HCl within 30 min. Our findings provide valuable insights for eliminating the highly dangerous Novichok agents from the environment.
Collapse
Affiliation(s)
- Hyunsook Jung
- Chem-Bio Technology Center, Agency for Defense Development, Yuseong-gu, Daejeon 34063, Republic of Korea; Weapon Systems Engineering, University of Science and Technology, Gajeong-ro, Yuseung-gu, Deajeon 34113, Republic of Korea.
| | - Jiwoong Heo
- Chem-Bio Technology Center, Agency for Defense Development, Yuseong-gu, Daejeon 34063, Republic of Korea
| | - Nahye Park
- Chem-Bio Technology Center, Agency for Defense Development, Yuseong-gu, Daejeon 34063, Republic of Korea
| | - Kyoung Chan Lim
- Chem-Bio Technology Center, Agency for Defense Development, Yuseong-gu, Daejeon 34063, Republic of Korea
| | - Heesoo Jung
- Chem-Bio Technology Center, Agency for Defense Development, Yuseong-gu, Daejeon 34063, Republic of Korea
| | - Vinh Do Cao
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Seewon Joung
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
16
|
Noga M, Michalska A, Jurowski K. Application of toxicology in silico methods for prediction of acute toxicity (LD 50) for Novichoks. Arch Toxicol 2023; 97:1691-1700. [PMID: 37145338 PMCID: PMC10182927 DOI: 10.1007/s00204-023-03507-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Novichoks represent the fourth generation of chemical warfare agents with paralytic and convulsive effects, produced clandestinely during the Cold War by the Soviet Union. This novel class of organophosphate compounds is characterised by severe toxicity, which, for example, we have already experienced three times (Salisbury, Amesbury, and Navalny's case) as a society. Then the public debate about the true nature of Novichoks began, realising the importance of examining the properties, especially the toxicological aspects of these compounds. The updated Chemical Warfare Agents list registers over 10,000 compounds as candidate structures for Novichoks. Consequently, conducting experimental research for each of them would be a huge challenge. Additionally, due to the enormous risk of contact with hazardous Novichoks, in silico assessments were applied to estimate their toxicity safely. In silico toxicology provides a means of identifying hazards of compounds before synthesis, helping to fill gaps and guide risk minimisation strategies. A new approach to toxicology testing first considers the prediction of toxicological parameters, eliminating unnecessary animal studies. This new generation risk assessment (NGRA) can meet the modern requirements of toxicological research. The present study explains, using QSAR models, the acute toxicity of the Novichoks studied (n = 17). The results indicate that the toxicity of Novichoks varies. The deadliest turned out to be A-232, followed by A-230 and A-234. On the other hand, the "Iranian" Novichok and C01-A038 compounds turned out to be the least toxic. Developing reliable in silico methods to predict various parameters is essential to prepare for the upcoming use of Novichoks.
Collapse
Affiliation(s)
- Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, Ul. Aleksandrowska 67/93, 91-205, Łódź, Poland
| | - Agata Michalska
- Institute of Medical Expertises in Łódź, Ul. Aleksandrowska 67/93, 91-205, Łódź, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, Ul. Aleksandrowska 67/93, 91-205, Łódź, Poland.
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. Mjr. W. Kopisto 2a, 35-959, Rzeszów, Poland.
| |
Collapse
|
17
|
Review of Possible Therapies in Treatment of Novichoks Poisoning and HAZMAT/CBRNE Approaches: State of the Art. J Clin Med 2023; 12:jcm12062221. [PMID: 36983219 PMCID: PMC10054273 DOI: 10.3390/jcm12062221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
Novichoks-organophosphorus compounds belong to the nerve agents group, constituting the fourth generation of chemical warfare agents. The tremendous toxicity of Novichoks is assumed to be several times greater than that of VX, whereas no published experimental research supports this. They were surreptitiously created during the Cold War by the Soviet Union. Novichok’s toxic action mechanism consists of the inhibition of acetylcholinesterase activity. The review includes data on treating poisoning caused by OPs which could be used as guidelines for the therapy in case of Novichok exposure and HAZMAT/CBRNE approaches. Novichoks pose a severe threat due to their toxicity; however, there is insufficient information about the identity of A-series nerve agents. Filling in the missing data gaps will accelerate progress in improving protection against Novichoks and developing optimal therapy for treating poisoning casualties. Furthermore, introducing solutions to protect medical personnel in contact with a hazardous substance increases the chances of saving casualties of HAZMAT/CBRNE incidents.
