1
|
Mohamed HA, Mohamed NA, Macasa SS, Basha HK, Adan AM, Crovella S, Ding H, Triggle CR, Marei I, Abou-Saleh H. Metformin-loaded nanoparticles reduce hyperglycemia-associated oxidative stress and induce eNOS phosphorylation in vascular endothelial cells. Sci Rep 2024; 14:30870. [PMID: 39730492 DOI: 10.1038/s41598-024-81427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024] Open
Abstract
Diabetes mellitus is a chronic disease characterized by metabolic defects, including insulin deficiency and resistance. Individuals with diabetes are at increased risk of developing cardiovascular complications, such as atherosclerosis, coronary artery disease, and hypertension. Conventional treatment methods, though effective, are often challenging, costly, and may lead to systemic side effects. This study explores the potential of nanomedicine applications, specifically Metal-Organic Frameworks (MOFs), as drug carriers to overcome these limitations. The Materials Institute Lavoisier-89 nanoparticles (nanoMIL-89) have previously demonstrated promise as a drug delivery vehicle for chronic diseases due to their anti-oxidant and cardio-protective properties. In this investigation, nanoMIL-89 was loaded with the anti-diabetic drug metformin (MET), creating MET@nanoMIL-89 formulation. We examined the drug release kinetics of MET@nanoMIL-89 over 96 h and assessed its impact on the viability of various endothelial cells. Furthermore, we investigated the nanoformulation effect on the inflammatory marker CXCL8 in these cells and explored its influence on phosphorylated eNOS, total eNOS, and AKT levels. Our findings indicate that nanoMIL-89 effectively released metformin over 96 h and caused a concentration-dependent reduction in CXCL8 release from endothelial cells. Notably, MET@nanoMIL-89 reduced dihydroethidium levels and increased phosphorylated eNOS, total eNOS, and AKT levels. Our results underscore the potential of nanoMIL-89 as a versatile potential drug delivery platform for anti-diabetic drugs, offering a prospective therapeutic approach for diabetic patients with associated cardiovascular complications.
Collapse
Affiliation(s)
- Hana A Mohamed
- Biomedical Research Center, Qatar University, PO Box 2713, Doha, Qatar
| | - Nura A Mohamed
- Biomedical Research Center, Qatar University, PO Box 2713, Doha, Qatar
| | - Shantelle S Macasa
- Biological and Environmental Sciences Department, Qatar University, PO Box 2713, Doha, Qatar
| | - Hamda K Basha
- Biological and Environmental Sciences Department, Qatar University, PO Box 2713, Doha, Qatar
| | - Adna M Adan
- Biological and Environmental Sciences Department, Qatar University, PO Box 2713, Doha, Qatar
| | - Sergio Crovella
- Laboratory Animal Research Center, Qatar University, PO Box 2713, Doha, Qatar
| | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Doha, Qatar
| | - Christopher R Triggle
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Doha, Qatar.
- Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, SW7 2AZ, UK.
| | - Haissam Abou-Saleh
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
2
|
Sripunya A, Chittasupho C, Mangmool S, Angerhofer A, Imaram W. Gallic Acid-Encapsulated PAMAM Dendrimers as an Antioxidant Delivery System for Controlled Release and Reduced Cytotoxicity against ARPE-19 Cells. Bioconjug Chem 2024; 35:1959-1969. [PMID: 39641479 DOI: 10.1021/acs.bioconjchem.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Poly(amidoamine) (PAMAM) dendrimers have gained significant attention in various research fields, particularly in medicinal compound delivery. Their versatility lies in their ability to conjugate with functional molecules on their surfaces and encapsulate small molecules, making them suitable for diverse applications. Gallic acid is a potent antioxidant compound that has garnered considerable interest in recent years. Our research aims to investigate if the gallic acid-encapsulated PAMAM dendrimer generations 4 (G4(OH)-Ga) and 5 (G5(OH)-Ga) could enhance radical scavenging, which could potentially slow down the progression of age-related macular degeneration (AMD). Encapsulation of gallic acid in PAMAM dendrimers is a feasible alternative to prevent its degradation and toxicity. In vitro investigation of antioxidant activity was carried out using the DPPH and ABTS radical scavenging assays, as well as the FRAP assay. The IC50 values for DPPH and ABTS assays were determined through nonlinear dose-response curves, correlating the inhibition percentage with the concentration (μg/mL) of the sample and the concentration (μM) of gallic acid within each sample. G4(OH)-Ga and G5(OH)-Ga possess significant antioxidant activities as determined by the DPPH, ABTS, and FRAP assays. Moreover, gallic acid-encapsulated PAMAM dendrimers inhibit H2O2-induced reactive oxygen species (ROS) production in the human retinal pigment epithelium ARPE-19 cells, thereby improving antioxidant characteristics and potentially retarding AMD progression caused by ROS. In an evaluation of cell viability of ARPE-19 cells using the MTT assay, G4(OH)-Ga was found to reduce cytotoxic effects on ARPE-19 cells.
