1
|
Lisman D, Zielińska G, Drath J, Łaszczewska A, Savochka I, Parafiniuk M, Ossowski A. Molecular Diagnosis of COVID-19 Sudden and Unexplained Deaths: The Insidious Face of the Pandemic. Diagnostics (Basel) 2023; 13:2980. [PMID: 37761347 PMCID: PMC10529476 DOI: 10.3390/diagnostics13182980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 epidemic has led to a significant increase in the number of deaths. This has resulted in forensic autopsies focusing on additional diagnostic possibilities. The following article is a summary of 23 autopsies of sudden and unexplained deaths. Particularly noteworthy are the described cases of children whose deaths were originally classified as SIDS (sudden infant death syndrome). All tests were performed at the Department of Forensic Medicine and Forensic Genetics, Pomeranian Medical University in Szczecin. Autopsy analyses were extended to include diagnostics of the SARS-CoV-2 virus using molecular methods and a detailed histopathological analysis of lung tissue. The material for molecular tests consisted of a nasopharyngeal swab taken postmortem and a lung tissue homogenate. In both cases, the RT-PCR method with CT cut-off point analysis was used for diagnosis. In all analyzed cases, the lungs showed massive congestion and increased fragility and cohesion. The tested material showed the presence of the SARS-CoV-2 virus, which indicated various stages of infection. It was observed that the higher the virus expression in the lungs, the lower or undetectable it was in the nasopharyngeal swab. This may explain false negative results during life in swabs. An interesting finding is that child deaths classified as SIDS also showed the presence of the virus. This may constitute a new direction of research.
Collapse
Affiliation(s)
- Dagmara Lisman
- Forensic Genetic Department, Pomeranian Medical University, 70-204 Szczecin, Poland; (G.Z.); (J.D.); (A.Ł.); (A.O.)
| | - Grażyna Zielińska
- Forensic Genetic Department, Pomeranian Medical University, 70-204 Szczecin, Poland; (G.Z.); (J.D.); (A.Ł.); (A.O.)
| | - Joanna Drath
- Forensic Genetic Department, Pomeranian Medical University, 70-204 Szczecin, Poland; (G.Z.); (J.D.); (A.Ł.); (A.O.)
| | - Aleksandra Łaszczewska
- Forensic Genetic Department, Pomeranian Medical University, 70-204 Szczecin, Poland; (G.Z.); (J.D.); (A.Ł.); (A.O.)
| | - Ilona Savochka
- Forensic Medicine Department, Pomeranian Medical University, 70-204 Szczecin, Poland; (I.S.); (M.P.)
| | - Mirosław Parafiniuk
- Forensic Medicine Department, Pomeranian Medical University, 70-204 Szczecin, Poland; (I.S.); (M.P.)
| | - Andrzej Ossowski
- Forensic Genetic Department, Pomeranian Medical University, 70-204 Szczecin, Poland; (G.Z.); (J.D.); (A.Ł.); (A.O.)
| |
Collapse
|
2
|
Shabani Z, Liu J, Su H. Vascular Dysfunctions Contribute to the Long-Term Cognitive Deficits Following COVID-19. BIOLOGY 2023; 12:1106. [PMID: 37626992 PMCID: PMC10451811 DOI: 10.3390/biology12081106] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA virus and a member of the corona virus family, primarily affecting the upper respiratory system and the lungs. Like many other respiratory viruses, SARS-CoV-2 can spread to other organ systems. Apart from causing diarrhea, another very common but debilitating complication caused by SARS-CoV-2 is neurological symptoms and cognitive difficulties, which occur in up to two thirds of hospitalized COVID-19 patients and range from shortness of concentration and overall declined cognitive speed to executive or memory function impairment. Neuro-cognitive dysfunction and "brain fog" are frequently present in COVID-19 cases, which can last several months after the infection, leading to disruption of daily life. Cumulative evidence suggests that SARS-CoV-2 affects vasculature in the extra-pulmonary systems directly or indirectly, leading to impairment of endothelial function and even multi-organ damage. The post COVID-19 long-lasting neurocognitive impairments have not been studied fully and their underlying mechanism remains elusive. In this review, we summarize the current understanding of the effects of COVID-19 on vascular dysfunction and how vascular dysfunction leads to cognitive impairment in patients.