Collapse
|
18
|
Lee JY, Shin JY, Kim HS. Optimization of Solid-Phase Extraction of a Degradation Product of Novichok (A234) and Its Application to Environmental Samples. J Anal Toxicol 2023; 47:81-88. [PMID: 35640302 DOI: 10.1093/jat/bkac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 05/09/2022] [Accepted: 05/29/2022] [Indexed: 11/13/2022] Open
Abstract
There have been no detailed investigations regarding solid-phase-extraction (SPE) optimization and screening for the degradation products of ethyl (1-(diethylamino)ethylidene)phosphoramidofluoridate (A234) in various environmental samples. Therefore, as a first step in the selective SPE of the degradation products of A234, we optimized the SPE adsorption and extraction parameters for the A234 degradation product ethylhydrogen (1-(diethylamino)ethylidene)phosphoramidate (cpd 1). Among various SPE cartridges, the Si cartridge (500 mg, 3 mL) selectively extracted cpd 1 using an elution volume of 4 mL of 25% H2O in acetonitrile, which eliminated most interference without cpd 1 loss during loading and washing. In addition, the sorbent capacity is also critical in the adsorption of cpd 1. The Si cartridge (500 mg, 3 mL) retained cpd 1 in the concentration range 1-10 µg/mL. The linearity of detector response of cpd 1 in deionized H2O was studied in the range of 1.0-100 ng/mL and showed good linearity with γ2 ranging from 0.9979 to 0.996. The limits of detection for cpd 1 are 10 ng/mL in the product-scan mode and 100 ng/mL in the full-scan mode. Also, after we optimized the SPE method, we validated the precision and accuracy of the Si-cartridge extraction method in real soil samples with diverse concentrations. The precision ranged from 2.5% to 5.3%. This newly developed SPE is applicable to the analysis of a degradation product of Novichok A234 in various environmental matrices, such as water, soil and sand, in the Organization for the Prohibition of Chemical Weapons (OPCW) proficiency test and unknown samples collected from suspected sites.
Collapse
Affiliation(s)
- Jin Young Lee
- ChemBio Technology Center, Agency for Defense Development, PO Box 35-5, Yuseong-gu, Daejeon 34186, Republic of Korea
| | - Ji Young Shin
- ChemBio Technology Center, Agency for Defense Development, PO Box 35-5, Yuseong-gu, Daejeon 34186, Republic of Korea
| | - Hyun Suk Kim
- ChemBio Technology Center, Agency for Defense Development, PO Box 35-5, Yuseong-gu, Daejeon 34186, Republic of Korea
| |
Collapse
|
19
|
What do we currently know about Novichoks? The state of the art. Arch Toxicol 2023; 97:651-661. [PMID: 36583745 PMCID: PMC9968692 DOI: 10.1007/s00204-022-03437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022]
Abstract
Novichok is the name given to the group of nerve agents created stealthily in the later phases of the Cold War by the Soviet Union. Constitute the fourth generation of chemical warfare agents; like other nerve agents, they are organophosphorus compounds designed to be incurable and undetectable. The mechanism of action is based on the non-competitive and irreversible inhibition of acetylcholinesterase. Due to their enormous toxicity, Novichoks have become attractive targets for terrorists. However, little information is known about the identity of nerve agents. Furthermore, these compounds have never been submitted to the Chemical Weapons Convention. Our article aspires to provide a general overview of Novichoks knowledge. As part of this, we reviewed the available literature data to answer the question, what are Novichoks? In addition to the physical and chemical properties of A-agents, synthesis, mechanism of action, and toxicity of nerve agents were also reviewed. We hope that this review will highlight the tremendous threat posed by nerve agents and will inspire further studies on the interdisciplinary aspects of these compounds.
Collapse
|
20
|
Analysis of degradation products of Novichok agents in human urine by hydrophilic interaction liquid chromatography-tandem mass spectrometry. Forensic Toxicol 2022:10.1007/s11419-022-00656-4. [PMID: 36586094 DOI: 10.1007/s11419-022-00656-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE The detection of hydrolysis products of Novichok agents in biological samples from victims is important for confirming exposure to these agents. However, Novichok agents are new class of nerve agent and there have been only few reports on analyses of Novichok agent degradation products. Here, we developed hydrophilic interaction liquid chromatography (HILIC)-tandem mass spectrometry (MS/MS) methods to detect Novichok agent degradation products in human urine with simple pretreatment and high sensitivity. METHODS A Poroshell 120 HILIC-Z column was used to analyze six Novichok agent degradation products. For urine samples, we used a simple pretreatment method, which consisted of deproteinization with acetonitrile and microfiltration. We calculated the pKa values of the OH groups, the log P values, and the molecular weights to investigate the difference in chromatographic behaviors of the Novichok agent degradation products and the degradation products of conventional nerve agents. RESULTS Six Novichok agent degradation products, including N-(bis-(diethylamino)methylidene)-methylphosphonamidic acid (MPGA), which could not be detected by our previous method, could be analyzed with sufficient peak shape and mutual separation. The detection limits of six Novichok agent degradation products were sufficiently low (1-50 ng/mL) and the calibration curves showed sufficient linearity. The physicochemical parameters of Novichok agent degradation products were different from those of conventional nerve agent degradation products, and this explains the difference in chromatographic behaviors. CONCLUSION Six Novichok agent degradation products were successfully analyzed by HILIC-MS/MS. Due to the absence of a derivatization step, throughput performance was higher than our previous derivatization-liquid chromatography-MS/MS method.