Collapse
Affiliation(s)
- Aorada Sripunya
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand
| | - Alexander Angerhofer
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Witcha Imaram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Advanced Magnetic Resonance, Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
3
|
Rahmanian N, Moulavi P, Ashrafi F, Sharifi A, Asadi S. Surface-functionalized UIO-66-NH 2 for dual-drug delivery of vancomycin and amikacin against vancomycin-resistant Staphylococcus aureus. BMC Microbiol 2024; 24:462. [PMID: 39516717 PMCID: PMC11546402 DOI: 10.1186/s12866-024-03615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Conventional antibacterial compounds can inhibit the growth of microorganisms, but their adverse effects and the development of drug limit their widespread use. The current study aimed to synthesize PEG-coated UIO-66-NH2 nanoparticles loaded with vancomycin and amikacin (VAN/AMK-UIO-66-NH2@PEG) and evaluate their antibacterial and anti-biofilm activities against vancomycin-resistant Staphylococcus aureus (VRSA) clinical isolates. METHODS The VAN/AMK-UIO-66-NH2@PEG were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS) to determine their size, polydispersity index (PDI), encapsulation efficiency (EE%), zeta-potential, drug release profile, and physical stability. Antibacterial activity was evaluated using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-kill assays. Biofilm formation by VRSA was assessed using the crystal violet (CV) and minimum biofilm eradication concentration (MBEC) assays. The effect of sub-MIC concentrations of the formulations on the expression of biofilm-related genes (icaA, icaD) and resistance-related genes (mecA, vanA) was investigated using quantitative real-time polymerase chain reaction (RT-qPCR). RESULTS As demonstrated by MIC, MBC and time-kill assay, the VAN/AMK-UIO-66-NH2@PEG nanoparticles exhibited enhanced antibacterial activity against VRSA isolates compared to free drugs and prepared formulations. Furthermore, CV and MBEC tests indicated that the VAN/AMK-UIO-66@NH2/PEG can reduce biofilm formation dramatically compared to VAN/AMK and VAN/AMK-UIO-66@NH2, due to its great drug release properties. This study also found that the expression level of the mecA, vanA, icaA, and icaD genes in VAN/AMK-UIO-66@NH2/PEG treated VRSA isolates was substantially decreased compared to other groups. CONCLUSIONS These findings highlighted the efficiency of VAN/AMK-UIO-66@NH2/PEG in combating antimicrobial resistance and biofilm formation in VRSA isolates. Future studies, particularly in vivo models, are necessary to evaluate the safety, efficacy, and clinical applicability of these nanoparticles for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Nazanin Rahmanian
- Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pooria Moulavi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ashrafi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Aram Sharifi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Sepideh Asadi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
S A, R V, Sivakumar K, Dash S. Effect of antidiabetic drug metformin hydrochloride on micellization behavior of cetylpyridinium bromide in aqueous solution. J Biomol Struct Dyn 2024; 42:8969-8982. [PMID: 37667900 DOI: 10.1080/07391102.2023.2249113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/11/2023] [Indexed: 09/06/2023]
Abstract
Herein, the interaction of an antidiabetic drug, metformin hydrochloride (MHCl), and a cationic surfactant, cetylpyridinium bromide (CPB) is investigated in an aqueous medium. The critical micellar concentration (CMC) of CPB is estimated through conductivity experiments and found to be reduced on adding MHCl and further decreased in the presence of NaCl. The reduced CMC is attributed to the solubilization of MHCl by CPB through micellization and the micellization is found to be thermodynamically spontaneous that experiences an augmentation in the presence of NaCl. This is identified from the negative value of standard free energy (Δ G0m). The higher negative value of Δ G0m (-55.41 kJ mol-1) for CPB + MHCl + NaCl than CPB (-37.89 kJ mol-1) and CPB + MHCl (-34.08 kJ mol-1) is suggestive of the above phenomenon. The positive values of Δ S0m in all three cases confirm that the micellization is entropy driven. The binding of MHCl on CPB is quantified by estimating binding constant using the Benesi-Hildebrand (B-H) plot through UV-visible spectral methods. The binding constant values were calculated to be 2.70 M-1 for CPB + MHCl + NaCl compared to 1.258 M-1 for CPB + MHCl predicting a favoring of micellization in the presence of NaCl which is higher than that in the presence of co-solvents. The molecular interaction of MHCl and CPB is justified using FT-IR and NMR techniques. The surface properties of drug surfactant interactions are assessed using SEM techniques. The point of interaction between the drug and surfactant is visualized through the molecular docking approach. The results suggest that CPB would be an effective solubilizer for developing MHCl drug formulations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anjali S