Collapse
Affiliation(s)
- Zahra Shabani
- Center for Cerebrovascular Research, University of California (San Francisco), San Francisco, CA 94131, USA;
- Department of Anesthesia and Perioperative Care, University of California (San Francisco), San Francisco, CA 94131, USA
| | - Jialing Liu
- Department of Neurosurgery, University of California (San Francisco), San Francisco, CA 94131, USA;
| | - Hua Su
- Center for Cerebrovascular Research, University of California (San Francisco), San Francisco, CA 94131, USA;
- Department of Anesthesia and Perioperative Care, University of California (San Francisco), San Francisco, CA 94131, USA
| |
Collapse
|
3
|
Ivert A, Lindblad Wollmann C, Pettersson K. A Case Series on Pregnant Patients with Mild Covid-19 Infection and Signs of Severe Placental Insufficiency. Case Rep Obstet Gynecol 2023; 2023:2018551. [PMID: 37025388 PMCID: PMC10072962 DOI: 10.1155/2023/2018551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/24/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
In this case series, we present five cases of pregnant women who sought medical attention for reduced fetal movements with an ongoing mild maternal Covid-19 infection at a Stockholm hospital in Spring of 2021. At the time of admission, the patients were in gestational week between
and
. Abdominal ultrasound at the hospital showed no fetal movements, and cardiotocography (CTG) was pathological. All women delivered via cesarean section within 24 hours after admission. Placental pathology in all cases showed massive perivillous fibrin deposition and extensive histiocytic intervillositis. All placentas were Covid-19 polymerase chain reaction (PCR) positive. The infants were Covid-19 PCR negative. Consistent with other published case reports, we hypothesize that Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can affect the placenta resulting in massive perivillous fibrin deposition and histiocytic intervillositis leading to acute placental insufficiency and fetal hypoxia. The absence of intrauterine growth restriction also augments the theory of an acute onset of placental insufficiency due to the Covid-19 infection.
Collapse
|
4
|
Liver alterations and detection of SARS-CoV-2 RNA and proteins in COVID-19 autopsies. GeroScience 2022; 45:1015-1031. [PMID: 36527584 PMCID: PMC9759055 DOI: 10.1007/s11357-022-00700-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/20/2022] [Indexed: 12/23/2022] Open
Abstract
The most severe alterations in Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) infection are seen in the lung. However, other organs also are affected. Here, we report histopathologic findings in the liver and detection of viral proteins and RNA in COVID-19 autopsies performed at the Semmelweis University (Budapest, Hungary). Between March 2020 through March 2022, 150 autopsies on patients who died of COVID-19 were analyzed. Cause-of-death categories were formed based on the association with SARS-CoV-2 as strong, contributive, or weak. Samples for histopathologic study were obtained from all organs, fixed in formalin, and embedded in paraffin (FFPE). Immunohistochemical study (IHC) to detect SARS-CoV-2 spike protein and nucleocapsid protein (NP), CD31, claudin-5, factor VIII, macrosialin (CD68), and cytokeratin 7, with reverse transcriptase polymerase chain reaction (RT-PCR), and in situ hybridization (ISH, RNAscope®) for SARS-CoV-2 RNA were conducted using FFPE samples of livers taken from 20 autopsies performed ≤ 2 days postmortem. All glass slides were scanned; the digital images were evaluated by semiquantitative scoring and scores were analyzed statistically. Steatosis, single-cell and focal/zonal hepatocyte necrosis, portal fibrosis, and chronic inflammation were found in varying percentages. Sinusoidal ectasia, endothelial cell disruption, and fibrin-filled sinusoids were seen in all cases; these were assessed semiquantitatively for severity (SEF scored). SEF scores did not correlate with cause-of-death categories (p = 0.92) or with severity of lung alterations (p = 0.96). SARS-CoV-2 RNA was detected in 13/20 cases by PCR and in 9/20 by ISH, with IHC demonstration of spike protein in 4/20 cases and NP in 15/20. Viral RNA and proteins were located in endothelial and Kupffer cells, and in portal macrophages, but not in hepatocytes and cholangiocytes. In conclusion, endothelial damage (SEF scores) was the most common alteration in the liver and was a characteristic, but not specific alteration in COVID-19, suggesting an important role in the pathogenesis of COVID-19-associated liver disease. Detection of SARS-CoV-2 RNA and viral proteins in liver non-parenchymal cells suggests that while the most extended primary viral cytotoxic effect occurs in the lung, viral components are present in other organs too, as in the liver. The necrosis/apoptosis and endothelial damage associated with viral infection in COVID-19 suggest that those patients who survive more severe COVID-19 may face prolonged liver repair and accordingly should be followed regularly in the post-COVID period.
Collapse
|
5
|
Razaghi A, Szakos A, Al-Shakarji R, Björnstedt M, Szekely L. Morphological changes without histological myocarditis in hearts of COVID-19 deceased patients. Scand Cardiovasc J Suppl 2022; 56:166-173. [PMID: 35678649 DOI: 10.1080/14017431.2022.2085320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objective. Patients with underlying heart diseases have a higher risk of dying from Covid-19. It has also been suggested that Covid-19 affects the heart through myocarditis. Despite the rapidly growing research on the management of Covid-19 associated complications, most of the ongoing research is focused on the respiratory complications of Covid-19, and little is known about the prevalence of myocarditis. Design. This study aimed to characterize myocardial involvement by using a panel of antibodies to detect hypoxic and inflammatory changes and the presence of SARS-CoV-2 proteins in heart tissues obtained during the autopsy procedure of Covid-19 deceased patients. Thirty-seven fatal COVID-19 cases and 21 controls were included in this study. Results. Overall, the Covid-19 hearts had several histopathological changes like the waviness of myocytes, fibrosis, contract band necrosis, infiltration of polymorphonuclear neutrophils, vacuolization, and necrosis of myocytes. In addition, endothelial damage and activation were detected in heart tissue. However, viral replication was not detected using RNA in situ hybridization. Also, lymphocyte infiltration, as a hallmark of myocarditis, was not seen in this study. Conclusion. No histological sign of myocarditis was detected in any of our cases; our findings are thus most congruent with the hypothesis of the presence of a circulating endothelium activating factor such as VEGF, originating outside of the heart, probably from the hypoxic part of the Covid-19 lungs.