Collapse
|
21
|
Rashid MAM, Lee B, Kim KH, Jeong K. Theoretical prediction on the hydrolysis rate of the new types of nerve agents: A density functional study. Toxicol Rep 2022; 10:27-31. [PMID: 36569478 PMCID: PMC9768234 DOI: 10.1016/j.toxrep.2022.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/16/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Although the hydrolysis mechanism of the nerve agents, which is the main decontamination pathway, has been studied experimentally and theoretically, the reliable theoretical prediction method for the hydrolysis rate is not studied yet. Furthermore, after the CWC (Chemical Warfare Agent) list is updated, Novichok candidate structures can be more than 10,000 structures, for which it is not possible to perform the experiment for all of them for synthesizing and getting the hydrolysis rate. Therefore, developing a reliable theoretical method for hydrolysis rate prediction is crucial to prepare for the forthcoming usage of new types of nerve agents. Herein, by using DFT (Density Functional Theory), we successfully developed a new method of predicting the hydrolysis rate on nerve agents by investigating the electrophilicity index (EI) of the various A-, V-, and G-series nerve agents and found a suitable correlation with the experimental hydrolysis rate. Among the several DFT methods, wb97xD predicts the EI with the lowest % deviation of the studied nerve agents. Our results show that EI can be a good indicator to predict the hydrolysis rate of the anticipated nerve agents. Based on the result, we predicted the hydrolysis rate on another type of Novichok candidates, which could be the firm basis for developing a decontaminant and antidote with much fewer experimental efforts on new types of nerve agents.
Collapse
Affiliation(s)
- Md Al Mamunur Rashid
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Byounghwak Lee
- Department of Physics and Chemistry, Korea Military Academy, Seoul 01805, South Korea
| | - Kwang Ho Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Keunhong Jeong
- Department of Physics and Chemistry, Korea Military Academy, Seoul 01805, South Korea
| |
Collapse
|
22
|
Precisely predicting the 1H and 13C NMR chemical shifts in new types of nerve agents and building spectra database. Sci Rep 2022; 12:20288. [PMID: 36434133 PMCID: PMC9700684 DOI: 10.1038/s41598-022-24647-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Following the recent terrorist attacks using Novichok agents and the subsequent decomposition operations, understanding the chemical structures of nerve agents has become important. To mitigate the ever-evolving threat of new variants, the Organization for the Prohibition of Chemical Weapons has updated the list of Schedule 1 substances defined by the Chemical Weapons Convention. However, owing to the several possible structures for each listed substance, obtaining an exhaustive dataset is almost impossible. Therefore, we propose a nuclear magnetic resonance-based prediction method for 1H and 13C NMR chemical shifts of Novichok agents based on conformational and density functional study calculations. Four organophosphorus compounds and five G- and V-type nerve agents were used to evaluate the accuracy of the proposed procedure. Moreover, 1H and 13C NMR prediction results for an additional 83 Novichok candidates were compiled as a database to aid future research and identification. Further, this is the first study to successfully predict the NMR chemical shifts of Novichok agents, with an exceptional agreement between predicted and experimental data. The conclusions enable the prediction of all possible structures of Novichok agents and can serve as a firm foundation for preparation against future terrorist attacks using new variants of nerve agents.
Collapse
|
23
|
|
24
|
de Koning MC, Vieira Soares C, van Grol M, Bross RPT, Maurin G. Effective Degradation of Novichok Nerve Agents by the Zirconium Metal-Organic Framework MOF-808. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9222-9230. [PMID: 35138813 DOI: 10.1021/acsami.1c24295] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Novichoks are a novel class of nerve agents (also referred to as the A-series) that were employed in several poisonings over the last few years. This calls for the development of novel countermeasures that can be applied in protective concepts (e.g., protective clothing) or in decontamination methods. The Zr metal-organic framework MOF-808 has recently emerged as a promising catalyst in the hydrolysis of the V- and G-series of nerve agents as well as their simulants. In this paper, we report a detailed study of the degradation of three Novichok agents by MOF-808 in buffers with varying pH. MOF-808 is revealed to be a highly efficient and regenerable catalyst for Novichok agent hydrolysis under basic conditions. In contrast to the V- and G-series of agents, degradation of Novichoks is demonstrated to proceed in two consecutive hydrolysis steps. Initial extremely rapid P-F bond breaking is followed by MOF-catalyzed removal of the amidine group from the intermediate product. The intermediate thus acted as a competitive substrate that was rate-determining for the whole two-step degradation route. Under acidic conditions, the amidine group in Novichok A-230 is more rapidly hydrolyzed than the P-F bond, giving rise to another moderately toxic intermediate. This intermediate could in turn be efficiently hydrolyzed by MOF-808 under basic conditions. These experimental observations were corroborated by density functional theory calculations to shed light on molecular mechanisms.