- Department of chemistry, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Vigneshwari R
- Department of chemistry, Annamalai University, Chidambaram, Tamil Nadu, India
| | - K Sivakumar
- Department of Chemistry, Faculty of Science, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya (Deemed to be University) [SCSVMV University], Kanchipuram, Tamil Nadu, India
| | - Sasmita Dash
- Department of chemistry, Annamalai University, Chidambaram, Tamil Nadu, India
| |
Collapse
|
5
|
Pinheiro CG, Motta BP, Oliveira JO, Cardoso FN, Figueiredo ID, Machado RTA, da Silva PB, Chorilli M, Brunetti IL, Baviera AM. Bixin Combined with Metformin Ameliorates Insulin Resistance and Antioxidant Defenses in Obese Mice. Pharmaceuticals (Basel) 2024; 17:1202. [PMID: 39338363 PMCID: PMC11434661 DOI: 10.3390/ph17091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Bixin (C25H30O4; 394.51 g/mol) is the main apocarotenoid found in annatto seeds. It has a 25-carbon open chain structure with a methyl ester group and carboxylic acid. Bixin increases the expression of antioxidant enzymes, which may be interesting for counteracting oxidative stress. This study investigated whether bixin-rich annatto extract combined with metformin was able to improve the disturbances observed in high-fat diet (HFD)-induced obesity in mice, with an emphasis on markers of oxidative damage and antioxidant defenses. HFD-fed mice were treated for 8 weeks with metformin (50 mg/kg) plus bixin-rich annatto extract (5.5 and 11 mg/kg). This study assessed glucose tolerance, insulin sensitivity, lipid profile and paraoxonase 1 (PON-1) activity in plasma, fluorescent AGEs (advanced glycation end products), TBARSs (thiobarbituric acid-reactive substances), and the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in the liver and kidneys. Treatment with bixin plus metformin decreased body weight gain, improved insulin sensitivity, and decreased AGEs and TBARSs in the plasma, liver, and kidneys. Bixin plus metformin increased the activities of PON-1, SOD, CAT, and GSH-Px. Bixin combined with metformin improved the endogenous antioxidant defenses in the obese mice, showing that this combined therapy may have the potential to contrast the metabolic complications resulting from oxidative stress.
Collapse
Affiliation(s)
- Camila Graça Pinheiro
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Bruno Pereira Motta
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Juliana Oriel Oliveira
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Felipe Nunes Cardoso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Ingrid Delbone Figueiredo
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Rachel Temperani Amaral Machado
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (R.T.A.M.); (P.B.d.S.); (M.C.)
| | - Patrícia Bento da Silva
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (R.T.A.M.); (P.B.d.S.); (M.C.)
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (R.T.A.M.); (P.B.d.S.); (M.C.)
| | - Iguatemy Lourenço Brunetti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Amanda Martins Baviera
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| |
Collapse
|
6
|
Atrooz OM, Reihani N, Mozafari MR, Salawi A, Taghavi E. Enhancing hair regeneration: Recent progress in tailoring nanostructured lipid carriers through surface modification strategies. ADMET AND DMPK 2024; 12:431-462. [PMID: 39091900 PMCID: PMC11289513 DOI: 10.5599/admet.2376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
Background and purpose Hair loss is a prevalent problem affecting millions of people worldwide, necessitating innovative and efficient regrowth approaches. Nanostructured lipid carriers (NLCs) have become a hopeful option for transporting bioactive substances to hair follicles because of their compatibility with the body and capability to improve drug absorption. Review approach Recently, surface modification techniques have been used to enhance hair regeneration by improving the customization of NLCs. These techniques involve applying polymers, incorporating targeting molecules, and modifying the surface charge. Key results The conversation focuses on how these techniques enhance stability, compatibility with the body, and precise delivery to hair follicles within NLCs. Moreover, it explains how surface-modified NLCs can improve the bioavailability of hair growth-promoting agents like minoxidil and finasteride. Furthermore, information on how surface-modified NLCs interact with hair follicles is given, uncovering their possible uses in treating hair loss conditions. Conclusion This review discusses the potential of altering the surface of NLCs to customize them for enhanced hair growth. It offers important information for upcoming studies on hair growth.