Collapse
Affiliation(s)
- Ali Razaghi
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Attila Szakos
- Laboratory of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Riham Al-Shakarji
- Laboratory of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Björnstedt
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Laboratory of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Laszlo Szekely
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Laboratory of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Matveeva O, Nechipurenko Y, Lagutkin D, Yegorov YE, Kzhyshkowska J. SARS-CoV-2 infection of phagocytic immune cells and COVID-19 pathology: Antibody-dependent as well as independent cell entry. Front Immunol 2022; 13:1050478. [PMID: 36532011 PMCID: PMC9751203 DOI: 10.3389/fimmu.2022.1050478] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Our review summarizes the evidence that COVID-19 can be complicated by SARS-CoV-2 infection of immune cells. This evidence is widespread and accumulating at an increasing rate. Research teams from around the world, studying primary and established cell cultures, animal models, and analyzing autopsy material from COVID-19 deceased patients, are seeing the same thing, namely that some immune cells are infected or capable of being infected with the virus. Human cells most vulnerable to infection include both professional phagocytes, such as monocytes, macrophages, and dendritic cells, as well as nonprofessional phagocytes, such as B-cells. Convincing evidence has accumulated to suggest that the virus can infect monocytes and macrophages, while data on infection of dendritic cells and B-cells are still scarce. Viral infection of immune cells can occur directly through cell receptors, but it can also be mediated or enhanced by antibodies through the Fc gamma receptors of phagocytic cells. Antibody-dependent enhancement (ADE) most likely occurs during the primary encounter with the pathogen through the first COVID-19 infection rather than during the second encounter, which is characteristic of ADE caused by other viruses. Highly fucosylated antibodies of vaccinees seems to be incapable of causing ADE, whereas afucosylated antibodies of persons with acute primary infection or convalescents are capable. SARS-CoV-2 entry into immune cells can lead to an abortive infection followed by host cell pyroptosis, and a massive inflammatory cascade. This scenario has the most experimental evidence. Other scenarios are also possible, for which the evidence base is not yet as extensive, namely productive infection of immune cells or trans-infection of other non-immune permissive cells. The chance of a latent infection cannot be ruled out either.
Collapse
Affiliation(s)
- Olga Matveeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Denis Lagutkin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases under the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yegor E. Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| |
Collapse
|
7
|
Razaghi A, Szakos A, Alouda M, Bozóky B, Björnstedt M, Szekely L. Proteomic Analysis of Pleural Effusions from COVID-19 Deceased Patients: Enhanced Inflammatory Markers. Diagnostics (Basel) 2022; 12:diagnostics12112789. [PMID: 36428847 PMCID: PMC9689825 DOI: 10.3390/diagnostics12112789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Critically ill COVID-19 patients with pleural effusion experience longer hospitalization, multisystem inflammatory syndrome, and higher rates of mortality. Generally, pleural effusion can serve as a diagnostic value to differentiate cytokine levels. This study aimed to evaluate the pleural effusions of COVID-19 deceased patients for 182 protein markers. Olink® Inflammation and Organ Damage panels were used to determine the level of 184 protein markers, e.g., ADA, BTC, CA12, CAPG, CD40, CDCP1, CXCL9, ENTPD2, Flt3L, IL-6, IL-8, LRP1, OSM, PD-L1, PTN, STX8, and VEGFA, which were raised significantly in COVID-19 deceased patients, showing over-stimulation of the immune system and ravaging cytokine storm. The rises of DPP6 and EDIL3 also indicate damage caused to arterial and cardiovascular organs. Overall, this study confirms the elevated levels of CA12, CD40, IL-6, IL-8, PD-L1, and VEGFA, proposing their potential either as biomarkers for the severity and prognosis of the disease or as targets for therapy. Particularly, this study reports upregulated ADA, BTC, DPP6, EDIL3, LIF, ENTPD2, Flt3L, and LRP1 in severe COVID-19 patients for the first time. Pearson's correlation coefficient analysis indicates the involvement of JAK/STAT pathways as a core regulator of hyperinflammation in deceased COVID-19 patients, suggesting the application of JAK inhibitors as a potential efficient treatment.