Collapse
Affiliation(s)
- Martijn C de Koning
- TNO Defense, Safety and Security, Lange Kleiweg 137, Rijswijk 2288GJ, The Netherlands
| | - Carla Vieira Soares
- ICGM, Univ. Montpellier, CNRS, ENSCM, Place E. Bataillon, Montpellier 34095, France
| | - Marco van Grol
- TNO Defense, Safety and Security, Lange Kleiweg 137, Rijswijk 2288GJ, The Netherlands
| | - Rowdy P T Bross
- TNO Defense, Safety and Security, Lange Kleiweg 137, Rijswijk 2288GJ, The Netherlands
| | - Guillaume Maurin
- ICGM, Univ. Montpellier, CNRS, ENSCM, Place E. Bataillon, Montpellier 34095, France
| |
Collapse
|
25
|
Unambiguous identification and determination of A234-Novichok nerve agent biomarkers in biological fluids using GC-MS/MS and LC-MS/MS. Anal Bioanal Chem 2022; 414:3429-3442. [PMID: 35190842 DOI: 10.1007/s00216-022-03964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 11/01/2022]
Abstract
The present study was intended to develop suitable methods for unambiguous identification and determination of ethyl (1-(diethylamino)ethylidene) phosphoramidofluoridate (known as A234-Novichok) biomarkers in urine and plasma samples. Multiple biomarkers were investigated for the first time, to verify intoxication by the A234-Novichok agent, using sensitive and accurate techniques including gas and liquid chromatography-tandem mass spectrometry (GC-MS/MS and LC-MS/MS). Like other nerve agents, in biological matrices, the A234-Novichok agent reacts with several proteins to form related adducts. Considering this, two different protein adduct biomarkers in blood samples were analyzed, and the regenerated A234 was determined. Two-dimensional chromatography and solid-phase extraction techniques were employed for blood sample preparation. Limits of detection for butyrylcholinesterase (BChE) adduct, the regenerated A234, and albumin covalent adduct were determined and reported as 1, 1, and 10 ng mL-1, while the related calibration curves were linear within the range of 2-100, 2-100, and 15-100 ng mL-1, respectively. The detection limit and linear range for the intact agent in the urine sample were determined as 0.1 and 1-100 ng mL-1, respectively. Since A234 and some other Novichok chemicals have been added to the Schedule 1 of the Chemical Weapons Convention (CWC), Annex on Chemicals, after UK incidents, the analytical methods developed in this work might be used for verification purposes, as well as OPCW Biomedical Proficiency Tests.
Collapse
|
26
|
Aslanli A, Lyagin I, Efremenko E. Decarboxylases as hypothetical targets for actions of organophosphates: Molecular modeling for prediction of hidden and unexpected health threats. Food Chem Toxicol 2022; 161:112856. [PMID: 35151785 DOI: 10.1016/j.fct.2022.112856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
Abstract
The rise of various neurodegenerative disorders are somewhat correlating with the worldwide application of multiple anthropogenic toxicants. Though different possible targets were revealed to date, for example, for organophosphorus compounds (OPs), plenty of questions remain. Several decarboxylases (aromatic amino acid decarboxylase, AADC; histidine decarboxylase, HDC; glutamate decarboxylase, GAD) catalyze the biosynthesis of neurotransmitters and neuromodulators and contain pyridoxal phosphate (PLP) as a cofactor. In the current work, 18 OPs which have different neurotoxicity (chemical warfare agents and pesticides) and can penetrate through the blood-brain barrier, were selected. Then, their possible interaction with these decarboxylases in both apo- and holoforms was revealed using computer modeling methods (molecular docking and dynamics). The main amino acid residues of the enzymes responsible for binding OPs have been identified. Individual substances that are most dangerous from the point of view of a possible negative effect on the activity of several decarboxylases were revealed among studied OPs. Glyphosate should be of special interest, since it is not highly toxic towards serine hydrolases, but may prove to be a strong inhibitor for decarboxylases. Holo-AADC could be the most inhibition-prone enzyme among all those investigated.
Collapse
Affiliation(s)
- Aysel Aslanli
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991, Moscow, Russia
| | - Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991, Moscow, Russia; N.M. Emanuel Institute of Biochemical Physics RAS, Kosygin str., 4, 119334, Moscow, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991, Moscow, Russia; N.M. Emanuel Institute of Biochemical Physics RAS, Kosygin str., 4, 119334, Moscow, Russia.
| |
Collapse
|
27
|
Lee JH, Jang WE, Park JH, Mohammad HB, Lee J, Jeong W, Kim M. Identification of organophosphate modifications by high‐resolution mass spectrometry. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Wooyoung Eric Jang
- Department of Chemistry Kyung Hee University Gyeonggi‐do Republic of Korea
| | | | | | - Jin‐Young Lee
- Chem‐Bio Technology Center Agency for Defense Development Daejeon Republic of Korea
| | - Woo‐Hyeon Jeong
- Chem‐Bio Technology Center Agency for Defense Development Daejeon Republic of Korea
| | - Min‐Sik Kim
- New Biology DGIST Daegu Republic of Korea
- Department of Chemistry Kyung Hee University Gyeonggi‐do Republic of Korea
| |
Collapse
|
28
|
Kim H, Yoon UH, Ryu TI, Jeong HJ, il Kim S, Park J, Kye YS, Hwang SR, Kim D, cho Y, Jeong K. Calculation of the infrared spectra of organophosphorus compounds and prediction of new types of nerve agents. NEW J CHEM 2022. [DOI: 10.1039/d2nj00850e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
IR prediction of Novichok candidates is performed by establishing an accurate DFT calculation method on organophosphorus compounds.