Collapse
Affiliation(s)
- Omar M. Atrooz
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
- Department of Biological Sciences, Mutah University, Mutah, Jordan
| | - Nasim Reihani
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, Victoria 3800, Australia
| | - M. R. Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, Victoria 3800, Australia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Elham Taghavi
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
7
|
Nousheen K, Din FU, Jamshaid H, Afza R, Khan SU, Malik M, Ali Z, Batool S, Zeb A, Yousaf AM, Almari AH, Alqahtani S, Khan S, Khan GM. Metformin HCl-loaded transethosomal gel; development, characterization, and antidiabetic potential evaluation in the diabetes-induced rat model. Drug Deliv 2023; 30:2251720. [PMID: 37649375 PMCID: PMC10472853 DOI: 10.1080/10717544.2023.2251720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023] Open
Abstract
Herein we designed, optimized, and characterized the Metformin Hydrochloride Transethosomes (MTF-TES) and incorporate them into Chitosan gel to develop Metformin Hydrochloride loaded Transethosomal gel (MTF-TES gel) that provides a sustained release, improved transdermal flux and improved antidiabetic response of MTF. Design Expert® software (Ver. 12, Stat-Ease, USA) was applied for the statistical optimization of MTF-TES. The formulation with Mean Particle Size Distribution (MPSD) of 165.4 ± 2.3 nm, Zeta Potential (ZP) of -21.2 ± 1.9 mV, Polydispersity Index (PDI) of 0.169 ± 0.033, and MTF percent Entrapment Efficiency (%EE) of 89.76 ± 4.12 was considered to be optimized. To check the chemical incompatibility among the MTF and other formulation components, Fourier Transform Infrared (FTIR) spectroscopy was performed and demonstrated with no chemical interaction. Surface morphology, uniformity, and segregation were evaluated through Transmission Electron Microscopy (TEM). It was revealed that the nanoparticles were spherical and round in form with intact borders. The fabricated MTF-TES has shown sustained release followed by a more pronounced effect in MTF-TES gel as compared to the plain MTF solution (MTFS) at a pH of 7.4. The MTF-TES has shown enhanced permeation followed by MTF-TES gel as compared to the MTFS at a pH of 7.4. In vivo antidiabetic assay was performed and results have shown improved antidiabetic potential of the MTF-TES gel, in contrast to MTF-gel. Conclusively, MTF-TES is a promising anti-diabetic candidate for transdermal drug delivery that can provide sustained MTF release and enhanced antidiabetic effect.