Collapse
Affiliation(s)
- Ali Razaghi
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, SE-141 86 Stockholm, Sweden
- Correspondence: (A.R.); (L.S.)
| | - Attila Szakos
- Laboratory of Clinical Pathology and Cytology, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Marwa Alouda
- Laboratory of Clinical Pathology and Cytology, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Béla Bozóky
- Laboratory of Clinical Pathology and Cytology, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Mikael Björnstedt
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, SE-141 86 Stockholm, Sweden
- Laboratory of Clinical Pathology and Cytology, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Laszlo Szekely
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, SE-141 86 Stockholm, Sweden
- Laboratory of Clinical Pathology and Cytology, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
- Correspondence: (A.R.); (L.S.)
| |
Collapse
|
8
|
Boldova AE, Korobkin JD, Nechipurenko YD, Sveshnikova AN. Theoretical Explanation for the Rarity of Antibody-Dependent Enhancement of Infection (ADE) in COVID-19. Int J Mol Sci 2022; 23:11364. [PMID: 36232664 PMCID: PMC9569501 DOI: 10.3390/ijms231911364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Global vaccination against the SARS-CoV-2 virus has proved to be highly effective. However, the possibility of antibody-dependent enhancement of infection (ADE) upon vaccination remains underinvestigated. Here, we aimed to theoretically determine conditions for the occurrence of ADE in COVID-19. We developed a series of mathematical models of antibody response: model Ab-a model of antibody formation; model Cv-a model of infection spread in the body; and a complete model, which combines the two others. The models describe experimental data on SARS-CoV and SARS-CoV-2 infections in humans and cell cultures, including viral load dynamics, seroconversion times and antibody concentration kinetics. The modelling revealed that a significant proportion of macrophages can become infected only if they bind antibodies with high probability. Thus, a high probability of macrophage infection and a sufficient amount of pre-existing antibodies are necessary for the development of ADE in SARS-CoV-2 infection. However, from the point of view of the dynamics of pneumocyte infection, the two cases where the body has a high concentration of preexisting antibodies and a high probability of macrophage infection and where there is a low concentration of antibodies in the body and no macrophage infection are indistinguishable. This conclusion could explain the lack of confirmed ADE cases for COVID-19.
Collapse
Affiliation(s)
- Anna E. Boldova
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
| | - Julia D. Korobkin
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
| | - Yury D. Nechipurenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia N. Sveshnikova
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
- Department of Normal Physiology, Sechenov First Moscow State Medical University, 8/2 Trubetskaya St., 119991 Moscow, Russia
- Faculty of Fundamental Physico-Chemical Engineering, Lomonosov Moscow State University, 1/51 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
9
|
Chen Z, Li J, Li T, Fan T, Meng C, Li C, Kang J, Chai L, Hao Y, Tang Y, Al-Hartomy OA, Wageh S, Al-Sehemi AG, Luo Z, Yu J, Shao Y, Li D, Feng S, Liu WJ, He Y, Ma X, Xie Z, Zhang H. A CRISPR/Cas12a empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. Natl Sci Rev 2022; 9:nwac104. [PMID: 35992231 PMCID: PMC9385456 DOI: 10.1093/nsr/nwac104] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/14/2022] Open
Abstract
The outbreak of the COVID-19 pandemic was partially due to the challenge of identifying asymptomatic and presymptomatic carriers of the virus, and thus highlights a strong motivation for diagnostics with high sensitivity that can be rapidly deployed. On the other hand, several concerning SARS-CoV-2 variants, including Omicron, are required to be identified as soon as the samples are identified as ‘positive’. Unfortunately, a traditional PCR test does not allow their specific identification. Herein, for the first time, we have developed MOPCS (Methodologies of Photonic CRISPR Sensing), which combines an optical sensing technology-surface plasmon resonance (SPR) with the ‘gene scissors’ clustered regularly interspaced short palindromic repeat (CRISPR) technique to achieve both high sensitivity and specificity when it comes to measurement of viral variants. MOPCS is a low-cost, CRISPR/Cas12a-system-empowered SPR gene-detecting platform that can analyze viral RNA, without the need for amplification, within 38 min from sample input to results output, and achieve a limit of detection of 15 fM. MOPCS achieves a highly sensitive analysis of SARS-CoV-2, and mutations appear in variants B.1.617.2 (Delta), B.1.1.529 (Omicron) and BA.1 (a subtype of Omicron). This platform was also used to analyze some recently collected patient samples from a local outbreak in China, identified by the Centers for Disease Control and Prevention. This innovative CRISPR-empowered SPR platform will further contribute to the fast, sensitive and accurate detection of target nucleic acid sequences with single-base mutations.