Collapse
Affiliation(s)
- Honghyun Kim
- Department of Civil Engineering and Environmental Sciences, Korea Military Academy, Seoul, 01805, South Korea
| | - Ung Hwi Yoon
- Department of Physics and Chemistry, Korea Military Academy, Seoul, 01805, South Korea
| | - Tae In Ryu
- Accident Coordination and Training Division, National Institute of Chemical Safety (NICS), 270 Osongsaengmyeong 11-ro, Heungdeok-gu, Cheongju, Chungcheongbuk-do, 28164, South Korea
| | - Hey Jin Jeong
- Department of Physics and Chemistry, Korea Military Academy, Seoul, 01805, South Korea
| | - Sung il Kim
- Department of Physics and Chemistry, Korea Military Academy, Seoul, 01805, South Korea
| | - Jinseon Park
- Department of Physics and Chemistry, Korea Military Academy, Seoul, 01805, South Korea
| | - Young Sik Kye
- Department of Physics and Chemistry, Korea Military Academy, Seoul, 01805, South Korea
| | - Seung-Ryul Hwang
- Accident Coordination and Training Division, National Institute of Chemical Safety (NICS), 270 Osongsaengmyeong 11-ro, Heungdeok-gu, Cheongju, Chungcheongbuk-do, 28164, South Korea
| | - Dongwook Kim
- Department of Physics and Chemistry, Korea Military Academy, Seoul, 01805, South Korea
| | - Yoonjae cho
- Accident Coordination and Training Division, National Institute of Chemical Safety (NICS), 270 Osongsaengmyeong 11-ro, Heungdeok-gu, Cheongju, Chungcheongbuk-do, 28164, South Korea
| | - Keunhong Jeong
- Department of Physics and Chemistry, Korea Military Academy, Seoul, 01805, South Korea
| |
Collapse
|
29
|
Otsuka M, Miyaguchi H. Theoretical evaluation of the hydrolysis of conventional nerve agents and novichok agents. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Chernicharo FCS, Modesto-Costa L, Borges I. Simulation of the electron ionization mass spectra of the Novichok nerve agent. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4779. [PMID: 34407561 DOI: 10.1002/jms.4779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Novichok is one of the most feared and controversial nerve agents, which existence was confirmed only after the Salisbury attack in 2018. A new attack on August 2020, in Russia, was confirmed. After the 2018 attack, the agent was included in the list of the most dangerous chemicals of the Chemical Weapons Convention (CWC). However, information related to its electron ionization mass spectrometry (EI/MS), essential for unambiguous identification, is scarce. Therefore, investigations about Novichok EI/MS are urgent. In this work, we employed Born-Oppenheimer molecular dynamics through the Quantum Chemistry Electron Ionization Mass Spectrometry (QCEIMS) method to simulate and rationalize the EI/MS spectra and fragmentation pathways of 32 Novichok molecules recently incorporated into the CWC. The comparison of additional simulations with the measured EI spectrum of another Novichok analog is very favorable. A general scheme of the fragmentation pathways derived from simulation results was presented. The present results will be useful for elucidation and prediction of the EI spectra and fragmentation pathways of the dangerous Novichok nerve agent.
Collapse
Affiliation(s)
| | - Lucas Modesto-Costa
- Departamento de Química, Instituto Militar de Engenharia, Rio de Janeiro, RJ, Brazil
| | - Itamar Borges
- Departamento de Química, Instituto Militar de Engenharia, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
31
|
|
32
|
Jacquet P, Rémy B, Bross RPT, van Grol M, Gaucher F, Chabrière E, de Koning MC, Daudé D. Enzymatic Decontamination of G-Type, V-Type and Novichok Nerve Agents. Int J Mol Sci 2021; 22:8152. [PMID: 34360916 PMCID: PMC8347808 DOI: 10.3390/ijms22158152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/02/2022] Open
Abstract
Organophosphorus nerve agents (OPNAs) are highly toxic compounds inhibiting cholinergic enzymes in the central and autonomic nervous systems and neuromuscular junctions, causing severe intoxications in humans. Medical countermeasures and efficient decontamination solutions are needed to counteract the toxicity of a wide spectrum of harmful OPNAs including G, V and Novichok agents. Here, we describe the use of engineered OPNA-degrading enzymes for the degradation of various toxic agents including insecticides, a series of OPNA surrogates, as well as real chemical warfare agents (cyclosarin, sarin, soman, tabun, VX, A230, A232, A234). We demonstrate that only two enzymes can degrade most of these molecules at high concentrations (25 mM) in less than 5 min. Using surface assays adapted from NATO AEP-65 guidelines, we further show that enzyme-based solutions can decontaminate 97.6% and 99.4% of 10 g∙m-2 of soman- and VX-contaminated surfaces, respectively. Finally, we demonstrate that these enzymes can degrade ethyl-paraoxon down to sub-inhibitory concentrations of acetylcholinesterase, confirming their efficacy from high to micromolar doses.
Collapse
Affiliation(s)
- Pauline Jacquet
- Gene&GreenTK, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (P.J.); (B.R.); (F.G.)
| | - Benjamin Rémy
- Gene&GreenTK, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (P.J.); (B.R.); (F.G.)
| | - Rowdy P. T. Bross
- TNO Department CBRN Protection, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands; (R.P.T.B.); (M.v.G.)
| | - Marco van Grol
- TNO Department CBRN Protection, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands; (R.P.T.B.); (M.v.G.)
| | - Floriane Gaucher
- Gene&GreenTK, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (P.J.); (B.R.); (F.G.)
| | - Eric Chabrière
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Aix-Marseille Université, 13005 Marseille, France
- Institut de Recherche pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Unité Microbe Evolution Phylogénie et Infection (MEPHI), 13005 Marseille, France
| | - Martijn C. de Koning
- TNO Department CBRN Protection, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands; (R.P.T.B.); (M.v.G.)