Collapse
Affiliation(s)
- Kainat Nousheen
- Department of Pharmacy, Nanomedicine Research Group, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Nanomedicine Research Group, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Humzah Jamshaid
- Department of Pharmacy, Nanomedicine Research Group, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rabia Afza
- Department of Botany, Hazara University, Mansehra, Pakistan
| | - Saif Ullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsada, Pakistan
| | - Maimoona Malik
- Department of Pharmacy, Nanomedicine Research Group, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zakir Ali
- Department of Pharmacy, Nanomedicine Research Group, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sibgha Batool
- Department of Pharmacy, Nanomedicine Research Group, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Abid Mehmood Yousaf
- Department of Pharmacy, Comsats University Islamabad, Lahore Campus, Pakistan
| | - Ali H. Almari
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Saud Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Salman Khan
- Department of Pharmacy, Nanomedicine Research Group, Quaid-i-Azam University, Islamabad, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Nanomedicine Research Group, Quaid-i-Azam University, Islamabad, Pakistan
- Islamia College University, Peshawar, Pakistan
| |
Collapse
|
8
|
Rajendran D, Varghese RP, C GPD, Shivashankar M, Chandrasekaran N. Interaction of antidiabetic formulation with nanoplastics and its binary influence on plasma protein. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104249. [PMID: 37597672 DOI: 10.1016/j.etap.2023.104249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Nanoplastics exposure to humans becomes inevitable due to its prevalence and permanence. Adsorption of emerging pollutant metformin hydrochloride (Met-HCl) -antidiabetic drug, on polystyrene nanoplastics (PSNPs) and influence on plasma protein binding was investigated. Fluorescence studies were carried out for human serum albumin (HSA) binding. Adsorption follows pseudo-second-order kinetics, intraparticle-diffusion, and Langmuir isotherm, undergoing both physisorption and chemisorption which was validated by FE-SEM, FTIR, and HRMS measurements. Complex, experiences static quenching mechanism by hydrogen bonding and VanderWaals force of attraction to HSA. FTIR confirms the secondary structural alteration of HSA. Since Met-HCl covers the NPs' surface, NPs' affinity for HSA is reduced and they might reach the target organs of Met-HCl, disrupt antidiabetic mechanisms and cause far-reaching implications. Results from molecular docking and simulation studies backed up these results as hydrophobic and hydrogen bonds dominate the binding process of the HSA-Met-HCl-PSNPs complex. This work will aid in understanding of the toxico-kinetics/dynamics of binary contaminants.
Collapse
Affiliation(s)
- Durgalakshmi Rajendran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Rinku Polachirakkal Varghese
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - George Priya Doss C
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Murugesh Shivashankar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
9
|
Ibrahim RS, Ibrahim SS, El-Naas A, Koklesová L, Kubatka P, Büsselberg D. Could Metformin and Resveratrol Support Glioblastoma Treatment? A Mechanistic View at the Cellular Level. Cancers (Basel) 2023; 15:3368. [PMID: 37444478 DOI: 10.3390/cancers15133368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma, a malignant brain tumor, is a common primary brain tumor in adults, with diabetes mellitus being a crucial risk factor. This review examines how the antidiabetic drug metformin and dietary supplement resveratrol can benefit the treatment of glioblastoma. Metformin and resveratrol have demonstrated action against relevant pathways in cancer cells. Metformin and resveratrol inhibit cell proliferation by downregulating the PI3K/Akt pathway, activating mTOR, and increasing AMPK phosphorylation, resulting in lower proliferation and higher apoptosis levels. Metformin and resveratrol both upregulate and inhibit different cascades in the MAPK pathway. In vivo, the drugs reduced tumor growth and volume. These actions show how metformin and resveratrol can combat cancer with both glucose-dependent and glucose-independent effects. The pre-clinical results, alongside the lack of clinical studies and the rise in novel delivery mechanisms, warrant further clinical investigations into the applications of metformin and resveratrol as both separate and as a combination complement to current glioblastoma therapies.
Collapse
Affiliation(s)
| | | | - Ahmed El-Naas
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Lenka Koklesová
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| |
Collapse
|
10
|
Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GES. The potential effect of metformin on fibroblast growth factor 21 in type 2 diabetes mellitus (T2DM). Inflammopharmacology 2023:10.1007/s10787-023-01255-4. [PMID: 37337094 DOI: 10.1007/s10787-023-01255-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 06/21/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a peptide hormone mainly synthesized and released from the liver. FGF21 acts on FGF21 receptors (FGFRs) and β-Klotho, which is a transmembrane co-receptor. In type 2 diabetes mellitus (T2DM), inflammatory disorders stimulate the release of FGF21 to overcome insulin resistance (IR). FGF21 improves insulin sensitivity and glucose homeostasis. Metformin which is used in the management of T2DM may increase FGF21 expression. Accordingly, the objective of this review was to clarify the metformin effect on FGF21 in T2DM. FGF21 level and expression of FGF2Rs are dysregulated in T2DM due to the development of FGF21 resistance. Metformin stimulates the hepatic expression of FGF21/FGF2Rs by different signaling pathways. Besides, metformin improves the expression of β-Klotho which improves FGF21 sensitivity. In conclusion, metformin advances FGF21 signaling and decreases FGF21 resistance in T2DM, and this might be an innovative mechanism for metformin in the enhancement of glucose homeostasis and metabolic disorders in T2DM patients.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
11
|
Zaky MF, Hammady TM, Gad S, Alattar A, Alshaman R, Hegazy A, Zaitone SA, Ghorab MM, Megahed MA. Influence of Surface-Modification via PEGylation or Chitosanization of Lipidic Nanocarriers on In Vivo Pharmacokinetic/Pharmacodynamic Profiles of Apixaban. Pharmaceutics 2023; 15:1668. [PMID: 37376116 DOI: 10.3390/pharmaceutics15061668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Nanostructured lipid carriers (NLCs) have been proven to significantly improve the bioavailability and efficacy of many drugs; however, they still have many limitations. These limitations could hinder their potential for enhancing the bioavailability of poorly water-soluble drugs and, therefore, require further amendments. From this perspective, we have investigated how the chitosanization and PEGylation of NLCs affected their ability to function as a delivery system for apixaban (APX). These surface modifications could enhance the ability of NLCs to improve the bioavailability and pharmacodynamic activity of the loaded drug. In vitro and in vivo studies were carried out to examine APX-loaded NLCs, chitosan-modified NLCs, and PEGylated NLCs. The three nanoarchitectures displayed a Higuchi-diffusion release pattern in vitro, in addition to having their vesicular outline proven via electron microscopy. PEGylated and chitosanized NLCs retained good stability over 3 months, versus the nonPEGylated and nonchitosanized NLCs. Interestingly, APX-loaded chitosan-modified NLCs displayed better stability than the APX-loaded PEGylated NLCs, in terms of mean vesicle size after 90 days. On the other hand, the absorption profile of APX (AUC0-inf) in rats pretreated with APX-loaded PEGylated NLCs (108.59 µg·mL-1·h-1) was significantly higher than the AUC0-inf of APX in rats pretreated with APX-loaded chitosan-modified NLCs (93.397 µg·mL-1·h-1), and both were also significantly higher than AUC0-inf of APX-Loaded NLCs (55.435 µg·mL-1·h-1). Chitosan-coated NLCs enhanced APX anticoagulant activity with increased prothrombin time and activated partial thromboplastin time by 1.6- and 1.55-folds, respectively, compared to unmodified NLCs, and by 1.23- and 1.37-folds, respectively, compared to PEGylated NLCs. The PEGylation and chitosanization of NLCs enhanced the bioavailability and anticoagulant activity of APX over the nonmodified NLCs; this highlighted the importance of both approaches.
Collapse
Affiliation(s)
- Mohamed F Zaky
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Taha M Hammady
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Abdullah Alattar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ann Hegazy
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mamdouh Mostafa Ghorab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed A Megahed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| |
Collapse
|
12
|
A PEGylated Nanostructured Lipid Carrier for Enhanced Oral Delivery of Antibiotics. Pharmaceutics 2022; 14:pharmaceutics14081668. [PMID: 36015294 PMCID: PMC9415149 DOI: 10.3390/pharmaceutics14081668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance is a major concern for public health throughout the world that severely restricts available treatments. In this context, methicillin-resistant Staphylococcus aureus (MRSA) is responsible for a high percentage of S. aureus infections and mortality. To overcome this challenge, nanoparticles are appropriate tools as drug carriers to improve the therapeutic efficacy and decrease the toxicity of drugs. In this study, a polyethylene glycol (PEG)ylated nanostructured lipid carrier (PEG-NLC) was synthesized to improve the oral delivery of trimethoprim/sulfamethoxazole (TMP/SMZ) for the treatment of MRSA skin infection in vitro and in vivo. The nanoformulation (PEG-TMP/SMZ-NLC) was synthesized with size and drug encapsulation efficiencies of 187 ± 9 nm and 93.3%, respectively, which could release the drugs in a controlled manner at intestinal pH. PEG-TMP/SMZ-NLC was found efficient in decreasing the drugs’ toxicity by 2.4-fold in vitro. In addition, the intestinal permeability of TMP/SMZ was enhanced by 54%, and the antibacterial effects of the drugs were enhanced by 8-fold in vitro. The results of the stability study demonstrated that PEG-TMP/SMZ-NLC was stable for three months. In addition, the results demonstrated that PEG-TMP/SMZ-NLC after oral administration could decrease the drugs’ side-effects such as renal and hepatic toxicity by ~5-fold in MRSA skin infection in Balb/c mice, while it could improve the antibacterial effects of TMP/SMZ by 3 orders of magnitude. Overall, the results of this study suggest that the application of PEGylated NLC nanoparticles is a promising approach to improving the oral delivery of TMP/SMZ for the treatment of MRSA skin infection.
Collapse
|