Collapse
Affiliation(s)
- Zhi Chen
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
| | - Jinfeng Li
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
- Shenzhen International Institute for Biomedical Research , Shenzhen 518116 , Guangdong , China
| | - Tianzhong Li
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
- Shenzhen International Institute for Biomedical Research , Shenzhen 518116 , Guangdong , China
| | - Taojian Fan
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
| | - Changle Meng
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
| | - Chaozhou Li
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
| | - Jianlong Kang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
| | - Luxiao Chai
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
| | - Yabin Hao
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
- Shenzhen Han's Tech Limited Company. Shenzhen 518000 , China
| | - Yuxuan Tang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
- Shenzhen Metasensing Tech Limited Company. Shenzhen 518000 , China
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University , Abha 61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University , Abha 61413, Saudi Arabia
| | - Zhiguang Luo
- Zhongmin (Shenzhen) intelligent ecology Co. , Ltd., Shenzhen 518055 , China
| | - Jiangtian Yu
- Shenzhen International Institute for Biomedical Research , Shenzhen 518116 , Guangdong , China
| | - Yonghong Shao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University , Shenzhen 518060 , China
| | - Defa Li
- Department of Laboratory Medicine, Shenzhen Children's Hospital , Shenzhen 518038 , China
| | - Shuai Feng
- Optoelectronics Research Center, School of Science, Minzu University of China , Beijing 100081 , China
| | - William J Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing 102206 , China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences , Beijing 102206 , China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055 , China
| | - Xiaopeng Ma
- Department of Respiratory, Shenzhen Children's Hospital , Shenzhen 518038 , China
| | - Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital , Shenzhen 518038 , China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
| |
Collapse
|
10
|
Nilsson B, Persson B, Eriksson O, Fromell K, Hultström M, Frithiof R, Lipcsey M, Huber-Lang M, Ekdahl KN. How the Innate Immune System of the Blood Contributes to Systemic Pathology in COVID-19-Induced ARDS and Provides Potential Targets for Treatment. Front Immunol 2022; 13:840137. [PMID: 35350780 PMCID: PMC8957861 DOI: 10.3389/fimmu.2022.840137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/14/2022] [Indexed: 12/22/2022] Open
Abstract
Most SARS-CoV-2 infected patients experience influenza-like symptoms of low or moderate severity. But, already in 2020 early during the pandemic it became obvious that many patients had a high incidence of thrombotic complications, which prompted treatment with high doses of low-molecular-weight heparin (LMWH; typically 150-300IU/kg) to prevent thrombosis. In some patients, the disease aggravated after approximately 10 days and turned into a full-blown acute respiratory distress syndrome (ARDS)-like pulmonary inflammation with endothelialitis, thrombosis and vascular angiogenesis, which often lead to intensive care treatment with ventilator support. This stage of the disease is characterized by dysregulation of cytokines and chemokines, in particular with high IL-6 levels, and also by reduced oxygen saturation, high risk of thrombosis, and signs of severe pulmonary damage with ground glass opacities. The direct link between SARS-CoV-2 and the COVID-19-associated lung injury is not clear. Indirect evidence speaks in favor of a thromboinflammatory reaction, which may be initiated by the virus itself and by infected damaged and/or apoptotic cells. We and others have demonstrated that life-threatening COVID-19 ARDS is associated with a strong activation of the intravascular innate immune system (IIIS). In support of this notion is that activation of the complement and kallikrein/kinin (KK) systems predict survival, the necessity for usage of mechanical ventilation, acute kidney injury and, in the case of MBL, also coagulation system activation with thromboembolism. The general properties of the IIIS can easily be translated into mechanisms of COVID-19 pathophysiology. The prognostic value of complement and KKsystem biomarkers demonstrate that pharmaceuticals, which are licensed or have passed the phase I trial stage are promising candidate drugs for treatment of COVID-19. Examples of such compounds include complement inhibitors AMY-101 and eculizumab (targeting C3 and C5, respectively) as well as kallikrein inhibitors ecallantide and lanadelumab and the bradykinin receptor (BKR) 2 antagonist icatibant. In this conceptual review we discuss the activation, crosstalk and the therapeutic options that are available for regulation of the IIIS.
Collapse
Affiliation(s)
- Bo Nilsson
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Barbro Persson
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Oskar Eriksson
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Karin Fromell
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Michael Hultström
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden.,Unit for Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Robert Frithiof
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Miklos Lipcsey
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden.,Hedenstierna Laboratory, Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Kristina N Ekdahl
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
11
|
Yao L, Lu L, Ma W. Immunopathological changes, complications, sequelae and immunological memory in COVID-19 patients. Heliyon 2022; 8:e09302. [PMID: 35497026 PMCID: PMC9040416 DOI: 10.1016/j.heliyon.2022.e09302] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/25/2021] [Accepted: 04/14/2022] [Indexed: 01/09/2023] Open
Abstract
Confirmed SARS-CoV-2-caused disease (COVID-19) cases have reached 275.65 million worldwide. Although the majority of COVID-19 patients present mild to moderate symptoms, some have severe complications including death. We first reviewed the pathogenesis on ACE2, a binding receptor of SARS-CoV-2 expressed in multiple organs, and prevalent multinucleate syncytia in the lung tissues of COVID-19 patients. Then, we evaluated the pathological, immunological changes and sequelae in the major organs. Finally, we reviewed the immunological memory after SARS-CoV-2 infection and vaccination. The binding of SARS-Cov-2 to ACE2 receptor results in reduced ACE2 protein levels, which may lead to elevated susceptibility to inflammation, cell death, organ failure, and potentially severe illness. These damages increase the risk of health problems over a long period, which result in many complications. The complications in multiple organs lead to the increased risk of long-term health problems that require additional attention. A multidisciplinary care team is necessary for further management and recovery of the COVID-19 survivors. Many COVID-19 patients will probably make antibodies against SARS-CoV-2 virus for most of their lives, and the immunity against reinfection would last for 3-61 months.