| | - David Daudé
- Gene&GreenTK, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (P.J.); (B.R.); (F.G.)
| |
Collapse
|
33
|
Noort D, Fidder A, van der Riet-van Oeveren D, Busker R, van der Schans MJ. Verification of Exposure to Novichok Nerve Agents Utilizing a Semitargeted Human Butyrylcholinesterase Nonapeptide Assay. Chem Res Toxicol 2021; 34:1926-1932. [PMID: 34255498 DOI: 10.1021/acs.chemrestox.1c00198] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novichok (NV) nerve agents were recently added to the list of Schedule 1 chemicals of the Chemical Weapons Convention. There is a well-accepted method for assessment of nerve agent exposure based on mass spectrometric analysis of a nonapeptide with the serine-198 residue modified by the nerve agent, but this approach has not yet been reported for the class of NV agents and requires the availability of reference standards, which may be a limitation for NV agent exposure assessment. Thus, a goal of this study was to first verify the utility of the nonapeptide method for the characterization of human plasma samples exposed in vitro to the NV agents A-230, A-232, and A-234. A second aim was to evaluate the possibility of identifying unknown exposures by applying precursor ion scanning in combination with high resolution mass spectrometry (HRMS). Thus, precursor ion scanning, with a generic fragment ion (m/z 778) of the nonapeptide, was used to pinpoint any modified nonapeptide, while HRMS was used for structural elucidation of the adduct moiety. By this approach, use of HRMS enabled differentiation between adducts of agents with similar molecular masses. A new unique feature that could be exploited for NV nonapeptide analysis was that the modification was released from the peptide during fragmentation in the mass spectrometer and was detected in the low-mass region of the mass spectrum. This low-mass region was extremely informative and contributed to the assignment of the structure of the particular agent used, which is especially important in case no reference materials are available. The presented method is important for verification purposes by the Organisation for Prohibition of Chemical Weapons (OPCW), e.g., in case of investigations of alleged use of NV agents, and for regular forensic investigations.
Collapse
Affiliation(s)
- Daan Noort
- TNO-CBRN Protection, P.O. Box 45, 2280 AA Rijswijk, The Netherlands
| | - Alex Fidder
- TNO-CBRN Protection, P.O. Box 45, 2280 AA Rijswijk, The Netherlands
| | | | - Ruud Busker
- TNO-CBRN Protection, P.O. Box 45, 2280 AA Rijswijk, The Netherlands
| | | |
Collapse
|
34
|
Jeong WH, Lee JY, Lim KC, Kim HS. Identification and Study of Biomarkers from Novichok-Inhibited Butyrylcholinesterase in Human Plasma. Molecules 2021; 26:3810. [PMID: 34206601 PMCID: PMC8270327 DOI: 10.3390/molecules26133810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/29/2022] Open
Abstract
To identify biomarkers of ethyl (1-(diethylamino)ethylidene)phosphoramidofluoridate (A234)- or methyl (1-(diethylamino)ethylidene)phosphoramidofluoridate (A232)-inhibited butyrylcholinesterase (BChE), we investigated nonapeptide adducts containing the active site serine, which plays a key role in enzyme activity, using LC-MS/HRMS. Biomarkers were acquired as expected, and they exhibited a significant amount of fragment ions from the inhibiting agent itself, in contrast to the MS2 spectra of conventional nerve agents. These biomarkers had a higher abundance of [M+2H]2+ ions than [M+H]+ ions, making doubly charged ions more suitable for trace analysis.
Collapse
Affiliation(s)
- Woo-Hyeon Jeong
- Agency for Defense Development (ADD), P.O. Box 35, Yuseong-gu, Daejeon 34186, Korea; (J.-Y.L.); (K.-C.L.); (H.-S.K.)
| | | | | | | |
Collapse
|
35
|
Characterization and Study on Fragmentation Pathways of a Novel Nerve Agent, 'Novichok (A234)', in Aqueous Solution by Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2021; 26:molecules26041059. [PMID: 33670472 PMCID: PMC7923011 DOI: 10.3390/molecules26041059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 11/19/2022] Open
Abstract
As a first step toward studying the properties of Novichok (ethyl (1-(diethylamino)ethylidene)phosphoramidofluoridate (A234)), we investigated its degradation products and fragmentation pathways in aqueous solution at different pH levels by liquid chromatography–tandem mass spectrometry. A234 was synthesized in our laboratory and characterized by nuclear magnetic resonance spectroscopy. Three sets of aqueous samples were prepared at different pH levels. A stock solution of A234 was prepared in acetonitrile at a concentration of 1 mg/mL and stored at −20 °C until use. Aqueous samples (0.1 mg/mL) were prepared by diluting the stock solution with deionized water. The acidic aqueous sample (pH = 3.5) and basic aqueous sample (pH = 9.4) were prepared using 0.01 M acetic acid and 0.01 M potassium carbonate, respectively. The analysis of the fragmentation patterns and degradation pathways of A234 showed that the same degradation products were formed at all pH levels. However, the hydrolysis rate of A234 was fastest under acidic conditions. In all three conditions, the fragmentation pattern and the major degradation product of A234 were determined. This information will be applicable to studies regarding the decontamination of Novichok and the trace analysis of its degradation products in various environmental matrices.
Collapse
|
36
|
Abstract
The organophosphorus substances, including pesticides and nerve agents (NAs), represent highly toxic compounds. Standard decontamination procedures place a heavy burden on the environment. Given their continued utilization or existence, considerable efforts are being made to develop environmentally friendly methods of decontamination and medical countermeasures against their intoxication. Enzymes can offer both environmental and medical applications. One of the most promising enzymes cleaving organophosphorus compounds is the enzyme with enzyme commission number (EC): 3.1.8.2, called diisopropyl fluorophosphatase (DFPase) or organophosphorus acid anhydrolase from Loligo Vulgaris or Alteromonas sp. JD6.5, respectively. Structure, mechanisms of action and substrate profiles are described for both enzymes. Wild-type (WT) enzymes have a catalytic activity against organophosphorus compounds, including G-type nerve agents. Their stereochemical preference aims their activity towards less toxic enantiomers of the chiral phosphorus center found in most chemical warfare agents. Site-direct mutagenesis has systematically improved the active site of the enzyme. These efforts have resulted in the improvement of catalytic activity and have led to the identification of variants that are more effective at detoxifying both G-type and V-type nerve agents. Some of these variants have become part of commercially available decontamination mixtures.
Collapse
|
37
|
Kovaliov M, Zhang B, Konkolewicz D, Szcześniak K, Jurga S, Averick S. Polymer grafting from a metallo‐centered enzyme improves activity in non‐native environments. POLYM INT 2020. [DOI: 10.1002/pi.6127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Marina Kovaliov
- Neuroscience Disruptive Research Lab Allegheny Health Network Research Institute, Allegheny General Hospital Pittsburgh PA USA
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital Pittsburgh PA USA
| | - Borui Zhang
- Neuroscience Disruptive Research Lab Allegheny Health Network Research Institute, Allegheny General Hospital Pittsburgh PA USA
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital Pittsburgh PA USA
| | | | | | - Stefa Jurga
- NanoBioMedical Centre, Adam Mickiewicz University Poznań Poland
| | - Saadyah Averick
- Neuroscience Disruptive Research Lab Allegheny Health Network Research Institute, Allegheny General Hospital Pittsburgh PA USA
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital Pittsburgh PA USA
| |
Collapse
|
38
|
Organophosphorus Nerve Agents: Types, Toxicity, and Treatments. J Toxicol 2020; 2020:3007984. [PMID: 33029136 PMCID: PMC7527902 DOI: 10.1155/2020/3007984] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/30/2020] [Accepted: 09/10/2020] [Indexed: 01/08/2023] Open
Abstract
Organophosphorus compounds are extensively used worldwide as pesticides which cause great hazards to human health. Nerve agents, a subcategory of the organophosphorus compounds, have been produced and used during wars, and they have also been used in terrorist activities. These compounds possess physiological threats by interacting and inhibiting acetylcholinesterase enzyme which leads to the cholinergic crisis. After a general introduction, this review elucidates the mechanisms underlying cholinergic and noncholinergic effects of organophosphorus compounds. The conceivable treatment strategies for organophosphate poisoning are different types of bioscavengers which include stoichiometric, catalytic, and pseudocatalytic. The current research on the promising treatments specifically the catalytic bioscavengers including several wild-type organophosphate hydrolases such as paraoxonase and phosphotriesterase, phosphotriesterase-like lactonase, methyl parathion hydrolase, organophosphate acid anhydrolase, diisopropyl fluorophosphatase, human triphosphate nucleotidohydrolase, and senescence marker protein has been widely discussed. Organophosphorus compounds are reported to be the nonphysiological substrate for many mammalian organophosphate hydrolysing enzymes; therefore, the efficiency of these enzymes toward these compounds is inadequate. Hence, studies have been conducted to create mutants with an enhanced rate of hydrolysis and high specificity. Several mutants have been created by applying directed molecular evolution and/or targeted mutagenesis, and catalytic efficiency has been characterized. Generally, organophosphorus compounds are chiral in nature. The development of mutant enzymes for providing superior stereoselective degradation of toxic organophosphorus compounds has also been widely accounted for in this review. Existing enzymes have shown limited efficiency; hence, more effective treatment strategies have also been critically analyzed.