Collapse
Affiliation(s)
- Liqin Yao
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, Huzhou University School of Medicine, Huzhou, Zhejiang, 313000, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, School of Medicine, New Haven, CT, 06520, USA
- Center for Biomedical Data Science and Yale Cancer Center, Yale University, 60 College Street, New Haven, CT, 06520, USA
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center and Sanford Stem Cell Clinical Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
12
|
Salleh MZ, Norazmi MN, Deris ZZ. Immunogenicity mechanism of mRNA vaccines and their limitations in promoting adaptive protection against SARS-CoV-2. PeerJ 2022; 10:e13083. [PMID: 35287350 PMCID: PMC8917804 DOI: 10.7717/peerj.13083] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/16/2022] [Indexed: 01/12/2023] Open
Abstract
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) in late 2019, hundreds of millions of people have been infected worldwide. There have been unprecedented efforts in acquiring effective vaccines to confer protection against the disease. mRNA vaccines have emerged as promising alternatives to conventional vaccines due to their high potency with the capacity for rapid development and low manufacturing costs. In this review, we summarize the currently available vaccines against SARS-CoV-2 in development, with the focus on the concepts of mRNA vaccines, their antigen selection, delivery and optimization to increase the immunostimulatory capability of mRNA as well as its stability and translatability. We also discuss the host immune responses to the SARS-CoV-2 infection and expound in detail, the adaptive immune response upon immunization with mRNA vaccines, in which high levels of spike-specific IgG and neutralizing antibodies were detected after two-dose vaccination. mRNA vaccines have been shown to induce a robust CD8+T cell response, with a balanced CD4+ TH1/TH2 response. We further discuss the challenges and limitations of COVID-19 mRNA vaccines, where newly emerging variants of SARS-CoV-2 may render currently deployed vaccines less effective. Imbalanced and inappropriate inflammatory responses, resulting from hyper-activation of pro-inflammatory cytokines, which may lead to vaccine-associated enhanced respiratory disease (VAERD) and rare cases of myocarditis and pericarditis also are discussed.
Collapse
Affiliation(s)
- Mohd Zulkifli Salleh
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bahru, Kelantan, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Kota Bahru, Kelantan, Malaysia
| | - Zakuan Zainy Deris
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bahru, Kelantan, Malaysia
| |
Collapse
|
13
|
Tornling G, Batta R, Porter JC, Williams B, Bengtsson T, Parmar K, Kashiva R, Hallberg A, Cohrt AK, Westergaard K, Dalsgaard CJ, Raud J. Seven days treatment with the angiotensin II type 2 receptor agonist C21 in hospitalized COVID-19 patients; a placebo-controlled randomised multi-centre double-blind phase 2 trial. EClinicalMedicine 2021; 41:101152. [PMID: 34723163 PMCID: PMC8542174 DOI: 10.1016/j.eclinm.2021.101152] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND COVID-19 morbidity and mortality remains high and the need for safe and effective drugs continues despite vaccines. METHODS Double-blind, placebo-controlled, multi-centre, randomised, parallel group phase 2 trial to evaluate safety and efficacy of oral angiotensin II type 2 receptor agonist C21 in hospitalized patients with COVID-19 and CRP ≥ 50-150 mg/L conducted at eight sites in India (NCT04452435). Patients were randomly assigned 100 mg C21 bid or placebo for 7 days in addition to standard of care. Primary endpoint: reduction in CRP. The study period was 21 July to 13 October 2020. FINDINGS 106 patients were randomised and included in the analysis (51 C21, 55 placebo). There was no significant group difference in reduction of CRP, 81% and 78% in the C21 and placebo groups, respectively, with a treatment effect ratio of 0.85 [90% CI 0.57, 1.26]. In a secondary analysis in patients requiring supplemental oxygen at randomisation, CRP was reduced in the C21 group compared to placebo. At the end of the 7-day treatment, 37 (72.5%) and 30 (54.5%) of the patients did not require supplemental oxygen in the C21 and placebo group, respectively (OR 2.20 [90% CI 1.12, 4.41]). A post hoc analysis showed that at day 14, the proportion of patients not requiring supplemental oxygen was 98% and 80% in the C21 group compared to placebo (OR 12.5 [90% CI 2.9, 126]). Fewer patients required mechanical ventilation (one C21 patient; four placebo patients), and C21 was associated with a numerical reduction in the mortality rate (one vs three in the C21 and placebo group, respectively). Treatment with C21 was safe and well tolerated. INTERPRETATION Among hospitalised patients with COVID-19 receiving C21 for 7 days there was no reduction in CRP compared to placebo. However, a post-hoc analysis indicated a marked reduction of requirement for oxygen at day 14. The day 14 results from this study justify further evaluation in a Phase 3 study and such a trial is currently underway. FUNDING Vicore Pharma AB and LifeArc, UK.