Collapse
|
39
|
Costanzi S, Slavick CK, Hutcheson BO, Koblentz GD, Cupitt RT. Lists of Chemical Warfare Agents and Precursors from International Nonproliferation Frameworks: Structural Annotation and Chemical Fingerprint Analysis. J Chem Inf Model 2020; 60:4804-4816. [DOI: 10.1021/acs.jcim.0c00896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stefano Costanzi
- Department of Chemistry, American University, 4400 Massachusetts Avenue, NW, Washington, District of Columbia 20016, United States
| | - Charlotte K. Slavick
- Department of Chemistry, American University, 4400 Massachusetts Avenue, NW, Washington, District of Columbia 20016, United States
| | - Brent O. Hutcheson
- Department of Chemistry, American University, 4400 Massachusetts Avenue, NW, Washington, District of Columbia 20016, United States
| | - Gregory D. Koblentz
- Schar School of Policy and Government, George Mason University, 3351 Fairfax Drive, Arlington, Virginia 22201, United States
| | - Richard T. Cupitt
- Stimson Center, 1211 Connecticut Avenue, NW, Washington, District of Columbia 20036, United States
| |
Collapse
|
40
|
Mendonca ML, Ray D, Cramer CJ, Snurr RQ. Exploring the Effects of Node Topology, Connectivity, and Metal Identity on the Binding of Nerve Agents and Their Hydrolysis Products in Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35657-35675. [PMID: 32627522 DOI: 10.1021/acsami.0c08417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent studies have shown that metal-organic frameworks (MOFs) built from hexanuclear M(IV) oxide cluster nodes are effective catalysts for nerve agent hydrolysis, where the properties of the active sites on the nodes can strongly influence the reaction energetics. The connectivity and metal identity of these M6 nodes can be easily tuned, offering extensive opportunities for computational screening to predict promising new materials. Thus, we used density functional theory (DFT) to examine the effects of node topology, connectivity, and metal identity on the binding energies of multiple nerve agents and their corresponding hydrolysis products. By computing an optimization metric based on the relative binding strengths of key hydrolysis reaction species (water, agent, and bidentate-bound products), we predicted optimal M6 nodes for hydrolyzing specific nerve agent and simulant molecules, where our results are in qualitative agreement with observed experimental trends. This analysis highlighted the notion that no single metal or node topology is optimal for all possible organophosphates, suggesting that MOFs should be selected based on the agent of interest. Using the large amount of data generated from our DFT calculations, we then derived quantitative structure-activity relationship (QSAR) models to help explain the complex trends observed in the binding energies. Through linear regression, we identified the most important descriptors for describing the binding of nerve agents and their hydrolysis products to M6 nodes. These results suggested that both molecular and node properties, including both structural and chemical features, collectively contribute to the binding energetics. By performing a thorough statistical analysis, we showed that our QSAR models are capable of making quantitatively accurate binding energy predictions for nerve agents and their hydrolysis products in a wide variety of M(IV)-MOFs. The insights gained herein can be used to guide future experiments for the synthesis of MOFs with enhanced catalytic activity for organophosphate hydrolysis.
Collapse
Affiliation(s)
- Matthew L Mendonca
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Debmalya Ray
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Christopher J Cramer
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Randall Q Snurr
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
41
|
Imrit YA, Bhakhoa H, Sergeieva T, Danés S, Savoo N, Elzagheid MI, Rhyman L, Andrada DM, Ramasami P. A theoretical study of the hydrolysis mechanism of A-234; the suspected novichok agent in the Skripal attack. RSC Adv 2020; 10:27884-27893. [PMID: 35519147 PMCID: PMC9055627 DOI: 10.1039/d0ra05086e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022] Open
Abstract
A-234, [EtO–P(
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O)(F)–NC(Me)–N(Et)2], is the suspected A-type nerve agent used in the Skripal attack on the 4th of March 2018. Studies related to the structure and reactivity of this compound are limited. We, therefore, aimed at understanding the underlying hydrolysis mechanism of A-234 within the DFT framework. The attack of the water molecule can occur at the phosphinate and acetoamidine reactive centres. Our theoretical findings indicate that the hydrolysis at the acetoamidine centre is thermodynamically favoured compared to the hydrolysis at the phosphinate centre. The hydrolysis at the acetoamidine moiety may proceed via two pathways, depending on the nitrogen atom participating in the hydrolysis. The main pathway consists of four distinct channels to reach the final product, with the concerted 1,3-proton shift favoured kinetically and thermodynamically in the gas phase and water as solvent. The results are in good agreement with the literature, although some differences in the reaction mechanism were observed. A theoretical study of the hydrolysis mechanism of A-234 [EtO–P(O)(F)–NC(Me)–N(Et)2]; the suspected novichok agent in the Skripal attack.![]()
Collapse
Affiliation(s)
- Yadhav A. Imrit
- Computational Chemistry Group
- Department of Chemistry
- Faculty of Science
- University of Mauritius
- Réduit 80837
| | - Hanusha Bhakhoa
- Computational Chemistry Group
- Department of Chemistry
- Faculty of Science
- University of Mauritius
- Réduit 80837
| | - Tetiana Sergeieva
- Faculty of Natural Sciences and Technology
- Department of Chemistry
- Saarland University
- 66123 Saarbrücken
- Federal Republic of Germany
| | - Sergi Danés
- Faculty of Natural Sciences and Technology
- Department of Chemistry
- Saarland University
- 66123 Saarbrücken
- Federal Republic of Germany
| | - Nandini Savoo
- Computational Chemistry Group
- Department of Chemistry
- Faculty of Science
- University of Mauritius
- Réduit 80837
| | - Mohamed I. Elzagheid
- Department of Chemical and Process Engineering
- Jubail Industrial College
- Jubail Industrial City 31961
- Saudi Arabia
| | - Lydia Rhyman
- Computational Chemistry Group
- Department of Chemistry
- Faculty of Science
- University of Mauritius
- Réduit 80837
| | - Diego M. Andrada
- Faculty of Natural Sciences and Technology
- Department of Chemistry
- Saarland University
- 66123 Saarbrücken
- Federal Republic of Germany
| | - Ponnadurai Ramasami
- Computational Chemistry Group
- Department of Chemistry
- Faculty of Science
- University of Mauritius
- Réduit 80837
| |
Collapse
|