Collapse
Affiliation(s)
- Göran Tornling
- Respiratory Medicine Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | | - Joanna C. Porter
- UCL Respiratory, Univeristy College London and Department of Thoracic Medicine, University College Hospital, London, UK
| | - Bryan Williams
- Institute of Cardiovascular Science, University College London and National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London, UK
| | | | - Kartikeya Parmar
- B J Medical College and Department of Medicine, Civil Hospital, Asarwa, Ahmedabad Gujarat, India
| | - Reema Kashiva
- Department of Medicine, Noble Hospitals Pvt. Ltd, Hadapsar, Pune, Maharashtra, India
| | - Anders Hallberg
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | | | | | - Carl-Johan Dalsgaard
- Vicore Pharma AB, Gothenburg, Sweden
- Correspondence to: Dr Carl-Johan Dalsgaard, Vicore Pharma AB, Kronhusgatan 11, SE-411 05 Gothenburg, Sweden
| | - Johan Raud
- Vicore Pharma AB, Gothenburg, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Pablos I, Machado Y, de Jesus HCR, Mohamud Y, Kappelhoff R, Lindskog C, Vlok M, Bell PA, Butler GS, Grin PM, Cao QT, Nguyen JP, Solis N, Abbina S, Rut W, Vederas JC, Szekely L, Szakos A, Drag M, Kizhakkedathu JN, Mossman K, Hirota JA, Jan E, Luo H, Banerjee A, Overall CM. Mechanistic insights into COVID-19 by global analysis of the SARS-CoV-2 3CL pro substrate degradome. Cell Rep 2021; 37:109892. [PMID: 34672947 PMCID: PMC8501228 DOI: 10.1016/j.celrep.2021.109892] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/10/2021] [Accepted: 10/05/2021] [Indexed: 12/27/2022] Open
Abstract
The main viral protease (3CLpro) is indispensable for SARS-CoV-2 replication. We delineate the human protein substrate landscape of 3CLpro by TAILS substrate-targeted N-terminomics. We identify more than 100 substrates in human lung and kidney cells supported by analyses of SARS-CoV-2-infected cells. Enzyme kinetics and molecular docking simulations of 3CLpro engaging substrates reveal how noncanonical cleavage sites, which diverge from SARS-CoV, guide substrate specificity. Cleaving the interactors of essential effector proteins, effectively stranding them from their binding partners, amplifies the consequences of proteolysis. We show that 3CLpro targets the Hippo pathway, including inactivation of MAP4K5, and key effectors of transcription, mRNA processing, and translation. We demonstrate that Spike glycoprotein directly binds galectin-8, with galectin-8 cleavage disengaging CALCOCO2/NDP52 to decouple antiviral-autophagy. Indeed, in post-mortem COVID-19 lung samples, NDP52 rarely colocalizes with galectin-8, unlike in healthy lungs. The 3CLpro substrate degradome establishes a foundational substrate atlas to accelerate exploration of SARS-CoV-2 pathology and drug design.
Collapse
Affiliation(s)
- Isabel Pablos
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yoan Machado
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hugo C Ramos de Jesus
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yasir Mohamud
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Reinhild Kappelhoff
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cecilia Lindskog
- Department of Immunology Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Marli Vlok
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Peter A Bell
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Georgina S Butler
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Peter M Grin
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Quynh T Cao
- Firestone Institute for Respiratory Health - Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 4A6, Canada
| | - Jenny P Nguyen
- Firestone Institute for Respiratory Health - Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 4A6, Canada
| | - Nestor Solis
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Srinivas Abbina
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; The School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Wioletta Rut
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Laszlo Szekely
- Department of Pathology and Cytology, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Attila Szakos
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Laboratories, 141 86 Stockholm, Sweden
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; The School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Karen Mossman
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jeremy A Hirota
- Firestone Institute for Respiratory Health - Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 4A6, Canada; Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Honglin Luo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Arinjay Banerjee
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Christopher M Overall
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
15
|
A COVID-19-association-dependent categorization of death causes in 100 autopsy cases. GeroScience 2021; 43:2265-2287. [PMID: 34510338 PMCID: PMC8435112 DOI: 10.1007/s11357-021-00451-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
From March through December 2020, 100 autopsies were performed (Semmelweis University, Budapest, Hungary), with chart review, of patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection demonstrated by real-time reverse-transcription polymerase chain reaction testing (mean age, 74.73 years, range 40–102 years; 50 males, mean age 71.96 years, and 50 females, mean age 77.5 years). Classified by the date of death, 21 cases were from the pandemic’s “first wave” (March through July) and 79 from the “second wave” (August through December). Three mortality categories were defined by relevance of SARS-CoV-2 infection: (1) “strong” association (n=57), in which COVID-19 was primary responsible for death; (2) “contributive” association (n=27), in which a pre-existing condition independent of COVID-19 was primary responsible for death, albeit with substantial COVID-19 co-morbidity; (3) “weak” association (n=16), in which COVID-19 was minimally or not at all responsible for death. Distributions among categories differed between the first wave, in which the “contributive” association cases dominated (strong: 24%, contributive: 48%, weak: 28%), and the second wave, in which the “strong” association cases dominated (strong: 66%, contributive: 21%, weak: 13%). Charted co-morbidities included hypertension (85 %), cardiovascular diseases (71 %), diabetes (40 %), cerebrovascular diseases (31 %), chronic respiratory diseases (30 %), malignant tumors (20 %), renal diseases (19 %), diseases of the central nervous system (15 %), and liver diseases (6 %). Autopsy evaluation analyzed alterations on macroscopy as well as findings on microscopy of scanned and scored sections of formalin-fixed, paraffin-embedded tissue samples (50–80 blocks/case). Severity of histological abnormalities in the lung differed significantly between “strong” and “contributive” (p<0.0001) and between “strong” and “weak” categories (p<0.0001). Abnormalities included diffuse alveolar damage, macrophage infiltration, and vascular and alveolar fibrin aggregates (lung), with macro- and microvascular thrombi and thromboemboli (lung, kidney, liver). In conclusion, autopsies clarified in what extent COVID-19 was responsible for death, demonstrated the pathological background of clinical signs and symptoms, and identified organ alterations that led to the death. Clinicopathologic correlation, with conference discussions of severity of co-morbidities and of direct pathological signs of disease, permitted accurate categorization of cause of death and COVID-19 association as “strong,” “contributive,” or “weak.” Lung involvement, with reduced ventilatory capacity, was the primary cause of death in the “strong” and “contributive” categories. Shifts in distribution among categories, with “strong” association between COVID-19 and death dominating in the second wave, may reflect improved clinical management of COVID-19 as expertise grew.
Collapse
|
16
|
Qin Z, Liu F, Blair R, Wang C, Yang H, Mudd J, Currey JM, Iwanaga N, He J, Mi R, Han K, Midkiff CC, Alam MA, Aktas BH, Heide RSV, Veazey R, Piedimonte G, Maness NJ, Ergün S, Mauvais-Jarvis F, Rappaport J, Kolls JK, Qin X. Endothelial cell infection and dysfunction, immune activation in severe COVID-19. Theranostics 2021; 11:8076-8091. [PMID: 34335981 PMCID: PMC8315069 DOI: 10.7150/thno.61810] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Rationale: Pulmonary vascular endotheliitis, perivascular inflammation, and immune activation are observed in COVID-19 patients. While the initial SARS-CoV-2 infection mainly infects lung epithelial cells, whether it also infects endothelial cells (ECs) and to what extent SARS-CoV-2-mediated pulmonary vascular endotheliitis is associated with immune activation remain to be determined. Methods: To address these questions, we studied SARS-CoV-2-infected K18-hACE2 (K18) mice, a severe COVID-19 mouse model, as well as lung samples from SARS-CoV-2-infected nonhuman primates (NHP) and patient deceased from COVID-19. We used immunostaining, RNAscope, and electron microscopy to analyze the organs collected from animals and patient. We conducted bulk and single cell (sc) RNA-seq analyses, and cytokine profiling of lungs or serum of the severe COVID-19 mice. Results: We show that SARS-CoV-2-infected K18 mice develop severe COVID-19, including progressive body weight loss and fatality at 7 days, severe lung interstitial inflammation, edema, hemorrhage, perivascular inflammation, systemic lymphocytopenia, and eosinopenia. Body weight loss in K18 mice correlated with the severity of pneumonia, but not with brain infection. We also observed endothelial activation and dysfunction in pulmonary vessels evidenced by the up-regulation of VCAM1 and ICAM1 and the downregulation of VE-cadherin. We detected SARS-CoV-2 in capillary ECs, activation and adhesion of platelets and immune cells to the vascular wall of the alveolar septa, and increased complement deposition in the lungs, in both COVID-19-murine and NHP models. We also revealed that pathways of coagulation, complement, K-ras signaling, and genes of ICAM1 and VCAM1 related to EC dysfunction and injury were upregulated, and were associated with massive immune activation in the lung and circulation. Conclusion: Together, our results indicate that SARS-CoV-2 causes endotheliitis via both infection and infection-mediated immune activation, which may contribute to the pathogenesis of severe COVID-19 disease.
Collapse
Affiliation(s)
- Zhongnan Qin
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Fengming Liu
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Robert Blair
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Chenxiao Wang
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Haoran Yang
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Joseph Mudd
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Joshua M Currey
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Naoki Iwanaga
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jibao He
- Coordinated Instrumentation Facility, Tulane University, New Orleans LA 70118, USA
| | - Ren Mi
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kun Han
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | | | | | - Bertal H Aktas
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Ronald Veazey
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Giovanni Piedimonte
- Departments of Pediatrics, Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Nicholas J Maness
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Koellikerstrasse 6, 97070 Würzburg, Germany
| | - Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
- Tulane Center of Excellence in Sex-Based Biology & Medicine, LA 70112, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay K. Kolls
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Xuebin Qin
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|